JP6319282B2 - Engine control device - Google Patents

Engine control device Download PDF

Info

Publication number
JP6319282B2
JP6319282B2 JP2015240598A JP2015240598A JP6319282B2 JP 6319282 B2 JP6319282 B2 JP 6319282B2 JP 2015240598 A JP2015240598 A JP 2015240598A JP 2015240598 A JP2015240598 A JP 2015240598A JP 6319282 B2 JP6319282 B2 JP 6319282B2
Authority
JP
Japan
Prior art keywords
sox
amount
distribution
adsorption
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2015240598A
Other languages
Japanese (ja)
Other versions
JP2017106381A (en
Inventor
真典 嶋田
真典 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2015240598A priority Critical patent/JP6319282B2/en
Priority to BR102016028038A priority patent/BR102016028038A2/en
Priority to CN201611129121.1A priority patent/CN106855005B/en
Publication of JP2017106381A publication Critical patent/JP2017106381A/en
Application granted granted Critical
Publication of JP6319282B2 publication Critical patent/JP6319282B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/085Sulfur or sulfur oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0821Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents combined with particulate filters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N9/00Electrical control of exhaust gas treating apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2570/00Exhaust treating apparatus eliminating, absorbing or adsorbing specific elements or compounds
    • F01N2570/04Sulfur or sulfur oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2900/00Details of electrical control or of the monitoring of the exhaust gas treating apparatus
    • F01N2900/06Parameters used for exhaust control or diagnosing
    • F01N2900/16Parameters used for exhaust control or diagnosing said parameters being related to the exhaust apparatus, e.g. particulate filter or catalyst
    • F01N2900/1602Temperature of exhaust gas apparatus
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/40Engine management systems

Description

本発明は、エンジン制御装置に関し、より詳細には、排気管に触媒を備えるディーゼルエンジンの制御装置に関する。   The present invention relates to an engine control device, and more particularly to a control device for a diesel engine provided with a catalyst in an exhaust pipe.

従来、ディーゼルエンジンの排気管に設けられる触媒に吸着した硫黄酸化物(SOまたはSOをいい、以下においてこれらを区別しない場合には「SOx」と総称する。)を、定期的に脱離させる昇温制御を行うことが知られている。昇温制御に関連する文献として、例えば特開2013−029038号公報が挙げられる。この公報には、触媒に蓄積したSOxの蓄積量を推定し、推定した蓄積量が要求放出量に到達したときに、当該触媒の床温を上昇させて500〜550℃に制御する技術が開示されている。この公報によれば、床温が500℃未満であると触媒からSOxが放出されず、床温が500〜550℃であると触媒からSOxが低濃度で放出され、床温が600℃を超えると触媒からSOxが高濃度で放出されるという特性が触媒にあるとしている。従って、このような特性を有する触媒の床温を500〜550℃に制御すれば、触媒からSOxを低濃度で脱離させてその機能を回復させることができる。また、低濃度で脱離させたSOxから白煙が発生するのを抑制することもできる。つまり、SOxの脱離による触媒の機能の回復と、このSOxに起因した白煙の発生の抑制を両立させることができる。 Conventionally, sulfur oxides adsorbed on a catalyst provided in an exhaust pipe of a diesel engine (referred to as SO 2 or SO 3 , hereinafter collectively referred to as “SOx” unless they are distinguished below) are periodically desorbed. It is known to perform temperature rise control. For example, Japanese Patent Application Laid-Open No. 2013-029038 is cited as a document related to temperature rise control. This publication discloses a technique for estimating the accumulated amount of SOx accumulated in the catalyst and, when the estimated accumulated amount reaches the required release amount, increasing the bed temperature of the catalyst and controlling it to 500 to 550 ° C. Has been. According to this publication, when the bed temperature is less than 500 ° C., SOx is not released from the catalyst, and when the bed temperature is 500 to 550 ° C., SOx is released from the catalyst at a low concentration, and the bed temperature exceeds 600 ° C. The catalyst has the characteristic that SOx is released at a high concentration from the catalyst. Therefore, if the bed temperature of the catalyst having such characteristics is controlled to 500 to 550 ° C., the function can be recovered by desorbing SOx from the catalyst at a low concentration. It is also possible to suppress the generation of white smoke from SOx desorbed at a low concentration. That is, it is possible to achieve both the recovery of the function of the catalyst by the desorption of SOx and the suppression of the generation of white smoke due to this SOx.

特開2013−029038号公報JP 2013-029038 A 特開平11−081993号公報Japanese Patent Laid-Open No. 11-081993

上記公報の技術は、触媒に既に吸着しているSOxに着目したものである。しかし、昇温制御中であってもディーゼルエンジンからはSOxが排出されて触媒に流入することから、このSOxが触媒に新たに吸着する可能性は少なくない。そうすると、このような新たなSOxの吸着が考慮されていない上記公報の技術は、上述したSOxの蓄積量の推定の精度が必ずしも高くないことが予想される。従って、実際にはSOxの蓄積量が要求放出量を上回っているにも関わらず、SOxの推定蓄積量が要求放出量を下回っているために昇温制御が開始されない可能性がある。また、その後にSOxの推定蓄積量が要求放出量に到達することで昇温制御を開始したとしても、この開始時点での実際のSOxの蓄積量が要求放出量を遥かに上回っているような場合には、触媒の機能の回復に時間を要する可能性があり、或いは、触媒の機能の回復が不十分となる可能性がある。   The technique of the above publication pays attention to SOx already adsorbed on the catalyst. However, even during temperature rise control, SOx is discharged from the diesel engine and flows into the catalyst, so there is a high possibility that this SOx will be newly adsorbed on the catalyst. Then, it is expected that the technique of the above publication that does not consider such new adsorption of SOx does not necessarily have high accuracy in estimating the accumulated amount of SOx. Therefore, although the accumulated amount of SOx actually exceeds the required release amount, the temperature increase control may not be started because the estimated accumulated amount of SOx is lower than the required release amount. Further, even if the temperature rise control is started when the estimated accumulated amount of SOx reaches the required release amount after that, the actual accumulated amount of SOx at the start time is far beyond the required release amount. In some cases, recovery of the catalyst function may take time, or recovery of the catalyst function may be insufficient.

本発明は、上述した課題に鑑みてなされたものであり、その目的は、触媒の昇温制御において、SOxの脱離による触媒の機能の回復と、このSOxに起因した白煙の発生の抑制とを高水準で両立させることにある。   The present invention has been made in view of the above-described problems, and an object of the present invention is to recover the function of the catalyst by desorption of SOx and to suppress the generation of white smoke due to this SOx in the temperature rise control of the catalyst. Is to achieve both at a high level.

本発明は、ディーゼルエンジンの排気管に設けられる浄化装置の温度を、前記浄化装置からSOxが脱離する温度域の目標温度まで上昇させる制御を実行するエンジン制御装置であり、流入SOx量推定手段と、SOx飽和率推定手段と、新規吸着SOx量推定手段と、すり抜けSOx量推定手段と、吸着後SOx分布推定手段と、新規脱離SOx量推定手段と、最終吸着SOx分布推定手段と、すり抜けSO量推定手段と、許容脱離SO量算出手段と、目標温度算出手段と、を備えている。
流入SOx量推定手段は、前記浄化装置に流入するSOx量を流入SOx量としてサイクル毎に推定する。
SOx飽和率推定手段は、前記浄化装置の温度上昇中の各温度において前記浄化装置に吸着するSOx量を前記浄化装置の温度に関連付けたグラフとして表される吸着SOx分布と、前記浄化装置の温度上昇中の各温度において前記浄化装置に吸着するSOx最大量を前記浄化装置の温度に関連付けたグラフとして表される飽和SOx分布と、を用いて、前記浄化装置におけるSOx飽和率をサイクル毎に推定する。ここで、前記飽和SOx分布は、前記SOx飽和率の今回の推定サイクルにおける前記浄化装置の温度に対応したものである。
新規吸着SOx量推定手段は、前記流入SOx量と前記SOx飽和率とを用いて、前記浄化装置に流入して前記浄化装置に新たに吸着するSOx量を新規吸着SOx量としてサイクル毎に推定する。
すり抜けSOx量推定手段は、前記新規吸着SOx量を用いて、前記浄化装置に流入して前記浄化装置に吸着することなくすり抜けるSOx量をすり抜けSOx量としてサイクル毎に推定する。
吸着後SOx分布推定手段は、前記新規吸着SOx量を用いて、前記浄化装置に新たなSOxが吸着した後の前記SOx分布を吸着後SOx分布としてサイクル毎に推定する。
新規脱離SOx量推定手段は、前記吸着後SOx分布と前記浄化装置の温度とを用いて、前記浄化装置から新たに脱離するSOx量を新規脱離SOx量としてサイクル毎に推定する。
最終吸着SOx分布推定手段は、前記新規脱離SOx量を前記吸着後SOx分布に反映させて、前記浄化装置から新たなSOxが脱離した後の前記SOx分布を最終吸着SOx分布としてサイクル毎に推定する。
すり抜けSO量推定手段は、前記浄化装置においてSOに転化するSOの転化率と前記浄化装置の温度との関係を表した転化率マップと、今回の推定サイクルにおける前記浄化装置の温度と、前記すり抜けSOx量と、を用いて、前記浄化装置にSOxの状態で流入して前記浄化装置に吸着することなくすり抜けてSOの状態で排出されるSO量をすり抜けSO量としてサイクル毎に推定する。
許容脱離SO量算出手段は、サルフェート白煙に関する制約に相当する前記浄化装置の下流におけるSO量と前記すり抜けSO量とを用いて、前記浄化装置から脱離することが許されるSO量を許容脱離SO量としてサイクル毎に算出する。
目標温度算出手段は、前記最終吸着SOx分布と前記許容脱離SO量とを用いて、前記浄化装置の下流におけるSO濃度が前記制約を満たすように前記目標温度をサイクル毎に算出する。
また、前記SOx飽和率推定手段は、前記飽和SOx分布の面積に相当する総飽和SOx量と、前記飽和SOx分布から前記飽和SOx分布と前記吸着SOx分布との重複部分を除いた面積に相当する総吸着余裕SOx量と、を用いて前記SOx飽和率を算出する。
また、前記吸着後SOx分布推定手段は、前回の推定サイクルにおいて推定された前記最終吸着SOx分布に前記新規吸着SOx量に反映させて、今回の推定サイクルにおける前記吸着後SOx分布を推定する。
The present invention is an engine control device that executes control to increase the temperature of a purification device provided in an exhaust pipe of a diesel engine to a target temperature in a temperature range where SOx is desorbed from the purification device, and an inflow SOx amount estimating means SOx saturation rate estimation means, new adsorption SOx amount estimation means, slipping SOx amount estimation means, post-adsorption SOx distribution estimation means, new desorption SOx amount estimation means, final adsorption SOx distribution estimation means, slip-through SO 3 amount estimating means, allowable desorption SO 3 amount calculating means, and target temperature calculating means are provided.
The inflow SOx amount estimating means estimates the SOx amount flowing into the purification device as the inflow SOx amount for each cycle.
The SOx saturation rate estimation means includes an adsorption SOx distribution represented as a graph in which the amount of SOx adsorbed to the purification device at each temperature during the temperature increase of the purification device is related to the temperature of the purification device, and the temperature of the purification device The SOx saturation rate in the purification device is estimated for each cycle using a saturated SOx distribution represented as a graph in which the maximum amount of SOx adsorbed to the purification device at each temperature rising is related to the temperature of the purification device. To do. Here, the saturated SOx distribution corresponds to the temperature of the purifier in the current estimation cycle of the SOx saturation rate.
The new adsorption SOx amount estimation means estimates, based on the inflow SOx amount and the SOx saturation rate, the SOx amount that flows into the purification device and is newly adsorbed to the purification device as a new adsorption SOx amount for each cycle. .
The slip-through SOx amount estimation means estimates the amount of SOx that flows into the purification device and slips through without being adsorbed by the purification device as the slip-through SOx amount for each cycle, using the new adsorption SOx amount.
The post-adsorption SOx distribution estimation means estimates the SOx distribution after the new SOx is adsorbed on the purification device as the post-adsorption SOx distribution for each cycle, using the new adsorption SOx amount.
The new desorption SOx amount estimation means estimates the SOx amount newly desorbed from the purification device for each cycle as the new desorption SOx amount using the post-adsorption SOx distribution and the temperature of the purification device.
The final adsorption SOx distribution estimating means reflects the amount of the new desorption SOx in the post-adsorption SOx distribution, and sets the SOx distribution after desorption of new SOx from the purification device as the final adsorption SOx distribution for each cycle. presume.
The slipping SO 3 amount estimation means includes a conversion rate map representing a relationship between a conversion rate of SO 2 converted to SO 3 in the purification device and a temperature of the purification device, a temperature of the purification device in the current estimation cycle, and the slipped and SOx amount, using the the purifier and flows in the form of SOx slipped through SO 3 amount discharged in the form of SO 3 to pass through without being adsorbed on the purifying device cycle as SO 3 weight Estimate every time.
The allowable desorption SO 3 amount calculation means uses the SO 3 amount downstream of the purification device corresponding to the restriction on sulfate white smoke and the slip-through SO 3 amount to allow SO to be desorbed from the purification device. 3 amounts are calculated for each cycle as the allowable desorption SO 3 amount.
The target temperature calculation means calculates the target temperature for each cycle using the final adsorption SOx distribution and the allowable desorption SO 3 amount so that the SO 3 concentration downstream of the purification device satisfies the constraint.
Further, the SOx saturation rate estimating means corresponds to a total saturated SOx amount corresponding to the area of the saturated SOx distribution and an area obtained by removing an overlapping portion of the saturated SOx distribution and the adsorption SOx distribution from the saturated SOx distribution. The SOx saturation rate is calculated using the total adsorption margin SOx amount.
Further, the post-adsorption SOx distribution estimating means reflects the final adsorption SOx distribution estimated in the previous estimation cycle in the new adsorption SOx amount, and estimates the post-adsorption SOx distribution in the current estimation cycle.

