JP6320202B2 - Hydrogen embrittlement resistant high strength steel - Google Patents

Hydrogen embrittlement resistant high strength steel Download PDF

Info

Publication number
JP6320202B2
JP6320202B2 JP2014137262A JP2014137262A JP6320202B2 JP 6320202 B2 JP6320202 B2 JP 6320202B2 JP 2014137262 A JP2014137262 A JP 2014137262A JP 2014137262 A JP2014137262 A JP 2014137262A JP 6320202 B2 JP6320202 B2 JP 6320202B2
Authority
JP
Japan
Prior art keywords
less
steel
hydrogen embrittlement
hardness
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014137262A
Other languages
Japanese (ja)
Other versions
JP2016014180A (en
Inventor
祐樹 垣木
祐樹 垣木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2014137262A priority Critical patent/JP6320202B2/en
Publication of JP2016014180A publication Critical patent/JP2016014180A/en
Application granted granted Critical
Publication of JP6320202B2 publication Critical patent/JP6320202B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は水素ガスが使用される環境下において使用される、たとえばバルブ、配管、継手などの部材、あるいは圧縮機、蓄圧機、計測機器などの機器の部材用の耐水素脆化性に優れた高強度鋼に関する。   The present invention is used in an environment where hydrogen gas is used, and is excellent in hydrogen embrittlement resistance, for example, for members such as valves, pipes, and joints, or for members such as compressors, pressure accumulators, and measuring instruments. Related to high strength steel.

近年、排出ガスのゼロ化を目ざし、さらに石油資源の枯渇に備えて、燃料電池自動車を中心とした水素エネルギーを利用する技術開発が進められている。ところで、この燃料電池自動車に対しては、車載燃料電池用の高圧水素タンクライナー材や高圧水素ガス配管などの高圧水素ガス雰囲気下で使用される金属材料の研究開発が行われている。これらの高圧ガスに曝される部位に使用される金属材料は、水素脆化感受性が低いことは勿論、工業的に利用しやすい材料であることが強く要求されている。   In recent years, with the aim of zero emissions, and in preparation for the depletion of petroleum resources, technological development using hydrogen energy, mainly fuel cell vehicles, has been promoted. By the way, for this fuel cell vehicle, research and development of a metal material used in a high-pressure hydrogen gas atmosphere such as a high-pressure hydrogen tank liner material for an on-vehicle fuel cell or a high-pressure hydrogen gas pipe has been performed. A metal material used in a portion exposed to these high-pressure gases is strongly required to be a material that can be easily used industrially as well as low in hydrogen embrittlement sensitivity.

上記のような観点から、上記の要求に適用可能な材料としてSUS 316Lオーステナイト系ステンレス鋼が適応されている。しかし、この鋼はNiの含有量が12.00〜15.00%およびMoの含有量が2.00〜3.00%と多い。そこで、SUS 316Lの溶製時にNi合金やMo合金の添加量を多くする必要があるので、このSUS 316Lオーステナイト系ステンレス鋼は高価となる。また、SUS 316Lは、C含有量が0.030%以下の低Cであるため、得られたSUS 316Lオーステナイト系ステンレス鋼も強度も低いという問題がある。   From the above viewpoint, SUS 316L austenitic stainless steel is applied as a material applicable to the above requirements. However, this steel has a high Ni content of 12.00 to 15.00% and a Mo content of 2.00 to 3.00%. Therefore, since it is necessary to increase the amount of Ni alloy or Mo alloy added when SUS316L is melted, this SUS316L austenitic stainless steel becomes expensive. Further, since SUS 316L is a low C having a C content of 0.030% or less, the obtained SUS 316L austenitic stainless steel also has a problem of low strength.

一方、従来のオーステナイト系ステンレス鋼として、高Mnのステンレス鋼、および該鋼からなる0.1〜120MPaの高圧水素ガスを貯蔵する高圧水素用ガスタンクまたは高圧ガスタンク用ライナーあるいは高圧水素ガス用配管の発明が提案されている(例えば、特許文献1参照。)。さらに、高圧水素ガス環境下で優れた機械的性質と耐食性を有しかつ優れた耐応力腐食割れ性を備えた高強度ステンレス鋼、並びに該鋼からなる高圧水素用の容器、配管およびその他の機器が提案されている(例えば、特許文献2、特許文献3参照。)。また、さらに、水素ガスを使用する環境下において使用される部材に適用される耐水素脆化性に優れたオーステナイト系ステンレス鋼が提案されている(例えば、特許文献4参照。)。   On the other hand, as a conventional austenitic stainless steel, a high-Mn stainless steel, and a high-pressure hydrogen gas tank or a high-pressure gas tank liner or high-pressure hydrogen gas pipe for storing high-pressure hydrogen gas of 0.1 to 120 MPa made of the steel Has been proposed (see, for example, Patent Document 1). Furthermore, high-strength stainless steel having excellent mechanical properties and corrosion resistance in a high-pressure hydrogen gas environment and having excellent stress corrosion cracking resistance, and a container, piping and other equipment for high-pressure hydrogen made of the steel Has been proposed (see, for example, Patent Document 2 and Patent Document 3). Furthermore, an austenitic stainless steel excellent in hydrogen embrittlement resistance applied to members used in an environment where hydrogen gas is used has been proposed (see, for example, Patent Document 4).

15Cr−9Mn−6Ni−0.2Mo−0.16Nからなる水素用低Ni省Mo型オーステナイト系ステンレス鋼の溶体化材および20%冷間加工鋼材が、室温、85MPa水素ガス中での低速度引張試験において、JIS SUS316L材に比して、耐水素脆化特性および材料強度特性共に優れていることが示されている(例えば、非特許文献1参照。)。さらに、オーステナイト系ステンレス鋼のSUS304にMo、Nb、N、Cuを微量添加した材料に近い高強度オーステナイト系ステンレス鋼AHと、オーステナイト系ステンレス鋼のSUS316LにNb、N、V微量添加した材料に近い高強度オーステナイト系ステンレス鋼BXの化学組成およびビッカース硬さがその表1に示され、さらに、これらの耐水素脆化特性がNとNbの添加や化学成分調整でオーステナイト相を安定化した高強度オーステナイト系ステンレス鋼AHおよび高強度オーステナイト系ステンレス鋼BXが示されている(例えば、非特許文献2参照。)。
しかし、これらに記載の高強度オーステナイト系ステンレス鋼はNbおよびNなどの元素を固溶強化に利用しているが40HRCを超えるような十分な高強度材料とは言いがたいものである。
A low Ni-saving Mo-type austenitic stainless steel solution for hydrogen and 20% cold-worked steel consisting of 15Cr-9Mn-6Ni-0.2Mo-0.16N and low-speed tensile in 85 MPa hydrogen gas at room temperature In the test, it has been shown that both hydrogen embrittlement resistance and material strength characteristics are superior to JIS SUS316L material (see, for example, Non-Patent Document 1). Furthermore, it is close to high strength austenitic stainless steel AH similar to a material obtained by adding a small amount of Mo, Nb, N, Cu to SUS304 of austenitic stainless steel, and close to a material obtained by adding a small amount of Nb, N, V to SUS316L of austenitic stainless steel. The chemical composition and Vickers hardness of high-strength austenitic stainless steel BX are shown in Table 1. Furthermore, these hydrogen embrittlement resistances stabilize the austenite phase by adding N and Nb and adjusting the chemical composition. Austenitic stainless steel AH and high-strength austenitic stainless steel BX are shown (for example, refer to Non-Patent Document 2).
However, although the high-strength austenitic stainless steels described therein use elements such as Nb and N for solid solution strengthening, it is difficult to say that they are sufficiently high-strength materials exceeding 40 HRC.

特開2007−126688号公報JP 2007-126688 A 国際公開第2004/83476号International Publication No. 2004/83476 国際公開第2004/83477号International Publication No. 2004/83477 特開2009−133001号公報JP 2009-133001 A

「低コスト70MPa級水素ガス充填対応ステーション機器に係わる研究開発(2008年度〜2012年度)成果報告」:JMCN NEWS 第324号p.2〜p.4 一般社団法人 金属系材料研究開発センター、2013年10月1日発行“Research and Development Report on Low-Cost 70MPa Class Hydrogen Gas Filling Station Equipment (FY2008-2012)” JMCN NEWS 324 p. 2-p. 4 Metal Materials Research and Development Center, published on October 1, 2013 「高圧水素ガス中における2種類の高強度オーステナイト系ステンレス鋼のSSRT(低速引張試験)特性と疲労き裂進展特性」:日本機会学会論文集(A編)79巻808号(2013−12)、p.1726〜1740"SSRT (low-speed tensile test) characteristics and fatigue crack growth characteristics of two types of high-strength austenitic stainless steel in high-pressure hydrogen gas": Proceedings of the Japan Opportunity Association (A), 79, 808 (2013-12), p. 1726-1740

上記したように、耐水素脆化の観点から、水素ガスが使用される環境下でSUS 316Lのオーステナイト系ステンレス鋼が使用されている。しかしながら、このオーステナイト系ステンレス鋼はCの含有量が0.030%以下であるので強度が低く、さらにNiやMoを多量に含有するので高価な鋼である。   As described above, from the viewpoint of hydrogen embrittlement resistance, SUS316L austenitic stainless steel is used in an environment where hydrogen gas is used. However, this austenitic stainless steel is low in strength because the C content is 0.030% or less, and is expensive because it contains a large amount of Ni and Mo.

本発明が解決しようとする課題は、水素ガス環境下で使用される、バルブ、配管、継手などの部材用、あるいは圧縮機、蓄圧機、計測機器などの機器の部材用、のオーステナイト系ステンレス鋼における高価な元素のNiおよびMoをMnで代替し、時効処理によりV炭化物を析出させることで、40HRC以上の高強度かつ耐水素脆化に優れた安価なオーステナイト系ステンレス鋼を提供することである。   The problem to be solved by the present invention is an austenitic stainless steel for a member such as a valve, a pipe, a joint, or a member of a device such as a compressor, a pressure accumulator, or a measuring instrument used in a hydrogen gas environment. By substituting Mn for expensive elements Ni and Mo in Mn and precipitating V carbide by aging treatment, it is possible to provide an inexpensive austenitic stainless steel having high strength of 40 HRC or more and excellent resistance to hydrogen embrittlement .

上記の課題を解決するための手段は、第1の手段では、質量%で、質量%で、C:0.30〜0.60%、Si:0.20〜1.00%、Mn:6.0〜10.0%、P:0.050%以下、S:0.030%以下、Ni:7.0〜13.0%、Cr:8.0〜15.0%、V:0.90〜2.00%、O:0.0100%以下、N:0.100%以下およびB:0.0100%以下を化学成分として有し、残部Feおよび不可避的不純物からなり、上記の化学成分は下記の限定式(1)を満足し、かつ化学成分のVおよびCの比のV/Cが下記の限定式(2)を満足し、かつ硬さがHRC40.0以上であることを特徴とする耐水素脆化性の高強度鋼である。
限定式(1):Md30=551−462(C+N)−9.2Si−8.1Mn−13.7Cr−29(Ni+Cu)−18.5Mo≦−100
限定式(2):3.3≦V/C≦5.1
Means for solving the above-mentioned problems are, in the first means, mass%, mass%, C: 0.30 to 0.60%, Si: 0.20 to 1.00%, Mn: 6 0.0-10.0%, P: 0.050% or less, S: 0.030% or less, Ni: 7.0-13.0%, Cr: 8.0-15.0%, V: 0.0. 90 to 2.00%, O: 0.0100% or less, N: 0.100% or less and B: 0.0100% or less as chemical components, the balance consisting of Fe and unavoidable impurities, the above chemical components Satisfies the following limiting formula (1), V / C of the ratio of chemical components V and C satisfies the following limiting formula (2), and has a hardness of HRC 40.0 or more. This is a hydrogen embrittlement resistant high strength steel.
Limiting formula (1): Md 30 = 551-462 (C + N) -9.2Si-8.1Mn-13.7Cr-29 (Ni + Cu) -18.5Mo ≦ −100
Limiting formula (2): 3.3 ≦ V / C ≦ 5.1

第2の手段では、第1の手段の化学成分に加えて、質量%で、Mo:0.10〜1.00%、Cu:0.10〜3.00%の1種または2種を化学成分として有し、残部Feおよび不可避的不純物からなり、上記の化学成分は上記の限定式(1)を満足し、かつ化学成分のVおよびCの比のV/Cが上記の限定式(2)を満足し、かつ硬さがHRC40.0以上であることを特徴とする耐水素脆化性の高強度鋼である。   In the second means, in addition to the chemical component of the first means, one or two kinds of Mo: 0.10 to 1.00% and Cu: 0.10 to 3.00% are chemically obtained in mass%. As a component, it consists of the balance Fe and inevitable impurities, the above chemical component satisfies the above-mentioned limiting formula (1), and the ratio V / C of the chemical component V and C is the above limiting formula (2 ) And has a hardness of HRC 40.0 or more, and is a hydrogen embrittlement resistant high strength steel.

本願発明の耐水素脆化性の高強度鋼は、上記の手段としたことで、いずれも十分な時効硬さ、耐水素脆化性を有し耐食性を兼備している。また、合金元素である、VとCの添加量のバランスに配慮することで、高価なVの添加量を最小限に抑え、水素ガスが使用される環境下において使用される、バルブや配管などの鋼として必要な特性を発現しうることにより、トータル的に比較的に安価な鋼材料を提供できる。   The hydrogen embrittlement-resistant high-strength steel of the present invention has the above-mentioned means, and both have sufficient aging hardness, hydrogen embrittlement resistance, and corrosion resistance. In addition, considering the balance between the addition amounts of the alloy elements V and C, the amount of expensive V additions is minimized, and valves and pipes used in an environment where hydrogen gas is used It is possible to provide steel materials that are relatively inexpensive in total by exhibiting the characteristics required for the steel of the above.

本発明の実施の形態について説明するに当り、先ず、本発明の耐水素脆化性に優れたオーステナイト系ステンレス鋼である高強度鋼を構成する化学成分の成分範囲および限定式(1)および限定式(2)のそれぞれの限定理由を説明する。なお、成分範囲は質量%である。   In describing the embodiments of the present invention, first, the component ranges and limiting formulas (1) and limitations of the high-strength steel that is an austenitic stainless steel excellent in hydrogen embrittlement resistance according to the present invention. The reasons for limiting each of the equations (2) will be described. In addition, a component range is the mass%.

C:0.30〜0.60%
Cは、炭化物を形成させることで、鋼の硬さを得るための元素である。Cが0.30%より少ないと十分な硬さを得られない。Cが0.60%より多いと硬さに寄与しない1次炭化物が多く析出し耐食性が低下する。そこで、Cは0.30〜0.60%とし、望ましくは0.30〜0.55%とする。
C: 0.30 to 0.60%
C is an element for obtaining the hardness of steel by forming carbides. If C is less than 0.30%, sufficient hardness cannot be obtained. When C is more than 0.60%, a lot of primary carbides that do not contribute to hardness are precipitated and the corrosion resistance is lowered. Therefore, C is 0.30 to 0.60%, preferably 0.30 to 0.55%.

Si:0.20〜1.00%
Siは、製鋼での脱酸効果を有する。しかし、Siが0.20%より少ないとこれらの効果を得ることができない。一方、Siが1.00%より多いと、フェライトが生成して鋼の熱間加工性を低下させる。そこで、Siは0.20〜1.00%とする。
Si: 0.20 to 1.00%
Si has a deoxidizing effect in steelmaking. However, if the Si content is less than 0.20%, these effects cannot be obtained. On the other hand, when Si is more than 1.00%, ferrite is generated and the hot workability of the steel is lowered. Therefore, Si is 0.20 to 1.00%.

Mn:6.0〜10.0%
Mnは、オーステナイト形成元素で、Niの代替をする元素である。しかし、Mnが6.0%より少ないと、Niの代替を十分に果たせない。一方、Mnが10.0%より多いと、延性、靱性あるいは耐食性を阻害する。そこで、Mnは6.0〜10.0%とする。
Mn: 6.0 to 10.0%
Mn is an austenite forming element and an element that substitutes for Ni. However, if Mn is less than 6.0%, Ni cannot be adequately substituted. On the other hand, when Mn is more than 10.0%, ductility, toughness or corrosion resistance is impaired. Therefore, Mn is set to 6.0 to 10.0%.

Ni:7.0〜13.0%
Niは、オーステナイト形成元素である。ところで、Niが7.0%より少ないと、オーステナイトが安定して形成できない。そこで、Niは7.0%以上とする。しかし、Niは13.0%より多くしても、既に十分に安定してオーステナイトが形成されているので、Niの高価な価格ために価格が上昇するだけである。そこで、Niは7.0〜13.0%とし、望ましくは、8.0〜12.0%とする。
Ni: 7.0 to 13.0%
Ni is an austenite forming element. By the way, if Ni is less than 7.0%, austenite cannot be formed stably. Therefore, Ni is set to 7.0% or more. However, even if Ni is more than 13.0%, austenite is already formed sufficiently stably, so the price only rises due to the expensive price of Ni. Therefore, Ni is set to 7.0 to 13.0%, preferably 8.0 to 12.0%.

Cr:8.0〜15.0%
Crは、鋼の耐食性に効果を有する元素である。しかし、Crが8.0%より少ないと耐食性を十分に維持することができない。一方、Crが15.0%より多いとδフェライトが増加し、脆化を引き起こす。そこで、Crは8.0〜15.0%とし、望ましくは、10.0〜15.0%とする。
Cr: 8.0 to 15.0%
Cr is an element having an effect on the corrosion resistance of steel. However, if the Cr content is less than 8.0%, the corrosion resistance cannot be sufficiently maintained. On the other hand, when Cr is more than 15.0%, δ ferrite increases and causes embrittlement. Therefore, Cr is 8.0 to 15.0%, preferably 10.0 to 15.0%.

V:0.90〜2.00%
Vは、V炭化物を形成して硬さを得るための元素である。しかし、Vが0.90%より少ないと、V炭化物による硬さが十分に得られない。一方、Vが2.00%より多くなってもその効果は飽和する。そこで、Vは0.90〜2.00%とし、望ましくは、1.20〜2.00%とする。
V: 0.90 to 2.00%
V is an element for obtaining hardness by forming V carbide. However, if V is less than 0.90%, sufficient hardness due to V carbide cannot be obtained. On the other hand, even if V exceeds 2.00%, the effect is saturated. Therefore, V is 0.90 to 2.00%, preferably 1.20 to 2.00%.

Mo:0.10〜1.00%
Moは、耐食性を改善する元素である。Moが0.10%より少ないとその効果は小さい。一方、Moが1.00%を超えると、熱間加工性を低下する。そこで、Moは0.10〜1.00%とし、望ましくは、0.10〜0.50%とする。
Mo: 0.10 to 1.00%
Mo is an element that improves the corrosion resistance. The effect is small when Mo is less than 0.10%. On the other hand, when Mo exceeds 1.00%, hot workability is reduced. Therefore, Mo is 0.10 to 1.00%, preferably 0.10 to 0.50%.

Cu:0.10〜3.00%
Cuは、オーステナイト形成元素で、冷間加工性、耐食性を改善する元素である。しかし、Cuが0.10%未満では、その効果は得られない。一方、Cuが3.00%より多いと、熱間加工性を阻害するとともに、延性および靱性を低下する。そこで、Cuは0.10〜3.00%とし、望ましくは、0.30〜2.00%とする。
Cu: 0.10 to 3.00%
Cu is an austenite-forming element and is an element that improves cold workability and corrosion resistance. However, if Cu is less than 0.10%, the effect cannot be obtained. On the other hand, when Cu is more than 3.00%, hot workability is inhibited and ductility and toughness are lowered. Therefore, Cu is 0.10 to 3.00%, preferably 0.30 to 2.00%.

P:0.050%以下
Pは、鋼中において低融点化合物を生成したり、固溶強化したりすることにより、熱間加工性や溶接性、靭性などを悪化させる不純物元素であり、できるだけ低減したい元素である。しかし、原料由来である程度混入することが避けられない元素であることから、Pは最大0.050%まで許容する。
P: 0.050% or less P is an impurity element that deteriorates hot workability, weldability, toughness, etc. by generating a low-melting-point compound in steel or strengthening it by solid solution. The element you want to do. However, P is allowed up to a maximum of 0.050% because it is an element that is unavoidably mixed to some extent due to the raw material.

S:0.030%以下
Sは、鋼中において硫化物や低融点化合物を生成する。靭性や溶接性を低下させるので少ないほど良い。その一方で鋼の被削性を改善する効果もあるため、被削性を良くしたい場合には必要に応じて含有させてもよい。過度の添加は前者の低下を著しくするため、Sは0.030%以下とする。
S: 0.030% or less S generates sulfides and low melting point compounds in steel. Less is better as it reduces toughness and weldability. On the other hand, it also has the effect of improving the machinability of steel. Therefore, if it is desired to improve the machinability, it may be contained if necessary. Since excessive addition remarkably reduces the former, S is made 0.030% or less.

O:0.0100%以下
Oは、鋼中において酸化物を形成し、疲労強度を低下させる不純物元素である。しかし、原料や精錬時の脱酸生成物などを由来としてある程度混入することが避けられない元素であることから、Oは最大0.0100%まで許容する。なお、このような有害なOを精錬により低減するため、脱酸元素であるAl、Ca、Mgの1種または2種以上を合計で0.050%以下添加しても差し支えない。
O: 0.0100% or less O is an impurity element that forms an oxide in steel and reduces fatigue strength. However, since it is an element that is unavoidable to be mixed to some extent from raw materials and deoxidation products during refining, O is allowed up to 0.0100% at maximum. In order to reduce such harmful O by refining, a total of 0.050% or less of one or more of deoxidizing elements Al, Ca and Mg may be added.

N:0.100%以下
Nは、鋼中において窒化物を形成し、疲労強度を低下させるが、硬さ向上や耐食性改善に効果がある元素であるため、必要に応じて添加してもよい。しかし、過度の添加は前者の低下を著しくし、ブローホールの発生の危険性もあることから、Nは0.100%以下とする。
N: 0.100% or less N forms nitrides in steel and reduces fatigue strength, but is an element effective in improving hardness and improving corrosion resistance, and may be added as necessary. . However, excessive addition remarkably reduces the former and there is a risk of blowholes, so N is made 0.100% or less.

B:0.0100%以下
Bは、少量の添加で鋼の熱間加工性改善効果があるため、必要に応じて添加してもよい。しかし、過度の添加は硼化物生成により逆に熱間加工性に悪影響を及ぼすので、Bは0.0100%以下とする。
B: 0.0100% or less B may be added as necessary because it has an effect of improving the hot workability of steel when added in a small amount. However, excessive addition adversely affects hot workability due to the formation of borides, so B is set to 0.0100% or less.

限定式(1):Md30=551−462(C+N)−9.2Si−8.1Mn−13.7Cr−29(Ni+Cu)−18.5Mo≦−100
Md30は、オーステナイト系ステンレス鋼のオーステナイト安定度を示す指標で、30%の歪を与えたときに50%のマルテンサイトを生じさせる温度(摂氏)を表す指標値である。Md30が低いほどオーステナイト安定度は高い。そこで、Md30の値を−100以下、望ましくは−130以下にすることで、加工による歪誘起マルテンサイトの生成を抑制した。マルテンサイト相は、母相であるオーステナイト相と比較して硬くて脆い相であり、また水素原子の拡散速度も速く、水素脆化に対する感受性が非常に高い。オーステナイト相の安定度が高くない場合、外部応力等に起因する歪によりオーステナイト相はマルテンサイト相(歪誘起マルテンサイト)に変態することがある。水素脆化感受性を低く、即ち水素脆化しにくくするためには、歪に起因するマルテンサイト相の生成を抑制することが有効であり、オーステナイト相の安定度を高める必要がある。そのためには、限定式(1)を−100以下、望ましくは−130以下とすれば、実質的にマルテンサイト変態が抑制され、水素脆化感受性が低い鋼が得られる。
Limiting formula (1): Md 30 = 551-462 (C + N) -9.2Si-8.1Mn-13.7Cr-29 (Ni + Cu) -18.5Mo ≦ −100
Md 30 is an index indicating the austenite stability of the austenitic stainless steel, and is an index value indicating a temperature (degrees Celsius) at which 50% martensite is generated when a strain of 30% is applied. The lower the Md 30, the higher the austenite stability. Therefore, the generation of strain-induced martensite due to processing was suppressed by setting the value of Md 30 to −100 or less, preferably −130 or less. The martensite phase is a hard and brittle phase as compared with the austenite phase that is the parent phase, and also has a high diffusion rate of hydrogen atoms, and is very sensitive to hydrogen embrittlement. When the stability of the austenite phase is not high, the austenite phase may be transformed into a martensite phase (strain-induced martensite) due to strain caused by external stress or the like. In order to reduce the hydrogen embrittlement sensitivity, that is, to make the hydrogen embrittlement difficult, it is effective to suppress the formation of the martensite phase due to strain, and it is necessary to increase the stability of the austenite phase. For this purpose, when the limiting formula (1) is set to −100 or less, desirably −130 or less, a martensitic transformation is substantially suppressed, and a steel having low hydrogen embrittlement sensitivity can be obtained.

限定式(2):3.0≦V/C≦5.1
V/Cの値は、硬さへの寄与が小さい1次炭化物の生成の抑制および耐食性の向上を示す指標である。V/Cの値が3.0未満の場合、V炭化物以外の合金炭化物、特にCr炭化物が増加して耐食性が低下するのみならず、時効時の析出V炭化物量が減少して十分な硬さが得られない。V/Cの値が3.0以上では満足する硬さおよび耐食性を得ることができる。しかし、V/Cの値が5.1を超えてもVによる効果は飽和してくるので、V/Cの値は5.1以下とし、かつ稀少元素で高価なVの使用量を低減することでコストの削減を図ることができる。V/Cの値は、望ましくは3.3〜4.7とする。
Limiting formula (2): 3.0 ≦ V / C ≦ 5.1
The value of V / C is an index indicating the suppression of the formation of primary carbides and the improvement of corrosion resistance that contribute little to the hardness. When the value of V / C is less than 3.0, alloy carbides other than V carbides, particularly Cr carbides, increase and corrosion resistance decreases, and the amount of precipitated V carbides during aging decreases and sufficient hardness is achieved. Cannot be obtained. When the value of V / C is 3.0 or more, satisfactory hardness and corrosion resistance can be obtained. However, even if the value of V / C exceeds 5.1, the effect of V is saturated. Therefore, the value of V / C is set to 5.1 or less, and the amount of rare elements and expensive V used is reduced. Thus, cost reduction can be achieved. The value of V / C is preferably 3.3 to 4.7.

本願発明の実施の形態を以下に記載する。本発明の供試材の鋼を溶製するために、表1に示す合金組成からなる溶鋼の100kgをVIM(真空誘導溶解)炉にて溶製して鋼塊とし、該鋼塊を1150℃に加熱して径20mmの鋼材に鍛伸し、この鋼材を1180℃に30分保持して水冷する固溶化熱処理を施し、時効熱処理を750℃で2時間保持して空冷して、(1)の径20mmで長さ20mmの硬さ試料片、(2)の平行部の径6mmでエメリー紙♯600で仕上げた引張試験片、および(3)の径12mmで長さ21mmの耐食性試験片を作製した。   Embodiments of the present invention will be described below. In order to melt the steel of the test material of the present invention, 100 kg of molten steel having the alloy composition shown in Table 1 was melted in a VIM (vacuum induction melting) furnace to form a steel ingot. The steel material is forged into a steel material having a diameter of 20 mm, subjected to a solution heat treatment that is kept at 1180 ° C. for 30 minutes and then water-cooled, and an aging heat treatment is held at 750 ° C. for 2 hours to air-cool, 20 mm long and 20 mm long specimens, (2) parallel part diameter 6 mm tensile test pieces finished with emery paper # 600, and (3) 12 mm diameter 21 mm long corrosion resistance test pieces. Produced.

Figure 0006320202
注1)合金組成の残部はFeと不可避的不純物である。
注2)下線は、本発明以外および十分な特性が得られていない項目
注3)Mo列およびCu列の*印は不純物としての濃度を示す。
注4)耐食性欄のA〜D評価は以下を表す。A:発錆面積率1%未満、B:発錆面積率1%以上〜3%未満、C:発錆面積率3%以上〜10%未満、D:発錆面積率10%以上。
Figure 0006320202
Note 1) The balance of the alloy composition is Fe and inevitable impurities.
Note 2) Underlined items are those other than the present invention and sufficient characteristics are not obtained. Note 3) The * mark in the Mo row and Cu row indicates the concentration as an impurity.
Note 4) A to D evaluations in the corrosion resistance column represent the following. A: Rusted area ratio of less than 1%, B: Rusted area ratio of 1% to less than 3%, C: Rusted area ratio of 3% to less than 10%, D: Rusted area ratio of 10% or more.

次いで、これらの試験方法について記載する。   Then, these test methods are described.

硬さ試験は、時効処理した上記(1)の硬さ試験片を切断して得た切断面を測定面とし、これらの測定面の熱影響部層と、その反対面の表面にあるスケール層を平面研磨機にて除去して、平行精度を高めた後、ロックウエル硬度計にて上記の切断面の時効処理した硬さを測定し、この硬さを表1にHRCで示す。この場合、それぞれ5点の試験片の鋼材で得られた平均の値を示している。   In the hardness test, the cut surface obtained by cutting the aging-treated hardness test piece of (1) above is used as a measurement surface, the heat-affected zone of these measurement surfaces, and the scale layer on the opposite surface. Was removed with a surface grinder to improve parallel accuracy, and the hardness of the cut surface was subjected to aging treatment with a Rockwell hardness meter. This hardness is shown in Table 1 as HRC. In this case, the average value obtained with the steel materials of five test pieces is shown.

引張試験は、上記(2)の引張試験片の端部にNi線を電気溶接し、平行部以外を樹脂被膜で覆って水素侵入を遮断させた試験片に形成する。次いで、この試験片を0.01規定の硫酸と1リットル当り0.5グラムのチオシアン酸アンモニウムからなる30℃の溶液に浸漬し、陰極チャージ法により、68アンペア/mm2の電流を流して24時間、引張試験片に水素をチャージした。この水素チャージ後、直ちに、常温で大気圧の下で、引張試験片に毎分当りストローク速度を1mmとして引張試験をした。水素チャージ後の引張試験片の伸び、絞り、引張強さの変化を、水素チャージ無しの引張試験片に毎分当りストローク速度を1mmとして引張試験を行った引張試験片の伸び、絞り、引張強さの変化で除した値を、表1において、水素チャージ後の伸び、絞り、引張強さとして示して評価した。この伸び、絞り、引張強さの評価は、引張試験結果のバラツキも考慮して、伸び、絞り、引張強さの値が0.90以上は、水素脆化が軽微または無かったと判断した。 In the tensile test, Ni wire is electrically welded to the end of the tensile test piece of (2) above, and the other part is covered with a resin coating to form a test piece in which hydrogen intrusion is blocked. Next, this test piece was immersed in a 30 ° C. solution containing 0.01 N sulfuric acid and 0.5 gram of ammonium thiocyanate per liter, and a current of 68 amperes / mm 2 was applied by a cathodic charging method. The tensile test piece was charged with hydrogen over time. Immediately after this hydrogen charging, a tensile test was performed on a tensile test piece at a stroke speed of 1 mm per minute at normal temperature and atmospheric pressure. Changes in elongation, drawing, and tensile strength of the tensile test piece after hydrogen charging were measured for the tensile test piece that was subjected to a tensile test at a stroke speed of 1 mm per minute on a tensile test piece without hydrogen charging. The value divided by the change in thickness was evaluated in Table 1 as the elongation, drawing and tensile strength after hydrogen charging. In this evaluation of elongation, drawing, and tensile strength, it was determined that hydrogen embrittlement was slight or absent when the values of elongation, drawing, and tensile strength were 0.90 or more in consideration of variations in the tensile test results.

耐食性試験は、上記(3)の耐食性試験片を用いて、塩水噴霧試験を実施した。塩水噴霧試験は、35℃の雰囲気の下で、濃度が50ppmの塩化ナトリウム水溶液を試験片の試料に16時間噴霧して実施した。塩水噴霧試験後の試験片を観察し、発錆面積率(試験片上で発錆している箇所の面積/試験片の全表面積)に応じて、A〜Dのレーティングを行った。A:発錆面積率1%未満、B:発錆面積率1%以上〜3%未満、C:発錆面積率3%以上〜10%未満、D:発錆面積率10%以上として、表1の耐食性の欄に示した。   In the corrosion resistance test, a salt spray test was performed using the corrosion resistance test piece of (3) above. The salt spray test was performed by spraying a sample of a sodium chloride solution having a concentration of 50 ppm on a sample of a test piece for 16 hours under an atmosphere of 35 ° C. The test piece after the salt spray test was observed, and ratings A to D were performed according to the rusting area ratio (area of rusting on the test piece / total surface area of the test piece). A: Rust area ratio less than 1%, B: Rust area ratio of 1% to less than 3%, C: Rust area ratio of 3% to less than 10%, D: Rust area ratio of 10% or more, Table It is shown in the column of 1 for corrosion resistance.

表1において、本発明鋼のNo.1〜13では、Md30の値がいずれも−100以下であるので、加工による歪誘起マルテンサイトの生成が抑制され、水素脆化感受性が低く耐水素脆化に優れ、さらにV/Cの値が3.0〜5.1であるので、Cr系炭化物の生成が抑制されており、耐食性に優れ、さらに硬さがHRC40.0以上であるので十分に高強度で、またさらに、水素チャージ後の伸び、絞り、引張強さの値がいずれも0.90以上であるので水素脆化が無いかあるいは軽微であり耐水素脆性に優れている。 In Table 1, No. of the steel of the present invention. 1 to 13, since the values of Md 30 are all -100 or less, the formation of strain-induced martensite by processing is suppressed, the hydrogen embrittlement susceptibility is low, and the hydrogen embrittlement resistance is excellent. Is 3.0 to 5.1, the formation of Cr-based carbides is suppressed, the corrosion resistance is excellent, and the hardness is HRC40.0 or more, so that the strength is sufficiently high, and further, after hydrogen charging The elongation, drawing, and tensile strength values of each are 0.90 or more, so there is no or slight hydrogen embrittlement and excellent resistance to hydrogen embrittlement.

これら上記の表1の本発明鋼に対して、表1の比較鋼のNo.14〜26においては、No.14は、Cが0.24%で本願の請求項の範囲の値より低いため、硬さが低い。
No.15は、Cが0.72%で本願の請求項の範囲の値より高く、V/Cの値が2.8と低いため、耐食性が悪い。
No.16は、Siが1.54%で本願の請求項の範囲の値より高く、耐食性がやや低下傾向にある。
No.17は、Mnが4.9%で本願の請求項の範囲の値より低く、硬さが十分でない。
No.18は、Niが5.8%で本願の請求項の範囲の値より低く、Md30の値が高くなっており、オーステナイト相の安定度が高くないため、水素チャージ後の伸びや絞りの値が低く、耐水素脆性が劣っている。
No.19は、Niが14.7%で本願の請求項の範囲の値より高く、硬さや耐水素脆化は良好であるが、請求範囲以上にNiを増量したことによる効果は薄く、ただ高価である。
No.20は、Crが6.6%で本願の請求項の範囲の値より低く、耐食性が著しく劣っている。
No.21は、Crが17.8%で本願の請求項の範囲の値より高く、耐食性は良好だが、成分バランスが適切な値からずれているため、フェライト相が生成して、耐水素脆性が低下している。
No.22は、Vが0.63%で本願の請求項の範囲の値より低く、十分な硬さが得られていない。
No.23は、Vが2.56%で本願の請求項の範囲の値より高く、特性は良好だが、請求範囲以上にVを増量したことによる効果は薄く、Vの効果は飽和して、合金コストがただ高価になっているに過ぎない。
No.24は、合金元素の添加量は本願の請求項の範囲の値であるが、Md30の値が−44であるので、オーステナイト相が不安定となっており、水素チャージ後の伸びや絞りが著しく低下し、水素脆化を生じている。
No.25も、No.24と同様に、Md30の値が−78で、オーステナイト相の安定度が不十分で、水素脆化を起こしている。
No.26は、合金元素の添加量は本願の請求項の範囲の値であるが、V/Cの値が6.1で本願の請求項の範囲の値より高く、高価なVをCに対して過剰に添加しても効果は飽和することを表している。
In contrast to the steels of the present invention shown in Table 1 above, the comparative steel Nos. 14-26, no. No. 14 is low in hardness because C is 0.24%, which is lower than the value in the claims of the present application.
No. No. 15 has a C of 0.72%, which is higher than the value in the claims of the present application and a V / C value of 2.8, which is low in corrosion resistance.
No. In No. 16, Si is 1.54%, which is higher than the value in the claims of the present application, and the corrosion resistance tends to be slightly lowered.
No. In No. 17, Mn is 4.9%, which is lower than the value in the claims of the present application, and the hardness is not sufficient.
No. No. 18 is Ni of 5.8%, which is lower than the value in the claims of the present application, the value of Md 30 is high, and the stability of the austenite phase is not high. And hydrogen brittleness resistance is poor.
No. 19, Ni is 14.7%, which is higher than the value in the claims of the present application, and the hardness and hydrogen embrittlement resistance are good, but the effect of increasing Ni beyond the claims is thin, but only expensive. is there.
No. In No. 20, Cr is 6.6%, which is lower than the value in the claims of the present application, and the corrosion resistance is remarkably inferior.
No. No. 21 has a Cr content of 17.8%, which is higher than the value in the claims of the present application and has good corrosion resistance. However, since the component balance is deviated from an appropriate value, a ferrite phase is formed and hydrogen embrittlement resistance is reduced. doing.
No. In No. 22, V is 0.63%, which is lower than the value in the claims of the present application, and sufficient hardness is not obtained.
No. 23, V is 2.56%, which is higher than the value in the claims of the present application, and the characteristics are good, but the effect of increasing V beyond the claims is small, the effect of V is saturated, and the alloy cost It's just getting expensive.
No. 24 is the addition amount of alloying elements is a value in the range of the appended claims, the value of Md 30 is a -44, the austenite phase has become unstable, elongation and stop after hydrogen charging Remarkably reduced, causing hydrogen embrittlement.
No. 25, no. Similar to 24, the value of Md 30 is −78, the austenite phase is insufficiently stable, and hydrogen embrittlement occurs.
No. 26, the addition amount of the alloy element is a value within the range of the claims of the present application, but the value of V / C is 6.1, which is higher than the value of the range of the claims of the present application, and an expensive V with respect to C. Even if it adds excessively, the effect is saturated.

Claims (2)

質量%で、C:0.30〜0.60%、Si:0.20〜1.00%、Mn:6.0〜10.0%、P:0.050%以下、S:0.030%以下、Ni:7.0〜13.0%、Cr:8.0〜15.0%、V:0.90〜2.00%、O:0.0100%以下、N:0.100%以下、およびB:0.0100%以下を化学成分として有し、残部Feおよび不可避的不純物からなり、上記の化学成分は下記の限定式(1)を満足し、かつ化学成分のVおよびCの比のV/Cが下記の限定式(2)を満足し、かつ硬さがHRC40.0以上であることを特徴とする耐水素脆化性の高強度鋼。
限定式(1):Md30=551−462(C+N)−9.2Si−8.1Mn−13.7Cr−29(Ni+Cu)−18.5Mo≦−100
限定式(2):3.0≦V/C≦5.1
In mass%, C: 0.30 to 0.60%, Si: 0.20 to 1.00%, Mn: 6.0 to 10.0%, P: 0.050% or less, S: 0.030 %: Ni: 7.0-13.0%, Cr: 8.0-15.0%, V: 0.90-2.00%, O: 0.0100% or less, N: 0.100% And B: 0.0100% or less as a chemical component, the balance consisting of Fe and inevitable impurities, the chemical component satisfies the following limiting formula (1), and the chemical components V and C A hydrogen embrittlement resistant high strength steel characterized in that the ratio V / C satisfies the following limiting formula (2) and the hardness is HRC 40.0 or more.
Limiting formula (1): Md 30 = 551-462 (C + N) -9.2Si-8.1Mn-13.7Cr-29 (Ni + Cu) -18.5Mo ≦ −100
Limiting formula (2): 3.0 ≦ V / C ≦ 5.1
請求項1の化学成分に加えて、質量%で、Mo:0.10〜1.00%、Cu:0.10〜3.00%の1種または2種を化学成分として有し、残部Feおよび不可避的不純物からなり、上記の化学成分は下記の限定式(1)を満足し、かつ化学成分のVおよびCの比のV/Cが下記記の限定式(2)を満足し、かつ硬さがHRC40.0以上であることを特徴とする耐水素脆化性の高強度鋼。
限定式(1):Md30=551−462(C+N)−9.2Si−8.1Mn−13.7Cr−29(Ni+Cu)−18.5Mo≦−100
限定式(2):3.0≦V/C≦5.1
In addition to the chemical component of claim 1, by mass%, it has one or two of Mo: 0.10 to 1.00% and Cu: 0.10 to 3.00% as a chemical component, and the balance Fe And the above chemical component satisfies the following limiting formula (1), and the ratio V / C of the chemical component V and C satisfies the following limiting formula (2), and A hydrogen embrittlement resistant high strength steel characterized by a hardness of HRC 40.0 or higher.
Limiting formula (1): Md 30 = 551-462 (C + N) -9.2Si-8.1Mn-13.7Cr-29 (Ni + Cu) -18.5Mo ≦ −100
Limiting formula (2): 3.0 ≦ V / C ≦ 5.1
JP2014137262A 2014-07-02 2014-07-02 Hydrogen embrittlement resistant high strength steel Active JP6320202B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014137262A JP6320202B2 (en) 2014-07-02 2014-07-02 Hydrogen embrittlement resistant high strength steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014137262A JP6320202B2 (en) 2014-07-02 2014-07-02 Hydrogen embrittlement resistant high strength steel

Publications (2)

Publication Number Publication Date
JP2016014180A JP2016014180A (en) 2016-01-28
JP6320202B2 true JP6320202B2 (en) 2018-05-09

Family

ID=55230599

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014137262A Active JP6320202B2 (en) 2014-07-02 2014-07-02 Hydrogen embrittlement resistant high strength steel

Country Status (1)

Country Link
JP (1) JP6320202B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016183372A (en) * 2015-03-25 2016-10-20 山陽特殊製鋼株式会社 Non-magnetic corrosion resistant steel material excellent in hydrogen embrittlement resistance

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6648646B2 (en) * 2016-07-20 2020-02-14 日本製鉄株式会社 Low alloy steel material, low alloy steel pipe and container, and method of manufacturing the container
JP7240086B2 (en) * 2017-09-11 2023-03-15 山陽特殊製鋼株式会社 High-hardness non-magnetic steel with reduced susceptibility to hydrogen embrittlement
JP7339123B2 (en) * 2019-10-30 2023-09-05 山陽特殊製鋼株式会社 High hardness hydrogen embrittlement resistant steel

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08295998A (en) * 1995-04-27 1996-11-12 Hitachi Metals Ltd High strength non-magnetic steel for rotating shaft for torque sensor
JPH09249940A (en) * 1996-03-13 1997-09-22 Sumitomo Metal Ind Ltd High strength steel excellent insulfide stress cracking resistance and its production
JP2000282189A (en) * 1999-04-02 2000-10-10 Sanyo Special Steel Co Ltd Austenitic steel excellent in high cycle fatigue characteristic

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016183372A (en) * 2015-03-25 2016-10-20 山陽特殊製鋼株式会社 Non-magnetic corrosion resistant steel material excellent in hydrogen embrittlement resistance

Also Published As

Publication number Publication date
JP2016014180A (en) 2016-01-28

Similar Documents

Publication Publication Date Title
US11286548B2 (en) High-strength stainless steel seamless pipe for oil country tubular goods, and method for manufacturing same
JP6648646B2 (en) Low alloy steel material, low alloy steel pipe and container, and method of manufacturing the container
KR101562645B1 (en) Two-phase stainless steel exhibiting excellent corrosion resistance in weld
JP5685198B2 (en) Ferritic-austenitic stainless steel
JP6056132B2 (en) Austenitic and ferritic duplex stainless steel for fuel tanks
JP6648647B2 (en) Low alloy steel material, low alloy steel pipe and container, and method of manufacturing the container
CA2875644C (en) Duplex stainless steel
KR20200144599A (en) Duplex stainless steel
EP2885440A1 (en) High-chromium heat-resistant steel
JP5372467B2 (en) Austenitic stainless steel with excellent hydrogen embrittlement resistance
FI125466B (en) DOUBLE STAINLESS STEEL
JP6320202B2 (en) Hydrogen embrittlement resistant high strength steel
JP6018364B2 (en) Duplex stainless steel for chemical tankers with excellent linear heatability
JP6554844B2 (en) Manufacturing method of high-pressure hydrogen container
US20220074009A1 (en) Martensitic stainless steel seamless pipe for oil country tubular goods, and method for manufacturing same
US11773461B2 (en) Martensitic stainless steel seamless pipe for oil country tubular goods, and method for manufacturing same
JP5726537B2 (en) Duplex stainless steel with excellent toughness
CN106319362A (en) X52 seamless pipeline steel pipe with sour corrosion resistance and manufacturing method of X52 seamless pipeline steel pipe
JP5046398B2 (en) High nitrogen martensitic stainless steel
CA2951867C (en) Duplex stainless steel
JP2012201960A (en) Duplex stainless steel with good acid resistance
JP2011068957A (en) Duplex stainless steel of high-strength alloy-saving type having excellent corrosion resistance in weld heat-affected zone
JP7339123B2 (en) High hardness hydrogen embrittlement resistant steel
JP6848519B2 (en) Austenitic stainless steel for high pressure hydrogen
JP4823534B2 (en) Low Ni austenitic stainless steel with excellent stress corrosion cracking resistance

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180403

R150 Certificate of patent or registration of utility model

Ref document number: 6320202

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250