JP6547779B2 - Engine control unit - Google Patents

Engine control unit Download PDF

Info

Publication number
JP6547779B2
JP6547779B2 JP2017020560A JP2017020560A JP6547779B2 JP 6547779 B2 JP6547779 B2 JP 6547779B2 JP 2017020560 A JP2017020560 A JP 2017020560A JP 2017020560 A JP2017020560 A JP 2017020560A JP 6547779 B2 JP6547779 B2 JP 6547779B2
Authority
JP
Japan
Prior art keywords
sox
amount
temperature
adsorbed
distribution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2017020560A
Other languages
Japanese (ja)
Other versions
JP2018127921A (en
Inventor
真典 嶋田
真典 嶋田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2017020560A priority Critical patent/JP6547779B2/en
Publication of JP2018127921A publication Critical patent/JP2018127921A/en
Application granted granted Critical
Publication of JP6547779B2 publication Critical patent/JP6547779B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、エンジン制御装置に関し、詳しくは、排気管に触媒を備えるディーゼルエンジンの制御装置に関する。   The present invention relates to an engine control device, and more particularly to a control device of a diesel engine provided with a catalyst in an exhaust pipe.

従来、ディーゼルエンジンの排気管に設けられる触媒に吸着した硫黄酸化物(SOまたはSOをいい、以下においてこれらを区別しない場合には「SOx」と総称する。)を、定期的に脱離させる昇温制御を行うことが知られている。昇温制御に関連する文献として、例えば特開2013−029038号公報が挙げられる。この公報には、触媒に蓄積したSOxの蓄積量を推定し、推定した蓄積量が要求放出量に到達したときに、当該触媒の床温を上昇させて500〜550℃に制御する技術が開示されている。この公報によれば、床温が500℃未満であると触媒からSOxが放出されず、床温が500〜550℃であると触媒からSOxが低濃度で放出され、床温が600℃を超えると触媒からSOxが高濃度で放出されるという特性が触媒にあるとしている。従って、このような特性を有する触媒の床温を500〜550℃に制御すれば、触媒からSOxを低濃度で脱離させてその機能を回復させることができる。また、低濃度で脱離させたSOxから白煙が発生するのを抑制することもできる。 Conventionally, sulfur oxides adsorbed on a catalyst provided in the exhaust pipe of a diesel engine (SO 2 or SO 3 , hereinafter referred to collectively as “SOx” when these are not distinguished from each other) are periodically desorbed. It is known to perform temperature rise control. As a document relevant to temperature rising control, Unexamined-Japanese-Patent No. 2013-029038 is mentioned, for example. This publication discloses a technique for estimating the accumulated amount of SOx accumulated in the catalyst and, when the estimated accumulated amount reaches the required release amount, raising the bed temperature of the catalyst to control it at 500 to 550 ° C. It is done. According to this publication, SOx is not released from the catalyst when the bed temperature is less than 500 ° C, and SOx is released from the catalyst at a low concentration when the bed temperature is 500 to 550 ° C, and the bed temperature exceeds 600 ° C. The catalyst is characterized as having a high concentration of SOx released from the catalyst and the catalyst. Therefore, if the bed temperature of the catalyst having such characteristics is controlled to 500 to 550 ° C., SOx can be desorbed from the catalyst at a low concentration to restore its function. In addition, the generation of white smoke from SOx desorbed at a low concentration can also be suppressed.

特開2013−029038号公報JP, 2013-029038, A 特開2015−169105号公報JP, 2015-169105, A

上記公報の技術は、触媒の床温に対する触媒からのSOx放出量の特性に着目している。しかしながら、触媒から脱離するSOx量は、触媒の床温だけでなく床温の変化量の影響も受ける。このため、上記公報の技術では、触媒の温度変化が大きい条件において、触媒から脱離するSOx量を精度よく推定できないおそれがある。   The technique of the above publication focuses on the characteristics of the SOx release amount from the catalyst with respect to the bed temperature of the catalyst. However, the amount of SOx desorbed from the catalyst is affected not only by the bed temperature of the catalyst but also by the change in the bed temperature. For this reason, in the technique of the above-mentioned publication, there is a possibility that the amount of SOx desorbed from the catalyst can not be accurately estimated under the condition that the temperature change of the catalyst is large.

本発明は、上述のような課題に鑑みてなされたもので、触媒の昇温制御において、触媒から脱離するSOx量を精度よく推定することにより、SOxの脱離による触媒の機能の回復と、脱離したSOxに起因した白煙の発生の抑制とを高水準で両立させることのできるエンジン制御装置を提供することを目的とする。   The present invention has been made in view of the problems as described above, and in temperature-rise control of the catalyst, recovery of the function of the catalyst by desorption of SOx by accurately estimating the amount of SOx desorbed from the catalyst and It is an object of the present invention to provide an engine control device capable of achieving, at a high level, the suppression of the generation of white smoke caused by the desorbed SOx.

本発明は、ディーゼルエンジンの排気管に設けられる浄化装置の温度を、前記浄化装置からSOxが脱離する温度域の目標温度まで上昇させる昇温制御を実行するエンジン制御装置を対象としている。エンジン制御装置は、所定の制御周期ごとに前記浄化装置の温度の代表値である代表温度を取得する温度取得手段と、前記浄化装置に流入するSOx量を流入SOx量として前記制御周期ごとに推定する流入SOx量推定手段と、前記流入SOx量と前記代表温度とを用いて、前記浄化装置から新たに脱離するSOx量を新規脱離SOx量として前記制御周期ごとに推定する新規脱離SOx量推定手段と、前記新規脱離SOx量を用いて、前記浄化装置の温度上昇中の各温度において前記浄化装置に最終的に吸着するSOx量を前記代表温度に関連付けたグラフとして表される最終吸着SOx分布を前記制御周期ごとに推定する最終吸着SOx分布推定手段と、前記最終吸着SOx分布と許容脱離SO量とを用いて、前記目標温度を前記制御周期ごとに算出する目標温度算出手段と、を備えている。前記新規脱離SOx量推定手段は、前記代表温度の過去値から今回値への変化度合を表す補正値を算出する算出手段と、前記代表温度に前記補正値を反映させる補正を行うことにより補正後代表温度を算出する補正手段と、を含み、前記流入SOx量と前記補正後代表温度を用いて前記新規脱離SOx量を推定するように構成されている。また、前記補正手段は、前記変化度合の前記補正後代表温度への反映度合が、前記代表温度が大きくなるに従って単調非増加で小さくなるように構成されている。 The present invention is directed to an engine control device that executes temperature increase control to raise the temperature of a purification device provided in an exhaust pipe of a diesel engine to a target temperature in a temperature range where SOx is desorbed from the purification device. The engine control device estimates temperature control means for obtaining a representative temperature which is a representative value of the temperature of the purifier at predetermined control cycles, and the amount of SOx flowing into the purifier as the amount of inflow SOx for each control period. New desorbed SOx that estimates the amount of SOx newly desorbed from the purifier as the amount of newly desorbed SOx for each control cycle using the inflowing SOx amount estimating means, the inflowing SOx amount, and the representative temperature Final figure represented as a graph in which the amount of SOx finally adsorbed to the purification device at each temperature rise of the purification device is associated with the representative temperature using the amount estimation means and the new desorption SOx amount The target temperature is controlled using the final adsorption SOx distribution estimation means for estimating the adsorption SOx distribution for each control cycle, and the final adsorption SOx distribution and the allowable desorption SO 3 amount. And target temperature calculation means for calculating each cycle. The newly desorbed SOx amount estimation means corrects the correction value by reflecting the correction value on the representative temperature, calculating means for calculating a correction value representing the degree of change from the past value of the representative temperature to the current value. And correction means for calculating a post-representative temperature, wherein the newly desorbed SOx amount is estimated using the inflow SOx amount and the corrected representative temperature. Further, the correction means is configured such that the degree of reflection of the degree of change on the representative temperature after correction is monotonically non-increasing and decreases as the representative temperature increases.

本発明のエンジン制御装置において、前記補正手段は、前記代表温度が大きくなるに従って単調非増加で小さくなる補正係数を算出し、前記補正値に前記補正係数を乗じた値を前記代表温度に加算することにより前記補正後代表温度を算出するように構成されていてもよい。   In the engine control device according to the present invention, the correction means calculates a correction coefficient which decreases monotonically non-increasing as the representative temperature increases, and adds a value obtained by multiplying the correction value by the correction coefficient to the representative temperature. Thus, the corrected representative temperature may be calculated.

また、本発明のエンジン制御装置において、前記算出手段は、前記代表温度の今回値と前回値の差分値を前記補正値として算出するように構成されていてもよい。   Further, in the engine control device of the present invention, the calculation means may be configured to calculate a difference value between the current value of the representative temperature and the previous value as the correction value.

また、本発明のエンジン制御装置は、前記浄化装置の温度上昇中の各温度において前記浄化装置に吸着するSOx量を前記代表温度に関連付けたグラフとして表される吸着SOx分布と、前記浄化装置の温度上昇中の各温度において前記浄化装置に吸着するSOx最大量を前記代表温度に関連付けたグラフとして表される飽和SOx分布と、を用いて、前記浄化装置におけるSOx飽和率を前記制御周期ごとに推定するSOx飽和率推定手段と、前記流入SOx量と前記SOx飽和率とを用いて、前記浄化装置に流入して前記浄化装置に新たに吸着するSOx量を新規吸着SOx量として前記制御周期ごとに推定する新規吸着SOx量推定手段と、前記新規吸着SOx量を用いて、前記浄化装置に新たなSOxが吸着した後の前記吸着SOx分布を吸着後SOx分布として前記制御周期ごとに推定する吸着後SOx分布推定手段と、を備えることができる。この場合、前記新規脱離SOx量推定手段は、前記吸着後SOx分布と前記代表温度とを用いて、前記新規脱離SOx量を前記制御周期ごとに推定するように構成されてもよい。また、本発明のエンジン制御装置は、前記新規吸着SOx量を用いて、前記浄化装置に流入して前記浄化装置に吸着することなくすり抜けるSOx量をすり抜けSOx量として前記制御周期ごとに推定するすり抜けSOx量推定手段と、前記浄化装置においてSOに転化するSOの転化率と前記代表温度との関係を表した転化率マップと、今回の推定サイクルにおける前記代表温度と、前記すり抜けSOx量と、を用いて、前記浄化装置にSOxの状態で流入して前記浄化装置に吸着することなくすり抜けてSOの状態で排出されるSO量をすり抜けSO量として前記制御周期ごとに推定するすり抜けSO量推定手段と、サルフェート白煙に関する制約に相当する前記浄化装置の下流におけるSO量と前記すり抜けSO量とを用いて、前記浄化装置から脱離することが許されるSO量を前記許容脱離SO量として前記制御周期ごとに算出する許容脱離SO量算出手段と、をさらに備えるように構成されていてもよい。 In the engine control apparatus according to the present invention, an adsorbed SOx distribution represented as a graph in which the amount of SOx adsorbed to the purification device is correlated with the representative temperature at each temperature during the temperature rise of the purification device; Using the saturated SOx distribution represented as a graph in which the maximum amount of SOx adsorbed to the purifier is associated with the representative temperature at each temperature during temperature rise, the SOx saturation rate in the purifier for each control cycle The amount of SOx which flows into the purifier and is newly adsorbed to the purifier using the SOx saturation rate estimation means to be estimated, the inflow SOx amount and the SOx saturation rate as the new adsorption SOx amount for each control cycle Using the newly adsorbed SOx amount estimating means to estimate the amount and the newly adsorbed SOx amount, the adsorbed SOx after new SOx is adsorbed to the purification device A post-adsorption SOx distribution estimating means for estimating for each of the control period as SOx distribution after adsorption fabric may comprise. In this case, the newly desorbed SOx amount estimating means may be configured to estimate the newly desorbed SOx amount for each control cycle using the post-adsorption SOx distribution and the representative temperature. Further, the engine control device according to the present invention uses the newly adsorbed SOx amount to estimate the SOx amount which flows into the purification device and slips without being adsorbed to the purification device as the SOx amount which is slipped through for each control cycle. SOx amount estimation means, a conversion rate map representing the relationship between the conversion rate of SO 2 converted to SO 3 in the purifier and the representative temperature, the representative temperature in this estimated cycle, and the amount of SOx slipped-off , is used to estimate for each of the control period as the purifier slip through SO 3 amount discharged in the form of SO 3 to pass through without being adsorbed on the purifier flows into a state of SOx to SO 3 amount and SO 3 amount estimating means slipping, said the SO 3 content in the downstream of the purification device corresponding to constraints on sulfate white smoke slipped SO With the amount, and the allowable desorbed SO 3 amount calculating means for calculating an SO 3 amount that is allowed to detach from the purification device to each of the control period as the allowable desorbed SO 3 amount, further comprising as the May be configured.

さらに、本発明のエンジン制御装置において、前記温度取得手段は、前記排気管における前記浄化装置の下流側に流れたガスの温度を前記代表温度として取得するように構成されていてもよい。   Furthermore, in the engine control device of the present invention, the temperature acquisition means may be configured to acquire the temperature of the gas that has flowed to the downstream side of the purification device in the exhaust pipe as the representative temperature.

また、本発明のエンジン制御装置において、前記浄化装置は、前記排気管を流れる微粒子を捕集するフィルタを含んでいてもよい。この場合、前記昇温制御を、前記フィルタに捕集された微粒子量の推定値が除去要求量に到達したときに開始することとしてもよい。   Further, in the engine control device of the present invention, the purification device may include a filter that collects particulates flowing through the exhaust pipe. In this case, the temperature rise control may be started when the estimated value of the amount of particulates collected by the filter reaches a required removal amount.

本発明によれば、浄化装置の代表温度を用いて、浄化装置から新たに脱離する脱離SOx量が推定される。この際、代表温度の過去値から今回値への変化度合を表す補正値を代表温度に反映させる補正が行なわれ、補正された補正後代表温度を用いて新規脱離SOx量が推定される。ここで、代表温度の補正は、代表温度が大きくなるに従い補正値の代表温度への反映度合が単調非増加で小さくなるように行なわれる。脱離SOx量は浄化装置の代表温度だけでなく、代表温度の変化度合の影響も受ける。具体的には、浄化装置の低温域では代表温度の変化度合の影響を大きく受けるのに対し、浄化装置の高温域では低温域ほどに影響を受けない。このため、本発明によれば、浄化装置の温度が高温であっても脱離SOx量を精度よく推定することができるので、触媒の昇温制御において、SOxの脱離による触媒の機能の回復と、このSOxに起因した白煙の発生の抑制とを高水準で両立させることができる。   According to the present invention, the representative temperature of the purification device is used to estimate the amount of desorption SOx which is newly desorbed from the purification device. At this time, a correction is made to reflect the degree of change from the past value of the representative temperature to the present value on the representative temperature, and the amount of newly desorbed SOx is estimated using the corrected corrected representative temperature. Here, the correction of the representative temperature is performed so that the degree of reflection of the correction value on the representative temperature monotonously does not increase and decreases as the representative temperature increases. The amount of released SOx is affected not only by the representative temperature of the purifier but also by the degree of change of the representative temperature. Specifically, while the low temperature region of the purifier is greatly affected by the degree of change in the representative temperature, the high temperature region of the purifier is less affected than the low temperature region. Therefore, according to the present invention, even if the temperature of the purification device is high, the amount of desorption SOx can be accurately estimated. Therefore, in the temperature elevation control of the catalyst, recovery of the function of the catalyst by desorption of SOx And the suppression of the generation of white smoke due to this SOx can be achieved at a high level.