本発明において、前記浄化装置が前記排気管を流れる微粒子を捕集するフィルタを含んでいてもよい。この場合は、前記目標温度まで上昇させる制御を、前記フィルタに捕集された微粒子量の推定値が除去要求量に到達したときに開始してもよい。   In the present invention, the purification device may include a filter that collects particulates flowing through the exhaust pipe. In this case, the control for increasing the temperature to the target temperature may be started when the estimated value of the amount of fine particles collected by the filter reaches the removal request amount.

本発明によれば、流入SOx量推定手段と、SOx飽和率推定手段と、新規吸着SOx量推定手段と、すり抜けSOx量推定手段と、吸着後SOx分布推定手段と、新規脱離SOx量推定手段と、最終吸着SOx分布推定手段と、すり抜けSO量推定手段と、許容脱離SO量算出手段と、目標温度算出手段という手段によって、触媒におけるSOxの吸着状況をサイクル毎に正確に把握することが可能となる。従って、触媒の昇温制御において、SOxの脱離による触媒の機能の回復と、このSOxに起因した白煙の発生の抑制とを高水準で両立させることができる。 According to the present invention, inflow SOx amount estimation means, SOx saturation rate estimation means, new adsorption SOx amount estimation means, slip-through SOx amount estimation means, post-adsorption SOx distribution estimation means, and new desorption SOx amount estimation means And the final adsorption SOx distribution estimation means, the slip-through SO 3 amount estimation means, the allowable desorption SO 3 amount calculation means, and the target temperature calculation means, so that the SOx adsorption state on the catalyst is accurately grasped for each cycle. It becomes possible. Therefore, in the temperature rise control of the catalyst, it is possible to achieve both a restoration of the function of the catalyst by desorption of SOx and a suppression of the generation of white smoke due to this SOx at a high level.

本発明の実施の形態のシステム構成を示す図である。It is a figure which shows the system configuration | structure of embodiment of this invention. DOC22aにおけるSOxの吸着と脱離を説明するための図である。It is a figure for demonstrating adsorption | suction and desorption of SOx in DOC22a. 目標床温Ttrgを算出するためのロジックを示す機能ブロック図である。It is a functional block diagram which shows the logic for calculating target bed temperature Ttrg. 吸着SOx分布と飽和SOx分布を説明するための図である。It is a figure for demonstrating adsorption | suction SOx distribution and saturated SOx distribution. 吸着SOx分布と飽和SOx分布を用いたSOx飽和率の推定手法の問題点を説明するための図である。It is a figure for demonstrating the problem of the estimation method of the SOx saturation rate using adsorption | suction SOx distribution and saturated SOx distribution. 基準飽和SOx分布と補正後の飽和SOx分布の関係を説明するための図である。It is a figure for demonstrating the relationship between a reference | standard saturation SOx distribution and the saturation SOx distribution after correction | amendment. 総吸着余裕SO量を説明するための図である。It is a diagram for explaining the total adsorption margin SO 2 amount. 新規吸着SOx量とすり抜けSOx量の関係を説明するための図である。It is a figure for demonstrating the relationship between new adsorption | suction SOx amount and slip-through SOx amount. 吸着率mapを説明するための図である。It is a figure for demonstrating adsorption rate map. 吸着後SOx分布を説明するための図である。It is a figure for demonstrating SOx distribution after adsorption | suction. 脱離可能総SOx量を説明するための図である。It is a figure for demonstrating the detachable total SOx amount. 最終吸着SOx分布と吸着後SOx分布の関係を説明するための図である。It is a figure for demonstrating the relationship between final adsorption | suction SOx distribution and SOx distribution after adsorption | suction. SO転化率mapを説明するための図である。It is a diagram for explaining the SO 3 conversion rate map. 許容脱離SO量を説明するための図である。Acceptable is a diagram for explaining the elimination SO 3 amount. 目標床温Ttrgを説明するための図である。It is a figure for demonstrating target bed temperature Ttrg. 本実施の形態による効果を説明するための図である。It is a figure for demonstrating the effect by this Embodiment.

[システム構成の説明]
図1は、本発明の実施の形態のシステム構成を示す図である。図1に示すシステムは、車両に搭載されるディーゼルエンジン10(以下単に「エンジン10」ともいう。)を備えている。エンジン10の各気筒には、燃料としての軽油を噴射するインジェクタ12が設けられている。なお、図1に描かれるエンジン10は直列4気筒エンジンであるが、エンジン10の気筒数および気筒配列は特に限定されない。また、図1には、4つのインジェクタ12のうちの1つが描かれている。
[Description of system configuration]
FIG. 1 is a diagram showing a system configuration according to an embodiment of the present invention. The system shown in FIG. 1 includes a diesel engine 10 (hereinafter also simply referred to as “engine 10”) mounted on a vehicle. Each cylinder of the engine 10 is provided with an injector 12 for injecting light oil as fuel. Although the engine 10 depicted in FIG. 1 is an in-line four-cylinder engine, the number of cylinders and the cylinder arrangement of the engine 10 are not particularly limited. FIG. 1 also depicts one of the four injectors 12.

エンジン10の排気マニホルド14には、ターボチャージャ16の排気タービン16aの入口が接続されている。排気タービン16aは吸気管18に設けられたコンプレッサ16bに連結されている。コンプレッサ16bは、排気タービン16aの回転により駆動して吸気を過給する。排気タービン16aの出口には排気管20が接続されている。排気管20には排気浄化装置22が設けられている。排気浄化装置22は、DOC(Diesel Oxidation Catalyst)22aと、DPF(Diesel Particulate Filter)22bと、を備えている。DOC22aは、排気中の炭化水素(HC)や一酸化炭素(CO)を酸化して、水(HO)や二酸化炭素(CO)に転化させる機能を有する触媒である。DPF22bは、排気中に含まれる微粒子(PM)を捕集するフィルタである。排気浄化装置22の上流には、インジェクタ12と共通の燃料を排気管20に添加する燃料添加弁24が設けられている。 An exhaust manifold 14 of the engine 10 is connected to an inlet of an exhaust turbine 16 a of a turbocharger 16. The exhaust turbine 16 a is connected to a compressor 16 b provided in the intake pipe 18. The compressor 16b is driven by the rotation of the exhaust turbine 16a to supercharge intake air. An exhaust pipe 20 is connected to the outlet of the exhaust turbine 16a. An exhaust gas purification device 22 is provided in the exhaust pipe 20. The exhaust purification device 22 includes a DOC (Diesel Oxidation Catalyst) 22a and a DPF (Diesel Particulate Filter) 22b. The DOC 22a is a catalyst having a function of oxidizing hydrocarbons (HC) and carbon monoxide (CO) in exhaust gas and converting them into water (H 2 O) and carbon dioxide (CO 2 ). The DPF 22b is a filter that collects particulates (PM) contained in the exhaust gas. A fuel addition valve 24 for adding fuel common to the injector 12 to the exhaust pipe 20 is provided upstream of the exhaust purification device 22.

図1に示すシステムは、制御装置としてのECU(Electronic Control Unit)30を備えている。ECU30は、RAM(Random Access Memory)、ROM(Read Only Memory)、CPU(Central Processing Unit)等を備えている。ECU30は、車両に搭載された各種センサの信号を取り込み処理する。各種センサには、吸気管18の入口付近に設けられたエアフローメータ32、DOC22aの出口温度を検出する温度センサ34、DPF22bの上下流における圧力差を検出する差圧センサ36が含まれている。ECU30は、取り込んだ各センサの信号を処理して所定の制御プログラムに従って各種アクチュエータを操作する。ECU30によって操作されるアクチュエータには、上述したインジェクタ12、燃料添加弁24が含まれている。   The system shown in FIG. 1 includes an ECU (Electronic Control Unit) 30 as a control device. The ECU 30 includes a RAM (Random Access Memory), a ROM (Read Only Memory), a CPU (Central Processing Unit), and the like. The ECU 30 captures and processes signals from various sensors mounted on the vehicle. The various sensors include an air flow meter 32 provided in the vicinity of the inlet of the intake pipe 18, a temperature sensor 34 for detecting the outlet temperature of the DOC 22a, and a differential pressure sensor 36 for detecting a pressure difference upstream and downstream of the DPF 22b. ECU30 processes the signal of each taken-in sensor, and operates various actuators according to a predetermined control program. The actuator operated by the ECU 30 includes the injector 12 and the fuel addition valve 24 described above.

[DPF22bの再生制御]
本実施の形態では、ECU30によるエンジン制御として、DPF22bの再生制御(以下「PM再生制御」ともいう。)が行われる。PM再生制御は、DPF22bで捕集したPMの推定値が除去要求量に到達したときに、燃料添加弁24から燃料を添加する制御である。例えば差圧センサ36で検出した圧力差が所定値に到達したときに、PMの推定値が除去要求量に到達したと判断することができる。燃料添加弁24から燃料を添加することでDOC22aにおいて添加燃料を酸化し、この酸化反応熱によりDPF22bの床温を600℃以上まで上昇させる。これにより、DPF22bで捕集したPMを燃焼除去できるので、DPF22bの捕集機能を回復させることができる。なお、DPF22bの床温を600℃以上に上昇させるための燃料添加弁24からの添加燃料量(以下「DPF用燃料量)は、DPFの床温と関連付けたマップに基づき決定されるものとする。このようなマップは例えばECU30のROMに記憶させておき、DPF22bの実際の床温に応じて適宜読み出すことができる。
[Regeneration control of DPF 22b]
In the present embodiment, regeneration control of the DPF 22b (hereinafter also referred to as “PM regeneration control”) is performed as engine control by the ECU 30. The PM regeneration control is control for adding fuel from the fuel addition valve 24 when the estimated value of PM collected by the DPF 22b reaches the removal request amount. For example, when the pressure difference detected by the differential pressure sensor 36 reaches a predetermined value, it can be determined that the estimated value of PM has reached the required removal amount. By adding fuel from the fuel addition valve 24, the added fuel is oxidized in the DOC 22a, and the bed temperature of the DPF 22b is raised to 600 ° C. or higher by this oxidation reaction heat. Thereby, the PM collected by the DPF 22b can be burned and removed, so that the collecting function of the DPF 22b can be recovered. The amount of fuel added from the fuel addition valve 24 for raising the bed temperature of the DPF 22b to 600 ° C. or higher (hereinafter referred to as “DPF fuel amount”) is determined based on a map associated with the bed temperature of the DPF. Such a map can be stored in, for example, the ROM of the ECU 30, and can be appropriately read according to the actual bed temperature of the DPF 22b.

[PM再生制御における問題点]
ところで、ディーゼルエンジンの燃料や潤滑油には一般に硫黄が含まれており、燃料の燃焼に伴ってこうした硫黄からSOxが生成する。本実施の形態においても同様で、エンジン10での燃料の燃焼に伴ってSOxが生成する。生成したSOxはエンジン10から排出されて排気浄化装置22に流入し、主にDOC22aに吸着する。但し、DOC22aの床温が高くなると、ここに吸着していたSOxが脱離し始める。DOC22aの組成等により多少変動するものの、PM再生制御を行う温度域ではDOC22aからSOxが脱離して下流側に放出される。
[Problems in PM regeneration control]
By the way, the fuel and lubricating oil of diesel engines generally contain sulfur, and SOx is generated from such sulfur as the fuel burns. The same applies to the present embodiment, and SOx is generated with the combustion of fuel in the engine 10. The generated SOx is discharged from the engine 10, flows into the exhaust purification device 22, and is mainly adsorbed by the DOC 22a. However, when the bed temperature of the DOC 22a increases, the SOx adsorbed here starts to desorb. Although it varies somewhat depending on the composition of the DOC 22a, SOx is desorbed from the DOC 22a and released downstream in the temperature range where PM regeneration control is performed.

DOC22aにおけるSOxの吸着と脱離について、図2を参照しながら説明する。この図に示すように、DOC22aは、基材(不図示)の表面を覆うコート材22cと、貴金属22d(Pt,Pd等)とを備えている。貴金属22dはコート材22cに分散担持されており、HCやCOを酸化する際の活性点となる。但し、排気中のSOが貴金属22dに吸着し、または、排気中のSOがコート材22cに吸着する。貴金属22dに吸着したSOの一部は貴金属22dから脱離して排気中に戻り、または、貴金属22d上で酸化されてSOとなり、SOの状態でコート材22cに吸着する。即ち、貴金属22dにはSOが吸着し、コート材22cには排気由来のSOとSO由来のSOが吸着する。何れにせよ、SOxが吸着することで、DOC22aにおけるHC等の酸化機能が阻害されることになる。 The adsorption and desorption of SOx in the DOC 22a will be described with reference to FIG. As shown in this figure, the DOC 22a includes a coating material 22c that covers the surface of a base material (not shown) and a noble metal 22d (Pt, Pd, etc.). The noble metal 22d is dispersedly supported on the coating material 22c and serves as an active point when oxidizing HC and CO. However, SO 2 in the exhaust is adsorbed on the noble metal 22d, or SO 3 in the exhaust is adsorbed on the coating material 22c. Part of the SO 2 adsorbed on the noble metal 22d is desorbed from the noble metal 22d and returned to the exhaust, or oxidized on the noble metal 22d to become SO 3 and adsorbed on the coating material 22c in the state of SO 3 . In other words, the noble metal 22 d SO 2 is adsorbed, the coating material 22c is SO 3 and SO 2 from the SO 3 from the exhaust adsorption. In any case, the adsorption function of SOx inhibits the oxidation function of DOC 22a such as HC.

上述した2経路によりコート材22cに吸着したSOは、コート材22cの床温が高くなることで脱離する。また、コート材22cの床温が高くなることで貴金属22d上でのSOからSOへの転化が促進されるので、このようなSOもコート材22cから脱離する。従って、PM再生制御を行うことで、上述したDPF22bの捕集機能だけでなく、DOC22aにおけるHC等の酸化機能を回復させることもできる。ところが、図2に示すように、コート材22cから脱離したSOが排気管20に存在するHOと反応することでHSOが発生する。そして、このHSOの濃度が一定濃度を超えると視認可能な白煙(サルフェート白煙)となるので、エンジン10を搭載した車両の商品価値を損ねてしまうおそれがある。 The SO 3 adsorbed on the coating material 22c through the two paths described above is desorbed when the bed temperature of the coating material 22c increases. Moreover, since the conversion from SO 2 to SO 3 on the noble metal 22d is promoted by increasing the bed temperature of the coating material 22c, such SO 3 is also detached from the coating material 22c. Therefore, by performing PM regeneration control, it is possible to recover not only the above-described DPF 22b collection function but also an oxidation function such as HC in the DOC 22a. However, as shown in FIG. 2, H 2 SO 4 is generated when SO 3 desorbed from the coating material 22 c reacts with H 2 O present in the exhaust pipe 20. And if the concentration of H 2 SO 4 exceeds a certain concentration, it becomes visible white smoke (sulfate white smoke), which may impair the commercial value of the vehicle equipped with the engine 10.

[本実施の形態の特徴]
DOC22aの下流における排気中のHSOの濃度が高くなり過ぎないように燃料添加弁24から燃料を添加すれば、PM再生制御中のサルフェート白煙の発生を抑制できる。そこで本実施の形態では、DOC22aの下流におけるSOの濃度がサルフェート白煙に関する制約を満たすように、PM再生制御中のDOC22aの床温の目標温度(以下「目標床温Ttrg」ともいう。)を算出し、目標床温Ttrgに基づいて、燃料添加弁24から添加する燃料量(以下「制約充足用燃料量」ともいう。)を算出することとしている。なお、このような制約SO濃度(DOC22aの下流におけるSO濃度の上限値)は、例えばECU30のROMに記憶させておくことができる。制約充足用燃料量よりもDPF用燃料量の方が多い場合に、DPF用燃料量ではなく制約充足用燃料量を採用することで、サルフェート白煙に関する制約を満たしつつ、DOC22aにおけるHC等の酸化機能を回復させることができる。
[Features of this embodiment]
If fuel is added from the fuel addition valve 24 so that the concentration of H 2 SO 4 in the exhaust downstream of the DOC 22a does not become too high, the generation of sulfate white smoke during PM regeneration control can be suppressed. Therefore, in the present embodiment, the target temperature of the DOC 22a bed temperature during PM regeneration control (hereinafter also referred to as “target bed temperature Ttrg”) so that the SO 3 concentration downstream of the DOC 22a satisfies the restrictions on sulfate white smoke. And the amount of fuel added from the fuel addition valve 24 (hereinafter also referred to as “constraint satisfaction fuel amount”) is calculated based on the target bed temperature Ttrg. Such a restricted SO 3 concentration (the upper limit value of the SO 3 concentration downstream of the DOC 22a) can be stored in the ROM of the ECU 30, for example. When the amount of fuel for DPF is greater than the amount of fuel for constraint satisfaction, by adopting the amount of fuel for constraint satisfaction instead of the amount of fuel for DPF, oxidation of HC and the like in DOC 22a is satisfied while satisfying the constraints on sulfate white smoke. Function can be restored.

[目標床温Ttrgの算出ロジック]
図3は、目標床温Ttrgを算出するためのロジックを示す機能ブロック図であり、これはECU30により実現される。この図に示すように、ECU30は、流入SOx量推定部M1と、SOx飽和率推定部M2と、新規吸着SOx量およびすり抜けSOx量推定部M3と、吸着後SOx分布推定部M4と、新規脱離SOx量推定部M5と、最終吸着SOx分布推定部M6と、すり抜けSO量推定部M7と、許容脱離SO量算出部M8と、白煙抑制目標床温算出部M9と、を備えており、これらの要素M1〜M9によって1サイクルごとに(具体的にはエンジン10の燃焼サイクルごとに)目標床温Ttrgを算出するものとする。なお、以下の説明においては、要素M1〜M9を簡略化するものとし、例えば流入SOx量推定部M1を「推定部M1」ともいう。
[Calculation logic of target bed temperature Ttrg]
FIG. 3 is a functional block diagram showing logic for calculating the target bed temperature Ttrg, and this is realized by the ECU 30. As shown in this figure, the ECU 30 includes an inflow SOx amount estimation unit M1, an SOx saturation rate estimation unit M2, a new adsorption SOx amount and slipping SOx amount estimation unit M3, a post-adsorption SOx distribution estimation unit M4, and a new removal. includes a release SOx amount estimation unit M5, a final suction SOx distribution estimating unit M6, and slipped SO 3 amount estimating unit M7, the allowable desorption SO 3 amount calculating section M8, and white smoke suppression target bed temperature calculation unit M9, the The target bed temperature Ttrg is calculated for each cycle (specifically, for each combustion cycle of the engine 10) using these elements M1 to M9. In the following description, elements M1 to M9 are simplified, and for example, the inflow SOx amount estimation unit M1 is also referred to as “estimation unit M1”.

推定部M1は、DOC22aに流入するSOxの量(以下「流入SOx量」ともいう。)を推定する。なお、本明細書でいう「DOC22aに流入するSOx」には、エンジン10で生成し、ここから排出されてDOC22aに流入するSOxだけでなく、燃料添加弁24から添加された燃料のDOC22aでの酸化反応に伴って生成し、DOC22a上を流れるSOxも含まれるものとする。   The estimation unit M1 estimates the amount of SOx flowing into the DOC 22a (hereinafter also referred to as “inflow SOx amount”). The “SOx flowing into the DOC 22a” in this specification includes not only the SOx that is generated by the engine 10 and discharged from here and flows into the DOC 22a, but also the fuel added from the fuel addition valve 24 at the DOC 22a. It is assumed that SOx generated along with the oxidation reaction and flowing on the DOC 22a is also included.

推定部M1は、具体的に、インジェクタ12からの噴射燃料量(筒内噴射量)および燃料添加弁24からの添加燃料量(排気添加量)を変数とする次式(1)により、第t番目のサイクルにおける流入SOx量を推定する。なお、式(1)の燃料S濃度は、燃料中の硫黄濃度であり、燃料供給系に別途設けた硫黄濃度センサの検出値を用いてもよく、設定値を用いてもよい。
流入SOx量(排気添加量(t),筒内噴射量(t))[μg/s]=流入燃料量(排気添加量(t),筒内噴射量(t))[g/s]×燃料S濃度[ppm] ・・・(1)
Specifically, the estimation unit M1 calculates the t th by the following equation (1) using the injected fuel amount (in-cylinder injection amount) from the injector 12 and the added fuel amount (exhaust addition amount) from the fuel addition valve 24 as variables. Estimate the inflow SOx amount in the second cycle. The fuel S concentration in equation (1) is the sulfur concentration in the fuel, and a detection value of a sulfur concentration sensor separately provided in the fuel supply system may be used, or a set value may be used.
Inflow SOx amount (exhaust addition amount (t), in-cylinder injection amount (t)) [μg / s] = inflow fuel amount (exhaust addition amount (t), in-cylinder injection amount (t)) [g / s] × Fuel S concentration [ppm] (1)

式(1)の流入燃料量(排気添加量(t),筒内噴射量(t))は、「DOC22aに流入するSOx」の由来となった燃料の第t番目のサイクルにおける量であり、燃料の比重(軽油比重)を用いて次式(2)により算出される。
流入燃料量(排気添加量(t),筒内噴射量(t))[g/s]=(排気添加量(t)[g/s]÷1000×軽油比重[g/cm]+筒内噴射量(t)[g/s]) ・・・(2)
なお、以下の説明においては、流入SOx量(排気添加量(t),筒内噴射量(t))を流入SOx量(t)ともいう。また、流入燃料量(排気添加量(t),筒内噴射量(t))を流入燃料量(t)ともいう。
The inflow fuel amount (exhaust gas addition amount (t), in-cylinder injection amount (t)) in equation (1) is the amount of fuel in the t-th cycle that originated from “SOx flowing into DOC 22a”, It is calculated by the following equation (2) using the specific gravity of fuel (light oil specific gravity).
Inflow fuel amount (exhaust addition amount (t), in-cylinder injection amount (t)) [g / s] = (exhaust addition amount (t) [g / s] ÷ 1000 × light oil specific gravity [g / cm 3 ] + cylinder Internal injection amount (t) [g / s]) (2)
In the following description, the inflow SOx amount (exhaust addition amount (t), in-cylinder injection amount (t)) is also referred to as inflow SOx amount (t). The inflow fuel amount (exhaust gas addition amount (t), in-cylinder injection amount (t)) is also referred to as inflow fuel amount (t).

推定部M2は、DOC22aにおけるSOxの飽和率(以下「SOx飽和率」ともいう。)を推定する。SOx飽和率の推定には、DOC22aの床温上昇中の各床温においてDOC22aに吸着するSOxの量(以下「吸着SOx量」ともいう。)を、DOC22aの床温に関連付けたグラフとして表される分布(以下「吸着SOx分布」ともいう。)と、DOC22aの床温上昇中の各床温においてDOC22aに吸着するSOxの最大量(以下「飽和SOx量」ともいう。)を、DOC22aの床温に関連付けたグラフとして表される分布(以下「飽和SOx分布」ともいう。)と、が用いられる。先ず、吸着SOx分布と飽和SOx分布について、SOを例として図4を参照しながら説明する。 The estimation unit M2 estimates the SOx saturation rate (hereinafter also referred to as “SOx saturation rate”) in the DOC 22a. In the estimation of the SOx saturation rate, the amount of SOx adsorbed on the DOC 22a at each bed temperature during the rise in the bed temperature of the DOC 22a (hereinafter also referred to as “adsorbed SOx amount”) is represented as a graph related to the bed temperature of the DOC 22a. Distribution (hereinafter also referred to as “adsorption SOx distribution”) and the maximum amount of SOx adsorbed to the DOC 22a at each bed temperature during the rise in the bed temperature of the DOC 22a (hereinafter also referred to as “saturated SOx amount”). A distribution expressed as a graph related to temperature (hereinafter also referred to as “saturated SOx distribution”) is used. First, the adsorption SOx distribution and the saturated SOx distribution will be described with reference to FIG. 4 using SO 3 as an example.

図4に「吸着SO量」として示したデータは、次の手法により収集したものである。具体的には先ず、図4に「現在温度」として示した床温において、十分な量のSOxをDOC22aに吸着させる。続いて、DOC22aの床温上昇中の各床温においてDOC22aから脱離したSOの量を、上昇速度を一定とした条件のもとで測定する。そして、この脱離SO量をDOC22aの床温に関連付けてグラフを作成する。これにより、脱離SO量を表した分布(以下「脱離SO分布」ともいう。)を得ることができる。これと同様の手法により、DOC22aの床温上昇中の各床温においてDOC22aから脱離したSOの量を、DOC22aの床温に関連付けたグラフ(以下「脱離SO分布」ともいう。)を得ることもできる。なお、DOC22aから脱離するSOについては、これをセンサで直接的に測定してもよいし、SOxまたはSOを検出するセンサを用いて両者を測定し、これらの差から算出してもよい(SO=SOx−SO)。 The data shown as “adsorbed SO 3 amount” in FIG. 4 is collected by the following method. Specifically, first, a sufficient amount of SOx is adsorbed on the DOC 22a at the bed temperature indicated as "current temperature" in FIG. Subsequently, the amount of SO 3 desorbed from the DOC 22a at each bed temperature while the bed temperature of the DOC 22a is rising is measured under the condition that the rising speed is constant. Then, a graph is created by associating this desorbed SO 3 amount with the bed temperature of the DOC 22a. As a result, a distribution representing the amount of desorbed SO 3 (hereinafter also referred to as “desorbed SO 3 distribution”) can be obtained. A graph in which the amount of SO 2 desorbed from the DOC 22a at each bed temperature while the bed temperature of the DOC 22a is rising is related to the bed temperature of the DOC 22a (hereinafter also referred to as “desorption SO 2 distribution”) by the same method as this. You can also get Note that the SO 3 desorbed from DOC22a, which to a may be directly measured by the sensor, to measure both using the sensor for detecting the SOx or SO 2, be calculated from these differences good (SO 3 = SOx-SO 2 ).

ここで、DOC22aの床温上昇中にDOC22aから脱離するSOは、実際には図4に「現在温度」として示した床温でDOC22aに吸着させたSOである。しかし、ある床温でDOC22aから脱離するSOは、その床温に至るまでDOC22aに吸着し続けることのできたSOであり、更に言えば、その床温でDOC22aに吸着することができたSOであると考えることもできる。このような仮定に基づいて、上述した脱離SO分布の縦軸を、DOC22aの床温上昇中の各床温においてDOC22aに吸着するSOの量に置き換えると、図4に示した「吸着SO量」のデータのグラフ、即ち、吸着SO分布を得ることができる。そして、これと同様の手法によって、吸着SO分布を得ることもできる。 Here, SO 3 desorbed from DOC22a in increased bed temperature of DOC22a is SO 3 which actually adsorbed to DOC22a in bed temperature shown as "current temperature" in FIG. However, SO 3 desorbed from DOC22a at some bed temperature, the bed is SO 3 which could continue to adsorb to DOC22a up to temperature and, more could be adsorbed to DOC22a in that bed temperature It can also be considered SO 3 . Based on this assumption, if the vertical axis of the desorption SO 3 distribution described above is replaced with the amount of SO 3 adsorbed on the DOC 22a at each bed temperature during the rise in the bed temperature of the DOC 22a, the “adsorption” shown in FIG. A graph of the “SO 3 amount” data, that is, an adsorption SO 3 distribution can be obtained. Then, the same method as this, it is possible to obtain an adsorption SO 2 distribution.

また、図4に「飽和SO量」として示したデータは、「吸着SO量」のデータと同様の手法により収集したものである。この「飽和SO量」のデータは、具体的に、上昇速度を極低速とした条件のもと、DOC22aの床温上昇中の各床温(例えば5℃間隔)においてDOC22aから脱離したSOの量に相当している。DOC22aの床温の上昇速度が極低速であることから、この「飽和SO量」のデータは、DOC22aから脱離したSOの量の最大値であると考えることができる。また、この最大値に対しては、上述した仮定を適用することができる。即ち、ある床温でDOC22aから脱離するSOの最大量は、その床温でDOC22aに吸着することができたSOの最大量に等しいと考えることができる。このような仮定に基づいて上述した脱離SO分布の縦軸を上記SOの最大量に置き換えると、図4に示した「飽和SO量」のデータのグラフ、即ち、飽和SO分布を得ることができる。そして、これと同様の手法によって、飽和SO分布を得ることもできる。 Further, the data shown as “saturated SO 3 amount” in FIG. 4 is collected by the same method as the “adsorption SO 3 amount” data. Specifically, this “saturated SO 3 amount” data is obtained from the SO 2 desorbed from the DOC 22a at each bed temperature (for example, at intervals of 5 ° C.) while the bed temperature of the DOC 22a is increasing under the condition that the rising speed is extremely low. This corresponds to an amount of 3 . Since the rising speed of the bed temperature of the DOC 22a is extremely low, this “saturated SO 3 amount” data can be considered to be the maximum value of the amount of SO 3 desorbed from the DOC 22a. Moreover, the assumption mentioned above is applicable to this maximum value. That is, it can be considered that the maximum amount of SO 3 desorbed from the DOC 22a at a certain bed temperature is equal to the maximum amount of SO 3 that can be adsorbed to the DOC 22a at the bed temperature. Replacing the vertical axis of the elimination SO 3 distribution described above on the basis of this assumption the maximum amount of the SO 3, graph data shown in FIG. 4 "saturated SO 3 amount", i.e., saturated SO 3 distribution Can be obtained. A saturated SO 2 distribution can also be obtained by a method similar to this.

次に、吸着SOx分布と飽和SOx分布を用いたSOx飽和率の推定手法の問題点について、図4に加えて図5を参照しながら説明する。上述したように、図4で説明した飽和SO分布は、この図に「現在温度」として示した床温でDOC22aに吸着させたSOを、DOC22aの床温上昇中に脱離させることで作成したグラフである。そのため、図4における「吸着SO量」のデータの総量を同図における「飽和SO量」のデータの総量で除すことで、DOC22aにおけるSOの飽和率、即ち、SO飽和率を算出することができる。また、これと同様の手法によって、DOC22aにおけるSOの飽和率、即ち、SO飽和率も算出することができる。 Next, problems of the SOx saturation rate estimation method using the adsorption SOx distribution and the saturated SOx distribution will be described with reference to FIG. 5 in addition to FIG. As described above, the saturated SO 3 distribution explained in FIG. 4 is obtained by desorbing SO 3 adsorbed on the DOC 22a at the bed temperature indicated as “current temperature” in this figure while the bed temperature of the DOC 22a is rising. It is the created graph. Therefore, by dividing the total amount of the “adsorbed SO 3 amount” data in FIG. 4 by the total amount of the “saturated SO 3 amount” data in the same figure, the saturation rate of SO 3 in the DOC 22a, that is, the SO 3 saturation rate is obtained. Can be calculated. Further, the saturation rate of SO 2 in the DOC 22a, that is, the SO 2 saturation rate can also be calculated by the same method as this.

ところで、上述した「DOC22aに流入するSOx」は、DOC22aに吸着する可能性のあるSOxでもある。ここで、DOC22aに流入してここに新たに吸着するSOxの量は、DOC22aに既に吸着しているSOxの量と相関があり、具体的にはDOC22aに既に吸着しているSOxの量が少ないほど、DOC22aに新たに吸着するSOxの量が多くなる(図9参照)。この点、吸着SOx分布と飽和SOx分布を用いてSOx飽和率を推定すれば、DOC22aにどの程度SOxの吸着余裕があるかを見極めることができる。   By the way, the above-mentioned “SOx flowing into the DOC 22a” is also a SOx that may be adsorbed to the DOC 22a. Here, the amount of SOx that flows into the DOC 22a and is newly adsorbed here has a correlation with the amount of SOx that is already adsorbed on the DOC 22a. Specifically, the amount of SOx that is already adsorbed on the DOC 22a is small. The amount of SOx newly adsorbed on the DOC 22a increases (see FIG. 9). In this regard, if the SOx saturation rate is estimated using the adsorption SOx distribution and the saturated SOx distribution, it is possible to determine how much SOx adsorption margin is in the DOC 22a.

しかしその一方で、DOC22aに吸着することのできるSOxの量にはそもそも限界がある。ここで、この吸着限界量はDOC22aの床温と相関があり、具体的には、吸着限界量はある温度よりも低温側ではDOC22aの床温が高くなるほど多くなり、この温度よりも高温側ではDOC22aの床温が高くなるほど少なくなる。このような吸着限界量に起因した問題点を示したのが図5である。   However, on the other hand, the amount of SOx that can be adsorbed to the DOC 22a is limited in the first place. Here, this adsorption limit amount correlates with the bed temperature of the DOC 22a. Specifically, the adsorption limit amount increases as the bed temperature of the DOC 22a becomes higher at a lower temperature side than a certain temperature, and at a higher temperature side than this temperature. It decreases as the floor temperature of the DOC 22a increases. FIG. 5 shows a problem caused by such an adsorption limit amount.

図5に「飽和SO量」として示したデータは、この図に「現在温度」として示した床温において十分な量のSOxをDOC22aに吸着させ、DOC22aの床温上昇中の各床温においてDOC22aから脱離したSOの量を、上昇速度を極低速とした条件のもとで測定したデータに相当している。一方、この図に「吸着SO量」として示したデータは、図4の「吸着SO量」と同一のデータである。この図5から分かるように、DOC22aの床温が低い領域では「吸着SO量」が「飽和SO量」を下回っているにも関わらず、DOC22aの床温が高い領域ではこの大小関係が逆転してしまう。 The data shown as “saturated SO 3 amount” in FIG. 5 indicates that a sufficient amount of SOx is adsorbed to the DOC 22a at the bed temperature indicated as “current temperature” in this figure, and the bed temperature of the DOC 22a is increased at each bed temperature. The amount of SO 3 desorbed from the DOC 22a corresponds to data measured under conditions where the rising speed is extremely low. On the other hand, the data shown as “adsorption SO 3 amount” in this figure is the same data as the “adsorption SO 3 amount” in FIG. As can be seen from FIG. 5, in the region where the bed temperature of the DOC 22a is low, the “adsorption SO 3 amount” is lower than the “saturated SO 3 amount”, but in the region where the bed temperature of the DOC 22a is high, It will be reversed.

「吸着SO量」と「飽和SO量」の大小関係の逆転が起きた場合には、実際にはDOC22aの床温が低い領域に、その床温域でもDOC22aにSOを吸着できる余裕があるにも関わらず、上述した除算により求められたSOの飽和率の値が1を超えてしまい、DOC22aにこのような吸着余裕が無いと判断されるケースが出てきてしまう。このように、図4で説明したような「吸着SO量」のデータの総量を「飽和SO量」のデータの総量で単に除算する手法では、SOx飽和率を正確に算出できない可能性がある。 When the reversal of the magnitude relationship between “adsorption SO 3 amount” and “saturated SO 3 amount” occurs, the DOC 22a is actually in a region where the bed temperature is low, and there is room to adsorb SO 3 on the DOC 22a even in the bed temperature region. In spite of this, the value of the saturation rate of SO 3 obtained by the above division exceeds 1 and there are cases where it is determined that the DOC 22a does not have such an adsorption margin. As described above, the method of simply dividing the total amount of “adsorbed SO 3 amount” data as described in FIG. 4 by the total amount of “saturated SO 3 amount” data may not be able to accurately calculate the SOx saturation rate. is there.

上述した問題点に鑑み、推定部M2は、第t番目のサイクルにおけるDOC22aの現在床温Tを変数とする次式(3)により、第t番目のサイクルにおけるSOx飽和率(T(t),t)を推定する。なお、現在床温Tは、例えば温度センサ34の検出値を使用することができる。
SOx飽和率(T(t),t)=1−(総吸着余裕量(T(t),t)/総飽和量(T(t),t)) ・・・(3)
In view of the above-described problem, the estimation unit M2 calculates the SOx saturation rate (T 2 (t 2 (t) in the t-th cycle) by the following equation (3) using the current bed temperature T 2 of the DOC 22a in the t-th cycle as a variable. ), T). Note that the current bed temperature T 2 are, for example, it can be used detected value of the temperature sensor 34.
SOx saturation rate (T 2 (t), t) = 1− (total adsorption margin amount (T 2 (t), t) / total saturation amount (T 2 (t), t)) (3)

式(3)のSOx飽和率(T(t),t)の算出過程は次のとおりである。先ず、DOC22aの床温上昇中における床温Tと、現在床温Tとを変数とする次式(4)および(5)により、第t番目のサイクルにおける飽和SO分布(T,T(t),t)および飽和SO分布(T,T(t),t)をそれぞれ算出する。
飽和SO分布(T,T(t),t)[μg/℃]=基準飽和SO分布×床温補正SOmap(T(t))[μg/℃] ・・・(4)
飽和SO分布(T,T(t),t)[μg/℃]=基準飽和SO分布×床温補正SOmap(T(t))[μg/℃] ・・・(5)
The calculation process of the SOx saturation rate (T 2 (t), t) in Expression (3) is as follows. First, the saturated SO 2 distribution (T 1 , T 1 , T 2 ) in the t-th cycle is calculated by the following equations (4) and (5) using the bed temperature T 1 during the rise of the bed temperature of the DOC 22a and the current bed temperature T 2 as variables. T 2 (t), t) and saturated SO 3 distribution (T 1 , T 2 (t), t) are respectively calculated.
Saturated SO 2 distribution (T 1 , T 2 (t), t) [μg / ° C.] = Standard saturated SO 2 distribution × bed temperature corrected SO 2 map (T 2 (t)) [μg / ° C.] 4)
Saturated SO 3 distribution (T 1 , T 2 (t), t) [μg / ° C.] = Reference saturated SO 3 distribution × bed temperature corrected SO 3 map (T 2 (t)) [μg / ° C.] 5)

式(4)の基準飽和SO分布は、十分な量のSOxをDOC22aに吸着させるときの床温(図4や図5の「現在温度」)を基準床温(例えば上述した吸着限界量が最大となる300℃付近の床温)として作成した飽和SO分布である。式(5)の基準飽和SO分布もこれと同様である。式(4)の床温補正SOmap(T(t))は、基準飽和SO分布を現在床温Tの飽和SO分布に変換するための補正値を定めたマップである。式(5)の床温補正SOmap(T(t))もこれと同様である。このような基準飽和SOx分布と補正マップは、例えばECU30のROMに記憶させておくことができ、現在床温Tに応じて適宜読み出すことができる。 The reference saturated SO 2 distribution of the equation (4) is obtained by using the bed temperature (“current temperature” in FIGS. 4 and 5) when a sufficient amount of SOx is adsorbed by the DOC 22a as the reference bed temperature (for example, the above-described adsorption limit amount is This is a saturated SO 2 distribution created as a maximum (bed temperature around 300 ° C.). The reference saturated SO 3 distribution of the equation (5) is similar to this. The bed temperature correction SO 2 map (T 2 (t)) in Expression (4) is a map that defines a correction value for converting the reference saturated SO 3 distribution into the saturated SO 2 distribution at the current bed temperature T 2 . The bed temperature correction SO 3 map (T 2 (t)) in the equation (5) is the same as this. Such criteria saturated SOx distribution and the correction map can be memorized for example in the ECU30 in the ROM, a read appropriately according currently bed temperature T 2.

基準飽和SOx分布と補正後の飽和SOx分布の関係を、SOを例として図6を参照しながら説明する。なお、この図の横軸のTLおよびTHは、DOC22aの床温上昇中にDOC22aからSOが脱離し始める温度(下限温度)と、DOC22aからSOが脱離し終わる温度(上限温度)に、それぞれ相当している。この図に示す3種類の分布の違いは、現在床温Tにある。即ち、現在床温Tが基準温度と等しい場合は、補正後の飽和SO分布の形状が基準飽和SO分布の形状と一致する(中央)。一方、現在床温Tが基準温度よりも低い場合(左方)や、現在床温Tが基準温度よりも高い場合(右方)は、補正後の飽和SO分布の形状が基準飽和SO分布の形状と一致しなくなる。なお、現在床温Tが基準温度よりも高い場合(右方)には、補正後の飽和SO分布の形状が、現在床温Tよりも低温側のデータが欠落しているような形状となる。この理由は、現在床温Tよりも低温側では、本来であればこの床温域においてDOC22aに吸着し続けることのできたはずのSOxが、DOC22aから既に脱離していると考えられるためである。 The relationship between the reference saturated SOx distribution and the corrected saturated SOx distribution will be described with reference to FIG. 6 using SO 2 as an example. Note that TL and TH on the horizontal axis in this figure are the temperature at which SO 2 begins to desorb from the DOC 22a during the rise in the bed temperature of the DOC 22a (lower limit temperature), and the temperature at which SO 2 finishes desorbing from the DOC 22a (upper limit temperature). Each corresponds. The difference of the three distribution shown in this figure, is currently in bed temperature T 2. That is, if the current floor temperature T 2 is equal to the reference temperature, saturated SO 2 distribution shape of the corrected coincides with the reference saturation SO 2 distribution shape (middle). On the other hand, when the current bed temperature T 2 is lower than the reference temperature (left side) or when the current bed temperature T 2 is higher than the reference temperature (right side), the corrected saturation SO 2 distribution shape is the reference saturation. It does not match the shape of the SO 2 distribution. When the current bed temperature T 2 is higher than the reference temperature (right side), the corrected saturated SO 2 distribution shape is missing data on the lower temperature side than the current bed temperature T 2. It becomes a shape. The reason for this is currently the low temperature side than the bed temperature T 2 are, the SOx that could have been of continuing to adsorb to DOC22a In this bed temperature range would otherwise, be due believed already desorbed from DOC22a .

続いて、式(4)により算出した飽和SO分布(T,T(t),t)を次式(6)に代入して、第t番目のサイクルにおける総飽和SO量(T(t),t)を算出する。また、式(5)により算出した飽和SO分布(T,T(t),t)を次式(7)に代入して、第t番目のサイクルにおける総飽和SO量を算出する。

Figure 0006319282
Subsequently, the saturated SO 2 distribution (T 1 , T 2 (t), t) calculated by the equation (4) is substituted into the following equation (6), and the total saturated SO 2 amount (T 2 (t), t) are calculated. Further, the saturated SO 3 distribution (T 1 , T 2 (t), t) calculated by the equation (5) is substituted into the following equation (7) to calculate the total saturated SO 3 amount in the t-th cycle. .
Figure 0006319282

総飽和SO量(T(t),t)および総飽和SO量(T(t),t)を算出したら、次式(8)にこれらを代入して、第t番目のサイクルにおける総飽和量(T(t),t)を算出する。
総飽和量(T(t),t)=総飽和SO量(T(t),t)+総飽和SO量(T(t),t) ・・・(8)
なお、以下の説明においては、総飽和SO量(T(t),t)を単に総飽和SO量(t)ともいう。また、総飽和SO量(T(t),t)を単に総飽和SO量(t)ともいう。また、総飽和量(T(t),t)を単に総飽和量(t)ともいう。
When the total saturated SO 2 amount (T 2 (t), t) and the total saturated SO 3 amount (T 2 (t), t) are calculated, these are substituted into the following equation (8), and the t-th cycle The total saturation amount at (T 2 (t), t) is calculated.
Total saturation amount (T 2 (t), t) = Total saturation SO 2 amount (T 2 (t), t) + Total saturation SO 3 amount (T 2 (t), t) (8)
In the following description, the total saturated SO 2 amount (T 2 (t), t) is also simply referred to as the total saturated SO 2 amount (t). The total saturated SO 3 amount (T 2 (t), t) is also simply referred to as the total saturated SO 3 amount (t). The total saturation amount (T 2 (t), t) is also simply referred to as the total saturation amount (t).

式(8)により総飽和量(t)を算出したら、飽和SO分布(T,T(t),t)と、推定部M6で推定した第t番目のサイクルにおける最終吸着SO分布(T,t)とを次式(9)に代入して、第t番目のサイクルにおける吸着余裕SO分布(T,T(t),t)を算出する。また、飽和SO分布(T,T(t),t)と、推定部M6で推定した第t番目のサイクルにおける最終吸着SO分布(T,t)とを次式(10)に代入して、第t番目のサイクルにおける吸着余裕SO分布(T,T(t),t)を算出する。
吸着余裕SO分布(T,T(t),t)[μg/℃]=max{飽和SO分布(T,T(t),t)[μg/℃]−最終吸着SO分布(T,t)[μg/℃],0} ・・・(9)
吸着余裕SO分布(T,T(t),t)[μg/℃]=max{飽和SO分布(T,T(t),t)[μg/℃]−最終吸着SO分布(T,t)[μg/℃],0} ・・・(10)
When the total saturation amount (t) is calculated by the equation (8), the saturated SO 2 distribution (T 1 , T 2 (t), t) and the final adsorption SO 2 distribution in the t-th cycle estimated by the estimation unit M6. Substituting (T 1 , t) into the following equation (9), the adsorption margin SO 2 distribution (T 1 , T 2 (t), t) in the t-th cycle is calculated. Further, the saturated SO 3 distribution (T 1 , T 2 (t), t) and the final adsorption SO 3 distribution (T 1 , t) in the t-th cycle estimated by the estimation unit M6 are expressed by the following equation (10). And the adsorption margin SO 3 distribution (T 1 , T 2 (t), t) in the t-th cycle is calculated.
Adsorption margin SO 2 distribution (T 1 , T 2 (t), t) [μg / ° C.] = Max {saturated SO 2 distribution (T 1 , T 2 (t), t) [μg / ° C.] − Final adsorption SO 2 distribution (T 1 , t) [μg / ° C.], 0} (9)
Adsorption margin SO 3 distribution (T 1 , T 2 (t), t) [μg / ° C.] = Max {saturated SO 3 distribution (T 1 , T 2 (t), t) [μg / ° C.] − Final adsorption SO 3 distribution (T 1 , t) [μg / ° C.], 0} (10)

続いて、式(9)により算出した吸着余裕SO分布(T,T(t),t)を次式(11)に代入して、第t番目のサイクルにおける総吸着余裕SO量(T(t),t)を算出する。また、式(10)により算出した吸着余裕SO分布(T,T(t),t)を次式(12)に代入して、第t番目のサイクルにおける総吸着余裕SO量(T(t),t)を算出する。

Figure 0006319282
なお、以下の説明においては、吸着余裕SO分布(T,T(t),t)を単に吸着余裕SO分布(t)ともいう。また、吸着余裕SO分布(T,T(t),t)を単に吸着余裕SO分布(t)ともいう。また、総吸着余裕SO量(T(t),t)を単に総吸着余裕SO量(t)ともいう。また、総吸着余裕SO量(T(t),t)を単に総吸着余裕SO量(t)ともいう。 Subsequently, the adsorption margin SO 2 distribution (T 1 , T 2 (t), t) calculated by the equation (9) is substituted into the following equation (11), and the total adsorption margin SO 2 amount in the t-th cycle is calculated. (T 2 (t), t) is calculated. Further, the adsorption margin SO 3 distribution (T 1 , T 2 (t), t) calculated by the equation (10) is substituted into the following equation (12), and the total adsorption margin SO 3 amount in the t-th cycle ( T 2 (t), t) is calculated.
Figure 0006319282
In the following description, the adsorption margin SO 2 distribution (T 1 , T 2 (t), t) is also simply referred to as an adsorption margin SO 2 distribution (t). The adsorption margin SO 3 distribution (T 1 , T 2 (t), t) is also simply referred to as an adsorption margin SO 3 distribution (t). The total adsorption margin SO 2 amount (T 2 (t), t) is also simply referred to as the total adsorption margin SO 2 amount (t). The total adsorption margin SO 3 amount (T 2 (t), t) is also simply referred to as the total adsorption margin SO 3 amount (t).

図7を参照して、総吸着余裕SO量(t)を説明する。なお、総吸着余裕SO量(t)についてはこれと同様である。この図に示すように、総吸着余裕SO量(t)は、飽和SO分布から、飽和SO分布と吸着SO分布の重複部分を除いた面積として表すことができる。なお、この図の右方の分布に領域Aとして示すように、DOC22aの床温上昇中の各床温においてDOC22aに吸着するSOの量、即ち、吸着SO量がその最大量、即ち、飽和SO量を上回る場合は、DOC22aが飽和していると考えられることから、総吸着余裕SO量(t)の算出から除外される。また、この右方の分布において、現在床温Tよりも低温側のデータが欠落している理由については、図6で説明した通りである。 The total adsorption margin SO 2 amount (t) will be described with reference to FIG. The total adsorption margin SO 3 amount (t) is the same as this. As shown in this figure, the total adsorption margin SO 2 amount (t) may be a saturated SO 2 distribution, expressed as the area excluding the overlapping portions of the adsorption SO 2 distribution and saturated SO 2 distribution. In addition, as shown as a region A in the distribution on the right side of this figure, the amount of SO 2 adsorbed on the DOC 22a at each bed temperature during the rise of the bed temperature of the DOC 22a, that is, the amount of adsorbed SO 2 is the maximum amount, that is, When the amount exceeds the saturated SO 2 amount, it is considered that the DOC 22a is saturated, and thus is excluded from the calculation of the total adsorption margin SO 2 amount (t). Further, in the distribution of the right, the reason why the low-temperature side of the data than the current floor temperature T 2 is missing, is as described in FIG.

そして、総吸着余裕SO量(t)および総吸着余裕SO量(t)を算出したら、これらを次式(13)に代入して、第t番目のサイクルにおける総吸着余裕量(T(t),t)を算出する。
総吸着余裕量(T(t),t)=総吸着余裕SO量(t)+総吸着余裕SO量(t) ・・・(13)
更に、式(8)により算出した総飽和量(t)と、式(13)により算出した総吸着余裕量(t)とを式(3)に代入すれば、飽和率(T(t),t)を算出できる。なお、以下の説明においては、飽和率(T(t),t)を単に飽和率(t)ともいう。
When the total adsorption margin SO 2 amount (t) and the total adsorption margin SO 3 amount (t) are calculated, these are substituted into the following equation (13) to obtain the total adsorption margin amount (T 2 ) in the t-th cycle. (T), t) are calculated.
Total adsorption margin (T 2 (t), t) = Total adsorption margin SO 2 amount (t) + Total adsorption margin SO 3 amount (t) (13)
Furthermore, if the total saturation amount (t) calculated by the equation (8) and the total adsorption margin amount (t) calculated by the equation (13) are substituted into the equation (3), the saturation rate (T 2 (t) , T) can be calculated. In the following description, the saturation rate (T 2 (t), t) is also simply referred to as the saturation rate (t).

図3に戻り目標床温Ttrgの算出ロジックの説明を続ける。推定部M3は、「DOC22aに流入するSOx」であってDOC22aに新たに吸着するSOxの量(以下「新規吸着SOx量」ともいう。)、および、「DOC22aに流入するSOx」であってDOC22aに吸着することなくすり抜けるSOxの量(以下「すり抜けSOx量」ともいう。)を推定する。先ず、新規吸着SOx量とすり抜けSOx量の関係について、図8を参照して説明する。この図に矢印で示すように、新規吸着SOx量とすり抜けSOx量の和が、流入SOx量に等しくなる。この理由は、「DOC22aに流入するSOx」のうちの一部がDOC22aに吸着し、残りがDOC22aに吸着することなくすり抜けるためである。   Returning to FIG. 3, the description of the calculation logic of the target bed temperature Ttrg will be continued. The estimation unit M3 is “SOx flowing into the DOC 22a” and the amount of SOx newly adsorbed to the DOC 22a (hereinafter also referred to as “new adsorbed SOx amount”), and “SOx flowing into the DOC 22a” and DOC 22a. The amount of SOx that slips through without being adsorbed on the surface (hereinafter also referred to as “the amount of slip-through SOx”) is estimated. First, the relationship between the new adsorption SOx amount and the slip-through SOx amount will be described with reference to FIG. As indicated by the arrows in this figure, the sum of the newly adsorbed SOx amount and the slip-through SOx amount becomes equal to the inflow SOx amount. This is because a part of “SOx flowing into the DOC 22a” is adsorbed on the DOC 22a, and the rest is not adsorbed on the DOC 22a.

推定部M3は、具体的に、推定部M1で推定した流入SOx量(t)と、推定部M2で推定した飽和率(t)とを変数とする次式(14)により新規吸着SOx量を推定し、次式(15)によりすり抜けSOx量を推定する。
新規吸着SOx量(流入SOx量(t),飽和率(t))[μg/s]=流入SOx量(t)×吸着率map(飽和率(t)) ・・・(14)
すり抜けSOx量(流入SOx量(t),飽和率(t))[μg/s]=流入SOx量(t)×{1−吸着率map(飽和率(t))} ・・・(15)
なお、以下の説明においては、新規吸着SOx量(流入SOx量(t),飽和率(t))を単に新規吸着SOx量(t)ともいう。また、すり抜けSOx量(流入SOx量(t),飽和率(t))を単にすり抜けSOx量(t)ともいう。
Specifically, the estimation unit M3 calculates the new adsorption SOx amount by the following equation (14) using the inflow SOx amount (t) estimated by the estimation unit M1 and the saturation rate (t) estimated by the estimation unit M2 as variables. The estimated SOx amount is estimated by the following equation (15).
New adsorption SOx amount (inflow SOx amount (t), saturation rate (t)) [μg / s] = inflow SOx amount (t) × adsorption rate map (saturation rate (t)) (14)
Slip-through SOx amount (inflow SOx amount (t), saturation rate (t)) [μg / s] = inflow SOx amount (t) × {1−adsorption rate map (saturation rate (t))} (15)
In the following description, the new adsorption SOx amount (inflow SOx amount (t), saturation rate (t)) is also simply referred to as a new adsorption SOx amount (t). The slip-through SOx amount (inflow SOx amount (t), saturation rate (t)) is also simply referred to as a slip-through SOx amount (t).

式(14)および(15)の吸着率mapは、第t番目のサイクルにおいて「DOC22aに流入するSOx」のうち、DOC22aに吸着するSOxの割合(即ち、吸着率)が、飽和率(t)によって変わるという特性に基づいて作成されたマップである。この特性は図9に示すように、飽和率(t)が低い領域では吸着率が高く、飽和率(t)が高くなるにつれて吸着率が徐々に低下するというものである。なお、このようなマップは、例えばECU30のROMに記憶させておくことができ、現在床温Tに応じて適宜読み出すことができる。 The adsorption rate map of the formulas (14) and (15) is the saturation rate (t) in the ratio of SOx adsorbed to the DOC 22a (that is, the adsorption rate) in the “SOx flowing into the DOC 22a” in the t-th cycle. It is a map created based on the characteristic of changing depending on. As shown in FIG. 9, this characteristic is that the adsorption rate is high in the region where the saturation rate (t) is low, and the adsorption rate gradually decreases as the saturation rate (t) increases. Such a map, for example is stored in ECU30 the ROM can keep, can be read out as appropriate in accordance currently bed temperature T 2.

図3に戻り、推定部M4は、推定部M3で推定した新規吸着SOx量を吸着SOx分布に反映させて吸着後SOx分布を推定する。吸着後SOx分布について、SOを例とした図10を参照しながら説明する。この図に示すように、吸着後SO分布は、前回サイクル(例えば、第t−1番目のサイクル)における最終吸着SO分布に、今回サイクル(例えば、第t番目のサイクル)においてDOC22aに新たに吸着するSOの量を表した分布(以下「新規吸着SO分布」ともいう。)を加算することで推定される。 Returning to FIG. 3, the estimation unit M4 estimates the post-adsorption SOx distribution by reflecting the amount of new adsorption SOx estimated by the estimation unit M3 in the adsorption SOx distribution. The SOx distribution after adsorption will be described with reference to FIG. 10 using SO 2 as an example. As shown in this figure, the post-adsorption SO 2 distribution is updated to the final adsorption SO 2 distribution in the previous cycle (for example, the (t−1) th cycle), and to the DOC 22a in the current cycle (for example, the tth cycle). It is estimated by adding a distribution representing the amount of SO 2 adsorbed on (hereinafter also referred to as “new adsorbed SO 2 distribution”).

推定部M4は、具体的には先ず、新規吸着SOx量(t)、総吸着余裕量(t)および吸着余裕SO分布(t)を変数とする次式(16)により、第t番目のサイクルにおける新規吸着SO分布を算出する。新規吸着SO分布と同様に、推定部M4は、DOC22aに新たに吸着するSOの量を表した分布(以下「新規吸着SO分布」ともいう。)を、次式(17)により算出する。なお、吸着余裕SO分布(t)と総吸着余裕量(t)には、推定部M2において算出されたものが使用される。
新規吸着SO分布(新規吸着SOx量(t),吸着余裕SO分布(t),総吸着余裕量(t))[μg/℃]=吸着余裕SO分布(t)[μg/℃]×{新規吸着SOx量(t)/総吸着余裕量(t)} ・・・(16)
新規吸着SO分布(新規吸着SOx量(t),吸着余裕SO分布(t),総吸着余裕量(t))[μg/℃]=吸着余裕SO分布(t)[μg/℃]×{新規吸着SOx量(t)/総吸着余裕量(t)} ・・・(17)
なお、以下の説明においては、新規吸着SO分布(新規吸着SOx量(t),吸着余裕SO分布(t),総吸着余裕量(t))を、単に新規吸着SO分布(t)ともいう。また、新規吸着SO分布(新規吸着SOx量(t),吸着余裕SO分布(t),総吸着余裕量(t))を、単に新規吸着SO分布(t)ともいう。
Specifically, the estimation unit M4 firstly calculates the t-th number by the following equation (16) using the new adsorption SOx amount (t), the total adsorption margin amount (t), and the adsorption margin SO 2 distribution (t) as variables. Calculate the new adsorption SO 2 distribution in the cycle. Similar to the new adsorption SO 2 distribution, the estimation unit M4 calculates a distribution representing the amount of SO 3 newly adsorbed on the DOC 22a (hereinafter also referred to as “new adsorption SO 3 distribution”) by the following equation (17). To do. Note that the suction afford SO 2 distribution (t) and the total adsorption allowance (t), which is calculated in the estimation unit M2 are used.
New adsorption SO 2 distribution (new adsorption SOx amount (t), adsorption margin SO 2 distribution (t), total adsorption margin amount (t)) [μg / ° C.] = Adsorption margin SO 2 distribution (t) [μg / ° C.] × {New adsorption SOx amount (t) / Total adsorption margin amount (t)} (16)
New adsorption SO 3 distribution (new adsorption SOx amount (t), adsorption margin SO 3 distribution (t), total adsorption margin amount (t)) [μg / ° C.] = Adsorption margin SO 3 distribution (t) [μg / ° C.] × {New adsorption SOx amount (t) / Total adsorption margin amount (t)} (17)
In the following description, the new adsorption SO 2 distribution (new adsorption SOx amount (t), adsorption margin SO 2 distribution (t), total adsorption margin amount (t)) is simply referred to as new adsorption SO 2 distribution (t). Also called. The new adsorption SO 3 distribution (new adsorption SOx amount (t), adsorption margin SO 3 distribution (t), total adsorption margin amount (t)) is also simply referred to as new adsorption SO 3 distribution (t).

推定部M4は、続いて、算出した新規吸着SO分布と、第t−1番目のサイクルにおける最終吸着SO分布(t−1)とを次式(18)に代入して、吸着後SO分布を算出する。また、算出した新規吸着SO分布と、第t−1番目のサイクルにおいて推定部M6で推定した吸着SO分布(t−1)とを次式(19)に代入して、吸着後SO分布を算出する。
吸着後SO分布(t)[μg/℃]=最終吸着SO分布(t−1)[μg/℃]+新規吸着SO分布(t)[μg/℃] ・・・(18)
吸着後SO分布(t)[μg/℃]=最終吸着SO分布(t−1)[μg/℃]+新規吸着SO分布(t)[μg/℃] ・・・(19)
Subsequently, the estimation unit M4 substitutes the calculated new adsorption SO 2 distribution and the final adsorption SO 2 distribution (t−1) in the (t−1) -th cycle into the following equation (18) to obtain the post-adsorption SO 2 Two distributions are calculated. Further, the calculated new adsorption SO 3 distribution and the adsorption SO 3 distribution (t−1) estimated by the estimation unit M6 in the (t−1) -th cycle are substituted into the following equation (19), and the post-adsorption SO 3 Calculate the distribution.
Post-adsorption SO 2 distribution (t) [μg / ° C.] = Final adsorption SO 2 distribution (t−1) [μg / ° C.] + New adsorption SO 2 distribution (t) [μg / ° C.] (18)
Post-adsorption SO 3 distribution (t) [μg / ° C.] = Final adsorption SO 3 distribution (t−1) [μg / ° C.] + New adsorption SO 3 distribution (t) [μg / ° C.] (19)

図3に戻り、推定部M5は、推定部M4で推定した吸着後SOx分布に基づいて、DOC22aから新たに脱離するSOxの量(以下「新規脱離SOx量」ともいう。)を推定する。   Returning to FIG. 3, the estimation unit M5 estimates the amount of SOx newly desorbed from the DOC 22a (hereinafter also referred to as “new desorption SOx amount”) based on the post-adsorption SOx distribution estimated by the estimation unit M4. .

推定部M5は、具体的には先ず、DOC22aから脱離することのできるSOxの総量(以下「脱離可能総SOx量」ともいう。)を推定する。脱離可能総SOx量について、SOを例とした図11を参照しながら説明する。なお、この図の横軸のTLおよびTHは、上述した下限温度および上限温度に、それぞれ相当している。この図に示すように、脱離可能総SOx量は、現在床温Tよりも低温側で、尚且つ、下限温度TLよりも高温側の吸着後SOx分布の面積に相当する。 Specifically, the estimation unit M5 first estimates the total amount of SOx that can be desorbed from the DOC 22a (hereinafter also referred to as “total desorbable SOx amount”). The total amount of detachable SOx will be described with reference to FIG. 11 using SO 2 as an example. Note that TL and TH on the horizontal axis in this figure correspond to the above-described lower limit temperature and upper limit temperature, respectively. As shown in this figure, detachable total SOx amount, the current low temperature side than the floor temperature T 2, besides, than the lower limit temperature TL corresponds to the area of the post-adsorption SOx distribution of the high temperature side.

DOC22aから脱離することのできるSOの総量、即ち、脱離可能総SO量は、現在床温Tを変数とする次式(20)により算出される。DOC22aから脱離することのできるSOの総量、即ち、脱離可能総SO量は、現在床温Tを変数とする次式(21)により算出される。

Figure 0006319282
The total amount of SO 2 that can be desorbed from DOC22a, i.e., removable total SO 2 amount is calculated by the current equation of the bed temperature T 2 and a variable (20). The total amount of SO 3 that can be desorbed from the DOC 22a, that is, the total amount of desorbable SO 3 is calculated by the following equation (21) using the current bed temperature T 2 as a variable.
Figure 0006319282

推定部M5は、算出した脱離可能総SO量を次式(22)に代入して、第t番目のサイクルにおいてDOC22aから新たに脱離するSOの量、即ち、新規脱離SO量を算出する。また、算出した脱離可能総SO量を次式(23)に代入して、第t番目のサイクルにおいてDOC22aから新たに脱離するSOの量、即ち、新規脱離SO量を算出する。なお、式(22)および(23)の脱離率には設定値が使用され、例えばECU30のROMに記憶させておくことができる。
新規脱離SO量(T2(t),t)[μg]=脱離可能総SO量[μg]×脱離率 ・・・(22)
新規脱離SO量(T2(t),t)[μg]=脱離可能総SO量[μg]×脱離率 ・・・(23)
The estimation unit M5 substitutes the calculated total desorbable SO 2 amount into the following equation (22), and the amount of SO 2 newly desorbed from the DOC 22a in the t-th cycle, that is, new desorbed SO 2. Calculate the amount. Further, calculating the calculated removable total SO 3 content by substituting the following equation (23), the amount of SO 3 newly desorbed from DOC22a in the t-th cycle, i.e., a new desorption SO 3 weight To do. Note that set values are used for the desorption rates in the equations (22) and (23), and can be stored in the ROM of the ECU 30, for example.
New amount of desorbed SO 2 (T2 (t), t) [μg] = total desorbable SO 2 amount [μg] × desorption rate (22)
New desorption SO 3 amount (T2 (t), t) [μg] = total desorbable SO 3 amount [μg] × desorption rate (23)

図3に戻り、推定部M6は、推定部M5で推定した新規脱離SOx量を吸着後SOx分布に反映させて、最終吸着SOx分布を推定する。   Returning to FIG. 3, the estimation unit M6 reflects the newly desorbed SOx amount estimated by the estimation unit M5 in the post-adsorption SOx distribution, and estimates the final adsorption SOx distribution.

推定部M6は具体的に、推定部M5で推定した新規脱離SOx量の分だけSOxが脱離し、吸着後SOx分布の形状が変形すると仮定して、最終吸着SOx分布(脱離後SOx分布)を推定する。最終吸着SOx分布と吸着後SOx分布の関係について、SOを例とした図12を参照しながら説明する。なお、この図の横軸のTLおよびTHは、上述した下限温度および上限温度に、それぞれ相当している。この図に示すように、吸着後SO分布の下限温度TLからの積分値が新規脱離SO量に一致するときの吸着後SO分布の面積、即ち、下限温度TLから温度TdSO2までの面積を、吸着後SOx分布から削った後に残る分布が、最終吸着SO分布となる。 Specifically, the estimation unit M6 assumes that the SOx is desorbed by the amount of the new desorption SOx estimated by the estimation unit M5 and the shape of the post-adsorption SOx distribution is deformed, and the final adsorption SOx distribution (post-desorption SOx distribution). ). The relationship between the final adsorption SOx distribution and the post-adsorption SOx distribution will be described with reference to FIG. 12 using SO 2 as an example. Note that TL and TH on the horizontal axis in this figure correspond to the above-described lower limit temperature and upper limit temperature, respectively. As shown in this figure, the area of the post-adsorption SO 2 distribution when the integrated value from the lower limit temperature TL of the post-adsorption SO 2 distribution matches the newly desorbed SO 2 amount, that is, from the lower limit temperature TL to the temperature Td SO 2. The distribution remaining after removing the area of the SOx distribution after adsorption is the final adsorption SO 2 distribution.

図12の温度TdSO2が床温Tを上回る場合には、DOC22aからSOが全て脱離していることを意味する。これを考慮すると、第t番目のサイクルにおける最終吸着SO分布は床温Tを変数とする次式(24)で表され、第t番目のサイクルにおける最終吸着SO分布は次式(25)で表されることになる。なお、式(25)の温度TdSO3は、吸着後SO分布の下限温度TLからの積分値が新規脱離SO量に一致するときの床温Tに相当している。

Figure 0006319282
When the above temperature Td SO2 floor temperature T 1 of the FIG. 12 means that the SO 2 is all desorbed from DOC22a. Considering this, the final adsorption SO 2 distribution in the t-th cycle is expressed by the following equation (24) using the bed temperature T 1 as a variable, and the final adsorption SO 3 distribution in the t-th cycle is expressed by the following equation (25 ). The temperature Td SO3 of formula (25) corresponds to the bed temperature T 1 of the when the integrated value from the lower limit temperature TL of SO 3 distribution after adsorption to match the new desorption SO 3 amount.
Figure 0006319282

なお、新規脱離SO量と温度TdSO2の関係は次式(26)で表すことができ、新規脱離SO量と温度TdSO3の関係は次式(27)で表すことができる。

Figure 0006319282
The relationship between the novel desorbed SO 2 amount and temperature Td SO2 can be represented by the following formula (26), the relationship between the new desorbed SO 3 content and the temperature Td SO3 can be expressed by the following equation (27).
Figure 0006319282

図3に戻り、推定部M7は、上述したすり抜けSOxのうちDOC22aからSOの状態で排出されるSOxの量(以下「すり抜けSO量」ともいう。)を推定する。 Returning to FIG. 3, the estimation unit M7 estimates the amount of SOx discharged from the DOC 22a in the SO 3 state in the above-described slip-through SOx (hereinafter also referred to as “pass-through SO 3 amount”).

図2で説明したように、DOC22aでは貴金属22dに吸着したSOの一部がSOに転化する。この転化がすり抜けSOx中のSOにも起こると仮定して、推定部M7では、すり抜け量と現在床温Tを変数とする次式(28)により、第t番目のサイクルにおけるすり抜けSO量を推定する。なお、すり抜けSOxのうちDOC22aからSOの状態で排出されるSOxの量(以下「すり抜けSO量」ともいう。)は、次式(29)で表すことができる。
すり抜けSO量(すり抜け量(t),T(t))[μg/s]=すり抜けSOx量(t)×SO転化率map(T(t)) ・・・(28)
すり抜けSO量(すり抜け量(t),T(t))[μg/s]=すり抜けSOx量(t)×{1−SO転化率map(T(t))} ・・・(29)
As described with reference to FIG. 2, in the DOC 22a, a part of SO 2 adsorbed on the noble metal 22d is converted to SO 3 . Assuming that this conversion also occurs in the SO 2 in the slip-through SOx, the estimation unit M7 passes through the SO 3 in the t-th cycle according to the following equation (28) using the slip-through amount and the current bed temperature T 2 as variables. Estimate the amount. Note that the amount of SOx discharged from the DOC 22a in the SO 2 state (hereinafter also referred to as “the amount of slip-through SO 2 ”) of the slip-through SOx can be expressed by the following equation (29).
Amount of slip-through SO 3 (amount of slip-through (t), T 2 (t)) [μg / s] = amount of slip-through SOx (t) × SO 3 conversion map (T 2 (t)) (28)
Amount of slip-through SO 2 (amount of slip-through (t), T 2 (t)) [μg / s] = amount of slip-through SOx (t) × {1-SO 3 conversion rate map (T 2 (t))} 29)

式(28)および(29)のSO転化率map(T(t))は、第t番目のサイクルにおいて「DOC22aに流入するSOx」のうち、DOC22aからSOの状態で排出されるSOxの割合(即ち、SO転化率)が、DOC22aの現在床温Tによって変わるという特性に基づいて作成されたマップである。この特性は図13に示すように、現在床温Tがある温度域Bにある場合はSO転化率が高くなり、この温度域Bよりも低温側や高温側では、SOからSOへの転化が起こり難くなるというものである。このようなマップは、例えばECU30のROMに記憶させておくことができ、現在床温Tに応じて適宜読み出すことができる。 The SO 3 conversion rate map (T 2 (t)) of the equations (28) and (29) is the SOx discharged in the state of SO 3 from the DOC 22a among “SOx flowing into the DOC 22a” in the t-th cycle. ratio of (i.e., SO 3 conversion rate) is a map created based on the characteristics of the current vary bed temperature T 2 of the DOC22a. As shown in FIG. 13, when the current bed temperature T 2 is in a certain temperature range B, the SO 3 conversion rate is high. On the lower temperature side and the higher temperature side than this temperature region B, SO 2 to SO 3 The conversion to is difficult to occur. Such a map can be memorized for example in the ECU30 in the ROM, a read appropriately according currently bed temperature T 2.

図3に戻り、算出部M8は、DOC22aの床温上昇中にDOC22aから脱離してもよいSOの量(以下「許容脱離SO量」ともいう。)を算出する。許容脱離SO量について、図14を参照して説明する。この図に示す制約SO量は、サルフェート白煙に関する制約に相当しており、この図においてはすり抜けSO量と許容脱離SO量の和が制約SO量と等しくなっている。すり抜けSO量と許容脱離SO量の和は、DOC22aの下流におけるSOの量であることから、この和の値が制約SO量よりも小さい値であれば制約が満たされることになる。 Returning to FIG. 3, the calculation unit M8 calculates the amount of SO 3 that may be desorbed from the DOC 22a while the bed temperature of the DOC 22a is rising (hereinafter also referred to as “allowable desorption SO 3 amount”). The amount of allowable desorption SO 3 will be described with reference to FIG. Constraints SO 3 amount shown in this figure, which corresponds to the constraints on sulfate white smoke, the sum of the SO 3 content and acceptable desorbed SO 3 weight slipping in this figure is equal to the constraint SO 3 amount. Since the sum of the slip-through SO 3 amount and the allowable desorption SO 3 amount is the amount of SO 3 downstream of the DOC 22a, the constraint is satisfied if the value of this sum is smaller than the constraint SO 3 amount. Become.

制約SO量は、第t番目のサイクルにおけるエンジン10の排気流量(ガス流量)を変数とする次式(30)により算出することができる。なお、エンジン10の排気流量は、例えばエアフローメータ32の検出値を用いることができる。
制約SO量(ガス流量(t))[μg/s]=制約SO濃度[ppm]×ガス流量(t)[g/s]÷空気の平均モル質量×SO分子量 ・・・(30)
The amount of constraint SO 3 can be calculated by the following equation (30) using the exhaust flow rate (gas flow rate) of the engine 10 in the t-th cycle as a variable. For example, the detected value of the air flow meter 32 can be used as the exhaust flow rate of the engine 10.
Restricted SO 3 amount (gas flow rate (t)) [μg / s] = restricted SO 3 concentration [ppm] × gas flow rate (t) [g / s] ÷ average molar mass of air × SO 3 molecular weight (30 )

従って、この制約SO量とすり抜けSO量を変数とする次式(31)を許容脱離SO量が満たせば、制約が満たされることになる。
許容脱離SO量(制約SO量(ガス流量(t)),すり抜けSO量(t))[μg/s]≦制約SO量(ガス流量(t))[μg/s]−すり抜けSO量(t)[μg/s] ・・・(31)
なお、以下の説明においては、許容脱離SO量(制約SO量(ガス流量(t)),すり抜けSO量(t))を単に許容脱離SO量(t)ともいう。
Therefore, the constraint is satisfied if the allowable desorption SO 3 amount satisfies the following equation (31) using the constraint SO 3 amount and the slip-through SO 3 amount as variables.
Allowable desorption SO 3 amount (restricted SO 3 amount (gas flow rate (t)), slip-through SO 3 amount (t)) [μg / s] ≦ restricted SO 3 amount (gas flow rate (t)) [μg / s] − Slip-through SO 3 amount (t) [μg / s] (31)
In the following description, the allowable desorption SO 3 amount (restricted SO 3 amount (gas flow rate (t)), slip-through SO 3 amount (t)) is also simply referred to as allowable desorption SO 3 amount (t).

図3に戻り、算出部M9は、PM再生制御中のサルフェート白煙の発生を抑制するための第t番目のサイクルにおける目標温度Ttrgを算出する。目標床温Ttrgについて、図15を参照しながら説明する。なお、この図の横軸のTLおよびTHは、上述した下限温度および上限温度に、それぞれ相当している。この図に示すように、最終吸着SO分布の低温側からの積分値に脱離率を乗じた値が、算出部M8で算出した許容脱離SO量に一致するときの床温Tが目標床温Ttrgに相当する。 Returning to FIG. 3, the calculation unit M9 calculates the target temperature Ttrg in the t-th cycle for suppressing the generation of sulfate white smoke during PM regeneration control. The target bed temperature Ttrg will be described with reference to FIG. Note that TL and TH on the horizontal axis in this figure correspond to the above-described lower limit temperature and upper limit temperature, respectively. As shown in this figure, the bed temperature T 1 when the value obtained by multiplying the integral value from the low temperature side of the final adsorption SO 3 distribution by the desorption rate matches the allowable desorption SO 3 amount calculated by the calculation unit M8. Corresponds to the target bed temperature Ttrg.

なお、第t番目のサイクルにおける許容脱離SO量と目標温度Ttrgの関係は次式(32)で表すことができる。式(32)の脱離率には設定値が使用され、例えばECU30のROMに記憶させておくことができる。

Figure 0006319282
The relationship between the allowable desorption SO 3 amount and the target temperature Ttrg in the t-th cycle can be expressed by the following equation (32). A set value is used as the desorption rate in the equation (32), and can be stored in the ROM of the ECU 30, for example.
Figure 0006319282

図16を参照して、本実施の形態による効果を説明する。この図に示す(i)〜(iii)は、時刻tでのPM再生制御の開始に伴いDOC22aの目標床温を設定した3つの場合に相当している。具体的に(i)の場合は、時刻tで目標温度をステップ状に切り替えて高温に設定した場合に相当している。この場合は、DOC22aの実際の触媒床温(中段)が急上昇することになる。従って、DOC22aの下流におけるSO濃度(下段)が制約SO濃度を上回ってしまう。また、(ii)の場合は、時刻tで目標温度を一定速度で上昇させた場合に相当している。この場合は、DOC22aの実際の触媒床温(中段)も一定速度で上昇させることができる。また、制約SO濃度を考慮してこの上昇速度を設定することで、DOC22aの下流におけるSO濃度(下段)を制約SO濃度以下に抑えることもできる。しかしその一方で、PM再生制御が終了するまでに長時間を要してしまう。この点、本実施の形態の手法に相当する(iii)の場合では、DOC22aの下流におけるSO濃度(下段)を制約SO濃度以下に抑えるだけでなく、PM再生制御を短時間で完了させることもできる。 With reference to FIG. 16, the effect by this Embodiment is demonstrated. This figure shows (i) ~ (iii) corresponds to the case with the start of PM regeneration control at time t 0 of the three set the target bed temperature of DOC22a. Specifically, the case (i) corresponds to a case where the target temperature is switched to a step shape at time t 0 and set to a high temperature. In this case, the actual catalyst bed temperature (middle stage) of the DOC 22a rapidly increases. Therefore, the SO 3 concentration (lower stage) downstream of the DOC 22a exceeds the restricted SO 3 concentration. Further, it corresponds to when increasing the target temperature at a constant rate in case the time t 0 of (ii). In this case, the actual catalyst bed temperature (middle stage) of the DOC 22a can also be increased at a constant speed. In addition, by setting the rate of increase in consideration of the restricted SO 3 concentration, the SO 3 concentration (lower stage) downstream of the DOC 22a can be suppressed to be equal to or lower than the restricted SO 3 concentration. However, on the other hand, it takes a long time to complete the PM regeneration control. In this case, in the case of (iii) corresponding to the method of the present embodiment, not only the SO 3 concentration (lower stage) downstream of the DOC 22a is kept below the constrained SO 3 concentration, but PM regeneration control is completed in a short time. You can also

なお、上述した実施の形態においては、推定部M1が本発明の「流入SOx量推定手段」に、推定部M2が本発明の「SOx飽和率推定手段」に、推定部M3が本発明の「新規吸着SOx量推定手段」および「すり抜けSOx量推定手段」に、推定部M4が本発明の「吸着後SOx分布推定手段」に、推定部M5が本発明の「新規脱離SOx量推定手段」に、推定部M6が本発明の「最終吸着SOx分布推定手段」に、推定部M7が本発明の「すり抜けSO量推定手段」に、算出部M8が本発明の「許容脱離SO量算出手段」に、算出部M9が本発明の「目標温度算出手段」に、それぞれ相当している。 In the embodiment described above, the estimation unit M1 is the “inflow SOx amount estimation unit” of the present invention, the estimation unit M2 is the “SOx saturation rate estimation unit” of the present invention, and the estimation unit M3 is the “ In the “new adsorption SOx amount estimation means” and “pass-through SOx amount estimation means”, the estimation unit M4 is the “post-adsorption SOx distribution estimation means” of the present invention, and the estimation unit M5 is the “new desorption SOx amount estimation means” of the present invention. The estimation unit M6 is the “final adsorption SOx distribution estimation unit” of the present invention, the estimation unit M7 is the “passing SO 3 amount estimation unit” of the present invention, and the calculation unit M8 is the “allowable desorption SO 3 amount of the present invention”. The calculation unit M9 corresponds to the “target temperature calculation unit” of the present invention.

ところで、上述した実施の形態では、燃料添加弁24からの燃料の添加によりPM再生制御を行った。しかしこのPM再生制御を、インジェクタ12からの燃料の噴射(具体的には、メイン噴射よりも後のサブ噴射(例えばポスト噴射))により行ってもよい。この場合は、式(1)の排気添加量を、インジェクタ12からのサブ噴射量に置き換えればよい。
また、上述した実施の形態では、PM再生制御中を例としてDOC22aの床温の目標温度を算出した。しかし、DOC22aからSOxを脱離させる制御をPM再生制御と併せて行うような場合に、この脱離制御中に上述した手法によりDOC22aの床温の目標温度を算出してもよい。このように、上述した目標温度の算出手法は、DOC22aからSOxが脱離する温度域までDOC22aの床温を上昇させる制御一般に適用することができる。
また、上述した実施の形態では、DOC22aとDPF22bを備える排気浄化装置22を例として説明した。しかし、DOC22aにおけるHC等の酸化機能をDPF22bに付与して、排気浄化装置22からDOC22aを省略してもよい。この場合は、上述した目標温度の算出手法を、酸化機能が付与されたDPF22bに適用することで上述した実施の形態と同様の効果を得ることができる。
また、上述した実施の形態ではエンジン10がターボチャージャ16を備えるとしたが、エンジン10がターボチャージャ16を備えていなくてもよい。即ち、上述した目標温度の算出手法は、非過給ディーゼルエンジンのシステムにも適用できる。
In the above-described embodiment, PM regeneration control is performed by adding fuel from the fuel addition valve 24. However, this PM regeneration control may be performed by fuel injection from the injector 12 (specifically, sub injection (for example, post injection) after the main injection). In this case, the exhaust addition amount in the equation (1) may be replaced with the sub injection amount from the injector 12.
In the above-described embodiment, the target temperature of the bed temperature of the DOC 22a is calculated by taking PM regeneration control as an example. However, when the control for desorbing SOx from the DOC 22a is performed together with the PM regeneration control, the target temperature of the bed temperature of the DOC 22a may be calculated by the above-described method during the desorption control. As described above, the target temperature calculation method described above can be generally applied to control for increasing the bed temperature of the DOC 22a from the DOC 22a to a temperature range where SOx is desorbed.
Moreover, in embodiment mentioned above, the exhaust gas purification apparatus 22 provided with DOC22a and DPF22b was demonstrated as an example. However, an oxidation function such as HC in the DOC 22a may be added to the DPF 22b, and the DOC 22a may be omitted from the exhaust purification device 22. In this case, the same effect as that of the above-described embodiment can be obtained by applying the above-described method for calculating the target temperature to the DPF 22b having an oxidation function.
In the above-described embodiment, the engine 10 includes the turbocharger 16. However, the engine 10 may not include the turbocharger 16. That is, the target temperature calculation method described above can also be applied to a non-supercharged diesel engine system.

10 ディーゼルエンジン
12 インジェクタ
20 排気管
22 排気浄化装置
22a DOC
22b DPF
22c コート材
22d 貴金属
24 燃料添加弁
30 ECU
DESCRIPTION OF SYMBOLS 10 Diesel engine 12 Injector 20 Exhaust pipe 22 Exhaust gas purification apparatus 22a DOC
22b DPF
22c Coat material 22d Precious metal 24 Fuel addition valve 30 ECU

Claims (2)

ディーゼルエンジンの排気管に設けられる浄化装置の温度を、前記浄化装置からSOxが脱離する温度域の目標温度まで上昇させる制御を実行するエンジン制御装置であって、
前記浄化装置に流入するSOx量を流入SOx量としてサイクル毎に推定する流入SOx量推定手段と、
前記浄化装置の温度上昇中の各温度において前記浄化装置に吸着するSOx量を前記浄化装置の温度に関連付けたグラフとして表される吸着SOx分布と、前記浄化装置の温度上昇中の各温度において前記浄化装置に吸着するSOx最大量を前記浄化装置の温度に関連付けたグラフとして表される飽和SOx分布と、を用いて、前記浄化装置におけるSOx飽和率をサイクル毎に推定するSOx飽和率推定手段であって、前記飽和SOx分布が前記SOx飽和率の今回の推定サイクルにおける前記浄化装置の温度に対応したものであるSOx飽和率推定手段と、
前記流入SOx量と前記SOx飽和率とを用いて、前記浄化装置に流入して前記浄化装置に新たに吸着するSOx量を新規吸着SOx量としてサイクル毎に推定する新規吸着SOx量推定手段と、
前記新規吸着SOx量を用いて、前記浄化装置に流入して前記浄化装置に吸着することなくすり抜けるSOx量をすり抜けSOx量としてサイクル毎に推定するすり抜けSOx量推定手段と、
前記新規吸着SOx量を用いて、前記浄化装置に新たなSOxが吸着した後の前記SOx分布を吸着後SOx分布としてサイクル毎に推定する吸着後SOx分布推定手段と、
前記吸着後SOx分布と前記浄化装置の温度とを用いて、前記浄化装置から新たに脱離するSOx量を新規脱離SOx量としてサイクル毎に推定する新規脱離SOx量推定手段と、
前記新規脱離SOx量を前記吸着後SOx分布に反映させて、前記浄化装置から新たなSOxが脱離した後の前記SOx分布を最終吸着SOx分布としてサイクル毎に推定する最終吸着SOx分布推定手段と、
前記浄化装置においてSOに転化するSOの転化率と前記浄化装置の温度との関係を表した転化率マップと、今回の推定サイクルにおける前記浄化装置の温度と、前記すり抜けSOx量と、を用いて、前記浄化装置にSOxの状態で流入して前記浄化装置に吸着することなくすり抜けてSOの状態で排出されるSO量をすり抜けSO量としてサイクル毎に推定するすり抜けSO量推定手段と、
サルフェート白煙に関する制約に相当する前記浄化装置の下流におけるSO量と前記すり抜けSO量とを用いて、前記浄化装置から脱離することが許されるSO量を許容脱離SO量としてサイクル毎に算出する許容脱離SO量算出手段と、
前記最終吸着SOx分布と前記許容脱離SO量とを用いて、前記浄化装置の下流におけるSO濃度が前記制約を満たすように前記目標温度をサイクル毎に算出する目標温度算出手段と、を備え、
前記SOx飽和率推定手段は、前記飽和SOx分布の面積に相当する総飽和SOx量と、前記飽和SOx分布から前記飽和SOx分布と前記吸着SOx分布との重複部分を除いた面積に相当する総吸着余裕SOx量と、を用いて前記SOx飽和率を算出し、
前記吸着後SOx分布推定手段は、前回の推定サイクルにおいて推定された前記最終吸着SOx分布に前記新規吸着SOx量に反映させて、今回の推定サイクルにおける前記吸着後SOx分布を推定することを特徴とするエンジン制御装置。
An engine control device that performs control to increase the temperature of a purification device provided in an exhaust pipe of a diesel engine to a target temperature in a temperature range where SOx is desorbed from the purification device,
An inflow SOx amount estimating means for estimating the SOx amount flowing into the purification device as an inflow SOx amount for each cycle;
The adsorption SOx distribution expressed as a graph in which the amount of SOx adsorbed to the purification device at each temperature during the temperature increase of the purification device is related to the temperature of the purification device, and the temperature at each temperature during the temperature increase of the purification device. SOx saturation rate estimating means for estimating the SOx saturation rate in the purification device for each cycle using a saturation SOx distribution represented as a graph in which the maximum amount of SOx adsorbed to the purification device is related to the temperature of the purification device. And the SOx saturation rate estimating means in which the saturation SOx distribution corresponds to the temperature of the purifier in the current estimation cycle of the SOx saturation rate;
Using the inflow SOx amount and the SOx saturation rate, a new adsorption SOx amount estimation means for estimating, for each cycle, a SOx amount that flows into the purification device and is newly adsorbed to the purification device as a new adsorption SOx amount;
By using the new adsorption SOx amount, the SOx amount estimating means for estimating the SOx amount that flows into the purification device without passing through the purification device and is not adsorbed to the purification device as the slipping SOx amount for each cycle;
A post-adsorption SOx distribution estimation unit that estimates the SOx distribution after the new SOx is adsorbed on the purification device as the post-adsorption SOx distribution for each cycle using the new adsorption SOx amount;
Using the post-adsorption SOx distribution and the temperature of the purification device, a new desorption SOx amount estimation means that estimates the amount of SOx newly desorbed from the purification device as a new desorption SOx amount for each cycle;
Final adsorbed SOx distribution estimating means for reflecting the amount of the new desorbed SOx in the post-adsorption SOx distribution and estimating the SOx distribution after desorbing new SOx from the purification device as a final adsorbed SOx distribution for each cycle. When,
A conversion rate map showing the relationship between the conversion rate of SO 2 converted to SO 3 in the purification device and the temperature of the purification device, the temperature of the purification device in the current estimation cycle, and the amount of slip-through SOx used, it slipped SO 3 amount estimating for each cycle as SO 3 weight slipped through SO 3 amount discharged in the form of SO 3 to pass through without being adsorbed on the purifier flows into a state of SOx to the purifier An estimation means;
Using the SO 3 content above the slipped SO 3 amount in the downstream of the purification device corresponding to constraints on sulfate white smoke, the SO 3 amount is allowed desorbed from the purifier acceptable leaving SO 3 weight An allowable desorption SO 3 amount calculating means for calculating for each cycle;
Using the final adsorption SOx distribution and the allowable desorption SO 3 amount, target temperature calculation means for calculating the target temperature for each cycle so that the SO 3 concentration downstream of the purification device satisfies the constraint; Prepared,
The SOx saturation rate estimation means includes a total saturated SOx amount corresponding to the area of the saturated SOx distribution, and a total adsorption corresponding to an area obtained by removing an overlapping portion of the saturated SOx distribution and the adsorption SOx distribution from the saturated SOx distribution. The SOx saturation rate is calculated using a margin SOx amount,
The post-adsorption SOx distribution estimating means reflects the new adsorption SOx amount in the final adsorption SOx distribution estimated in the previous estimation cycle, and estimates the post-adsorption SOx distribution in the current estimation cycle. Engine control device.
前記浄化装置は、前記排気管を流れる微粒子を捕集するフィルタを含み、
前記目標温度まで上昇させる制御を、前記フィルタに捕集された微粒子量の推定値が除去要求量に到達したときに開始することを特徴とする請求項1に記載のエンジン制御装置。
The purification device includes a filter that collects particulates flowing through the exhaust pipe,
2. The engine control device according to claim 1, wherein the control for increasing the temperature to the target temperature is started when an estimated value of the amount of fine particles collected by the filter reaches a removal request amount. 3.
JP2015240598A 2015-12-09 2015-12-09 Engine control device Expired - Fee Related JP6319282B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2015240598A JP6319282B2 (en) 2015-12-09 2015-12-09 Engine control device
BR102016028038A BR102016028038A2 (en) 2015-12-09 2016-11-29 motor control device
CN201611129121.1A CN106855005B (en) 2015-12-09 2016-12-09 Engine control system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015240598A JP6319282B2 (en) 2015-12-09 2015-12-09 Engine control device

Publications (2)

Publication Number Publication Date
JP2017106381A JP2017106381A (en) 2017-06-15
JP6319282B2 true JP6319282B2 (en) 2018-05-09

Family

ID=59059214

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015240598A Expired - Fee Related JP6319282B2 (en) 2015-12-09 2015-12-09 Engine control device

Country Status (3)

Country Link
JP (1) JP6319282B2 (en)
CN (1) CN106855005B (en)
BR (1) BR102016028038A2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6806025B2 (en) * 2017-10-11 2020-12-23 トヨタ自動車株式会社 Engine control unit

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1181993A (en) * 1997-09-12 1999-03-26 Toyota Motor Corp Exhaust purifying device in internal combustion engine
JP2000265825A (en) * 1999-03-18 2000-09-26 Nissan Motor Co Ltd Exhaust emission control device for engine
JP2009299572A (en) * 2008-06-12 2009-12-24 Toyota Motor Corp Exhaust emission control device for compression self-ignition type internal combustion engine
JP2010242674A (en) * 2009-04-08 2010-10-28 Honda Motor Co Ltd Catalyst deterioration determination device
EP2458170B1 (en) * 2009-07-23 2016-11-23 Toyota Jidosha Kabushiki Kaisha Exhaust gas purifier for internal combustion engine
JP5705676B2 (en) * 2011-07-27 2015-04-22 株式会社日本自動車部品総合研究所 Exhaust gas purification device for internal combustion engine

Also Published As

Publication number Publication date
JP2017106381A (en) 2017-06-15
BR102016028038A2 (en) 2017-06-13
CN106855005B (en) 2019-05-07
CN106855005A (en) 2017-06-16

Similar Documents

Publication Publication Date Title
JP6582409B2 (en) Exhaust purification system
CN102844538B (en) Exhaust gas purification device, and control method for exhaust gas purification device
JP2015151929A (en) Exhaust emission control device, and control method for the same
CN107407182B (en) Exhaust gas purification device and control method thereof
JP2007071080A (en) Exhaust emission control device for internal combustion engine
JP2016223294A (en) Exhaust emission control system
JP2016188604A (en) Exhaust emission control device
JP6319282B2 (en) Engine control device
JP2010249076A (en) Exhaust emission control device of internal combustion engine
JP5912494B2 (en) Diesel engine exhaust purification system
JP6418014B2 (en) Exhaust purification system
JP6515576B2 (en) Exhaust purification system
JP6432411B2 (en) Exhaust purification system
JP2007332852A (en) Exhaust emission control device for internal combustion engine
WO2016098895A1 (en) EXHAUST PURIFICATION SYSTEM AND NOx PURIFICATION CAPACITY RECOVERY METHOD
WO2016117568A1 (en) EXHAUST GAS PURIFICATION SYSTEM, AND NOx PURIFICATION CAPACITY RESTORATION METHOD
JP6806025B2 (en) Engine control unit
CN110945218B (en) Exhaust gas purification system
JP6547779B2 (en) Engine control unit
JP2015017516A (en) Exhaust emission control device for internal combustion engine
JP6604034B2 (en) Exhaust purification device
WO2017047678A1 (en) Catalyst deterioration degree estimation device
JP6424618B2 (en) Exhaust purification system
JP2016180383A (en) Catalyst temperature estimation device
JP2016125375A (en) Exhaust emission control system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170419

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180319

R151 Written notification of patent or utility model registration

Ref document number: 6319282

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees