JP7339123B2 - High hardness hydrogen embrittlement resistant steel - Google Patents

High hardness hydrogen embrittlement resistant steel Download PDF

Info

Publication number
JP7339123B2
JP7339123B2 JP2019197017A JP2019197017A JP7339123B2 JP 7339123 B2 JP7339123 B2 JP 7339123B2 JP 2019197017 A JP2019197017 A JP 2019197017A JP 2019197017 A JP2019197017 A JP 2019197017A JP 7339123 B2 JP7339123 B2 JP 7339123B2
Authority
JP
Japan
Prior art keywords
formula
less
steel
hydrogen embrittlement
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2019197017A
Other languages
Japanese (ja)
Other versions
JP2021070839A (en
Inventor
孝 細田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Special Steel Co Ltd
Original Assignee
Sanyo Special Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Special Steel Co Ltd filed Critical Sanyo Special Steel Co Ltd
Priority to JP2019197017A priority Critical patent/JP7339123B2/en
Publication of JP2021070839A publication Critical patent/JP2021070839A/en
Application granted granted Critical
Publication of JP7339123B2 publication Critical patent/JP7339123B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Heat Treatment Of Steel (AREA)

Description

本発明は、水素製造プラント、貯蔵施設、各種の水素運搬手段(船舶やトレーラー等)、また水素ステーションや燃料電池自動車といった水素エネルギー利用設備の部材(バルブ、配管、継手、ノズル、圧縮機、蓄圧器、計測機器など)、さらに水冷孔を有して高温に曝される熱間金型やロール等の、材料中への水素侵入が促される環境下(以下「水素侵入環境下」ともいう。)において、好適に使用することが可能な高硬度耐水素脆化鋼からなる鋼材に関する。 The present invention is applicable to hydrogen production plants, storage facilities, various hydrogen transportation means (ships, trailers, etc.), and hydrogen energy utilization equipment such as hydrogen stations and fuel cell vehicles (valves, piping, joints, nozzles, compressors, pressure accumulators, etc.). instruments, measuring instruments, etc.), and hot dies and rolls that have water-cooled holes and are exposed to high temperatures. ), it relates to a steel material made of a high-hardness hydrogen embrittlement-resistant steel that can be suitably used.

高硬度で耐水素脆性に優れる材料として、成分である各合金元素の添加量とそのバランスを調整することでオーステナイト組織の安定化した安価で優れた耐水素脆性の非磁性耐水素脆性である高硬度で耐食性に優れた非磁性の鋼が提案されている(特許文献1参照。)。
しかし、この提案の鋼では、Nの添加による粗大炭窒化物の生成による耐食性の劣化を考慮して、Nの添加量は0.1000%以下としている。そこで、これを上回る大量のNの添加により安価にγ安定度を高めて高強度化し、かつ耐食性を改善するといった観点や作用効果については言及や示唆はなされていない。また、この提案のものは、平滑破面を抑制することについても言及や示唆はなく、水素脆化感受性も高いものであった。
As a material with high hardness and excellent resistance to hydrogen embrittlement, by adjusting the amount of each alloying element and its balance, the austenite structure is stabilized, and it is inexpensive and has excellent resistance to hydrogen embrittlement. A non-magnetic steel having high hardness and excellent corrosion resistance has been proposed (see Patent Document 1).
However, in the proposed steel, the amount of N added is set to 0.1000% or less in consideration of the deterioration of corrosion resistance due to the formation of coarse carbonitrides due to the addition of N. Therefore, there is no mention or suggestion of the point of view or effect of increasing the γ stability at low cost to increase the strength and improving the corrosion resistance by adding a larger amount of N than this. In addition, this proposal does not mention or suggest suppression of smooth fracture, and is highly susceptible to hydrogen embrittlement.

また、高硬度で耐水素脆性に優れる材料として、積層欠陥エネルギー(stacking fault energy:以下「SFE」ともいう。)をコントロールし、より耐水素脆化感受性を抑えた鋼が提案されている(特許文献2参照。)。
しかし、この提案でも、Nの添加による粗大炭窒化物の生成による耐食性の劣化を考慮して、Nの含有量は0.1000%以下と少なく規定しており、これを上回る大量のNの添加によって安価にγ安定度を高めて高強度化し、かつ耐食性を改善するといった効果については言及や示唆はなされていない。
In addition, as a material with high hardness and excellent hydrogen embrittlement resistance, a steel with controlled stacking fault energy (hereinafter also referred to as "SFE") and further suppressed hydrogen embrittlement susceptibility has been proposed (Patent Reference 2).
However, even in this proposal, considering the deterioration of corrosion resistance due to the formation of coarse carbonitrides due to the addition of N, the content of N is specified as low as 0.1000% or less, and a large amount of N exceeding this is added. There is no mention or suggestion of the effect of increasing the γ stability at low cost, increasing the strength, and improving the corrosion resistance.

また、高強度および耐硫化物応力腐食割れ性に優れた材料が提案されている(特許文献3参照。)。しかし、この提案の材料はMnとVの添加に特徴があり、MoやAlの添加はなく、Niも必須とされていない。また積層欠陥エネルギーの調整による平滑破壊の発現抑制に関する言及や示唆もみあたらない。そして、延性、耐食性、過酷な水素侵入環境への耐性については不明である。 Also, a material with high strength and excellent resistance to sulfide stress corrosion cracking has been proposed (see Patent Document 3). However, the material of this proposal is characterized by the addition of Mn and V, with no addition of Mo or Al, and Ni is not essential. In addition, there is no mention or suggestion regarding suppression of occurrence of smooth fracture by adjusting the stacking fault energy. And ductility, corrosion resistance, and resistance to severe hydrogen penetration environment are unknown.

特開2016-183372号公報JP 2016-183372 A 特開2019-49036号公報JP 2019-49036 A 特開平9-249940号公報JP-A-9-249940

高圧の水素ガス使用設備のノズルや水冷孔を有した金型等に用いられる鋼材には、水素の侵入しやすい環境下に曝されつつも耐久性が求められている。こうした場面に適用可能な部材として使用可能な鋼材があれば、水素エネルギーを利用する社会の構築を促進することができる。そこで、優れた耐水素脆性を有し、高硬度で高強度であり、高耐候性を有し、比較的安価な鋼材が望まれている。 Steel materials used for nozzles of equipment using high-pressure hydrogen gas and molds with water-cooling holes are required to have durability even when exposed to environments where hydrogen easily penetrates. If there is a steel material that can be used as a member applicable to such situations, it will be possible to promote the construction of a society that utilizes hydrogen energy. Therefore, there is a demand for a steel material that has excellent hydrogen embrittlement resistance, high hardness, high strength, high weather resistance, and is relatively inexpensive.

ここでいう強度とは、高圧水素環境下での使用が認められているSUS316やASTMのXM19系の鋼材を遥かに上回り、かつ高価なSUH660の時効硬化材と同等以上の高強度である。
ところが、SUH660のように、オーステナイト安定度が高くても強度が高い鋼は、水素脆化感受性が高いものであった。こうした水素脆化感受性を抑制するためには、高いオーステナイト安定度を維持しつつも、加工組織の均質化および積層欠陥エネルギー(SFE)を向上させることが有効であると考えられる。SFEが高いと、積層欠陥を導入するのにエネルギーが必要となるからである。
The strength here is a high strength that far exceeds SUS316 and ASTM XM19 steel materials that are approved for use in a high-pressure hydrogen environment, and is equal to or higher than the age-hardening material of expensive SUH660.
However, steel such as SUH660, which has high austenite stability but high strength, has high susceptibility to hydrogen embrittlement. In order to suppress such hydrogen embrittlement susceptibility, it is considered effective to homogenize the worked structure and improve the stacking fault energy (SFE) while maintaining high austenite stability. This is because a high SFE requires energy to introduce stacking faults.

そして、水素利用アプリケーションに向けの材料には、十分な耐水素脆性を有しつつ、安価、高強度、優れた耐食性という要求事項に応え得ることが望まれているが、上記の従来の技術では、全ての要求に応えるのは難しい状況である。 Materials for hydrogen utilization applications are desired to meet the requirements of low cost, high strength, and excellent corrosion resistance while having sufficient resistance to hydrogen embrittlement. , it is difficult to meet all demands.

そこで、本発明が解決しようとする課題は、MnおよびNの添加によってγ安定化元素のNi代替によるコストダウンを図ること、さらに、V(C,N)析出物によって高硬度化すること、各合金元素の添加による引張特性、コスト、耐食性、そして高強度材特有の水素脆化感受性(平滑破面の発現)に及ぼす影響を把握し、添加量と組成バランスを調整することで、安価で優れた耐水素脆性、引張特性および耐食性も兼ね備えた材料を提供することである。 Therefore, the problems to be solved by the present invention are to reduce the cost by replacing Ni as a γ-stabilizing element by adding Mn and N, and to increase the hardness by V(C,N) precipitates. By understanding the effects of the addition of alloying elements on tensile properties, cost, corrosion resistance, and the susceptibility to hydrogen embrittlement (development of smooth fracture surface) peculiar to high-strength materials, we can adjust the amount of addition and the composition balance to realize low-cost and excellent steel. Another object of the present invention is to provide a material having hydrogen embrittlement resistance, tensile properties and corrosion resistance.

さて、安価で優れた耐水素脆性、引張特性および耐食性も兼ね備えた鋼材料を提供するための、上記の課題を解決するための手段は、
その第1の手段では、質量%で、C:0.10超~0.60%、Si:0.05~0.80%、Mn:2.0~10.0%、P:0.050%以下、S:0.050%以下、Ni:8.0~18.0%、Cr:8.0~18.0%、Mo:0.01~0.50%、Cu:0.05~1.00%、V:0.50超~3.00%、Al:0.001~0.100%、N:0.100超~0.250%を含有し、残部Feおよび不可避不純物からなり、
下記の式1、式2および式3の値が、式1:0.2~1.5、式2:-100以下、式3:4.0以上であることを満足することを特徴とする高硬度耐水素脆化鋼である。
式1:V/{4([C]+[N])}
式2:551-462([C]+[N]-0.07[V])-9.2[Si]-8.1[Mn]-13.7[Cr]-29([Ni]+[Cu])-18.5[Mo]
式3:2.3[Ni]+3.0[Mo]+5.0[Al]+5.6[Cu]-[Cr]-[Si]-1.2[Mn]
なお、式中の[元素記号]には、対応する成分組成の質量%の値を代入する。
Now, the means for solving the above problems in order to provide a steel material that is inexpensive and has excellent hydrogen embrittlement resistance, tensile properties and corrosion resistance is
In the first means, in mass%, C: more than 0.10 to 0.60%, Si: 0.05 to 0.80%, Mn: 2.0 to 10.0%, P: 0.050 % or less, S: 0.050% or less, Ni: 8.0-18.0%, Cr: 8.0-18.0%, Mo: 0.01-0.50%, Cu: 0.05- 1.00%, V: more than 0.50 to 3.00%, Al: 0.001 to 0.100%, N: more than 0.100 to 0.250%, and the balance consists of Fe and unavoidable impurities ,
The values of the following formulas 1, 2, and 3 satisfy formula 1: 0.2 to 1.5, formula 2: -100 or less, and formula 3: 4.0 or more. High hardness hydrogen embrittlement resistant steel.
Formula 1: V/{4([C]+[N])}
Formula 2: 551-462 ([C] + [N] - 0.07 [V]) - 9.2 [Si] - 8.1 [Mn] - 13.7 [Cr] - 29 ([Ni] + [Cu])-18.5 [Mo]
Formula 3: 2.3 [Ni] + 3.0 [Mo] + 5.0 [Al] + 5.6 [Cu] - [Cr] - [Si] - 1.2 [Mn]
In addition, the mass % value of the corresponding component composition is substituted for the [element symbol] in the formula.

第2の手段では、第1の手段に記載の成分に加えて、
さらに、質量%で、B:0.010%以下、Ca:0.050%以下、Mg:0.050%以下のうち、少なくともいずれか1種以上を含有し、
残部Feおよび不可避不純物からなり、
下記の式1、式2および式3の値が、式1:0.2~1.5、式2:-100以下、式3:4.0以上であることを満足することを特徴とする高硬度耐水素脆化鋼である。
式1:V/{4([C]+[N])}
式2:551-462([C]+[N]-0.07[V])-9.2[Si]-8.1[Mn]-13.7[Cr]-29([Ni]+[Cu])-18.5[Mo]
式3:2.3[Ni]+3.0[Mo]+5.0[Al]+5.6[Cu]-[Cr]-[Si]-1.2[Mn]
なお、式中の[元素記号]には、対応する成分組成の質量%の値を代入する。
In the second means, in addition to the ingredients described in the first means,
Furthermore, at least one of B: 0.010% or less, Ca: 0.050% or less, and Mg: 0.050% or less in terms of mass%,
The remainder consists of Fe and unavoidable impurities,
The values of the following formulas 1, 2, and 3 satisfy formula 1: 0.2 to 1.5, formula 2: -100 or less, and formula 3: 4.0 or more. High hardness hydrogen embrittlement resistant steel.
Formula 1: V/{4([C]+[N])}
Formula 2: 551-462 ([C] + [N] - 0.07 [V]) - 9.2 [Si] - 8.1 [Mn] - 13.7 [Cr] - 29 ([Ni] + [Cu])-18.5 [Mo]
Formula 3: 2.3 [Ni] + 3.0 [Mo] + 5.0 [Al] + 5.6 [Cu] - [Cr] - [Si] - 1.2 [Mn]
In addition, the mass % value of the corresponding component composition is substituted for the [element symbol] in the formula.

上記の本願の手段によると、式1の値を0.2~1.5に規定することで、V、CおよびNを効果的に析出硬化に利用でき、V(C,N)の析出物によって安価で高硬度な鋼を得ることができるので、安価で高硬度ならびに優れた引張特性を備えた鋼を得ることができる。本願の発明では、Mnに加え、Nを0.100%超と大量に添加することによって、安価にγ安定度を高めて高強度化し、かつ耐食性を改善しており、これによりNi代替によるコストダウンもはかれている。 According to the above means of the present application, by defining the value of Formula 1 to be 0.2 to 1.5, V, C and N can be effectively used for precipitation hardening, and the precipitates of V (C, N) Since it is possible to obtain steel with high hardness at low cost, it is possible to obtain steel with high hardness and excellent tensile properties at low cost. In the invention of the present application, in addition to Mn, by adding a large amount of N to more than 0.100%, the γ stability is increased at low cost, the strength is increased, and the corrosion resistance is improved. Down is also worn.

また、式2の値を-100以下に規定することで、耐水素脆性に優れるγ組織の安定性を示す鋼とすることができ、値が低いほどγ組織が安定できることから、優れた耐水素脆性を得ることができる。 In addition, by specifying the value of formula 2 to −100 or less, it is possible to obtain a steel exhibiting a stable γ structure that is excellent in resistance to hydrogen embrittlement. Brittleness can be obtained.

また、式3の値を4.0以上に規定することで、高いSFEを確保でき局所すべりの発生が抑制でき、その結果、水素脆化感受性の要因となる平滑破面の発現を抑制し、常温・常圧・大気雰囲気での延性を向上させ、高強度材でみられる水素脆化感受性の上昇を抑制することができる。 In addition, by specifying the value of Formula 3 to be 4.0 or more, a high SFE can be secured and the occurrence of local slip can be suppressed. It can improve ductility at normal temperature, normal pressure, and atmospheric conditions, and can suppress the increase in hydrogen embrittlement susceptibility seen in high-strength materials.

そこで、式1~3値を規定範囲内とするよう各合金元素の添加成分を調整することで、安価で優れた耐水素脆性、引張特性および耐食性も兼ね備えた材料を得ることができる。 Therefore, by adjusting the additive components of each alloy element so that the values of formulas 1 to 3 are within the specified range, it is possible to obtain a material that is inexpensive and has excellent hydrogen embrittlement resistance, tensile properties, and corrosion resistance.

発明を実施するための形態の記載に先立って、本願の発明に係る手段における成分組成、式1~3の式および値を規定する理由について、以下に順次説明する。なお、化学成分における%は、質量%である。 Prior to the description of the mode for carrying out the invention, the reasons for defining the component composition, the formulas 1 to 3, and the values in the means according to the invention of the present application will be sequentially explained below. In addition, % in a chemical component is the mass %.

C:0.10超~0.60%
Cは、VおよびNと化合して、鋼中にV(C,N)[バナジウム炭窒化物]を生成して析出強化する元素である。このためには、Cは0.10%超が必要である。
一方、Cは0.60%を超えて含有されると、粗大なバナジウム炭窒化物を生成してしまい、鋼の耐食性を劣化させる。
そこで、Cは、0.10超~0.60%とする。
C: more than 0.10 to 0.60%
C is an element that combines with V and N to form V(C, N) [vanadium carbonitride] in steel to strengthen precipitation. For this purpose, C needs to be greater than 0.10%.
On the other hand, if the C content exceeds 0.60%, it forms coarse vanadium carbonitrides, degrading the corrosion resistance of the steel.
Therefore, C should be more than 0.10 to 0.60%.

Si:0.05~0.80%
Siは、製鋼段階での脱酸材として添加される元素である。そこで、Siは鋼中に0.05%以上含有される。一方、Siは鋼中に0.80%を超えて含有されると、鋼の延性が劣化し、かつフェライト生成によって耐水素脆性が劣化する。そこで、Siは0.05~0.80%とする。
Si: 0.05-0.80%
Si is an element added as a deoxidizing agent in the steelmaking stage. Therefore, Si is contained in steel in an amount of 0.05% or more. On the other hand, if the Si content in the steel exceeds 0.80%, the ductility of the steel deteriorates, and the hydrogen embrittlement resistance deteriorates due to ferrite formation. Therefore, Si should be 0.05 to 0.80%.

Mn:2.0~10.0%
Mnは、γ組織を安定化する元素で、優れた耐水素脆性を有する元素である。そこで、Mnは2.0%以上が必要である。一方、Mnは10.0%を超えて含有されると、積層欠陥エネルギー(SFE)が低下するので、平滑破面の発生が促進される。そこで、Mnは2.0~10.0%とする。
Mn: 2.0-10.0%
Mn is an element that stabilizes the γ structure and has excellent resistance to hydrogen embrittlement. Therefore, Mn must be 2.0% or more. On the other hand, if the Mn content exceeds 10.0%, the stacking fault energy (SFE) is lowered, thereby promoting the generation of smooth fracture surfaces. Therefore, Mn is set to 2.0 to 10.0%.

P:0.050%以下
Pは、不純物元素であり、通常の精錬では含有されている元素である。しかし、Pは0.050%を超えて含有されると、得られた鋼の延性、靭性および熱間加工性が劣化する。そこで、Pは0.050%以下とする。
P: 0.050% or less P is an impurity element and is an element contained in normal refining. However, when the P content exceeds 0.050%, the ductility, toughness and hot workability of the obtained steel deteriorate. Therefore, P is set to 0.050% or less.

S:0.050%以下
Sは、不純物元素であり、通常の精錬では含有されている元素である。しかし、Sは0.050%を超えて含有されると、得られた鋼の延性、靭性および熱間加工性を劣化する。そこで、Sは0.050%以下とする。
S: 0.050% or less S is an impurity element and is an element contained in normal refining. However, when the S content exceeds 0.050%, the resulting steel deteriorates in ductility, toughness and hot workability. Therefore, S is set to 0.050% or less.

Ni:8.0~18.0%
Niは、オーステナイトを安定化し、SFEを上昇させ、優れた耐水素脆性をもたらす元素である。そこで、Niは8.0%以上が含有される。しかし、Niが18.0%を超えて含有されるとその効果は飽和に向かい、また、Niは高価な元素であるので高コストとなる。そこで、Niは8.0~18.0%とする。
Ni: 8.0-18.0%
Ni is an element that stabilizes austenite, increases SFE, and provides excellent resistance to hydrogen embrittlement. Therefore, 8.0% or more of Ni is contained. However, if the Ni content exceeds 18.0%, the effect tends to saturate, and since Ni is an expensive element, the cost becomes high. Therefore, Ni should be 8.0 to 18.0%.

Cr:8.0~18.0%
Crは、耐食性を向上させる元素である。そこで、Crは8.0%以上が必要である。しかし、Crは18.0%を超えて含有されると、Crの耐食性の向上の効果は飽和に向かい、フェライト生成により耐水素脆性が劣化してくる。そこで、Crは8.0~18.0%とする。
Cr: 8.0-18.0%
Cr is an element that improves corrosion resistance. Therefore, Cr must be 8.0% or more. However, when the Cr content exceeds 18.0%, the effect of improving the corrosion resistance of Cr reaches saturation, and the hydrogen embrittlement resistance deteriorates due to the generation of ferrite. Therefore, Cr is set to 8.0 to 18.0%.

Mo:0.01~0.50%
Moは、耐食性が向上し、SFEを上昇させ、優れた耐水素脆性をもたらす元素である。そこで、Moは0.01%以上とする。しかし、Moは0.50%を超えて含有されると、高い元素であるので高コスト化する。そこで、Moは0.01~0.50%とする。
Mo: 0.01-0.50%
Mo is an element that improves corrosion resistance, raises SFE, and provides excellent resistance to hydrogen embrittlement. Therefore, Mo should be 0.01% or more. However, when Mo is contained in excess of 0.50%, it is a high element, so the cost increases. Therefore, Mo is set to 0.01 to 0.50%.

Cu:0.05~1.00%
Cuは、オーステナイトを安定化し、SFEを上昇させ、優れた耐水素脆性をもたらす元素である。そこで、Cuは0.05%以上とする。しかし、Cuは1.00%を超えて含有されると、熱間加工性が劣化する。そこで、Cuは0.05~1.00%とする。
Cu: 0.05-1.00%
Cu is an element that stabilizes austenite, increases SFE, and provides excellent resistance to hydrogen embrittlement. Therefore, Cu should be 0.05% or more. However, when the Cu content exceeds 1.00%, the hot workability deteriorates. Therefore, Cu should be 0.05 to 1.00%.

V:0.50超~3.00%
Vは、バナジウム炭窒化物[V(C,N)]の生成により鋼を析出強化する元素である。そこで、Vは0.50%超を含有するものとする。しかし、Vは3.00%を超えて含有されると、粗大な炭窒化物が生成され、耐食性が劣化する。またVは高価な元素であるので高コスト化する。そこで、Vは0.50超~3.00%とする。
V: more than 0.50 to 3.00%
V is an element that precipitates and strengthens steel by forming vanadium carbonitrides [V(C,N)]. Therefore, V shall contain more than 0.50%. However, if the V content exceeds 3.00%, coarse carbonitrides are formed and the corrosion resistance deteriorates. Moreover, since V is an expensive element, the cost is increased. Therefore, V should be more than 0.50 to 3.00%.

Al:0.001~0.100%
Alは、精錬時の脱酸および鋼としてのSFEを上昇させる元素である。そこで、Alは0.001%以上とする。しかし、Alは0.100%を超えて含有されると、延性が低下され、フェライトの生成により耐水素脆性が劣化する。そこで、Alは0.001~0.100%とする。
Al: 0.001-0.100%
Al is an element that deoxidizes during refining and increases the SFE of steel. Therefore, Al should be 0.001% or more. However, when the Al content exceeds 0.100%, the ductility is lowered and the hydrogen embrittlement resistance is deteriorated due to the generation of ferrite. Therefore, Al is set to 0.001 to 0.100%.

N:0.100超~0.250%
Nは、強力なオーステナイト安定化元素である。またマトリクスに固溶している状態のものは固溶によるマトリクス強化と耐食性を向上させる。さらに、時効熱処理を施すことでV(C,N)を生成して析出強化を付与する元素である。
そこで、Nは0.100%超含有するものとする。このようにNを大量に添加することによって、コスト高なNiに代替として安価にγ安定度を高め、さらに固溶強化と析出強化にて鋼材を高強度化し、かつ耐食性を改善することを意図している。
しかし、Nは0.250%を超えて含有されると、粗大な炭窒化物生成により耐食性が劣化され、かつ窒化物の生成によって延性が低下され、製造コストも増大することからこれを回避する必要がある。そこで、Nは0.100超~0.250%とする。
N: more than 0.100 to 0.250%
N is a strong austenite stabilizing element. In addition, those in the state of solid solution in the matrix strengthen the matrix by solid solution and improve corrosion resistance. Furthermore, it is an element that generates V(C, N) by performing aging heat treatment and imparts precipitation strengthening.
Therefore, the content of N shall be more than 0.100%. By adding a large amount of N in this way, it is intended to increase the γ stability at a low cost as a substitute for Ni, which is expensive, and to increase the strength of the steel material by solid solution strengthening and precipitation strengthening, and to improve the corrosion resistance. are doing.
However, when the N content exceeds 0.250%, the corrosion resistance is deteriorated due to the formation of coarse carbonitrides, and the formation of nitrides reduces the ductility and increases the manufacturing cost. There is a need. Therefore, N should be more than 0.100 to 0.250%.

さらに、任意的付加成分について説明する。B,Ca,Mgは、本発明ではいずれか1種以上を任意に付加してもよい。 Further, optional additional components will be explained. Any one or more of B, Ca and Mg may optionally be added in the present invention.

B:0.010%以下
Bは、熱間加工性を改善する元素であって、必要に応じて添加できる。しかし、Bは0.010%を超えて含有されると、熱間加工性の改善効果は飽和し、かえって熱間加工性が劣化する。そこで、Bは0.010%以下とする。
B: 0.010% or less B is an element that improves hot workability and can be added as necessary. However, if the B content exceeds 0.010%, the effect of improving hot workability is saturated, and the hot workability is rather deteriorated. Therefore, B is set to 0.010% or less.

Ca:0.050%以下
Caは、熱間加工性を改善する元素であって、必要に応じて添加できる。しかし、Caは0.050%を超えて含有されると、熱間加工性の改善効果は飽和し、かえって熱間加工性が劣化する。そこで、Caは0.050%以下とする。
Ca: 0.050% or less Ca is an element that improves hot workability and can be added as necessary. However, if the Ca content exceeds 0.050%, the effect of improving the hot workability is saturated, and the hot workability is rather deteriorated. Therefore, Ca should be 0.050% or less.

Mg:0.050%以下
Mgは、熱間加工性を改善する元素であって、必要に応じて添加できる。しかし、Mgは0.050%を超えて含有されると、熱間加工性の改善効果は飽和し、かえって熱間加工性が劣化する。そこで、Mgは0.050%以下とする。
Mg: 0.050% or less Mg is an element that improves hot workability and can be added as necessary. However, if the content of Mg exceeds 0.050%, the effect of improving the hot workability is saturated and the hot workability is rather deteriorated. Therefore, Mg should be 0.050% or less.

式1:0.2≦V/{4([C]+[N])}≦1.5
式1のV/{4([C]+[N])}の値を0.2~1.5の範囲にすることで、V、C、およびNを析出硬化に効果的に利用できる。式1の値が下限値の0.2未満であると、C、Nの過剰により耐食性が悪化する。一方、式1の値が上限の1.5を超えるとVの過剰により高コストとなる。
そこで、V/{4([C]+[N])}は0.2~1.5とする。
Formula 1: 0.2 ≤ V / {4 ([C] + [N])} ≤ 1.5
By setting the value of V/{4([C]+[N])} in Equation 1 in the range of 0.2 to 1.5, V, C, and N can be effectively utilized for precipitation hardening. If the value of Formula 1 is less than the lower limit of 0.2, the excessive C and N degrade corrosion resistance. On the other hand, when the value of Equation 1 exceeds the upper limit of 1.5, V is excessive, resulting in high cost.
Therefore, V/{4([C]+[N])} is set to 0.2 to 1.5.

式2:551-462([C]+[N]-0.07[V])-9.2[Si]-8.1[Mn]-13.7[Cr]-29([Ni]+[Cu])-18.5[Mo]≦-100
式2は、耐水素脆性に優れるγ組織の安定度を表す指標である。式2の値が低いほどγ組織は安定しており、値が-100以下であればγ組織は安定する。
そこで、式2の551-462([C]+[N]-0.07[V])-9.2[Si]-8.1[Mn]-13.7[Cr]-29([Ni]+[Cu])-18.5[Mo]の値は-100以下とする。
Formula 2: 551-462 ([C] + [N] - 0.07 [V]) - 9.2 [Si] - 8.1 [Mn] - 13.7 [Cr] - 29 ([Ni] + [Cu]) -18.5 [Mo] ≤ -100
Formula 2 is an index representing the stability of a γ structure that is excellent in resistance to hydrogen embrittlement. The lower the value of Equation 2, the more stable the γ structure. If the value is -100 or less, the γ structure is stable.
Therefore, 551-462 ([C] + [N]-0.07 [V])-9.2 [Si]-8.1 [Mn]-13.7 [Cr]-29 ([Ni ]+[Cu])−18.5[Mo] is −100 or less.

式3:2.3[Ni]+3.0[Mo]+5.0[Al]+5.6[Cu]-[Cr]-[Si]-1.2[Mn]≧4.0
式3は、加工組織の安定性の確保を示す式である。この式の値が4.0以上であると、高いSFEが確保されて局所すべりの発生が抑制され、その結果、平滑破面の発現が妨げられる。
そこで、式3の2.3[Ni]+3.0[Mo]+5.0[Al]+5.6[Cu]-[Cr]-[Si]-1.2[Mn]の値は4.0以上とする。
Formula 3: 2.3 [Ni] + 3.0 [Mo] + 5.0 [Al] + 5.6 [Cu] - [Cr] - [Si] - 1.2 [Mn] ≥ 4.0
Formula 3 is a formula showing how to ensure the stability of the processed structure. When the value of this formula is 4.0 or more, a high SFE is ensured, the occurrence of local slip is suppressed, and as a result, the development of a smooth fracture surface is prevented.
Therefore, the value of 2.3 [Ni] + 3.0 [Mo] + 5.0 [Al] + 5.6 [Cu] - [Cr] - [Si] - 1.2 [Mn] in formula 3 is 4.0 That's it.

本発明の実施の形態について順次に説明する。
表1に示す化学成分を含有し、残部Feおよび不可避不純物からなる、本願の発明例であるNo.1~17とその比較例であるNo.18~36のそれぞれの供試材の鋼塊を以下に示すようにして溶製した。
Embodiments of the present invention will be described in sequence.
No. 1, which is an example of the invention of the present application, contains the chemical components shown in Table 1, and the balance is Fe and unavoidable impurities. 1 to 17 and No. 1 which is a comparative example thereof. Steel ingots of test materials Nos. 18 to 36 were melted as shown below.

先ず、表1に示す各No.の発明例と比較例の化学成分からなる鋼塊を100kg真空誘導溶解炉(VIM)で溶製し、これらの鋼塊を1150℃に加熱した後、これらの鋼塊から鍛伸によりそれぞれ直径15mmの棒鋼を作製した。
さらに、これらの棒鋼を1000~1250℃において10分以上加熱した後に水冷することで、固溶化熱処理を行った鋼材とした。
次いで、これらの固溶化熱処理した鋼材をそれぞれ600~900℃に30分以上加熱した後、空冷して時効処理を行った。
これらの時効処理した鋼材から各試験片を作製した。
First, each No. shown in Table 1. 100 kg of steel ingots composed of the chemical compositions of Invention Examples and Comparative Examples were melted in a vacuum induction melting furnace (VIM), and after heating these steel ingots to 1150 ° C., these steel ingots were forged and drawn to each have a diameter of 15 mm. of steel bars were produced.
Further, these steel bars were heated at 1000 to 1250° C. for 10 minutes or more and then cooled with water to obtain steel materials subjected to solution heat treatment.
Next, each of these solution heat-treated steel materials was heated to 600 to 900° C. for 30 minutes or more, and then air-cooled for aging treatment.
Each test piece was produced from these aged steel materials.

Figure 0007339123000001
Figure 0007339123000001

(熱間加工性)
各種の調査に用いる試験片の上記作製工程のうち、直径15mmの棒鋼の鍛造において、問題なく加工できたものは、表2の「φ15鍛造」の欄に良好な加工性として「○」で表示した。他方、熱間加工性が悪く、割れが多発して加工を続行することが不可となったものは、表2の「φ15棒鋼」の欄に「×」と表示した。なお、×となった比較例については、試験片が適切に得られていないことから、その他の特性の評価については未実施とした。
(Hot workability)
Among the above-mentioned manufacturing processes of test pieces used for various investigations, those that could be processed without problems in the forging of steel bars with a diameter of 15 mm are indicated by "○" as good workability in the column of "φ15 forging" in Table 2. did. On the other hand, those which had poor hot workability and were unable to continue working due to frequent cracking were marked with "x" in the column of "φ15 steel bar" in Table 2. For the comparative examples marked with x, the test pieces were not appropriately obtained, and thus other characteristics were not evaluated.

(時効硬さ)
表2における「時効硬さ(HRC)」の評価は、試験片のロックウェル硬さを測定して評価し、硬さが実績値で39HRC以上を良好と評価して「○」と表示し、硬さが35~38HRCを「△」と表示し、硬さが35HRC未満を硬さ不足と評価して「×」と表示した。
(Aging hardness)
The evaluation of "aging hardness (HRC)" in Table 2 is evaluated by measuring the Rockwell hardness of the test piece, and the actual hardness of 39 HRC or more is evaluated as good, and "○" is displayed. A hardness of 35 to 38 HRC was indicated as "Δ", and a hardness of less than 35 HRC was evaluated as insufficient hardness and indicated as "x".

(引張特性評価)
表2における引張特性の評価として、まず、引張強さについて、各種試験片からさらに平行部のφ6mm×30mmLの棒状の引張試験片へと加工した後、大気中で、ストローク速度1.0mm/minで引張試験を実施した。
表2の引張強さの実績値が1200MPa以上のものを良好と評価して「○」と表示し、1200MPa未満で1100MPa以上を「△」と表示し、1100MPa未満を劣るものとして評価し「×」と表示した。
(Tensile property evaluation)
As the evaluation of tensile properties in Table 2, first, for tensile strength, various test pieces were further processed into rod-shaped tensile test pieces of φ6 mm × 30 mm L of parallel parts, and then in the atmosphere at a stroke speed of 1.0 mm / min. A tensile test was performed at
In Table 2, those with a tensile strength of 1200 MPa or more are evaluated as good and indicated as "○", those less than 1200 MPa and 1100 MPa or more are indicated as "△", and those less than 1100 MPa are evaluated as inferior and indicated as "×". ” was displayed.

次に、表2における引張特性の「絞り」の評価をした。上記の引張試験における、最初の断面積をS0とし、破断後の最小断面積をSとするとき、100(S0-S)/S0で得られる値が、「絞り」(%)である。
測定した絞りの実績値が30%以上のものを良好な引張特性と評価して「○」と表示し、絞りが25~29%を「△」と、25%未満のものを引張特性に劣るものと評して「×」と表示した。
Next, the "restriction of area" of the tensile properties in Table 2 was evaluated. In the above tensile test, when the initial cross-sectional area is S 0 and the minimum cross-sectional area after breaking is S, the value obtained by 100 (S 0 - S) / S 0 is the "restriction" (%) be.
If the actual value of the measured reduction is 30% or more, it is evaluated as good tensile properties and displayed as "○", and if the reduction is 25 to 29%, it is indicated as "△", and if it is less than 25%, the tensile properties are inferior. It was evaluated as a thing and displayed as "x".

(平滑破面率)
表2における「平滑破面率」の評価は、上述の引張特性評価後の破断試料の断面中心部を走査型電子顕微鏡(SEM)にて観察・撮影して行った。SEMで得られた画像からディンプルが認められない箇所を平滑破面と定義し、その2次元的な面積を観察視野面積(50,000μm2)で除した値を平滑破面率として算出した。
表2において「平滑破面率」が15%以下を良好と評価して「○」と表示し、「平滑破面率」が16~20%を「△」と表示し、21%以上を劣るものとして「×」とした。
(Smooth fracture rate)
The evaluation of the "smooth fracture rate" in Table 2 was carried out by observing and photographing the central portion of the cross section of the fractured sample after the tensile property evaluation described above with a scanning electron microscope (SEM). A portion where no dimples were observed in the image obtained by SEM was defined as a smooth fractured surface.
In Table 2, "smooth fracture rate" of 15% or less is evaluated as good and indicated as "○", "smooth fracture rate" of 16 to 20% is indicated as "△", and 21% or more is inferior. It was set as "x" as a thing.

(耐食性)
表2における「耐食性」の評価として、上記の15mmの各種試験片をφ12×21mmLの棒状腐食試験片へ加工した後、塩水噴霧試験(50ppmの希薄塩水を35℃で16hr噴霧)を実施し、その後の試験片の表面を観察し、長径1mm以上の点状錆の数が15個以下のものを良好と評して、「耐食性評価」の欄に「○」と表示し、16個以上のものを劣るものと評して「×」と表示した。
(corrosion resistance)
As an evaluation of "corrosion resistance" in Table 2, after processing the above various 15 mm test pieces into φ12 × 21 mmL rod-shaped corrosion test pieces, a salt spray test (spraying 50 ppm diluted salt water at 35 ° C. for 16 hours) was carried out. After that, the surface of the test piece was observed, and if the number of punctate rusts with a major diameter of 1 mm or more was 15 or less, it was evaluated as good, and "○" was displayed in the "corrosion resistance evaluation" column, and 16 or more. The product was evaluated as inferior and marked with "X".

(耐水素脆性)
表2における「耐水素脆性」の評価として、(1)水素チャージをした試験片を用いて評価した。まず、上述の引張特性の評価と同様の試験片を用い、端部にNi線を電気溶接し、平行部以外を樹脂被膜で覆って水素の浸入を遮断した。この試験片を、0.01Nの硫酸と0.5g/lのチオシアン酸アンモニウムからなる溶液内に浸漬し、陰極チャージ法にて、68A/mm2、30℃、24hrの条件で、水素チャージを行った。
(Hydrogen embrittlement resistance)
As the evaluation of "hydrogen embrittlement resistance" in Table 2, (1) a hydrogen-charged test piece was used for evaluation. First, a Ni wire was electrically welded to the end of a test piece similar to that used for the evaluation of the tensile properties described above, and the portion other than the parallel portion was covered with a resin film to block hydrogen penetration. This test piece was immersed in a solution of 0.01 N sulfuric acid and 0.5 g/l ammonium thiocyanate, and charged with hydrogen by a cathode charging method under conditions of 68 A/mm 2 , 30° C., 24 hours. went.

(2)耐水素脆性評価:水素チャージの後、直ちに上述の引張特性の評価と同様の試験を実施して絞りを評価した。結果を表2の「水素チャージ後絞り(%)」の欄に、絞りの値を%で示した。
さらに、水素チャージの有無での絞りの値の変化を、水素チャージ有無の比率である相対絞り比(RRA)で示した。RRAは、[水素チャージ有り材の絞り]/[水素チャージ無し材の絞り]の値である。
RRAが0.80以上を表2の「RRA」の欄においては耐水素脆性に優れるものとして「○」と表示し、RRAが0.80未満のものを耐水素脆性に劣るものとして「×」と表示した。
(2) Hydrogen embrittlement resistance evaluation: Immediately after charging with hydrogen, the same test as the evaluation of tensile properties was conducted to evaluate the reduction of area. The results are shown in % in the column of "Restriction (%) after charging with hydrogen" in Table 2.
Furthermore, the change in the reduction value with and without hydrogen charging is indicated by the relative reduction ratio (RRA), which is the ratio with and without hydrogen charging. RRA is a value of [restriction of material with hydrogen charging]/[restriction of material without hydrogen charging].
In the "RRA" column of Table 2, those with an RRA of 0.80 or more are indicated as "○" as having excellent resistance to hydrogen embrittlement, and those with an RRA of less than 0.80 are indicated as "×" as being inferior in resistance to hydrogen embrittlement. was displayed.

Figure 0007339123000002
Figure 0007339123000002

本発明の発明鋼であるNo.1~17は、表2において示すように、熱間加工性、時効硬さ、引張強さ、絞り、平滑破面率、耐食性評価、RRAのいずれも、評価は良好の○もしくは△であり、すべての評価項目のバランスが確保されるものとなった。そこで、安価でありながら、優れた加工性、引張特性、耐水素脆性、耐食性を兼ね備えた材料が得られている。 No. 6, which is the invention steel of the present invention. 1 to 17, as shown in Table 2, all of hot workability, aging hardness, tensile strength, reduction of area, smooth fracture rate, corrosion resistance evaluation, and RRA are good evaluations of ○ or △, A balance was ensured for all evaluation items. Therefore, a material that is inexpensive but has excellent workability, tensile properties, resistance to hydrogen embrittlement, and resistance to corrosion has been obtained.

なおこれらの評価試験は熱間加工性(φ15mm鍛造)、時効硬さ、引張特性(引張強さと絞り)、平滑破面率、耐食性評価、水素チャージ材の絞り(RRA)の順に実施した。比較鋼については、所望の特性が得られない段階で、その後の評価試験の実施に値しないものと判断し、評価を中断した。 These evaluation tests were performed in order of hot workability (φ15 mm forging), aging hardness, tensile properties (tensile strength and reduction of area), smooth fracture rate, corrosion resistance evaluation, and reduction of area (RRA) of hydrogen-charged material. With respect to the comparative steels, when the desired properties were not obtained, it was judged that they were not worthy of subsequent evaluation tests, and the evaluation was discontinued.

まず、比較鋼のNo.22,23,26,34~36は、熱間加工性が悪く、φ15鍛造時に割れが発生したため、その後の特性を評価するまでもなかった。
また、比較鋼のNo.18,28,29,31は、時効硬さに不足しており、特性が劣っていたため、その後の試験で特性を評価するまでもなかった。
比較鋼No.20は、引張評価特性の絞りの結果が思わしくなく、その後の特性を評価するまでもなかった。
比較鋼No.21,33は、平滑破面率が高かったので、その後の特性を評価するまでもなかった。
比較鋼No.19,24,30は、塩水噴霧による耐食性に劣っていた。その後の特性を評価するまでもなかった。
比較例No.25,27,32は、水素チャージの前後での相対絞り比(RRA)が小さく、水素の影響を大きく受けるものであった。
First, comparative steel No. Nos. 22, 23, 26, 34 to 36 had poor hot workability and cracks occurred during forging of φ15, so there was no need to evaluate the properties thereafter.
Also, the comparative steel No. Nos. 18, 28, 29 and 31 lacked aging hardness and were inferior in properties, so that there was no need to evaluate the properties in subsequent tests.
Comparative steel no. In No. 20, the results of drawing in the tensile evaluation properties were unsatisfactory, and the subsequent properties were not evaluated.
Comparative steel no. Nos. 21 and 33 had a high smooth fracture surface ratio, so there was no need to evaluate the subsequent characteristics.
Comparative steel no. Nos. 19, 24 and 30 were inferior in corrosion resistance to salt spray. There was no need to evaluate the subsequent characteristics.
Comparative example no. Nos. 25, 27 and 32 had a small relative drawing ratio (RRA) before and after hydrogen charging, and were greatly affected by hydrogen.

Claims (2)

質量%で、C:0.10超~0.60%、Si:0.05~0.80%、Mn:2.0~10.0%、P:0.050%以下、S:0.050%以下、Ni:8.0~18.0%、Cr:8.0~18.0%、Mo:0.01~0.50%、Cu:0.05~1.00%、V:0.50超~3.00%、Al:0.001~0.100%、N:0.100超~0.250%を含有し、残部Feおよび不可避不純物からなり、
下記の式1、式2および式3の値が、式1:0.2~1.5、式2:-100以下、式3:4.0以上であることを満足することを特徴とする高硬度耐水素脆化鋼。
式1:V/{4([C]+[N])}、
式2:551-462([C]+[N]-0.07[V])-9.2[Si]-8.1[Mn]-13.7[Cr]-29([Ni]+[Cu])-18.5[Mo]、
式3:2.3[Ni]+3.0[Mo]+5.0[Al]+5.6[Cu]-[Cr]-[Si]-1.2[Mn]。
なお、式中の[元素記号]には、対応する成分組成の質量%の値を代入する。
% by mass, C: more than 0.10 to 0.60%, Si: 0.05 to 0.80%, Mn: 2.0 to 10.0%, P: 0.050% or less, S: 0. 050% or less, Ni: 8.0 to 18.0%, Cr: 8.0 to 18.0%, Mo: 0.01 to 0.50%, Cu: 0.05 to 1.00%, V: Contains more than 0.50 to 3.00%, Al: 0.001 to 0.100%, N: more than 0.100 to 0.250%, and the balance consists of Fe and inevitable impurities,
The values of the following formulas 1, 2, and 3 satisfy formula 1: 0.2 to 1.5, formula 2: -100 or less, and formula 3: 4.0 or more. High hardness hydrogen embrittlement resistant steel.
Formula 1: V/{4([C]+[N])},
Formula 2: 551-462 ([C] + [N] - 0.07 [V]) - 9.2 [Si] - 8.1 [Mn] - 13.7 [Cr] - 29 ([Ni] + [Cu]) -18.5 [Mo],
Formula 3: 2.3 [Ni] + 3.0 [Mo] + 5.0 [Al] + 5.6 [Cu] - [Cr] - [Si] - 1.2 [Mn].
In addition, the mass % value of the corresponding component composition is substituted for the [element symbol] in the formula.
請求項1に記載の鋼成分に加えて、さらに、質量%で、B:0.010%以下、Ca:0.050%以下、Mg:0.050%以下のうち、少なくともいずれか1種以上を含有し、残部Feおよび不可避不純物からなり、
下記の式1、式2および式3の値が、式1:0.2~1.5、式2:-100以下、式3:4.0以上であることを満足することを特徴とする高硬度耐水素脆化鋼。
式1:V/{4([C]+[N])}、
式2:551-462([C]+[N]-0.07[V])-9.2[Si]-8.1[Mn]-13.7[Cr]-29([Ni]+[Cu])-18.5[Mo]、
式3:2.3[Ni]+3.0[Mo]+5.0[Al]+5.6[Cu]-[Cr]-[Si]-1.2[Mn]。
なお、式中の[元素記号]には、対応する成分組成の質量%の値を代入する。
In addition to the steel components described in claim 1, at least one of B: 0.010% or less, Ca: 0.050% or less, and Mg: 0.050% or less in mass% containing, the remainder consisting of Fe and inevitable impurities,
The values of the following formulas 1, 2, and 3 satisfy formula 1: 0.2 to 1.5, formula 2: -100 or less, and formula 3: 4.0 or more. High hardness hydrogen embrittlement resistant steel.
Formula 1: V/{4([C]+[N])},
Formula 2: 551-462 ([C] + [N] - 0.07 [V]) - 9.2 [Si] - 8.1 [Mn] - 13.7 [Cr] - 29 ([Ni] + [Cu]) -18.5 [Mo],
Formula 3: 2.3 [Ni] + 3.0 [Mo] + 5.0 [Al] + 5.6 [Cu] - [Cr] - [Si] - 1.2 [Mn].
In addition, the mass % value of the corresponding component composition is substituted for the [element symbol] in the formula.
JP2019197017A 2019-10-30 2019-10-30 High hardness hydrogen embrittlement resistant steel Active JP7339123B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2019197017A JP7339123B2 (en) 2019-10-30 2019-10-30 High hardness hydrogen embrittlement resistant steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2019197017A JP7339123B2 (en) 2019-10-30 2019-10-30 High hardness hydrogen embrittlement resistant steel

Publications (2)

Publication Number Publication Date
JP2021070839A JP2021070839A (en) 2021-05-06
JP7339123B2 true JP7339123B2 (en) 2023-09-05

Family

ID=75712613

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2019197017A Active JP7339123B2 (en) 2019-10-30 2019-10-30 High hardness hydrogen embrittlement resistant steel

Country Status (1)

Country Link
JP (1) JP7339123B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117413082A (en) * 2021-06-03 2024-01-16 日铁不锈钢株式会社 Austenitic stainless steel material, method for producing same, and hydrogen device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012219367A (en) 2011-04-14 2012-11-12 Nippon Koshuha Steel Co Ltd Non-magnetic stainless steel
US20140234153A1 (en) 2011-11-02 2014-08-21 Bayerische Motoren Werke Aktiengesellschaft Cost Reduced Steel for Hydrogen Technology with High Resistance to Hydrogen-Induced Embrittlement
US20150167134A1 (en) 2012-05-16 2015-06-18 Bayerische Motoren Werke Aktiengesellschaft Reduced Cost Steel for Hydrogen Technology with High Resistance to Hydrogen-Induced Embrittlement
JP2016014180A (en) 2014-07-02 2016-01-28 山陽特殊製鋼株式会社 Hydrogen embrittlement-resistant high strength steel
JP2016183372A (en) 2015-03-25 2016-10-20 山陽特殊製鋼株式会社 Non-magnetic corrosion resistant steel material excellent in hydrogen embrittlement resistance
JP2019049036A (en) 2017-09-11 2019-03-28 山陽特殊製鋼株式会社 High hardness non-magnetic steel with reduced hydrogen embrittlement susceptibility

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012219367A (en) 2011-04-14 2012-11-12 Nippon Koshuha Steel Co Ltd Non-magnetic stainless steel
US20140234153A1 (en) 2011-11-02 2014-08-21 Bayerische Motoren Werke Aktiengesellschaft Cost Reduced Steel for Hydrogen Technology with High Resistance to Hydrogen-Induced Embrittlement
US20150167134A1 (en) 2012-05-16 2015-06-18 Bayerische Motoren Werke Aktiengesellschaft Reduced Cost Steel for Hydrogen Technology with High Resistance to Hydrogen-Induced Embrittlement
JP2016014180A (en) 2014-07-02 2016-01-28 山陽特殊製鋼株式会社 Hydrogen embrittlement-resistant high strength steel
JP2016183372A (en) 2015-03-25 2016-10-20 山陽特殊製鋼株式会社 Non-magnetic corrosion resistant steel material excellent in hydrogen embrittlement resistance
JP2019049036A (en) 2017-09-11 2019-03-28 山陽特殊製鋼株式会社 High hardness non-magnetic steel with reduced hydrogen embrittlement susceptibility

Also Published As

Publication number Publication date
JP2021070839A (en) 2021-05-06

Similar Documents

Publication Publication Date Title
JP6451545B2 (en) High Mn steel for high-pressure hydrogen gas, method for producing the same, and piping, container, valve and joint made of the steel
US8540933B2 (en) Stainless austenitic low Ni steel alloy
JP5685198B2 (en) Ferritic-austenitic stainless steel
KR20130121981A (en) High-strength austenitic stainless steel for high-pressure hydrogen gas
DE102010026808B4 (en) Corrosion-resistant austenitic phosphorous-alloyed steel casting with TRIP or TWIP properties and its use
JPH05132741A (en) High strength duplex stainless steel excellent in corrosion resistance
EP3467132B1 (en) Duplex stainless steel and duplex stainless steel manufacturing method
US20180066344A1 (en) Wire rod for use in bolts that has excellent acid pickling properties and resistance to delayed fracture after quenching and tempering, and bolt
US10337079B2 (en) Maraging steel
KR20090078813A (en) Duplex stainless steel alloy and use of this alloy
US20080156400A1 (en) Low alloy steel
JP6427272B2 (en) bolt
CN104878316A (en) High-strength high-toughness high-nitrogen austenitic stainless steel
JP7339123B2 (en) High hardness hydrogen embrittlement resistant steel
KR20190041502A (en) River
KR20150080628A (en) Ferritic stainless steel
JP6504870B2 (en) Nonmagnetic corrosion resistant steel with excellent resistance to hydrogen embrittlement
JP7240086B2 (en) High-hardness non-magnetic steel with reduced susceptibility to hydrogen embrittlement
WO2019244320A1 (en) Steel sheet
JP2017014547A (en) HIGH Mn COPPER MATERIAL FOR HIGH PRESSURE HYDROGEN GAS AND PIPING, CONTAINER, VALVE AND JOIN CONSISTING OF THE STEEL MATERIAL
JP3879365B2 (en) Manufacturing method of steel material with excellent fatigue crack growth resistance
WO2017037851A1 (en) Cr-BASED TWO-PHASE ALLOY AND PRODUCT USING SAID TWO-PHASE ALLOY
JP5050495B2 (en) Steel for converter cores with excellent SR cracking resistance in welds
JP5136174B2 (en) High strength steel for bolts with excellent weather resistance and delayed fracture resistance
JP7462439B2 (en) Austenitic stainless steel and calculation method for upper limit of N

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220802

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230810

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230816

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230824

R150 Certificate of patent or registration of utility model

Ref document number: 7339123

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150