本発明の実施の形態のシステム構成を示す図である。It is a figure showing the system configuration of an embodiment of the invention. DOC22aにおけるSOxの吸着と脱離を説明するための図である。It is a figure for demonstrating adsorption and desorption of SOx in DOC22a. 目標床温Ttrgを算出するためのロジックを示す機能ブロック図である。It is a functional block diagram which shows the logic for calculating the target bed temperature Ttrg. 吸着SOx分布と飽和SOx分布を説明するための図である。It is a figure for demonstrating adsorption | suction SOx distribution and saturated SOx distribution. 基準飽和SOx分布と補正後の飽和SOx分布の関係を説明するための図である。It is a figure for demonstrating the relationship between reference | standard saturated SOx distribution and saturated SOx distribution after correction | amendment. 総吸着余裕SO量を説明するための図である。It is a diagram for explaining the total adsorption margin SO 2 amount. 新規吸着SOx量とすり抜けSOx量の関係を説明するための図である。It is a figure for demonstrating the relationship between the amount of novel adsorption SOx, and the amount of slip-through SOx. 吸着率mapを説明するための図である。It is a figure for demonstrating the adsorption rate map. 吸着後SOx分布を説明するための図である。It is a figure for demonstrating SOx distribution after adsorption | suction. 脱離可能総SOx量を説明するための図である。It is a figure for demonstrating the amount of detachable SOx. 補正後現在床温T´を算出するためのロジックを示す機能ブロック図である。Corrected current is a functional block diagram showing the logic for calculating the bed temperature T 2 '. 補正前現在床温Tに温度補正係数Kを関連付けたマップの一例を示す図である。Before correction is a diagram showing an example of a map that currently associated with the temperature correction coefficient K to the floor temperature T 2. 最終吸着SOx分布と吸着後SOx分布の関係を説明するための図である。It is a figure for demonstrating the relationship between final adsorption SOx distribution and SOx distribution after adsorption. SO転化率mapを説明するための図である。It is a diagram for explaining the SO 3 conversion rate map. 許容脱離SO量を説明するための図である。Acceptable is a diagram for explaining the elimination SO 3 amount. 目標床温Ttrgを説明するための図である。It is a figure for demonstrating target bed temperature Ttrg. 現在床温の温度補正の効果を説明するためのタイムチャートである。It is a time chart for explaining the effect of temperature amendment of present bed temperature.

以下、図面を参照して本発明の実施の形態について説明する。ただし、以下に示す実施の形態において各要素の個数、数量、量、範囲等の数に言及した場合、特に明示した場合や原理的に明らかにその数に特定される場合を除いて、その言及した数に、この発明が限定されるものではない。また、以下に示す実施の形態において説明する構造やステップ等は、特に明示した場合や明らかに原理的にそれに特定される場合を除いて、この発明に必ずしも必須のものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. However, when the number of the number, the number, the quantity, the range, etc. of each element is mentioned in the embodiment shown below, the mention is made unless otherwise specified or the number clearly specified in principle. The present invention is not limited to the above numbers. In addition, the structures, steps, and the like described in the embodiments below are not necessarily essential to the present invention, unless otherwise specified or clearly specified in principle.

実施の形態1.
本発明の実施の形態1について図を参照して説明する。
Embodiment 1
Embodiment 1 of the present invention will be described with reference to the drawings.

[システム構成の説明]
図1は、本発明の実施の形態のシステム構成を示す図である。図1に示すシステムは、車両に搭載されるディーゼルエンジン10(以下単に「エンジン10」ともいう。)を備えている。エンジン10の各気筒には、燃料としての軽油を噴射するインジェクタ12が設けられている。なお、図1に描かれるエンジン10は直列4気筒エンジンであるが、エンジン10の気筒数および気筒配列は特に限定されない。また、図1には、4つのインジェクタ12のうちの1つが描かれている。
[Description of system configuration]
FIG. 1 is a diagram showing a system configuration of the embodiment of the present invention. The system shown in FIG. 1 includes a diesel engine 10 mounted on a vehicle (hereinafter, also simply referred to as "engine 10"). Each cylinder of the engine 10 is provided with an injector 12 for injecting light oil as fuel. Although the engine 10 depicted in FIG. 1 is an in-line four-cylinder engine, the number of cylinders and the cylinder arrangement of the engine 10 are not particularly limited. Also, one of the four injectors 12 is depicted in FIG.

エンジン10の排気マニホールド14には、ターボチャージャ16の排気タービン16aの入口が接続されている。排気タービン16aは吸気管18に設けられたコンプレッサ16bに連結されている。コンプレッサ16bは、排気タービン16aの回転により駆動して吸気を過給する。排気タービン16aの出口には排気管20が接続されている。排気管20には排気浄化装置22が設けられている。排気浄化装置22は、DOC(Diesel Oxidation Catalyst)22aと、DPF(Diesel Particulate Filter)22bと、を備えている。DOC22aは、排気中の炭化水素(HC)や一酸化炭素(CO)を酸化して、水(HO)や二酸化炭素(CO)に転化させる機能を有する触媒である。DPF22bは、排気中に含まれる微粒子(PM)を捕集するフィルタである。排気浄化装置22の上流には、インジェクタ12と共通の燃料を排気管20に添加する燃料添加弁24が設けられている。 An inlet of an exhaust turbine 16 a of the turbocharger 16 is connected to an exhaust manifold 14 of the engine 10. The exhaust turbine 16 a is connected to a compressor 16 b provided in the intake pipe 18. The compressor 16b is driven by the rotation of the exhaust turbine 16a to supercharge the intake air. An exhaust pipe 20 is connected to the outlet of the exhaust turbine 16a. An exhaust purification device 22 is provided in the exhaust pipe 20. The exhaust purification device 22 includes a DOC (Diesel Oxidation Catalyst) 22a and a DPF (Diesel Particulate Filter) 22b. The DOC 22a is a catalyst having a function of oxidizing hydrocarbons (HC) and carbon monoxide (CO) in exhaust gas to convert them into water (H 2 O) and carbon dioxide (CO 2 ). The DPF 22 b is a filter that collects particulates (PM) contained in the exhaust gas. A fuel addition valve 24 for adding fuel common to the injector 12 to the exhaust pipe 20 is provided upstream of the exhaust purification device 22.

図1に示すシステムは、制御装置としてのECU(Electronic Control Unit)30を備えている。ECU30は、RAM(Random Access Memory)、ROM(Read Only Memory)、CPU(Central Processing Unit)等を備えている。ECU30は、車両に搭載された各種センサの信号を取り込み処理する。各種センサには、吸気管18の入口付近に設けられたエアフローメータ32、DOC22aの出口温度を検出する温度センサ34、DPF22bの上下流における圧力差を検出する差圧センサ36が含まれている。ECU30は、取り込んだ各センサの信号を処理して所定の制御プログラムに従って各種アクチュエータを操作する。ECU30によって操作されるアクチュエータには、上述したインジェクタ12、燃料添加弁24が含まれている。   The system shown in FIG. 1 includes an ECU (Electronic Control Unit) 30 as a control device. The ECU 30 includes a random access memory (RAM), a read only memory (ROM), a central processing unit (CPU), and the like. The ECU 30 takes in and processes signals of various sensors mounted on the vehicle. The various sensors include an air flow meter 32 provided near the inlet of the intake pipe 18, a temperature sensor 34 for detecting the outlet temperature of the DOC 22a, and a differential pressure sensor 36 for detecting a pressure difference upstream and downstream of the DPF 22b. The ECU 30 processes the signal of each sensor taken in and operates various actuators in accordance with a predetermined control program. The actuator operated by the ECU 30 includes the injector 12 and the fuel addition valve 24 described above.

[DPF22bの再生制御]
本実施の形態では、ECU30によるエンジン制御として、DPF22bの昇温制御(以下「PM再生制御」ともいう。)が行われる。PM再生制御は、DPF22bで捕集したPMの推定値が除去要求量に到達したときに、燃料添加弁24から燃料を添加する制御である。例えば差圧センサ36で検出した圧力差が所定値に到達したときに、PMの推定値が除去要求量に到達したと判断することができる。燃料添加弁24から燃料を添加することでDOC22aにおいて添加燃料を酸化し、この酸化反応熱によりDPF22bの床温を600℃以上まで上昇させる。これにより、DPF22bで捕集したPMを燃焼除去できるので、DPF22bの捕集機能を回復させることができる。なお、DPF22bの床温を600℃以上に上昇させるための燃料添加弁24からの添加燃料量(以下「DPF用燃料量)は、DPFの床温と関連付けたマップに基づき決定されるものとする。このようなマップは例えばECU30のROMに記憶させておき、DPF22bの実際の床温に応じて適宜読み出すことができる。
[Regeneration control of DPF 22b]
In the present embodiment, temperature increase control (hereinafter also referred to as “PM regeneration control”) of the DPF 22 b is performed as engine control by the ECU 30. The PM regeneration control is control for adding fuel from the fuel addition valve 24 when the estimated value of PM collected by the DPF 22 b reaches the removal requirement amount. For example, when the pressure difference detected by the differential pressure sensor 36 reaches a predetermined value, it can be determined that the estimated value of PM has reached the required removal amount. By adding fuel from the fuel addition valve 24, the added fuel is oxidized in the DOC 22a, and the heat of oxidation reaction raises the bed temperature of the DPF 22b to 600 ° C. or more. Thus, the PM collected by the DPF 22b can be burned and removed, so that the collection function of the DPF 22b can be recovered. The amount of fuel added from the fuel addition valve 24 to raise the bed temperature of the DPF 22b to 600 ° C. or more (hereinafter “the amount of DPF fuel”) is determined based on the map associated with the bed temperature of the DPF. Such a map can be stored, for example, in the ROM of the ECU 30, and can be read appropriately in accordance with the actual floor temperature of the DPF 22b.

[PM再生制御における問題点]
ところで、ディーゼルエンジンの燃料や潤滑油には一般に硫黄が含まれており、燃料の燃焼に伴ってこうした硫黄からSOxが生成する。本実施の形態においても同様で、エンジン10での燃料の燃焼に伴ってSOxが生成する。生成したSOxはエンジン10から排出されて排気浄化装置22に流入し、主にDOC22aに吸着する。但し、DOC22aの床温が高くなると、ここに吸着していたSOxが脱離し始める。DOC22aの組成等により多少変動するものの、PM再生制御を行う温度域ではDOC22aからSOxが脱離して下流側に放出される。
[Problems in PM regeneration control]
By the way, fuel is generally contained in diesel engine fuel and lubricating oil, and SOx is generated from such sulfur as the fuel is burned. Similarly in the present embodiment, SOx is generated as the fuel burns in the engine 10. The generated SOx is discharged from the engine 10, flows into the exhaust purification device 22, and is adsorbed mainly to the DOC 22a. However, when the bed temperature of DOC 22a becomes high, SOx adsorbed here starts to be desorbed. Although it fluctuates somewhat depending on the composition of the DOC 22a, SOx is released from the DOC 22a to the downstream side in the temperature range where the PM regeneration control is performed.

DOC22aにおけるSOxの吸着と脱離について、図2を参照しながら説明する。図2は、DOC22aにおけるSOxの吸着と脱離を説明するための図である。この図に示すように、DOC22aは、基材(不図示)の表面を覆うコート材22cと、貴金属22d(Pt,Pd等)とを備えている。貴金属22dはコート材22cに分散担持されており、HCやCOを酸化する際の活性点となる。但し、排気中のSOが貴金属22dに吸着し、または、排気中のSOがコート材22cに吸着する。貴金属22dに吸着したSOの一部は貴金属22dから脱離して排気中に戻り、または、貴金属22d上で酸化されてSOとなり、SOの状態でコート材22cに吸着する。即ち、貴金属22dにはSOが吸着し、コート材22cには排気由来のSOとSO由来のSOが吸着する。何れにせよ、SOxが吸着することで、DOC22aにおけるHC等の酸化機能が阻害されることになる。 The adsorption and desorption of SOx in the DOC 22a will be described with reference to FIG. FIG. 2 is a diagram for explaining the adsorption and desorption of SOx in the DOC 22a. As shown to this figure, DOC22a is provided with the coating material 22c which covers the surface of a base material (not shown), and noble metals 22d (Pt, Pd, etc.). The noble metal 22d is dispersed and supported on the coating material 22c, and becomes an active point when oxidizing HC or CO. However, SO 2 in the exhaust gas is adsorbed to the noble metal 22 d, or SO 3 in the exhaust gas is adsorbed to the coating material 22 c. Some of SO 2 adsorbed on the noble metal 22d returns to the exhaust desorbed from the noble metal 22d, or is oxidized over a noble metal 22d SO 3, and the adsorbed to the coating material 22c in a state of SO 3. In other words, the noble metal 22 d SO 2 is adsorbed, the coating material 22c is SO 3 and SO 2 from the SO 3 from the exhaust adsorption. In any case, the adsorption of SOx inhibits the oxidation function of HC and the like in the DOC 22a.

上述した2経路によりコート材22cに吸着したSOは、コート材22cの床温が高くなることで脱離する。また、コート材22cの床温が高くなることで貴金属22d上でのSOからSOへの転化が促進されるので、このようなSOもコート材22cから脱離する。従って、PM再生制御を行うことで、上述したDPF22bの捕集機能だけでなく、DOC22aにおけるHC等の酸化機能を回復させることもできる。ところが、図2に示すように、コート材22cから脱離したSOが排気管20に存在するHOと反応することでHSOが発生する。そして、このHSOの濃度が一定濃度を超えると視認可能な白煙(サルフェート白煙)となるので、エンジン10を搭載した車両の商品価値を損ねてしまうおそれがある。 The SO 3 adsorbed to the coating material 22 c by the two paths described above is desorbed when the bed temperature of the coating material 22 c becomes high. Moreover, since the conversion from SO 2 to SO 3 on the noble metal 22 d is promoted by the bed temperature of the coating material 22 c becoming high, such SO 3 is also desorbed from the coating material 22 c. Therefore, by performing PM regeneration control, not only the collection function of the DPF 22b described above, but also the oxidation function of HC or the like in the DOC 22a can be restored. However, as shown in FIG. 2, SO 3 released from the coating material 22 c reacts with H 2 O present in the exhaust pipe 20 to generate H 2 SO 4 . Then, when the concentration of H 2 SO 4 exceeds a certain concentration, visible white smoke (sulfate white smoke) is obtained, and therefore, the commercial value of the vehicle equipped with the engine 10 may be impaired.

[本実施の形態の特徴]
DOC22aの下流における排気中のHSOの濃度が高くなり過ぎないように燃料添加弁24から燃料を添加すれば、PM再生制御中のサルフェート白煙の発生を抑制できる。そこで本実施の形態では、DOC22aの下流におけるSOの濃度がサルフェート白煙に関する制約を満たすように、PM再生制御中のDOC22aの床温の目標温度(以下「目標床温Ttrg」ともいう。)を算出し、目標床温Ttrgに基づいて、燃料添加弁24から添加する燃料量(以下「制約充足用燃料量」ともいう。)を算出することとしている。なお、このような制約SO濃度(DOC22aの下流におけるSO濃度の上限値)は、例えばECU30のROMに記憶させておくことができる。制約充足用燃料量よりもDPF用燃料量の方が多い場合に、DPF用燃料量ではなく制約充足用燃料量を採用することで、サルフェート白煙に関する制約を満たしつつ、DOC22aにおけるHC等の酸化機能を回復させることができる。
[Features of this embodiment]
By adding fuel from the fuel addition valve 24 so that the concentration of H 2 SO 4 in the exhaust gas downstream of the DOC 22 a is not too high, it is possible to suppress the generation of sulfate white smoke during PM regeneration control. Therefore, in the present embodiment, the target temperature of the bed temperature of DOC 22a during PM regeneration control (hereinafter also referred to as "target bed temperature Ttrg") so that the concentration of SO 3 downstream of DOC 22a satisfies the constraint on sulfate white smoke. Is calculated, and based on the target bed temperature Ttrg, the amount of fuel added from the fuel addition valve 24 (hereinafter also referred to as “restriction satisfying fuel amount”) is calculated. Note that such a restricted SO 3 concentration (upper limit value of the SO 3 concentration downstream of the DOC 22 a) can be stored, for example, in the ROM of the ECU 30. When the DPF fuel amount is larger than the constraint satisfaction fuel amount, adopting the constraint satisfaction fuel amount instead of the DPF fuel amount allows oxidation of HC, etc. in the DOC 22a while satisfying the constraint on sulfate white smoke. Function can be recovered.

[目標床温Ttrgの算出ロジック]
図3は、目標床温Ttrgを算出するためのロジックを示す機能ブロック図であり、これはECU30により実現される。この図に示すように、ECU30は、流入SOx量推定部M1と、SOx飽和率推定部M2と、新規吸着SOx量およびすり抜けSOx量推定部M3と、吸着後SOx分布推定部M4と、新規脱離SOx量推定部M5と、最終吸着SOx分布推定部M6と、すり抜けSO量推定部M7と、許容脱離SO量算出部M8と、白煙抑制目標床温算出部M9と、を備えており、これらの要素M1〜M9によって制御周期ごとに(具体的にはエンジン10の燃焼サイクルごとに)目標床温Ttrgを算出するものとする。なお、以下の説明においては、要素M1〜M9を簡略化するものとし、例えば流入SOx量推定部M1を「推定部M1」ともいう。
[Calculation logic of target floor temperature Ttrg]
FIG. 3 is a functional block diagram showing a logic for calculating the target floor temperature Ttrg, which is realized by the ECU 30. As shown in this figure, the ECU 30 includes an inflow SOx amount estimation unit M1, an SOx saturation rate estimation unit M2, a newly adsorbed SOx amount and a slip-through SOx amount estimation unit M3, a post adsorption SOx distribution estimation unit M4, and a new removal A separation SOx amount estimation unit M5, a final adsorbed SOx distribution estimation unit M6, a slip through SO 3 amount estimation unit M7, an allowable desorption SO 3 amount calculation unit M8, and a white smoke suppression target bed temperature calculation unit M9 The target bed temperature Ttrg is calculated for each control cycle (specifically, for each combustion cycle of the engine 10) by these elements M1 to M9. In the following description, the elements M1 to M9 are simplified, and for example, the inflow SOx amount estimating unit M1 is also referred to as an “estimating unit M1”.

推定部M1は、DOC22aに流入するSOxの量(以下「流入SOx量」ともいう。)を推定する。なお、本明細書でいう「DOC22aに流入するSOx」には、エンジン10で生成し、ここから排出されてDOC22aに流入するSOxだけでなく、燃料添加弁24から添加された燃料のDOC22aでの酸化反応に伴って生成し、DOC22a上を流れるSOxも含まれるものとする。   The estimation unit M1 estimates the amount of SOx flowing into the DOC 22a (hereinafter, also referred to as the “inflowing SOx amount”). The term "SOx flowing into DOC 22a" referred to in this specification is not only SOx generated by engine 10 but discharged from here and flowing into DOC 22a, as well as fuel DOC 22a added from fuel addition valve 24. The SOx which is generated along with the oxidation reaction and flows on the DOC 22a is also included.

推定部M1は、具体的に、インジェクタ12からの噴射燃料量(筒内噴射量)および燃料添加弁24からの添加燃料量(排気添加量)を変数とする次式(1)により、第t番目のサイクルにおける流入SOx量を推定する。なお、式(1)の燃料S濃度は、燃料中の硫黄濃度であり、燃料供給系に別途設けた硫黄濃度センサの検出値を用いてもよく、設定値を用いてもよい。
流入SOx量(排気添加量(t),筒内噴射量(t))[μg/s]=流入燃料量(排気添加量(t),筒内噴射量(t))[g/s]×燃料S濃度[ppm] ・・・(1)
More specifically, the estimation unit M1 uses the following formula (1) with the injection fuel amount from the injector 12 (in-cylinder injection amount) and the addition fuel amount from the fuel addition valve 24 (exhaust addition amount) as variables: Estimate the amount of inflow SOx in the second cycle. The concentration of fuel S in the equation (1) is the concentration of sulfur in the fuel, and the detection value of a sulfur concentration sensor separately provided in the fuel supply system may be used, or the set value may be used.
Inflow SOx amount (exhaust addition amount (t), in-cylinder injection amount (t)) [μg / s] = inflow fuel amount (exhaust addition amount (t), in-cylinder injection amount (t)) [g / s] × Fuel S concentration [ppm] ... (1)

式(1)の流入燃料量(排気添加量(t),筒内噴射量(t))は、「DOC22aに流入するSOx」の由来となった燃料の第t番目のサイクルにおける量であり、燃料の比重(軽油比重)を用いて次式(2)により算出される。
流入燃料量(排気添加量(t),筒内噴射量(t))[g/s]=(排気添加量(t)[g/s]÷1000×軽油比重[g/cm3]+筒内噴射量(t)[g/s]) ・・・(2)
なお、以下の説明においては、流入SOx量(排気添加量(t),筒内噴射量(t))を流入SOx量(t)ともいう。また、流入燃料量(排気添加量(t),筒内噴射量(t))を流入燃料量(t)ともいう。
The inflowing fuel amount (exhaust addition amount (t), in-cylinder injection amount (t)) of equation (1) is the amount in the t-th cycle of the fuel from which "SOx flowing into DOC 22a" is derived. It is calculated according to the following equation (2) using the specific gravity of fuel (light oil specific gravity).
Inflow fuel amount (exhaust addition amount (t), in-cylinder injection amount (t)) [g / s] = (exhaust addition amount (t) [g / s] ÷ 1000 × light oil specific gravity [g / cm3] + in-cylinder Injection amount (t) [g / s]) (2)
In the following description, the inflow SOx amount (exhaust addition amount (t), in-cylinder injection amount (t)) is also referred to as the inflow SOx amount (t). Further, the inflowing fuel amount (exhaust addition amount (t), in-cylinder injection amount (t)) is also referred to as the inflowing fuel amount (t).

推定部M2は、DOC22aにおけるSOxの飽和率(以下「SOx飽和率」ともいう。)を推定する。SOx飽和率の推定には、DOC22aの床温上昇中の各床温においてDOC22aに吸着するSOxの量(以下「吸着SOx量」ともいう。)を、DOC22aの床温に関連付けたグラフとして表される分布(以下「吸着SOx分布」ともいう。)と、DOC22aの床温上昇中の各床温においてDOC22aに吸着するSOxの最大量(以下「飽和SOx量」ともいう。)を、DOC22aの床温に関連付けたグラフとして表される分布(以下「飽和SOx分布」ともいう。)と、が用いられる。先ず、吸着SOx分布と飽和SOx分布について、SOを例として図4を参照しながら説明する。 The estimation unit M2 estimates the saturation rate of SOx in the DOC 22a (hereinafter, also referred to as “SOx saturation rate”). In the estimation of the SOx saturation rate, the amount of SOx adsorbed onto the DOC 22a at each bed temperature during the bed temperature rise of the DOC 22a (hereinafter also referred to as “adsorbed SOx amount”) is expressed as a graph associated with the bed temperature of the DOC 22a Distribution (hereinafter also referred to as “adsorbed SOx distribution”) and the maximum amount of SOx adsorbed onto DOC 22a at each bed temperature during the bed temperature rise of DOC 22a (hereinafter also referred to as “saturated SOx amount”) The distribution (hereinafter also referred to as “saturated SOx distribution”) represented as a graph associated with temperature is used. First, the adsorbed SOx distribution and the saturated SOx distribution will be described with reference to FIG. 4 using SO 3 as an example.

図4は、吸着SOx分布と飽和SOx分布を説明するための図である。図4に「吸着SO量」として示したデータは、次の手法により収集したものである。具体的には先ず、図4に「現在温度」として示した床温において、十分な量のSOxをDOC22aに吸着させる。続いて、DOC22aの床温上昇中の各床温においてDOC22aから脱離したSOの量を、上昇速度を一定とした条件のもとで測定する。そして、この脱離SO量をDOC22aの床温に関連付けてグラフを作成する。これにより、脱離SO量を表した分布(以下「脱離SO分布」ともいう。)を得ることができる。これと同様の手法により、DOC22aの床温上昇中の各床温においてDOC22aから脱離したSOの量を、DOC22aの床温に関連付けたグラフ(以下「脱離SO分布」ともいう。)を得ることもできる。なお、DOC22aから脱離するSOについては、これをセンサで直接的に測定してもよいし、SOxまたはSOを検出するセンサを用いて両者を測定し、これらの差から算出してもよい(SO=SOx−SO)。 FIG. 4 is a view for explaining the adsorbed SOx distribution and the saturated SOx distribution. The data shown as “adsorbed SO 3 amount” in FIG. 4 is collected by the following method. Specifically, first, a sufficient amount of SOx is adsorbed to the DOC 22a at the bed temperature shown as "current temperature" in FIG. Subsequently, the amount of SO 3 desorbed from the DOC 22a at each bed temperature during the bed temperature rise of the DOC 22a is measured under the condition that the rate of rise is constant. Then, the amount of released SO 3 is associated with the bed temperature of DOC 22a to create a graph. Thus, (hereinafter also referred to as "desorption SO 3 distribution".) Distribution represents a leaving SO 3 amount can be obtained. A graph (hereinafter also referred to as “desorbed SO 2 distribution”) in which the amount of SO 2 desorbed from DOC 22 a at each bed temperature during rising bed temperature of DOC 22 a is related to the bed temperature of DOC 22 a by the same method. You can also get Note that the SO 3 desorbed from DOC22a, which to a may be directly measured by the sensor, to measure both using the sensor for detecting the SOx or SO 2, be calculated from these differences good (SO 3 = SOx-SO 2 ).

ここで、DOC22aの床温上昇中にDOC22aから脱離するSOは、実際には図4に「現在温度」として示した床温でDOC22aに吸着させたSOである。しかし、ある床温でDOC22aから脱離するSOは、その床温に至るまでDOC22aに吸着し続けることのできたSOであり、更に言えば、その床温でDOC22aに吸着することができたSOであると考えることもできる。このような仮定に基づいて、上述した脱離SO分布の縦軸を、DOC22aの床温上昇中の各床温においてDOC22aに吸着するSOの量に置き換えると、図4に示した「吸着SO量」のデータのグラフ、即ち、吸着SO分布を得ることができる。そして、これと同様の手法によって、吸着SO分布を得ることもできる。 Here, SO 3 desorbed from DOC22a in increased bed temperature of DOC22a is SO 3 which actually adsorbed to DOC22a in bed temperature shown as "current temperature" in FIG. However, SO 3 desorbed from DOC22a at some bed temperature, the bed is SO 3 which could continue to adsorb to DOC22a up to temperature and, more could be adsorbed to DOC22a in that bed temperature It can be considered to be a SO 3. Based on such an assumption, when the vertical axis of the above-described desorption SO 3 distribution is replaced with the amount of SO 3 adsorbed to the DOC 22 a at each bed temperature during the bed temperature rise of the DOC 22 a, “adsorption shown in FIG. A graph of “SO 3 content” data can be obtained, ie an adsorbed SO 3 distribution. Then, the adsorbed SO 2 distribution can also be obtained by the same method as this.

また、図4に「飽和SO量」として示したデータは、「吸着SO量」のデータと同様の手法により収集したものである。この「飽和SO量」のデータは、具体的に、上昇速度を極低速とした条件のもと、DOC22aの床温上昇中の各床温(例えば5℃間隔)においてDOC22aから脱離したSOの量に相当している。DOC22aの床温の上昇速度が極低速であることから、この「飽和SO量」のデータは、DOC22aから脱離したSOの量の最大値であると考えることができる。また、この最大値に対しては、上述した仮定を適用することができる。即ち、ある床温でDOC22aから脱離するSOの最大量は、その床温でDOC22aに吸着することができたSOの最大量に等しいと考えることができる。このような仮定に基づいて上述した脱離SO分布の縦軸を上記SOの最大量に置き換えると、図4に示した「飽和SO量」のデータのグラフ、即ち、飽和SO分布を得ることができる。そして、これと同様の手法によって、飽和SO分布を得ることもできる。 The data indicated as "saturated SO 3 amount" in FIG. 4 is collected by the same method as the data of "adsorption SO 3 amount." Specifically, the data of “the amount of saturated SO 3 ” are SO desorbed from DOC 22 a at each bed temperature (for example, 5 ° C. interval) during the rise of bed temperature of DOC 22 a under the condition that the rise rate is extremely low. It corresponds to the amount of three . Since the rate of increase of the bed temperature of DOC 22a is extremely low, it can be considered that this "saturated SO 3 amount" data is the maximum value of the amount of SO 3 released from DOC 22a. In addition, the above-described assumption can be applied to this maximum value. That is, the maximum amount of SO 3 desorbed from DOC 22a at a certain bed temperature can be considered to be equal to the largest amount of SO 3 that could be adsorbed to DOC 22a at that bed temperature. Replacing the vertical axis of the elimination SO 3 distribution described above on the basis of this assumption the maximum amount of the SO 3, graph data shown in FIG. 4 "saturated SO 3 amount", i.e., saturated SO 3 distribution You can get Then, a saturated SO 2 distribution can be obtained by the same method as this.

推定部M2は、第t番目のサイクルにおけるDOC22aの現在床温Tを変数とする次式(3)により、第t番目のサイクルにおけるSOx飽和率(T(t),t)を推定する。なお、現在床温Tは、DOC22aの現在の床温の代表温度として、例えば温度センサ34の検出値を使用することができる。
SOx飽和率(T(t),t)=1−(総吸着余裕量(T(t),t)/総飽和量(T(t),t)) ・・・(3)
The estimation unit M2 estimates the SOx saturation ratio (T 2 (t), t) in the t-th cycle according to the following equation (3) using the current bed temperature T 2 of the DOC 22a in the t-th cycle as a variable . Note that the current bed temperature T 2 are, can be used as a representative temperature of the current bed temperature of DOC22a, for example, the detection value of the temperature sensor 34.
SO x saturation ratio (T 2 (t), t) = 1-(total adsorption margin (T 2 (t), t) / total saturation (T 2 (t), t)) (3)

式(3)のSOx飽和率(T(t),t)の算出過程は次のとおりである。先ず、DOC22aの床温上昇中における床温Tと、現在床温Tとを変数とする次式(4)および(5)により、第t番目のサイクルにおける飽和SO分布(T,T(t),t)および飽和SO分布(T,T(t),t)をそれぞれ算出する。
飽和SO分布(T,T(t),t)[μg/℃]=基準飽和SO分布×床温補正SOmap(T(t))[μg/℃] ・・・(4)
飽和SO分布(T,T(t),t)[μg/℃]=基準飽和SO分布×床温補正SOmap(T(t))[μg/℃] ・・・(5)
The calculation process of the SOx saturation rate (T 2 (t), t) of equation (3) is as follows. First, the saturated SO 2 distribution (T 1 , T 1 , t 1 ,... In the t-th cycle according to the following formulas (4) and (5) using bed temperature T 1 during bed temperature rise of DOC 22 a and current bed temperature T 2 as variables. T 2 (t), t) and the saturated SO 3 distribution (T 1 , T 2 (t), t) are calculated respectively.
Saturated SO 2 distribution (T 1 , T 2 (t), t) [μg / ° C.] = Reference saturated SO 2 distribution × bed temperature correction SO 2 map (T 2 (t)) [μg / ° C.] 4)
Saturated SO 3 distribution (T 1 , T 2 (t), t) [μg / ° C.] = Reference saturated SO 3 distribution × bed temperature correction SO 3 map (T 2 (t)) [μg / ° C.] 5)

式(4)の基準飽和SO分布は、十分な量のSOxをDOC22aに吸着させるときの床温(図4の「現在温度」)を基準床温(例えば上述した吸着限界量が最大となる300℃付近の床温)として作成した飽和SO分布である。式(5)の基準飽和SO分布もこれと同様である。式(4)の床温補正SOmap(T(t))は、基準飽和SO分布を現在床温Tの飽和SO分布に変換するための補正値を定めたマップである。式(5)の床温補正SOmap(T(t))もこれと同様である。このような基準飽和SOx分布と補正マップは、例えばECU30のROMに記憶させておくことができ、現在床温Tに応じて適宜読み出すことができる。 The reference saturated SO 2 distribution of the equation (4) is such that the bed temperature (“current temperature” in FIG. 4) at which a sufficient amount of SOx is adsorbed to the DOC 22 a becomes the reference bed temperature (for example, the aforementioned adsorption limit amount becomes maximum) It is a saturated SO 2 distribution created as a bed temperature around 300 ° C.). The reference saturated SO 3 distribution of equation (5) is similar to this. The bed temperature correction SO 2 map (T 2 (t)) of the equation (4) is a map in which correction values for converting the reference saturated SO 3 distribution into the saturated SO 2 distribution of the current bed temperature T 2 are defined. The bed temperature correction SO 3 map (T 2 (t)) of Formula (5) is the same as this. Such criteria saturated SOx distribution and the correction map can be memorized for example in the ECU30 in the ROM, a read appropriately according currently bed temperature T 2.

基準飽和SOx分布と補正後の飽和SOx分布の関係を、SOを例として図5を参照しながら説明する。図5は、基準飽和SOx分布と補正後の飽和SOx分布の関係を説明するための図である。なお、この図の横軸のTLおよびTHは、DOC22aの床温上昇中にDOC22aからSOが脱離し始める温度(下限温度)と、DOC22aからSOが脱離し終わる温度(上限温度)に、それぞれ相当している。この図に示す3種類の分布の違いは、現在床温Tにある。即ち、現在床温Tが基準温度と等しい場合は、補正後の飽和SO分布の形状が基準飽和SO分布の形状と一致する(中央)。一方、現在床温Tが基準温度よりも低い場合(左方)や、現在床温Tが基準温度よりも高い場合(右方)は、補正後の飽和SO分布の形状が基準飽和SO分布の形状と一致しなくなる。なお、現在床温Tが基準温度よりも高い場合(右方)には、補正後の飽和SO分布の形状が、現在床温Tよりも低温側のデータが欠落しているような形状となる。この理由は、現在床温Tよりも低温側では、本来であればこの床温域においてDOC22aに吸着し続けることのできたはずのSOxが、DOC22aから既に脱離していると考えられるためである。 The relationship between the reference saturated SOx distribution and the saturated SOx distribution after correction will be described with reference to FIG. 5 using SO 2 as an example. FIG. 5 is a diagram for explaining the relationship between the reference saturated SOx distribution and the saturated SOx distribution after correction. Note that TL and TH on the horizontal axis of this figure are the temperature at which SO 2 begins to desorb from DOC 22 a (lower limit temperature) and the temperature at which SO 2 ceases to desorb from DOC 22 a (upper limit temperature). Each corresponds. The difference of the three distribution shown in this figure, is currently in bed temperature T 2. That is, if the current floor temperature T 2 is equal to the reference temperature, saturated SO 2 distribution shape of the corrected coincides with the reference saturation SO 2 distribution shape (middle). On the other hand, if the current floor temperature T 2 is lower than the reference temperature (left) and, if the current floor temperature T 2 is higher than the reference temperature (right), the shape of the saturation SO 2 distribution after the correction reference saturation It will not match the shape of the SO 2 distribution. Incidentally, when the current bed temperature T 2 is higher than the reference temperature (right), the shape of the saturation SO 2 distribution after the correction, such as the low temperature side of the data than the current floor temperature T 2 is missing It becomes a shape. The reason for this is currently the low temperature side than the bed temperature T 2 are, the SOx that could have been of continuing to adsorb to DOC22a In this bed temperature range would otherwise, be due believed already desorbed from DOC22a .

続いて、式(4)により算出した飽和SO分布(T,T(t),t)を次式(6)に代入して、第t番目のサイクルにおける総飽和SO量(T(t),t)を算出する。また、式(5)により算出した飽和SO分布(T,T(t),t)を次式(7)に代入して、第t番目のサイクルにおける総飽和SO量を算出する。 Subsequently, the saturated SO 2 distribution (T 1 , T 2 (t), t) calculated by the equation (4) is substituted into the following equation (6), and the total saturated SO 2 amount (T Calculate 2 (t), t). Further, the saturated SO 3 distribution (T 1 , T 2 (t), t) calculated by the equation (5) is substituted into the following equation (7) to calculate the total saturated SO 3 amount in the t-th cycle .

Figure 0006547779
Figure 0006547779

総飽和SO量(T(t),t)および総飽和SO量(T(t),t)を算出したら、次式(8)にこれらを代入して、第t番目のサイクルにおける総飽和量(T(t),t)を算出する。
総飽和量(T(t),t)=総飽和SO量(T(t),t)+総飽和SO量(T(t),t) ・・・(8)
なお、以下の説明においては、総飽和SO量(T(t),t)を単に総飽和SO量(t)ともいう。また、総飽和SO量(T(t),t)を単に総飽和SO量(t)ともいう。また、総飽和量(T(t),t)を単に総飽和量(t)ともいう。
Once the total saturated SO 2 amount (T 2 (t), t) and the total saturated SO 3 amount (T 2 (t), t) have been calculated, these are substituted into the following equation (8) to obtain the t th cycle Calculate the total amount of saturation (T 2 (t), t) in
Total saturated amount (T 2 (t), t) = total saturated SO 2 amount (T 2 (t), t) + total saturated SO 3 amount (T 2 (t), t) (8)
In the following description, the total saturated SO 2 amount (T 2 (t), t) is also simply referred to as the total saturated SO 2 amount (t). Also, the total saturated SO 3 amount (T 2 (t), t) is simply referred to as the total saturated SO 3 amount (t). Also, the total saturated amount (T 2 (t), t) is simply referred to as the total saturated amount (t).

式(8)により総飽和量(t)を算出したら、飽和SO分布(T,T(t),t)と、推定部M6で推定した第t番目のサイクルにおける最終吸着SO分布(T,t)とを次式(9)に代入して、第t番目のサイクルにおける吸着余裕SO分布(T,T(t),t)を算出する。また、飽和SO分布(T,T(t),t)と、推定部M6で推定した第t番目のサイクルにおける最終吸着SO分布(T,t)とを次式(10)に代入して、第t番目のサイクルにおける吸着余裕SO分布(T,T(t),t)を算出する。
吸着余裕SO分布(T,T(t),t)[μg/℃]=max{飽和SO分布(T,T(t),t)[μg/℃]−最終吸着SO分布(T,t)[μg/℃],0} ・・・(9)
吸着余裕SO分布(T,T(t),t)[μg/℃]=max{飽和SO分布(T,T(t),t)[μg/℃]−最終吸着SO分布(T,t)[μg/℃],0} ・・・(10)
When the total saturation amount (t) is calculated by the equation (8), the saturated SO 2 distribution (T 1 , T 2 (t), t) and the final adsorbed SO 2 distribution in the t-th cycle estimated by the estimation unit M6 The adsorption margin SO 2 distribution (T 1 , T 2 (t), t) in the t-th cycle is calculated by substituting (T 1 , t) into the following equation (9). Further, the saturated SO 3 distribution (T 1 , T 2 (t), t) and the final adsorbed SO 3 distribution (T 1 , t) in the t-th cycle estimated by the estimation unit M6 are expressed by the following equation (10) To calculate the adsorption margin SO 3 distribution (T 1 , T 2 (t), t) in the t-th cycle.
Adsorption margin SO 2 distribution (T 1 , T 2 (t), t) [μg / ° C.] = Max {Saturated SO 2 distribution (T 1 , T 2 (t), t) [μg / ° C.] — Final adsorbed SO 2 distribution (T 1 , t) [μg / ° C.], 0} (9)
Adsorption margin SO 3 distribution (T 1, T 2 (t ), t) [μg / ℃] = max { saturated SO 3 distribution (T 1, T 2 (t ), t) [μg / ℃] - Final adsorption SO 3 distribution (T 1 , t) [μg / ° C.], 0} (10)

続いて、式(9)により算出した吸着余裕SO分布(T,T(t),t)を次式(11)に代入して、第t番目のサイクルにおける総吸着余裕SO量(T(t),t)を算出する。また、式(10)により算出した吸着余裕SO分布(T,T(t),t)を次式(12)に代入して、第t番目のサイクルにおける総吸着余裕SO量(T(t),t)を算出する。 Subsequently, the adsorption margin SO 2 distribution (T 1 , T 2 (t), t) calculated by the equation (9) is substituted into the following equation (11), and the total adsorption margin SO 2 amount in the t th cycle Calculate (T 2 (t), t). Further, the total adsorption margin SO 3 amount (t 1st cycle) is substituted for the distribution (T 1 , T 2 (t), t) of the adsorption margin SO 3 calculated by the equation (10) into the following equation (12) Calculate T 2 (t), t).

Figure 0006547779
Figure 0006547779

なお、以下の説明においては、吸着余裕SO分布(T,T(t),t)を単に吸着余裕SO分布(t)ともいう。また、吸着余裕SO分布(T,T(t),t)を単に吸着余裕SO分布(t)ともいう。また、総吸着余裕SO量(T(t),t)を単に総吸着余裕SO量(t)ともいう。また、総吸着余裕SO量(T(t),t)を単に総吸着余裕SO量(t)ともいう。 In the following description, the adsorption margin SO 2 distribution (T 1 , T 2 (t), t) is also simply referred to as the adsorption margin SO 2 distribution (t). In addition, the adsorption margin SO 3 distribution (T 1 , T 2 (t), t) is simply referred to as the adsorption margin SO 3 distribution (t). Further, the total adsorption margin SO 2 amount (T 2 (t), t) is also simply referred to as the total adsorption margin SO 2 amount (t). Further, the total adsorption margin SO 3 amount (T 2 (t), t) is also simply referred to as the total adsorption margin SO 3 amount (t).

図6を参照して、総吸着余裕SO量(t)を説明する。図6は、総吸着余裕SO量を説明するための図である。なお、総吸着余裕SO量(t)についてはこれと同様である。この図に示すように、総吸着余裕SO量(t)は、飽和SO分布から、飽和SO分布と吸着SO分布の重複部分を除いた面積として表すことができる。なお、この図の右方の分布に領域Aとして示すように、DOC22aの床温上昇中の各床温においてDOC22aに吸着するSOの量、即ち、吸着SO量がその最大量、即ち、飽和SO量を上回る場合は、DOC22aが飽和していると考えられることから、総吸着余裕SO量(t)の算出から除外される。また、この右方の分布において、現在床温Tよりも低温側のデータが欠落している理由については、図5で説明した通りである。 The total adsorption margin SO 2 amount (t) will be described with reference to FIG. FIG. 6 is a diagram for explaining the total amount of adsorption margin SO 2 . The total adsorption margin SO 3 amount (t) is the same as this. As shown in this figure, the total adsorption margin SO 2 amount (t) may be a saturated SO 2 distribution, expressed as the area excluding the overlapping portions of the adsorption SO 2 distribution and saturated SO 2 distribution. As indicated by the region A in the distribution on the right side of the figure, the amount of SO 2 adsorbed to the DOC 22a at each bed temperature during the rise of the bed temperature of the DOC 22a, ie, the adsorbed SO 2 amount is the maximum amount, ie, If it exceeds the saturated SO 2 amount, it is considered that the DOC 22 a is saturated, so it is excluded from the calculation of the total adsorption margin SO 2 amount (t). Further, in the distribution of the right, the reason why the low-temperature side of the data than the current floor temperature T 2 is missing, is as described in FIG.

そして、総吸着余裕SO量(t)および総吸着余裕SO量(t)を算出したら、これらを次式(13)に代入して、第t番目のサイクルにおける総吸着余裕量(T(t),t)を算出する。
総吸着余裕量(T(t),t)=総吸着余裕SO量(t)+総吸着余裕SO量(t) ・・・(13)
更に、式(8)により算出した総飽和量(t)と、式(13)により算出した総吸着余裕量(t)とを式(3)に代入すれば、飽和率(T(t),t)を算出できる。なお、以下の説明においては、飽和率(T(t),t)を単に飽和率(t)ともいう。
Then, after calculating the total adsorption margin SO 2 amount (t) and the total adsorption margin SO 3 amount (t), these are substituted into the following equation (13) to obtain the total adsorption margin amount (T 2 in the t th cycle) Calculate (t), t).
Total adsorption margin (T 2 (t), t) = total adsorption margin SO 2 amount (t) + total adsorption margin SO 3 amount (t) (13)
Furthermore, if the total saturation amount (t) calculated by the equation (8) and the total adsorption margin amount (t) calculated by the equation (13) are substituted into the equation (3), the saturation ratio (T 2 (t) , T) can be calculated. In the following description, the saturation ratio (T 2 (t), t) is also simply referred to as the saturation ratio (t).

図3に戻り目標床温Ttrgの算出ロジックの説明を続ける。推定部M3は、「DOC22aに流入するSOx」であってDOC22aに新たに吸着するSOxの量(以下「新規吸着SOx量」ともいう。)、および、「DOC22aに流入するSOx」であってDOC22aに吸着することなくすり抜けるSOxの量(以下「すり抜けSOx量」ともいう。)を推定する。先ず、新規吸着SOx量とすり抜けSOx量の関係について、図7を参照して説明する。図7は、新規吸着SOx量とすり抜けSOx量の関係を説明するための図である。この図に矢印で示すように、新規吸着SOx量とすり抜けSOx量の和が、流入SOx量に等しくなる。この理由は、「DOC22aに流入するSOx」のうちの一部がDOC22aに吸着し、残りがDOC22aに吸着することなくすり抜けるためである。   Returning to FIG. 3, the explanation of the calculation logic of the target floor temperature Ttrg is continued. The estimation unit M3 is “SOx flowing into DOC 22a” and is an amount of SOx newly adsorbed to DOC 22a (hereinafter, also referred to as “newly adsorbed SOx amount”), and “SOx flowing into DOC 22a”; DOC 22a Estimate the amount of SOx slipped through without adsorbing to (hereinafter also referred to as “the amount of slipped SOx”). First, the relationship between the amount of newly adsorbed SOx and the amount of slipped-through SOx will be described with reference to FIG. FIG. 7 is a diagram for explaining the relationship between the amount of newly adsorbed SOx and the amount of slip-through SOx. As indicated by the arrows in this figure, the sum of the amount of newly adsorbed SOx and the amount of slipped-through SOx becomes equal to the amount of inflowing SOx. The reason for this is that a part of the "SOx flowing into DOC 22a" is adsorbed to DOC 22a, and the remainder is slipped off without being adsorbed to DOC 22a.

推定部M3は、具体的に、推定部M1で推定した流入SOx量(t)と、推定部M2で推定した飽和率(t)とを変数とする次式(14)により新規吸着SOx量を推定し、次式(15)によりすり抜けSOx量を推定する。
新規吸着SOx量(流入SOx量(t),飽和率(t))[μg/s]=流入SOx量(t)×吸着率map(飽和率(t)) ・・・(14)
すり抜けSOx量(流入SOx量(t),飽和率(t))[μg/s]=流入SOx量(t)×{1−吸着率map(飽和率(t))} ・・・(15)
なお、以下の説明においては、新規吸着SOx量(流入SOx量(t),飽和率(t))を単に新規吸着SOx量(t)ともいう。また、すり抜けSOx量(流入SOx量(t),飽和率(t))を単にすり抜けSOx量(t)ともいう。
More specifically, the estimating unit M3 uses the following equation (14) with the inflow SOx amount (t) estimated by the estimating unit M1 and the saturation ratio (t) estimated by the estimating unit M2 as variables: The amount of SOx is estimated by the following equation (15).
New adsorbed SOx amount (inflow SOx amount (t), saturation rate (t)) [μg / s] = inflow SOx amount (t) × adsorption rate map (saturation rate (t)) (14)
Amount of slipped SOx (inflow SOx amount (t), saturation rate (t)) [μg / s] = inflow SOx amount (t) × {1-adsorption rate map (saturation rate (t))} (15)
In the following description, the amount of newly adsorbed SOx (the amount of inflow SOx (t), the saturation ratio (t)) is also simply referred to as the amount of newly adsorbed SOx (t). Further, the amount of slipped SOx (the amount of inflow SOx (t), the saturation ratio (t)) is also simply referred to as the amount of slipped SOx (t).

式(14)および(15)の吸着率mapは、第t番目のサイクルにおいて「DOC22aに流入するSOx」のうち、DOC22aに吸着するSOxの割合(即ち、吸着率)が、飽和率(t)によって変わるという特性に基づいて作成されたマップである。図8は、吸着率mapを説明するための図である。この図に示すように、吸着率mapの特性は、飽和率(t)が低い領域では吸着率が高く、飽和率(t)が高くなるにつれて吸着率が徐々に低下するというものである。なお、このようなマップは、例えばECU30のROMに記憶させておくことができ、現在床温Tに応じて適宜読み出すことができる。 In the adsorption rate map of the equations (14) and (15), the proportion (ie, the adsorption rate) of SOx adsorbed to the DOC 22a in the “SOx flowing into the DOC 22a” in the t-th cycle is the saturation rate (t) It is a map created based on the characteristic that it changes with. FIG. 8 is a diagram for explaining the adsorption rate map. As shown in this figure, the characteristics of the adsorption rate map are such that the adsorption rate is high in the region where the saturation rate (t) is low, and the adsorption rate gradually decreases as the saturation rate (t) increases. Such a map, for example is stored in ECU30 the ROM can keep, can be read out as appropriate in accordance currently bed temperature T 2.

図3に戻り、推定部M4は、推定部M3で推定した新規吸着SOx量を吸着SOx分布に反映させて吸着後SOx分布を推定する。吸着後SOx分布について、SOを例とした図9を参照しながら説明する。図9は、吸着後SOx分布を説明するための図である。この図に示すように、吸着後SO分布は、前回サイクル(例えば、第t−1番目のサイクル)における最終吸着SO分布に、今回サイクル(例えば、第t番目のサイクル)においてDOC22aに新たに吸着するSOの量を表した分布(以下「新規吸着SO分布」ともいう。)を加算することで推定される。 Referring back to FIG. 3, the estimating unit M4 reflects the amount of the newly adsorbed SOx estimated by the estimating unit M3 in the adsorbed SOx distribution to estimate the post-adsorption SOx distribution. The SOx distribution after adsorption will be described with reference to FIG. 9 in which SO 2 is taken as an example. FIG. 9 is a view for explaining the SOx distribution after adsorption. As shown in this figure, the post-adsorption SO 2 distribution is newly added to the DOC 22 a in the present cycle (for example, the t-th cycle) to the final adsorbed SO 2 distribution in the previous cycle (for example, the t−1st cycle). It is estimated by adding the distribution (hereinafter, also referred to as “newly adsorbed SO 2 distribution”) representing the amount of SO 2 adsorbed to the

推定部M4は、具体的には先ず、新規吸着SOx量(t)、総吸着余裕量(t)および吸着余裕SO分布(t)を変数とする次式(16)により、第t番目のサイクルにおける新規吸着SO分布を算出する。新規吸着SO分布と同様に、推定部M4は、DOC22aに新たに吸着するSOの量を表した分布(以下「新規吸着SO分布」ともいう。)を、次式(17)により算出する。なお、吸着余裕SO分布(t)と総吸着余裕量(t)には、推定部M2において算出されたものが使用される。
新規吸着SO分布(新規吸着SOx量(t),吸着余裕SO分布(t),総吸着余裕量(t))[μg/℃]=吸着余裕SO分布(t)[μg/℃]×{新規吸着SOx量(t)/総吸着余裕量(t)} ・・・(16)
新規吸着SO分布(新規吸着SOx量(t),吸着余裕SO分布(t),総吸着余裕量(t))[μg/℃]=吸着余裕SO分布(t)[μg/℃]×{新規吸着SOx量(t)/総吸着余裕量(t)} ・・・(17)
なお、以下の説明においては、新規吸着SO分布(新規吸着SOx量(t),吸着余裕SO分布(t),総吸着余裕量(t))を、単に新規吸着SO分布(t)ともいう。また、新規吸着SO分布(新規吸着SOx量(t),吸着余裕SO分布(t),総吸着余裕量(t))を、単に新規吸着SO分布(t)ともいう。
More specifically, the estimation unit M4 first uses the following equation (16) with the newly adsorbed SOx amount (t), the total adsorption margin (t) and the adsorption margin SO 2 distribution (t) as variables: Calculate the new adsorbed SO 2 distribution in the cycle. Similar to the new adsorbed SO 2 distribution, the estimation unit M4 calculates a distribution (hereinafter, also referred to as “newly adsorbed SO 3 distribution”) representing the amount of SO 3 newly adsorbed to the DOC 22 a by the following equation (17) Do. As the adsorption margin SO 2 distribution (t) and the total adsorption margin amount (t), those calculated in the estimation unit M2 are used.
Novel adsorption SO 2 distribution (new adsorption SOx amount (t), adsorption margin SO 2 distribution (t), total adsorption margin (t)) [μg / ° C] = adsorption margin SO 2 distribution (t) [μg / ° C] × {newly adsorbed SOx amount (t) / total adsorption margin amount (t)} (16)
Novel adsorption SO 3 distribution (new adsorption SOx amount (t), adsorption margin SO 3 distribution (t), total adsorption margin (t)) [μg / ° C] = adsorption margin SO 3 distribution (t) [μg / ° C] × {newly adsorbed SOx amount (t) / total adsorption margin amount (t)} (17)
In the following description, the newly adsorbed SO 2 distribution (newly adsorbed SOx amount (t), adsorption margin SO 2 distribution (t), total adsorption margin amount (t)) is simply referred to as newly adsorbed SO 2 distribution (t) It is also called. Further, the new adsorption SO 3 distribution (new adsorption SOx amount (t), adsorption margin SO 3 distribution (t), total adsorption margin amount (t)) is also simply referred to as new adsorption SO 3 distribution (t).

推定部M4は、続いて、算出した新規吸着SO分布と、第t−1番目のサイクルにおける最終吸着SO分布(t−1)とを次式(18)に代入して、吸着後SO分布を算出する。また、算出した新規吸着SO分布と、第t−1番目のサイクルにおいて推定部M6で推定した吸着SO分布(t−1)とを次式(19)に代入して、吸着後SO分布を算出する。
吸着後SO分布(t)[μg/℃]=最終吸着SO分布(t−1)[μg/℃]+新規吸着SO分布(t)[μg/℃] ・・・(18)
吸着後SO分布(t)[μg/℃]=最終吸着SO分布(t−1)[μg/℃]+新規吸着SO分布(t)[μg/℃] ・・・(19)
The estimating unit M4 subsequently substitutes the calculated newly adsorbed SO 2 distribution and the final adsorbed SO 2 distribution (t−1) in the t−1 th cycle into the following equation (18), 2 Calculate the distribution. In addition, the newly adsorbed SO 3 distribution calculated and the adsorbed SO 3 distribution (t-1) estimated by the estimation unit M6 in the (t-1) th cycle are substituted into the following equation (19) to obtain SO 3 after adsorption Calculate the distribution.
SO 2 distribution after adsorption (t) [μg / ° C] = final adsorption SO 2 distribution (t-1) [μg / ° C] + new adsorption SO 2 distribution (t) [μg / ° C] (18)
SO 3 distribution after adsorption (t) [μg / ° C] = final adsorption SO 3 distribution (t-1) [μg / ° C] + new adsorption SO 3 distribution (t) [μg / ° C] (19)

図3に戻り、推定部M5は、推定部M4で推定した吸着後SOx分布に基づいて、DOC22aから新たに脱離するSOxの量(以下「新規脱離SOx量」ともいう。)を推定する。   Referring back to FIG. 3, the estimating unit M5 estimates the amount of SOx to be newly desorbed from the DOC 22a (hereinafter, also referred to as "newly desorbed SOx amount") based on the SOx distribution after adsorption estimated by the estimating unit M4. .

推定部M5は、具体的には先ず、DOC22aから脱離することのできるSOxの総量(以下「脱離可能総SOx量」ともいう。)を推定する。脱離可能総SOx量について、SOを例とした図10を参照しながら説明する。図10は、脱離可能総SOx量を説明するための図である。なお、この図の横軸のTLおよびTHは、上述した下限温度および上限温度に、それぞれ相当している。この図に示すように、脱離可能総SOx量は、現在床温Tよりも低温側で、尚且つ、下限温度TLよりも高温側の吸着後SOx分布の面積に相当する。 Specifically, the estimation unit M5 first estimates the total amount of SOx (hereinafter, also referred to as "removable total SOx amount") that can be eliminated from the DOC 22a. The removable total SOx amount will be described with reference to FIG. 10 taking SO 2 as an example. FIG. 10 is a diagram for explaining the removable total SOx amount. Note that TL and TH on the horizontal axis of this figure respectively correspond to the lower limit temperature and the upper limit temperature described above. As shown in this figure, detachable total SOx amount, the current low temperature side than the floor temperature T 2, besides, than the lower limit temperature TL corresponds to the area of the post-adsorption SOx distribution of the high temperature side.

DOC22aから脱離することのできるSOの総量、即ち、脱離可能総SO量は、現在床温Tを変数とする次式(20)により算出される。DOC22aから脱離することのできるSOの総量、即ち、脱離可能総SO量は、現在床温Tを変数とする次式(21)により算出される。 The total amount of SO 2 that can be desorbed from the DOC 22a, that is, the total removable amount of SO 2 is calculated by the following equation (20) with the current bed temperature T 2 as a variable. The total amount of SO 3 which can be desorbed from the DOC 22a, that is, the total removable amount of SO 3 is calculated by the following equation (21) with the current bed temperature T 2 as a variable.

Figure 0006547779
Figure 0006547779

推定部M5は、算出した脱離可能総SO量を次式(22)に代入して、第t番目のサイクルにおいてDOC22aから新たに脱離するSOの量、即ち、新規脱離SO量を算出する。また、算出した脱離可能総SO量を次式(23)に代入して、第t番目のサイクルにおいてDOC22aから新たに脱離するSOの量、即ち、新規脱離SO量を算出する。なお、式(22)および(23)の脱離率には設定値が使用され、例えばECU30のROMに記憶させておくことができる。
新規脱離SO量(T(t),t)[μg]=脱離可能総SO量[μg]×脱離率 ・・・(22)
新規脱離SO量(T(t),t)[μg]=脱離可能総SO量[μg]×脱離率 ・・・(23)
The estimating unit M5 substitutes the calculated total removable amount of SO 2 into the following equation (22), and newly releases the amount of SO 2 desorbed from the DOC 22a in the t-th cycle, that is, newly desorbed SO 2 Calculate the quantity. Also, the calculated total removable SO 3 amount is substituted into the following equation (23) to calculate the amount of newly released SO 3 from the DOC 22 a in the t-th cycle, that is, the amount of newly removed SO 3 Do. In addition, a setting value is used for the desorption rate of Formula (22) and (23), for example, it can be memorize | stored in ROM of ECU30.
New amount of desorbed SO 2 (T 2 (t), t) [μg] = desorbable total amount of SO 2 [μg] × desorption rate (22)
New amount of desorbed SO 3 (T 2 (t), t) [μg] = desorbable total SO 3 amount [μg] × desorption rate (23)

次に、現在床温Tを用いた新規脱離SOx量の推定手法の問題点について説明する。上述した手法では、脱離可能総SOx量は、吸着後SOx分布における下限温度TLと現在床温Tの間の面積として表される。しかしながら、図10に示す吸着後SOx分布は、床温の上昇速度を一定とした条件を前提にしている。このため、床温の上昇速度が変化する条件においては、脱離可能総SOx量を精度よく推定できないおそれがある。 Next, a description will be given problems of estimation method of the current new desorption SOx amount using the bed temperature T 2. In the method described above, removable total SOx amount is expressed as the area between the current and the lower limit temperature TL in the adsorption after SOx distribution floor temperature T 2. However, the post-adsorption SOx distribution shown in FIG. 10 is premised on the condition that the rate of increase of the bed temperature is constant. For this reason, there is a possibility that the total removable SOx amount can not be accurately estimated under the condition that the rising speed of the bed temperature changes.

そこで、実施の形態1のシステムでは、現在床温Tの値だけでなく現在床温Tへの変化度合も考慮した新規脱離SOx量の推定手法を採用している。以下、新規脱離SOx量の推定手法の具体的な内容について詳細に説明する。 Therefore, in the system of the first embodiment adopts a method of estimating the current new desorption SOx amount change degree also considered to a value just not current bed temperature T 2 of the floor temperature T 2. Hereinafter, the specific contents of the method for estimating the amount of newly released SOx will be described in detail.

DOC22aに吸着しているSOxには、DOC22aのコート材22cの表層付近に吸着しているものとコート材22cの奥層付近に吸着しているものとがある。コート材22cの表層付近に吸着しているSOxは比較的低いエネルギで脱離するのに対して、コート材22cの奥層付近に吸着しているSOxは、脱離するために比較的高いエネルギが必要となる。このような知見を前提に吸着後SOx分布を考察すると、脱離時床温の低温側では主としてコート材22cの表層付近に吸着しているSOxが脱離可能となり、脱離時床温の高温側では主としてコート材22cの奥層付近に吸着しているSOxが脱離可能となると考えられる。   The SOx adsorbed to the DOC 22a includes those adsorbed near the surface layer of the coating material 22c of the DOC 22a and those adsorbed near the deep layer of the coating material 22c. While SOx adsorbed near the surface layer of the coating material 22c is desorbed with a relatively low energy, SOx adsorbed near the depth layer of the coating material 22c has a relatively high energy to desorb Is required. If SOx distribution after adsorption is considered on the premise of such knowledge, SOx adsorbed mainly in the vicinity of the surface of the coating material 22c can be desorbed on the low temperature side of the bed temperature at desorption, and the bed temperature at desorption is high On the side, it is considered that SOx adsorbed mainly in the vicinity of the depth of the coating material 22c can be desorbed.

ここで、DOC22aの内部の温度分布は、流入するガスからの受熱によって複雑に変化する。より詳しくは、DOC22aのコート材22cの表層は、流入するガスに直接晒される位置であるため、流入するガスの温度変化に対する感度が高い。これに対して、DOC22aのコート材22cの奥層は、流入するガスに直接晒されない位置であるため、流入するガスの温度変化に対する感度が低い。このため、吸着後SOx分布を用いて推定された脱離可能SOx量は、現在床温Tが低温側の値であるほど、実際の脱離可能SOx量から乖離すると考えられる。そこで、温度変化の影響を現在床温Tに反映させる補正を施すことが考えられるが、現在床温Tの低温側を基準に一律に補正を施すと、現在床温Tの高温側において補正が過剰になるおそれがある。 Here, the temperature distribution inside the DOC 22a changes in a complex manner due to the heat received from the inflowing gas. More specifically, since the surface layer of the coating material 22c of the DOC 22a is a position directly exposed to the inflowing gas, the sensitivity to the temperature change of the inflowing gas is high. On the other hand, since the depth of the coating material 22c of the DOC 22a is a position not directly exposed to the inflowing gas, the sensitivity to the temperature change of the inflowing gas is low. Thus, removable SOx amount estimated using the SOx distribution after adsorption, the higher the current floor temperature T 2 is the value of the low temperature side is considered to be deviate from the actual eliminable SOx amount. Therefore, it is conceivable to apply a correction to reflect the influence of temperature changes on the current floor temperature T 2, when subjected to uniform the correction based on the current low-temperature side of the bed temperature T 2, the current high-temperature side of the bed temperature T 2 Correction may be excessive.

そこで、実施の形態1のシステムでは、以下に示す制御ロジックを用いて、脱離可能総SOx量の推定に用いる現在床温Tを補正することとしている。図11は、補正後現在床温T´を算出するための制御ロジックを示す機能ブロック図である。この図に示す補正部M30は、推定部M3の一部として構成される機能ブロックであり、ECU30により実現される。なお、以下の説明では、補正前の現在床温Tを補正前現在床温Tと称し、補正後の現在床温Tを補正後現在床温T´と称することとする。 Therefore, in the system of the first embodiment, using the control logic described below, it is set to be currently corrected bed temperature T 2 to be used to estimate the removable total SOx amount. FIG. 11 is a functional block diagram showing control logic for calculating the current bed temperature T 2 ′ after correction. The correction unit M30 shown in this figure is a functional block configured as a part of the estimation unit M3, and is realized by the ECU 30. In the following description, it referred to as the uncorrected current current bed temperature T 2 before correcting the bed temperature T 2, it is assumed that the corrected current bed temperature T 2 of the corrected current referred to as bed temperature T 2 '.

この図に示すように、補正部M30は、温度変化量算出部M31と、温度補正係数算出部M32と、下限ガード部M33と、補正値算出部M34と、補正後現在床温算出部M35と、を備えている。算出部M31には、サイクル毎に補正前現在床温Tが入力される。入力される補正前現在床温Tは、DOC22aの代表温度として、温度センサ34によって検出されるDOC22aの出口温度が用いられる。なお、補正前現在床温Tは、DOC22aの内部の温度を直接検出した値を用いてもよいし、また、公知の手法を用いて推定されたDOC22aの床温を用いてもよい。算出部M31では、第t番目のサイクルの現在床温T(t)と第(t−1)番目のサイクルの現在床温T(t−1)の差分値、つまり現在床温Tの今回値と前回値の差分値が温度変化量ΔTとして算出される。なお、温度変化量ΔTは、補正前現在床温Tの過去値から今回値への変化度合を表す値であれば上記の差分値に限定されない。例えば、補正前現在床温Tに重畳するノイズの影響を排除するために、現在床温T(t−1)と現在床温T(t−2)との平均値を算出し、現在床温T(t)と当該平均値との差分値を温度変化量ΔTとしてもよい。また、他の公知のなまし処理を温度変化量ΔTの算出に適用してもよい。 As shown in this figure, the correction unit M30 includes a temperature change amount calculation unit M31, a temperature correction coefficient calculation unit M32, a lower limit guard unit M33, a correction value calculation unit M34, and a corrected current floor temperature calculation unit M35. And. The calculation unit M31 is before correction for each cycle currently bed temperature T 2 is input. Uncorrected current floor temperature T 2 which is input, as a representative temperature of DOC22a, outlet temperature of DOC22a detected by the temperature sensor 34 is used. Incidentally, the pre-correction current bed temperature T 2 are, may be used directly detected value the temperature inside the DOC22a, may also be used bed temperature of DOC22a estimated using known techniques. The calculation unit M31, the current difference value between floor temperature T 2 (t-1) of the t-th cycle of the current bed temperature T 2 (t) and the (t-1) th cycle, i.e. the current bed temperature T 2 The difference value between the present value and the previous value is calculated as the temperature change amount ΔT. The temperature change amount ΔT is not limited to the above difference value as long as it represents a degree of change from the past value of the current bed temperature T 2 before correction to the current value. For example, in order to eliminate the influence of noise superimposed uncorrected current floor temperature T 2, the average value of the current bed temperature T 2 and (t-1) and the current bed temperature T 2 (t-2), The difference value between the current bed temperature T 2 (t) and the average value may be taken as the temperature change amount ΔT. In addition, another known smoothing process may be applied to the calculation of the temperature change amount ΔT.

算出された温度変化量ΔTは、ガード部M33に入力される。ガード部M33では、固定値ゼロと温度変化量ΔTとの最大値選択によって、温度変化量ΔTが下限値ゼロでガードされる。   The calculated temperature change amount ΔT is input to the guard unit M33. In the guard portion M33, the temperature change amount ΔT is guarded at the lower limit value zero by selecting the fixed value zero and the maximum value of the temperature change amount ΔT.

算出部M32では、補正前現在床温Tの入力を受けて温度補正係数Kを算出する。図12は、補正前現在床温Tに温度補正係数Kを関連付けたマップの一例を示している。温度補正係数Kは、例えば図12に示すマップから算出することができる。このマップでは、補正前現在床温Tが400℃より小さい領域では、温度補正係数Kが一定値(正値)に設定され、500℃より大きい領域では、温度補正係数Kがゼロに設定されている。また、このマップでは、補正前現在床温Tが400℃から500℃の間において、補正前現在床温Tが大きいほど温度補正係数Kが小さくなるように設定されている。これにより、温度補正係数Kは、補正前現在床温Tが大きくなるに従い単調非増加で小さくなるように変化する。なお、温度補正係数Kの算出は、図12に示すマップを用いる方法に限られない。すなわち、補正前現在床温Tが大きくなるに従い単調非増加で小さくなる傾向が規定された他のマップを用いる構成でもよい。 The calculation unit M32, receives the uncorrected current inputs bed temperature T 2 calculates the temperature correction coefficient K. Figure 12 shows an example of a map that associates a temperature correction coefficient K before correction current to the bed temperature T 2. The temperature correction coefficient K can be calculated, for example, from the map shown in FIG. In this map, the temperature correction coefficient K is set to a constant value (positive value) in a region where the current bed temperature T 2 before correction is smaller than 400 ° C. The temperature correction coefficient K is set to zero in a region larger than 500 ° C. ing. Further, in this map, the uncorrected current floor temperature T 2 is in between 500 ° C. from 400 ° C., as the temperature correction coefficient K current is large bed temperature T 2 before correction is set to be smaller. As a result, the temperature correction coefficient K changes so as to be monotonically non-increasing as the current bed temperature T 2 before correction increases. The calculation of the temperature correction coefficient K is not limited to the method using the map shown in FIG. Namely, before correction may be configured to use other maps smaller tendency defined by monotone nonincreasing accordance currently bed temperature T 2 becomes large.

算出部M34には、温度補正係数Kと温度変化量ΔTが入力される。算出部M34では、温度変化量ΔTに温度補正係数Kを乗算することにより、補正値(K×ΔT)が算出される。補正値(K×ΔT)は、補正前現在床温Tが大きいほど、つまり温度補正係数Kが小さいほど小さな値となり、温度補正係数Kがゼロになると補正値(K×ΔT)もゼロとなる。 The temperature correction coefficient K and the temperature change amount ΔT are input to the calculation unit M34. In the calculation unit M34, a correction value (K × ΔT) is calculated by multiplying the temperature change amount ΔT by the temperature correction coefficient K. The correction value (K × ΔT) becomes smaller as the current bed temperature T 2 before correction becomes larger, that is, as the temperature correction coefficient K becomes smaller. When the temperature correction coefficient K becomes zero, the correction value (K × ΔT) also becomes zero. Become.

算出部M35には、補正前現在床温Tと補正値(K×ΔT)が入力される。算出部M35では、補正前現在床温Tに補正値(K×ΔT)を加算することによって補正後現在床温T´が算出される。これにより、補正前現在床温Tが小さい場合には温度変化量ΔTの反映度合の大きい補正後現在床温T´が算出され、補正前現在床温Tが大きい場合には温度変化量ΔTの反映度合が小さい補正後現在床温T´が算出される。このように、補正部M30の処理によれば、補正前現在床温Tの大きさに応じて温度変化量ΔTの反映度合を変化させることができる。 The calculation unit M35 are uncorrected current bed temperature T 2 and the correction value (K × ΔT) are inputted. In the calculation unit M35, the corrected current bed temperature T 2 ′ is calculated by adding the correction value (K × ΔT) to the current bed temperature T 2 before correction. Thus, pre-correction after a large correction for reflecting the degree of temperature variation ΔT the current floor temperature T 2 'is calculated when the current is small bed temperature T 2, the uncorrected temperature change when the current is large bed temperature T 2 The current bed temperature T 2 ′ after correction with which the degree of reflection of the amount ΔT is small is calculated. Thus, according to the process of the correction unit M30, it is possible to change the reflection degree of the temperature change ΔT in accordance with the magnitude of the correction before the current floor temperature T 2.

なお、補正後現在床温T´を算出する制御ロジックは、上記の機能ブロックの構成に限られない。すなわち、補正前現在床温Tに温度変化量ΔTを反映させる補正を行うことにより補正後現在床温T´を算出する制御ロジックにおいて、温度変化量ΔTの補正前現在床温Tへの反映度合が補正前現在床温Tが大きくなるに従って単調非増加で小さくなるように構成されていればよい。 The control logic for calculating the current bed temperature T 2 ′ after correction is not limited to the configuration of the above functional block. Namely, before correction in the control logic for calculating a corrected current floor temperature T 2 'by performing the current compensation to reflect the temperature variation ΔT in bed temperature T 2, the temperature variation ΔT uncorrected Currently bed temperature T 2 The degree of reflection may be configured so as to be monotonically non-increasing and smaller as the pre-correction current bed temperature T 2 becomes larger.

実施の形態1のシステムでは、上式(20)及び(21)において補正後の現在床温Tが用いられる。これにより、現在床温の低い温度域では温度変化量ΔTの現在床温への反映度合が高められるので、推定された脱離可能SOx量を実際の脱離可能SOx量に近づけることができる。また、現在床温の低い温度域では温度変化量ΔTの現在床温への反映度合が弱められるので、現在床温が過剰に補正されることによって推定された脱離可能SOx量が実際の脱離可能SOx量から乖離することを防ぐことができる。 In the system of the first embodiment, the current floor temperature T 2 of the corrected in the above equation (20) and (21) are used. As a result, in the temperature range where the current bed temperature is low, the degree of reflection of the temperature change amount ΔT on the current bed temperature can be increased, so the estimated removable SOx amount can be made closer to the actual removable SOx amount. In addition, since the degree of reflection of the temperature change amount ΔT on the current bed temperature is weakened in the temperature range where the current bed temperature is low, the removable SOx amount estimated by correcting the current bed temperature excessively is an actual removal It is possible to prevent separation from the amount of releasable SOx.

上式(20)及び(21)において算出された脱離可能SOx量は、上式(22)及び(23)による新規脱離SO量の算出に使用される。これにより、現在床温の変化度合によらず新規脱離SO量を精度よく推定することが可能となる。 The removable SOx amount calculated in the above equations (20) and (21) is used to calculate the amount of newly released SO 2 according to the above equations (22) and (23). This makes it possible to accurately estimate the amount of newly desorbed SO 2 regardless of the degree of change in the current bed temperature.

図3に戻り、推定部M6は、推定部M5で推定した新規脱離SOx量を吸着後SOx分布に反映させて、最終吸着SOx分布を推定する。   Returning to FIG. 3, the estimating unit M6 reflects the amount of newly desorbed SOx estimated by the estimating unit M5 in the post-adsorption SOx distribution to estimate the final adsorbed SOx distribution.

推定部M6は具体的に、推定部M5で推定した新規脱離SOx量の分だけSOxが脱離し、吸着後SOx分布の形状が変形すると仮定して、最終吸着SOx分布(脱離後SOx分布)を推定する。最終吸着SOx分布と吸着後SOx分布の関係について、SOを例とした図13を参照しながら説明する。図13は、最終吸着SOx分布と吸着後SOx分布の関係を説明するための図である。なお、この図の横軸のTLおよびTHは、上述した下限温度および上限温度に、それぞれ相当している。この図に示すように、吸着後SO分布の下限温度TLからの積分値が新規脱離SO量に一致するときの吸着後SO分布の面積、即ち、下限温度TLから温度TdSO2までの面積を、吸着後SOx分布から削った後に残る分布が、最終吸着SO分布となる。 More specifically, assuming that the SOx is desorbed by the amount of the newly desorbed SOx estimated by the estimating unit M5 and the shape of the SOx distribution after adsorption is deformed, the estimation unit M6 determines the final adsorbed SOx distribution (SOx distribution after desorption) Estimate). The relationship between the final adsorbed SOx distribution and the SOx distribution after adsorption will be described with reference to FIG. 13 in which SO 2 is taken as an example. FIG. 13 is a diagram for explaining the relationship between the final adsorbed SOx distribution and the SOx distribution after adsorption. Note that TL and TH on the horizontal axis of this figure respectively correspond to the lower limit temperature and the upper limit temperature described above. As shown in this figure, the area of the post-adsorption SO 2 distribution when the integrated value from the lower limit temperature TL of the post-adsorption SO 2 distribution matches a new desorption SO 2 amount, i.e., from the lower limit temperature TL to a temperature Td SO2 the area, the distribution that remains after shaved from post-adsorption SOx distribution, the final adsorbed SO 2 distribution.

図13の温度TdSO2が床温Tを上回る場合には、DOC22aからSOが全て脱離していることを意味する。これを考慮すると、第t番目のサイクルにおける最終吸着SO分布は床温Tを変数とする次式(24)で表され、第t番目のサイクルにおける最終吸着SO分布は次式(25)で表されることになる。なお、式(25)の温度TdSO3は、吸着後SO分布の下限温度TLからの積分値が新規脱離SO量に一致するときの床温Tに相当している。 When the above temperature Td SO2 floor temperature T 1 of the FIG. 13 means that the SO 2 is all desorbed from DOC22a. Taking this into consideration, the final adsorbed SO 2 distribution in the t-th cycle is expressed by the following equation (24) with the bed temperature T 1 as a variable, and the final adsorbed SO 3 distribution in the t-th cycle is It will be represented by). The temperature Td SO3 of formula (25) corresponds to the bed temperature T 1 of the when the integrated value from the lower limit temperature TL of SO 3 distribution after adsorption to match the new desorption SO 3 amount.

Figure 0006547779
Figure 0006547779

なお、新規脱離SO量と温度TdSO2の関係は次式(26)で表すことができ、新規脱離SO量と温度TdSO3の関係は次式(27)で表すことができる。

Figure 0006547779
The relationship between the novel desorbed SO 2 amount and temperature Td SO2 can be represented by the following formula (26), the relationship between the new desorbed SO 3 content and the temperature Td SO3 can be expressed by the following equation (27).
Figure 0006547779

図3に戻り、推定部M7は、上述したすり抜けSOxのうちDOC22aからSOの状態で排出されるSOxの量(以下「すり抜けSO量」ともいう。)を推定する。 Returning to FIG. 3, the estimation unit M7 estimates the amount of SOx discharged from the DOC 22a in the state of SO 3 among the above-mentioned through-holes SOx (hereinafter, also referred to as “the amount of through SO 3 ”).

図2で説明したように、DOC22aでは貴金属22dに吸着したSOの一部がSOに転化する。この転化がすり抜けSOx中のSOにも起こると仮定して、推定部M7では、すり抜け量と現在床温Tを変数とする次式(28)により、第t番目のサイクルにおけるすり抜けSO量を推定する。なお、すり抜けSOxのうちDOC22aからSOの状態で排出されるSOxの量(以下「すり抜けSO量」ともいう。)は、次式(29)で表すことができる。
すり抜けSO量(すり抜け量(t),T(t))[μg/s]=すり抜けSOx量(t)×SO転化率map(T(t)) ・・・(28)
すり抜けSO量(すり抜け量(t),T(t))[μg/s]=すり抜けSOx量(t)×{1−SO転化率map(T(t))} ・・・(29)
As described in FIG. 2, in the DOC 22 a, a part of SO 2 adsorbed to the noble metal 22 d is converted to SO 3 . Assuming that this conversion also occurs in SO 2 in slip-through SOx, the estimation unit M 7 calculates the slip-through SO 3 in the t-th cycle according to the following equation (28) using the slip-through amount and the current bed temperature T 2 as variables. Estimate the quantity. The amount of SOx discharged from the DOC 22a in the state of SO 2 among the slipped SOx (hereinafter, also referred to as “the amount of slipped SO 2 ”) can be expressed by the following equation (29).
Amount of slipped SO 3 (amount of slipped (t), T 2 (t)) [μg / s] = amount of slipped SOx (t) × SO 3 conversion map (T 2 (t)) (28)
Amount of slipped SO 2 (amount of slipped (t), T 2 (t)) [μg / s] = amount of slipped SOx (t) × {1-SO 3 conversion map (T 2 (t))} 29)

式(28)および(29)のSO転化率map(T(t))は、第t番目のサイクルにおいて「DOC22aに流入するSOx」のうち、DOC22aからSOの状態で排出されるSOxの割合(即ち、SO転化率)が、DOC22aの現在床温Tによって変わるという特性に基づいて作成されたマップである。図14は、SO転化率mapを説明するための図である。SO転化率mapの特性は、例えば図14に示すように、現在床温Tがある温度域Bにある場合はSO転化率が高くなり、この温度域Bよりも低温側や高温側では、SOからSOへの転化が起こり難くなるというものである。このようなマップは、例えばECU30のROMに記憶させておくことができ、現在床温Tに応じて適宜読み出すことができる。 The SO 3 conversion map (T 2 (t)) in the equations (28) and (29) is the SOx discharged from the DOC 22 a in the SO 3 state out of “SO x flowing into the DOC 22 a” in the t th cycle. The ratio of SO 2 (ie, SO 3 conversion) is a map created based on the characteristic that it changes with the current bed temperature T 2 of DOC 22 a. FIG. 14 is a diagram for explaining the SO 3 conversion map. Characteristics of SO 3 conversion map, for example, as shown in FIG. 14, when in the temperature range B which currently have bed temperature T 2 higher the SO 3 conversion rate, low-temperature side and high temperature side than the temperature range B In this case, the conversion of SO 2 to SO 3 is less likely to occur. Such a map can be memorized for example in the ECU30 in the ROM, a read appropriately according currently bed temperature T 2.

図3に戻り、算出部M8は、DOC22aの床温上昇中にDOC22aから脱離してもよいSOの量(以下「許容脱離SO量」ともいう。)を算出する。許容脱離SO量について、図15を参照して説明する。図15は、許容脱離SO量を説明するための図である。この図に示す制約SO量は、サルフェート白煙に関する制約に相当しており、この図においてはすり抜けSO量と許容脱離SO量の和が制約SO量と等しくなっている。すり抜けSO量と許容脱離SO量の和は、DOC22aの下流におけるSOの量であることから、この和の値が制約SO量よりも小さい値であれば制約が満たされることになる。 Returning to FIG. 3, the calculation unit M8 calculates the amount of SO 3 that may be desorbed from the DOC 22 a during the bed temperature rise of the DOC 22 a (hereinafter, also referred to as “the amount of allowable desorption SO 3 ”). The amount of allowable desorption SO 3 will be described with reference to FIG. FIG. 15 is a diagram for explaining the amount of allowable desorption SO 3 . The amount of restricted SO 3 shown in this figure corresponds to the restriction on sulfate white smoke, and in this figure, the sum of the amount of through SO 3 and the amount of allowable desorption SO 3 is equal to the amount of restricted SO 3 . Since the sum of the through SO 3 amount and the allowable desorption SO 3 amount is the amount of SO 3 downstream of the DOC 22a, if the value of this sum is smaller than the restriction SO 3 amount, the restriction is satisfied. Become.

制約SO量は、第t番目のサイクルにおけるエンジン10の排気流量(ガス流量)を変数とする次式(30)により算出することができる。なお、エンジン10の排気流量は、例えばエアフローメータ32の検出値を用いることができる。
制約SO量(ガス流量(t))[μg/s]=制約SO濃度[ppm]×ガス流量(t)[g/s]÷空気の平均モル質量×SO分子量 ・・・(30)
The amount of restricted SO 3 can be calculated by the following equation (30) with the exhaust flow rate (gas flow rate) of the engine 10 in the t-th cycle as a variable. The exhaust flow rate of the engine 10 can use, for example, a detection value of the air flow meter 32.
Constraint SO 3 amount (gas flow rate (t)) [μg / s] = constraint SO 3 concentration [ppm] × gas flow rate (t) [g / s] ÷ average molar mass of air × SO 3 molecular weight (30 )

従って、この制約SO量とすり抜けSO量を変数とする次式(31)を許容脱離SO量が満たせば、制約が満たされることになる。
許容脱離SO量(制約SO量(ガス流量(t)),すり抜けSO量(t))[μg/s]≦制約SO量(ガス流量(t))[μg/s]−すり抜けSO量(t)[μg/s] ・・・(31)
なお、以下の説明においては、許容脱離SO量(制約SO量(ガス流量(t)),すり抜けSO量(t))を単に許容脱離SO量(t)ともいう。
Therefore, if the allowable desorbed SO 3 amount satisfies the following equation (31) in which the restricted SO 3 amount and the slip-through SO 3 amount are variables, the restriction is satisfied.
Allowable desorption SO 3 amount (constraint SO 3 amount (gas flow rate (t)), slip-through SO 3 amount (t)) [μg / s] ≦ constraint SO 3 amount (gas flow rate (t)) [μg / s] − The amount of SO 3 passing through (t) [μg / s] (31)
In the following description, the allowable desorption SO 3 amount (constraint SO 3 amount (gas flow rate (t)), slip-through SO 3 amount (t)) is also referred to simply as the allowable desorption SO 3 amount (t).

図3に戻り、算出部M9は、PM再生制御中のサルフェート白煙の発生を抑制するための第t番目のサイクルにおける目標床温Ttrgを算出する。目標床温Ttrgについて、図16を参照しながら説明する。図16は、目標床温Ttrgを説明するための図である。なお、この図の横軸のTLおよびTHは、上述した下限温度および上限温度に、それぞれ相当している。この図に示すように、最終吸着SO分布の低温側からの積分値に脱離率を乗じた値が、算出部M8で算出した許容脱離SO量に一致するときの床温Tが目標床温Ttrgに相当する。 Returning to FIG. 3, the calculation unit M9 calculates the target bed temperature Ttrg in the t-th cycle for suppressing the generation of sulfate white smoke during the PM regeneration control. The target bed temperature Ttrg will be described with reference to FIG. FIG. 16 is a diagram for explaining the target bed temperature Ttrg. Note that TL and TH on the horizontal axis of this figure respectively correspond to the lower limit temperature and the upper limit temperature described above. As shown in this figure, the bed temperature T 1 when the value obtained by multiplying the integrated value from the low temperature side of the final adsorbed SO 3 distribution by the desorption rate matches the allowable desorption SO 3 amount calculated by the calculation unit M 8 Corresponds to the target bed temperature Ttrg.

なお、第t番目のサイクルにおける許容脱離SO量と目標床温Ttrgの関係は次式(32)で表すことができる。式(32)の脱離率には設定値が使用され、例えばECU30のROMに記憶させておくことができる。 The relationship between the allowable desorption SO 3 amount and the target bed temperature Ttrg in the t-th cycle can be expressed by the following equation (32). The set value is used for the desorption rate of the equation (32), and can be stored, for example, in the ROM of the ECU 30.

Figure 0006547779
Figure 0006547779

図17を参照して、本実施の形態による効果を説明する。図17は、現在床温の温度補正の効果を説明するためのタイムチャートである。この図の1段目のチャートは、補正前の現在床温Tと補正後の現在床温T´の時間変化をそれぞれ示している。また、2段目のチャートは、補正前の現在床温Tを用いた場合の新規脱離SO量の推定値と実測値をそれぞれ示している。これらのチャートに示すように、現在床温Tの高温側の領域では現在床温Tに対する補正度合が小さくなっている。これにより、現在床温Tの高温側の領域において過剰な補正を抑えて新規脱離SO量の推定値を実測値に近づけることができる。 The effects of the present embodiment will be described with reference to FIG. FIG. 17 is a time chart for explaining the effect of the temperature correction of the current bed temperature. The first stage of the chart of the figure shows the correction before the current floor temperature T 2 of the corrected current time change of bed temperature T 2 ', respectively. The second chart shows the estimated value and the measured value of the newly desorbed SO 3 amount when the current bed temperature T 2 before correction is used. As shown in these charts, in the region of the current high-temperature side of the bed temperature T 2 is a correction degree current for bed temperature T 2 is smaller. This makes it possible to close the currently measured value of the estimated value of the new desorbed SO 3 content by suppressing excessive correction in the high temperature side region of the floor temperature T 2.

なお、上述した実施の形態においては、推定部M1が本発明の「流入SOx量推定手段」に相当し、推定部M2が本発明の「SOx飽和率推定手段」に相当し、推定部M3が本発明の「新規吸着SOx量推定手段」および「すり抜けSOx量推定手段」に相当し、推定部M4が本発明の「吸着後SOx分布推定手段」に相当し、推定部M5が本発明の「新規脱離SOx量推定手段」に相当し、推定部M6が本発明の「最終吸着SOx分布推定手段」に相当し、推定部M7が本発明の「すり抜けSO量推定手段」に相当し、算出部M8が本発明の「許容脱離SO量算出手段」に相当し、算出部M9が本発明の「目標温度算出手段」に相当している。 In the embodiment described above, the estimation unit M1 corresponds to the "inflow SOx amount estimation means" of the present invention, the estimation unit M2 corresponds to the "SOx saturation rate estimation means" of the present invention, and the estimation unit M3 The estimation unit M4 corresponds to the "post-adsorption SOx distribution estimation unit" of the present invention, and the estimation unit M5 corresponds to the "newly adsorbed SOx amount estimation unit" and the "pass through SOx amount estimation unit" of the present invention. The estimating unit M6 corresponds to the "final adsorbed SOx distribution estimating unit" of the present invention, and the estimating unit M7 corresponds to the "through-SO 3 amount estimating unit" of the present invention. calculator M8 corresponds to the "acceptable desorption SO 3 amount calculation means" of the present invention, calculation unit M9 is equivalent to the "target temperature calculation unit" of the present invention.

また、上述した実施の形態においては、現在床温T及び補正前現在床温Tが本発明の「代表温度」に相当し、補正後現在床温Tが本発明の「補正後代表温度」に相当し、温度補正係数Kが本発明の「補正係数」に相当し、温度変化量ΔTが本発明の「補正値」に相当し、算出部M31が本発明の「算出手段」に相当し、算出部M35が本発明の「補正手段」に相当している。 Further, in the embodiment described above, the current corresponds to the "representative temperature" bed temperature T 2 and the uncorrected current floor temperature T 2 the present invention, the corrected current floor temperature T 2 "corrected representative of the present invention The temperature correction coefficient K corresponds to the "correction coefficient" of the present invention, the temperature change amount ΔT corresponds to the "correction value" of the present invention, and the calculation unit M31 corresponds to the "calculation means" of the present invention. The calculation unit M35 corresponds to the "correction unit" of the present invention.

ところで、上述した実施の形態では、燃料添加弁24からの燃料の添加によりPM再生制御を行った。しかしこのPM再生制御を、インジェクタ12からの燃料の噴射(具体的には、メイン噴射よりも後のサブ噴射(例えばポスト噴射))により行ってもよい。この場合は、式(1)の排気添加量を、インジェクタ12からのサブ噴射量に置き換えればよい。
また、上述した実施の形態では、PM再生制御中を例としてDOC22aの床温の目標温度を算出した。しかし、DOC22aからSOxを脱離させる制御をPM再生制御と併せて行うような場合に、この脱離制御中に上述した手法によりDOC22aの床温の目標温度を算出してもよい。このように、上述した目標温度の算出手法は、DOC22aからSOxが脱離する温度域までDOC22aの床温を上昇させる制御一般に適用することができる。
また、上述した実施の形態では、DOC22aとDPF22bを備える排気浄化装置22を例として説明した。しかし、DOC22aにおけるHC等の酸化機能をDPF22bに付与して、排気浄化装置22からDOC22aを省略してもよい。この場合は、上述した目標温度の算出手法を、酸化機能が付与されたDPF22bに適用することで上述した実施の形態と同様の効果を得ることができる。
また、上述した実施の形態ではエンジン10がターボチャージャ16を備えるとしたが、エンジン10がターボチャージャ16を備えていなくてもよい。即ち、上述した目標温度の算出手法は、非過給ディーゼルエンジンのシステムにも適用できる。
By the way, in the embodiment described above, PM regeneration control is performed by the addition of fuel from the fuel addition valve 24. However, the PM regeneration control may be performed by injection of fuel from the injector 12 (specifically, sub injection (for example, post injection) after main injection). In this case, the exhaust gas addition amount of the formula (1) may be replaced with the sub injection amount from the injector 12.
Moreover, in embodiment mentioned above, target temperature of bed temperature of DOC22a was computed taking PM regeneration control as an example. However, when control to release SOx from the DOC 22a is performed in combination with PM regeneration control, the target temperature of the bed temperature of the DOC 22a may be calculated by the method described above during this desorption control. As described above, the calculation method of the target temperature described above can be generally applied to control for raising the bed temperature of the DOC 22a to a temperature range where the DOC 22a releases SOx.
Further, in the embodiment described above, the exhaust gas control apparatus 22 including the DOC 22a and the DPF 22b has been described as an example. However, the DOC 22a may be omitted from the exhaust gas purification device 22 by providing the DPF 22b with an oxidation function such as HC in the DOC 22a. In this case, the same effect as that of the above-described embodiment can be obtained by applying the calculation method of the target temperature described above to the DPF 22b to which the oxidation function is added.
Further, although the engine 10 includes the turbocharger 16 in the above-described embodiment, the engine 10 may not include the turbocharger 16. That is, the calculation method of the target temperature mentioned above is applicable also to the system of a non-supercharged diesel engine.

10 ディーゼルエンジン
12 インジェクタ
20 排気管
22 排気浄化装置
22a DOC
22b DPF
22c コート材
22d 貴金属
24 燃料添加弁
30 ECU
Reference Signs List 10 diesel engine 12 injector 20 exhaust pipe 22 exhaust purification device 22a DOC
22b DPF
22c Coating material 22d Precious metal 24 Fuel addition valve 30 ECU

Claims (7)

ディーゼルエンジンの排気管に設けられる浄化装置の温度を、前記浄化装置からSOxが脱離する温度域の目標温度まで上昇させる昇温制御を実行するエンジン制御装置であって、
所定の制御周期ごとに前記浄化装置の温度の代表値である代表温度を取得する温度取得手段と、
前記浄化装置に流入するSOx量を流入SOx量として前記制御周期ごとに推定する流入SOx量推定手段と、
前記流入SOx量と前記代表温度とを用いて、前記浄化装置から新たに脱離するSOx量を新規脱離SOx量として前記制御周期ごとに推定する新規脱離SOx量推定手段と、
前記新規脱離SOx量を用いて、前記浄化装置の温度上昇中の各温度において前記浄化装置に最終的に吸着するSOx量を前記代表温度に関連付けたグラフとして表される最終吸着SOx分布を前記制御周期ごとに推定する最終吸着SOx分布推定手段と、
前記最終吸着SOx分布と許容脱離SO量とを用いて、前記目標温度を前記制御周期ごとに算出する目標温度算出手段と、を備え、
前記新規脱離SOx量推定手段は、
前記代表温度の過去値から今回値への変化度合を表す補正値を算出する算出手段と、
前記代表温度に前記補正値を反映させる補正を行うことにより補正後代表温度を算出する補正手段と、を含み、前記流入SOx量と前記補正後代表温度を用いて前記新規脱離SOx量を推定するように構成され、
前記補正手段は、前記変化度合の前記補正後代表温度への反映度合が、前記代表温度が大きくなるに従って単調非増加で小さくなるように構成されていることを特徴とするエンジン制御装置。
An engine control apparatus that executes temperature increase control to raise the temperature of a purification device provided in an exhaust pipe of a diesel engine to a target temperature in a temperature range where SOx is desorbed from the purification device,
Temperature acquisition means for acquiring a representative temperature which is a representative value of the temperature of the purifier at predetermined control cycles;
Inflow SOx amount estimation means for estimating the amount of SOx flowing into the purification device as the amount of inflow SOx every control cycle;
New desorbed SOx amount estimating means for estimating the amount of SOx newly desorbed from the purifier as the newly desorbed SOx amount for each control cycle using the inflow SOx amount and the representative temperature;
The final adsorbed SOx distribution represented as a graph in which the amount of SOx which is finally adsorbed to the purifier at each temperature rise of the purifier using the newly desorbed SOx amount is shown as a graph associated with the representative temperature Final adsorbed SOx distribution estimation means for estimating for each control period;
Target temperature calculation means for calculating the target temperature for each control cycle using the final adsorption SOx distribution and the allowable desorption SO 3 amount;
The new desorption SOx amount estimating means is
Calculating means for calculating a correction value representing the degree of change from the past value of the representative temperature to the current value;
And correcting means for calculating a representative temperature after correction by performing correction to reflect the correction value on the representative temperature, and estimating the amount of newly desorbed SOx using the amount of inflow SOx and the representative temperature after correction. Configured to
The correction means may be configured such that the degree of reflection of the degree of change on the corrected representative temperature decreases monotonically and non-increasingly as the representative temperature increases.
前記補正手段は、
前記代表温度が大きくなるに従って単調非増加で小さくなる補正係数を算出し、
前記補正値に前記補正係数を乗じた値を前記代表温度に加算することにより前記補正後代表温度を算出する
ように構成されていることを特徴とする請求項1に記載のエンジン制御装置。
The correction means is
Calculating a correction coefficient that decreases monotonically and not as the representative temperature increases;
The engine control apparatus according to claim 1, wherein the representative temperature after correction is calculated by adding a value obtained by multiplying the correction value by the correction coefficient to the representative temperature.
前記算出手段は、前記代表温度の今回値と前回値の差分値を前記補正値として算出するように構成されていることを特徴とする請求項1又は2に記載のエンジン制御装置。   The engine control device according to claim 1, wherein the calculation unit is configured to calculate a difference between the current value of the representative temperature and the previous value as the correction value. 前記浄化装置の温度上昇中の各温度において前記浄化装置に吸着するSOx量を前記代表温度に関連付けたグラフとして表される吸着SOx分布と、前記浄化装置の温度上昇中の各温度において前記浄化装置に吸着するSOx最大量を前記代表温度に関連付けたグラフとして表される飽和SOx分布と、を用いて、前記浄化装置におけるSOx飽和率を前記制御周期ごとに推定するSOx飽和率推定手段と、
前記流入SOx量と前記SOx飽和率とを用いて、前記浄化装置に流入して前記浄化装置に新たに吸着するSOx量を新規吸着SOx量として前記制御周期ごとに推定する新規吸着SOx量推定手段と、
前記新規吸着SOx量を用いて、前記浄化装置に新たなSOxが吸着した後の前記吸着SOx分布を吸着後SOx分布として前記制御周期ごとに推定する吸着後SOx分布推定手段と、を備え、
前記新規脱離SOx量推定手段は、前記吸着後SOx分布と前記代表温度とを用いて、前記新規脱離SOx量を前記制御周期ごとに推定するように構成されていることを特徴とする請求項1乃至3の何れか1項に記載のエンジン制御装置。
The adsorbed SOx distribution represented as a graph in which the amount of SOx adsorbed to the purifier at each temperature rise of the purifier is associated with the representative temperature, and the purifier at each temperature during the temperature rise of the purifier SOx saturation ratio estimation means for estimating the SOx saturation ratio in the purifier at each control cycle using a saturated SOx distribution represented as a graph in which the maximum amount of SOx adsorbed to the SOx is associated with the representative temperature;
New adsorbed SOx amount estimating means for estimating the amount of SOx which flows into the purifier and is newly adsorbed to the purifier using the inflow SOx amount and the SOx saturation rate as a new adsorbed SOx amount for each control cycle When,
Post-adsorption SOx distribution estimating means for estimating the adsorbed SOx distribution after the new SOx is adsorbed to the purification device as the post-adsorption SOx distribution for each control cycle using the newly adsorbed SOx amount;
The novel desorbed SOx amount estimating means is configured to estimate the amount of the newly desorbed SOx for each of the control cycles using the SOx distribution after adsorption and the representative temperature. The engine control device according to any one of Items 1 to 3.
前記新規吸着SOx量を用いて、前記浄化装置に流入して前記浄化装置に吸着することなくすり抜けるSOx量をすり抜けSOx量として前記制御周期ごとに推定するすり抜けSOx量推定手段と、
前記浄化装置においてSOに転化するSOの転化率と前記代表温度との関係を表した転化率マップと、今回の推定サイクルにおける前記代表温度と、前記すり抜けSOx量と、を用いて、前記浄化装置にSOxの状態で流入して前記浄化装置に吸着することなくすり抜けてSOの状態で排出されるSO量をすり抜けSO量として前記制御周期ごとに推定するすり抜けSO量推定手段と、
サルフェート白煙に関する制約に相当する前記浄化装置の下流におけるSO量と前記すり抜けSO量とを用いて、前記浄化装置から脱離することが許されるSO量を前記許容脱離SO量として前記制御周期ごとに算出する許容脱離SO量算出手段と、
をさらに備えることを特徴とする請求項4に記載のエンジン制御装置。
A slipped SOx amount estimating unit that estimates the SOx amount that flows into the purification device and slips without being adsorbed to the purification device using the newly adsorbed SOx amount as the slipped SOx amount for each control cycle;
The conversion map representing the relationship between the conversion rate of SO 2 to be converted to SO 3 in the purification device and the representative temperature, the representative temperature in the present estimation cycle, and the amount of SOx passed through, slipped SO 3 amount estimating means for estimating for each of the control period as the SO 3 content slipped through SO 3 amount discharged in the form of SO 3 to pass through without the purifying device and flows in the form of SOx adsorbed to the purifier When,
Using the SO 3 content slipping said the SO 3 content in the downstream of the purification device corresponding to constraints on sulfate white smoke, the purifying device wherein the SO 3 amount that is allowed to detach from the allowable desorption SO 3 weight And an allowable desorbed SO 3 amount calculating means which is calculated for each control cycle as
The engine control device according to claim 4, further comprising:
前記温度取得手段は、前記排気管における前記浄化装置の下流側に流れたガスの温度を前記代表温度として取得するように構成されていることを特徴とする請求項1乃至5の何れか1項に記載のエンジン制御装置。   The said temperature acquisition means is comprised so that the temperature of the gas which flowed to the downstream of the said purification apparatus in the said exhaust pipe may be acquired as said representative temperature, The said any one of the Claims 1 to 5 characterized by the above-mentioned. The engine control device according to claim 1. 前記浄化装置は、前記排気管を流れる微粒子を捕集するフィルタを含み、
前記目標温度まで上昇させる制御を、前記フィルタに捕集された微粒子量の推定値が除去要求量に到達したときに開始することを特徴とする請求項1乃至6の何れか1項に記載のエンジン制御装置。
The purification device includes a filter that collects particulates flowing through the exhaust pipe,
The control according to any one of claims 1 to 6, wherein the control to raise the temperature to the target temperature is started when the estimated value of the amount of particulates collected by the filter reaches a removal requirement amount. Engine control unit.
JP2017020560A 2017-02-07 2017-02-07 Engine control unit Expired - Fee Related JP6547779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017020560A JP6547779B2 (en) 2017-02-07 2017-02-07 Engine control unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017020560A JP6547779B2 (en) 2017-02-07 2017-02-07 Engine control unit

Publications (2)

Publication Number Publication Date
JP2018127921A JP2018127921A (en) 2018-08-16
JP6547779B2 true JP6547779B2 (en) 2019-07-24

Family

ID=63173837

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017020560A Expired - Fee Related JP6547779B2 (en) 2017-02-07 2017-02-07 Engine control unit

Country Status (1)

Country Link
JP (1) JP6547779B2 (en)

Also Published As

Publication number Publication date
JP2018127921A (en) 2018-08-16

Similar Documents

Publication Publication Date Title
CN110671177B (en) DPF regeneration method and device
EP3239484B1 (en) EXHAUST PURIFICATION SYSTEM AND METHOD FOR RESTORING NOx PURIFICATION CAPACITY
JP2004076589A (en) Filter control method and device
JP2004270522A (en) Exhaust emission control device for engine
JP4574460B2 (en) Exhaust gas purification device for internal combustion engine
US20130298529A1 (en) System amd method for controlling an after-treatment component of a compression-ignition engine
CN107407182B (en) Exhaust gas purification device and control method thereof
JP2006316726A (en) Particulate deposit quantity calculating device
JP7206756B2 (en) Exhaust gas purification system for internal combustion engine
JP6547779B2 (en) Engine control unit
JP2016133064A (en) Exhaust emission control system
CN107407180B (en) NOx absorption amount estimation device and NOx absorption amount estimation method
JP6515576B2 (en) Exhaust purification system
JP2004132358A (en) Filter control device
JP2004293413A (en) Exhaust emission control system
JP6319282B2 (en) Engine control device
JP6418014B2 (en) Exhaust purification system
JP6806025B2 (en) Engine control unit
WO2016117568A1 (en) EXHAUST GAS PURIFICATION SYSTEM, AND NOx PURIFICATION CAPACITY RESTORATION METHOD
JP7122873B2 (en) Exhaust gas temperature control method and exhaust gas purification device
CN110945218B (en) Exhaust gas purification system
JP2015017516A (en) Exhaust emission control device for internal combustion engine
US11852088B2 (en) Method, computing unit, and computer program for determining an amount of hydrocarbons in an exhaust gas of a lean-operation internal-combustion engine
JP6424618B2 (en) Exhaust purification system
US8806852B2 (en) Method for controlling regeneration within an after-treatment component of a compression-ignition engine

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180827

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190529

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190610

R151 Written notification of patent or utility model registration

Ref document number: 6547779

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees