JP6318577B2 - Sealing part manufacturing apparatus and manufacturing method - Google Patents

Sealing part manufacturing apparatus and manufacturing method Download PDF

Info

Publication number
JP6318577B2
JP6318577B2 JP2013242447A JP2013242447A JP6318577B2 JP 6318577 B2 JP6318577 B2 JP 6318577B2 JP 2013242447 A JP2013242447 A JP 2013242447A JP 2013242447 A JP2013242447 A JP 2013242447A JP 6318577 B2 JP6318577 B2 JP 6318577B2
Authority
JP
Japan
Prior art keywords
heating
seal
pressure
heating temperature
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013242447A
Other languages
Japanese (ja)
Other versions
JP2015100976A (en
Inventor
泰元 金
泰元 金
澤田 康宏
康宏 澤田
西山 政充
政充 西山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2013242447A priority Critical patent/JP6318577B2/en
Publication of JP2015100976A publication Critical patent/JP2015100976A/en
Application granted granted Critical
Publication of JP6318577B2 publication Critical patent/JP6318577B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Lining Or Joining Of Plastics Or The Like (AREA)
  • Sealing Battery Cases Or Jackets (AREA)

Description

本発明は、フィルム外装電池等のシール部品の製造装置及び製造方法に関する。   The present invention relates to a manufacturing apparatus and a manufacturing method for sealing parts such as a film-clad battery.

特許文献1には、シール部品(被シール物)のシール部を圧着した状態でヒータにより加熱することによりシール部を熱融着して封緘するインパルス式のヒートシーラーが記載
されている。
Patent Document 1 describes an impulse heat sealer in which a seal part is sealed by heat-sealing by heating with a heater in a state where a seal part of a sealing component (a sealed object) is crimped.

上記熱融着による封止工程では、例えば特許文献1に記載のように、封止部分を圧着させつつヒータにより所定の加熱時間、加熱することによって封止部分が熱融着により封緘される。加熱時間や加熱温度は、一般的に、予め設定された一定の時間及び一定の温度が用いられる。   In the sealing step by heat fusion, for example, as described in Patent Document 1, the sealing portion is sealed by heat fusion by heating the sealing portion with a heater for a predetermined heating time while pressing the sealing portion. In general, a predetermined time and a constant temperature are used as the heating time and the heating temperature.

特開2009−6604号公報JP 2009-6604 A

しかしながら、実際の生産ラインでは、単位時間当たりのシール数の増減により封緘動作の開始時期における加熱温度が相違するため、加熱温度を所定の狙い温度に一定時間保持する場合、シール部に与えられるトータルの加熱量にばらつきを生じる。例えば、単位時間当たりのシール数が多い場合には、ヒーターが十分に冷却されないまま次の封緘動作が開始されるために、封緘動作の開始直後から加熱温度が比較的高くなるために、加熱量が過大となり、逆に、生産ラインの稼働開始直後や単位時間当たりのシール数が少ない場合には、ヒーターが十分に冷却された状態で次の封緘動作が開始されるために、封緘動作の開始直後の加熱温度が比較的低くなり、加熱量が少なくなり易い。このように、シール部に与えられるトータルの加熱量が生産ラインの稼働状況に応じて左右されるために、封止品質(厚さ、シール強度)が安定しない。   However, in an actual production line, the heating temperature at the start timing of the sealing operation differs depending on the increase / decrease in the number of seals per unit time. Therefore, when the heating temperature is held at a predetermined target temperature for a certain period of time, the total given to the seal portion The amount of heating varies. For example, when the number of seals per unit time is large, the next sealing operation is started without sufficiently cooling the heater, and the heating temperature becomes relatively high immediately after the start of the sealing operation. On the other hand, if the number of seals per unit time is small immediately after the production line starts operation, the sealing operation starts because the next sealing operation starts with the heater sufficiently cooled. Immediately after the heating temperature becomes relatively low, the amount of heating tends to decrease. Thus, since the total amount of heating given to the seal portion depends on the operation status of the production line, the sealing quality (thickness, seal strength) is not stable.

本発明は、このような事情に鑑みてなされたものである。すなわち、本発明は、シール部品のシール部を圧着する圧着部と、上記シール部を加熱する加熱部と、を有し、上記圧着部により上記シール部を圧着しつつ上記加熱部により上記シール部を加熱することにより、上記シール部を熱融着するシール部品の製造に関する。 The present invention has been made in view of such circumstances. That is, the present invention includes a crimping part for crimping a seal portion of the seal part has a heating unit for heating the sealing portion, the sealing portion by the heating unit while crimping the sealing portion by the crimping portion It is related with manufacture of the sealing component which heat-seal | fuses the said seal part by heating.

そして本発明では、上記加熱部によるシール部の加熱温度を検出し、上記圧着部により上記シール部が圧着していることを検出し、上記圧着部が上記シール部を圧着している間の単位時間毎の上記加熱温度を積算して加熱温度積算値を算出し、上記加熱温度積算値が所定の閾値を超えた時点で、上記圧着部による上記シール部の圧着を解除する、ことを特徴としている。 And in this invention, the heating temperature of the seal part by the said heating part is detected, it detects that the said seal part is crimped | bonded by the said crimping | compression-bonding part, and the unit during the said crimping | crimped part crimps | bonds the said seal part the heating temperature of each time to calculate an integrated to heating temperature integrated value, when the heating temperature integrated value exceeds a predetermined threshold value, to release the crimping of the seal portion by the crimping portion, as characterized by Yes.

シール部が適正に圧着されている間の加熱温度を積算することによって、実際にシール部に印加される熱量を加熱温度積算値として精度良く求めることができる。従って、この加熱温度積算値が閾値を超えた時点で圧着を解除することによって、加熱開始時の温度にかかわらず、実際にシール部に印加されるトータルの加熱量を均一化・適正化することができる。   By accumulating the heating temperature while the seal portion is properly crimped, the amount of heat actually applied to the seal portion can be accurately obtained as the heating temperature integrated value. Therefore, by releasing the pressure bonding when this heating temperature integrated value exceeds the threshold value, the total heating amount actually applied to the seal part can be made uniform and appropriate regardless of the temperature at the start of heating. Can do.

本発明によれば、圧着されている状況でシール部に与えられたトータルの加熱量に基づいて圧着の解除を行うことで、生産ラインにおける単位時間当たりのシール数の増減に影響されることなく、一定の封止品質を確保することができる。   According to the present invention, by releasing the pressure bonding based on the total amount of heating given to the seal portion in the pressure bonded state, it is not affected by the increase or decrease of the number of seals per unit time in the production line. A certain sealing quality can be ensured.

本発明による製造の対象となるシール部品の一例であるフィルム外装電池を示す分解斜視図。The disassembled perspective view which shows the film-clad battery which is an example of the sealing component used as the object of manufacture by this invention. 同じくフィルム外装電池を示す斜視図。The perspective view which similarly shows a film exterior battery. 上記フィルム外装電池を示す図2のA−A’線に沿う断面図。Sectional drawing which follows the A-A 'line of FIG. 2 which shows the said film-clad battery. 上記フィルム外装電池のラミネートフィルム同士を熱融着する部分を示す断面対応図。The cross-sectional view which shows the part which heat-seal | laminates the laminate films of the said film-clad battery. 上記フィルム外装電池のラミネートフィルムの間に端子が介在した熱融着部分を示す断面対応図。The cross-sectional view which shows the heat-fusion part which the terminal interposed between the laminate films of the said film-clad battery. 本発明の一実施例に係る熱融着の制御の流れを示すフローチャート。The flowchart which shows the flow of control of the heat fusion which concerns on one Example of this invention. 加熱温度を狙い温度に一定時間保持する参考例の制御を適用した場合の挙動を示す説明図。Explanatory drawing which shows the behavior at the time of applying the control of the reference example which hold | maintains heating temperature to target temperature for a fixed time. トータルの加熱量に相当する加熱温度積算値を一定とする本実施例の制御を適用した場合の挙動を示す説明図。Explanatory drawing which shows the behavior at the time of applying the control of a present Example which makes the heating temperature integrated value equivalent to the total heating amount constant.

以下、本発明の好ましい実施例を図面に基づいて説明する。初めに図1〜図5を参照して、この発明による製造の対象となるシール部品の一例としてのフィルム外装電池1を説明する。このフィルム外装電池1は、例えばリチウムイオン二次電池であり、図2に示すように、偏平な長方形の外観形状を有し、長手方向の一方の端縁に、導電性金属箔からなる一対の端子2,3を備えている。   Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. First, a film-clad battery 1 as an example of a sealing part to be manufactured according to the present invention will be described with reference to FIGS. The film-clad battery 1 is, for example, a lithium ion secondary battery, and has a flat rectangular external shape as shown in FIG. 2, and a pair of conductive metal foils on one edge in the longitudinal direction. Terminals 2 and 3 are provided.

図1に示すように、フィルム外装電池1は、長方形をなす発電要素4を電解液とともにラミネートフィルムからなる外装体5の内部に収容したものである。上記発電要素4は、詳細には図示していないが、セパレータを介して交互に積層された複数の正極板6(図4参照)および負極板7(図5参照)から構成されている。複数の正極板6は正極端子2に接合されており、同様に、複数の負極板7は負極端子3に接合されている。   As shown in FIG. 1, a film-clad battery 1 is a battery in which a rectangular power generation element 4 is accommodated in an exterior body 5 made of a laminate film together with an electrolytic solution. Although not shown in detail, the power generating element 4 includes a plurality of positive plates 6 (see FIG. 4) and negative plates 7 (see FIG. 5) that are alternately stacked via separators. The plurality of positive electrode plates 6 are joined to the positive electrode terminal 2, and similarly, the plurality of negative electrode plates 7 are joined to the negative electrode terminal 3.

外装体5は、図4及び図5に示すように、熱融着層51と金属層52と保護層53との三層構造を有するラミネートフィルムからなる。中間の金属層52は、例えばアルミニウム箔からなり、その内側面を覆う熱融着層51は、熱融着が可能な合成樹脂例えばポリプロピレン(PP)からなり、金属層52の外側面を覆う保護層53は耐久性に優れた合成樹脂例えばポリエチレンテレフタレート(PET)からなる。なお、さらに多数の層を有するラミネートフィルムを用いることもできる。また、上記の例では金属層52の両面に合成樹脂層をラミネートしているが、金属層52の外側の合成樹脂層は必ずしも必須のものではなく、内側表面にのみ合成樹脂層を備えた構成であってもよい。   As shown in FIGS. 4 and 5, the outer package 5 is made of a laminate film having a three-layer structure including a heat-fusion layer 51, a metal layer 52, and a protective layer 53. The intermediate metal layer 52 is made of, for example, an aluminum foil, and the heat-sealing layer 51 that covers the inner surface thereof is made of a synthetic resin that can be heat-fused, for example, polypropylene (PP), and is a protection that covers the outer surface of the metal layer 52. The layer 53 is made of a synthetic resin having excellent durability, such as polyethylene terephthalate (PET). A laminate film having a larger number of layers can also be used. In the above example, the synthetic resin layers are laminated on both surfaces of the metal layer 52. However, the synthetic resin layer on the outer side of the metal layer 52 is not necessarily essential, and the configuration includes the synthetic resin layer only on the inner surface. It may be.

外装体5は、図1の発電要素4の下面側に配置される1枚のラミネートフィルムと上面側に配置される他の1枚のラミネートフィルムとの2枚構造をなしている。そして、封止工程では、これら2枚のラミネートフィルムの周囲の4辺を重ね合わせて、その周縁のシール部11に沿って互いに熱融着される。具体的には、図4に示すように、ヒーターブロック12により外装体5の周縁のシール部11を圧着し、かつ、このヒーターブロック12によりシール部11を加熱することによって、外装体(ラミネートフィルム)5同士が熱融着される。従って、このヒーターブロック12が、シール部11を圧着する圧着部と、シール部11を加熱する加熱部と、の双方の機能を兼用している。   The outer package 5 has a two-sheet structure of one laminate film disposed on the lower surface side of the power generation element 4 in FIG. 1 and another laminate film disposed on the upper surface side. In the sealing step, the four sides around the two laminate films are overlapped and heat-sealed together along the peripheral seal portion 11. Specifically, as shown in FIG. 4, the outer peripheral body (laminate film) is obtained by crimping the peripheral seal portion 11 of the outer casing 5 with the heater block 12 and heating the sealing section 11 with the heater block 12. 5) are fused together. Therefore, the heater block 12 serves both as a crimping part for crimping the seal part 11 and a heating part for heating the seal part 11.

ここで、長方形をなすフィルム外装電池1の短辺側に位置する一対の端子2,3は、ラミネートフィルムを熱融着する際に、ラミネートフィルムの接合面を通して外部へ引き出されている。従って、端子2,3が存在する部分11Aでは、図5に示すように、ラミネートフィルムと端子2,3とが熱融着される。   Here, the pair of terminals 2 and 3 located on the short side of the rectangular film-clad battery 1 are drawn out through the bonding surface of the laminate film when the laminate film is heat-sealed. Therefore, in the portion 11A where the terminals 2 and 3 are present, the laminate film and the terminals 2 and 3 are heat-sealed as shown in FIG.

なお、図示例では、同じ一方の端縁に一対の端子2,3が並んで配置されているが、一方の端縁に正極端子2を配置し、かつ他方の端縁に負極端子3を配置するようにすることも可能である。   In the illustrated example, a pair of terminals 2 and 3 are arranged side by side on the same edge, but the positive terminal 2 is arranged on one edge and the negative terminal 3 is arranged on the other edge. It is also possible to do so.

上記のフィルム外装電池1の製造手順としては、以下の通りである。まず、正極板6、負極板7およびセパレータを順次積層し、かつ端子2,3をスポット溶接等により取り付けて発電要素4を構成する。次に、この発電要素4を外装体5となるラミネートフィルムで覆い、一辺を残して周囲の3辺を熱融着する。次に、開口する一辺を通して外装体5の内部に電解液を充填し、その後、開口する一辺を熱融着して外装体5を密閉状態とする。これによりフィルム外装電池1が完成するので、次に、適宜なレベルまで充電を行い、この状態で、一定時間、エージングを行う。このエージングの完了後、電圧検査などのために再度充電を行い、出荷される。   As a manufacturing procedure of said film-clad battery 1, it is as follows. First, the power generation element 4 is configured by sequentially stacking the positive electrode plate 6, the negative electrode plate 7, and the separator, and attaching the terminals 2 and 3 by spot welding or the like. Next, the power generating element 4 is covered with a laminate film that becomes the outer package 5 and the surrounding three sides are heat-sealed, leaving one side. Next, the inside of the exterior body 5 is filled with an electrolyte solution through one side that opens, and then the one side that opens is heat-sealed to bring the exterior body 5 into a sealed state. Thus, the film-clad battery 1 is completed. Next, the battery is charged to an appropriate level, and in this state, aging is performed for a predetermined time. After this aging is completed, the battery is charged again for voltage inspection and shipped.

なお、この種のフィルム外装電池1は、複数個を偏平な箱状のケーシング内に収容したバッテリモジュールとして使用される。この場合、バッテリモジュールのケーシング内で複数のフィルム外装電池1が積層された配置となり、例えば、ケーシングの一部またはケーシングとは別個の弾性部材によって、外装体5は、発電要素4の積層方向(発電要素4の主面と直交する方向)に多少押圧された状態となり得る。   In addition, this kind of film-clad battery 1 is used as a battery module which accommodated several in the flat box-shaped casing. In this case, it becomes the arrangement | positioning by which the several film exterior battery 1 was laminated | stacked within the casing of the battery module, for example, the exterior body 5 is the lamination direction ( It can be in a state of being slightly pressed in the direction orthogonal to the main surface of the power generation element 4.

また、図4及び図5にも示すように、ヒーターブロック12によるシール部11への加熱温度を検出する温度センサ13と、ヒーターブロック12による圧着状況を検出する手段として、シール部11の高さ(厚さ)を検知する圧着検知センサ14と、が設けられている。制御部15は、上記の加熱温度及び圧着状況に基づいて、ヒーターブロック12の動作を制御する。なお、圧着検知手段として、上記の圧着検知センサ14を設けるかわりに、より簡易的に、制御部1によるヒーターブロック12への駆動信号(下降信号)から推定するようにしても良い。 4 and 5, the temperature sensor 13 for detecting the heating temperature of the seal portion 11 by the heater block 12 and the height of the seal portion 11 as a means for detecting the crimping state by the heater block 12 are also shown. And a crimp detection sensor 14 for detecting (thickness). The control unit 15 controls the operation of the heater block 12 based on the heating temperature and the pressure bonding state. As crimping detecting means, instead of providing the crimping detection sensor 14 described above, more simply, it may be estimated from the driving signal to the heater block 12 by the control unit 1 5 (downward signal).

図6は、本実施例に係るシール部11の封止工程における制御の流れを示すフローチャートである。ステップS11では、ヒーターブロック12によるシール部11の加圧を開始する。続くステップS12では、圧着検知センサ14による検知されるシール部11の高さ(厚さ)もしくはヒーターブロック12への駆動信号(下降信号)に基づいて、シール部11の圧着が完了したかを判定する。圧着が完了していれば、ステップS13へ進み、ヒーターブロック12によるシール部11の加熱を開始する。   FIG. 6 is a flowchart showing a control flow in the sealing process of the seal portion 11 according to the present embodiment. In step S11, pressurization of the seal portion 11 by the heater block 12 is started. In subsequent step S12, based on the height (thickness) of the seal portion 11 detected by the press detection sensor 14 or a drive signal (down signal) to the heater block 12, it is determined whether or not the crimping of the seal portion 11 has been completed. To do. If the crimping has been completed, the process proceeds to step S13, and heating of the seal portion 11 by the heater block 12 is started.

この加熱では、シール部11の熱融着に最適な狙い温度Ttargetを維持するように制御が行われる。つまり、先ず加熱温度Tを上昇させ、この加熱温度Tが次に述べる実効温度Ttriggerを超えて狙い温度Ttargetまで上昇すると、この狙い温度Ttargetを維持するように制御が行われる。続くステップS14では、加熱温度Tが所定の実効温度Ttriggerを超えたかを判定する。この実効温度Ttriggerは、熱融着が実質的に開始する下限の温度に相当し、上記の狙い温度Ttargetよりも低い温度であり、適合等により予め設定される。つまり、加熱温度Tが実効温度Ttriggerより低い場合には、加熱は行われているものの、その加熱量が熱融着に寄与しないので、後述する加熱温度積算値ΔQへの積算を行わないようにしている。   In this heating, control is performed so as to maintain the target temperature Ttarget optimum for the thermal fusion of the seal portion 11. That is, the heating temperature T is first raised, and when the heating temperature T exceeds the effective temperature Ttrigger described below and rises to the target temperature Ttarget, control is performed so as to maintain the target temperature Ttarget. In a subsequent step S14, it is determined whether the heating temperature T has exceeded a predetermined effective temperature Ttrigger. This effective temperature Ttrigger corresponds to a lower limit temperature at which thermal fusion starts substantially, is lower than the target temperature Ttarget, and is set in advance by adaptation or the like. That is, when the heating temperature T is lower than the effective temperature Ttrigger, although heating is performed, the amount of heating does not contribute to heat fusion, so that the integration to the heating temperature integrated value ΔQ described later is not performed. ing.

加熱温度Tが実効温度Ttriggerを超えると、ステップS15へ進み、加熱温度積算値ΔQを算出する。この加熱温度積算値ΔQは、シール部11が圧着され、かつ、加熱温度Tが実効温度Ttriggerを超えている状況で、単位時間毎の加熱温度Tを積算した値であり、シール部11に与えられた熱融着に寄与する実効の全加熱量に相当する。   When the heating temperature T exceeds the effective temperature Ttrigger, the process proceeds to step S15, and the heating temperature integrated value ΔQ is calculated. This heating temperature integrated value ΔQ is a value obtained by integrating the heating temperature T per unit time in a situation where the seal portion 11 is pressure-bonded and the heating temperature T exceeds the effective temperature Ttrigger, and is given to the seal portion 11. This corresponds to the effective total heating amount that contributes to the thermal fusion performed.

ステップS16では、この加熱温度積算値ΔQが所定の閾値ΔQtargetを超えたか否かを判定する。加熱温度積算値ΔQが閾値ΔQtargetを超えると、シール部11の熱融着が完了したと判断して、ステップS17へ進み、加熱及び加圧を解除して、ステップS18へ進み、空冷による冷却を開始する。   In step S16, it is determined whether or not the heating temperature integrated value ΔQ exceeds a predetermined threshold value ΔQtarget. When the heating temperature integrated value ΔQ exceeds the threshold value ΔQtarget, it is determined that the heat fusion of the seal portion 11 has been completed, the process proceeds to step S17, the heating and pressurization are canceled, the process proceeds to step S18, and cooling by air cooling is performed. Start.

図7は、加熱温度Tを狙い温度Ttargetに保持する保持時間ΔTを一定とした参考例の制御を適用した場合の挙動を示す説明図である。この参考例では、下記の手順で加熱が行われる。
(1)ヒーターブロック12の下降信号による圧着完了後に、加熱を開始する。
(2)加熱温度Tを狙い温度Ttargetまで昇温させる。
(3)狙い温度Ttargetに達した時点から一定の保持時間ΔT、加熱温度を狙い温度Ttargetの近傍に維持させる。
(4)一定の保持時間ΔTを経過した時点で、加熱(温度制御)を停止する。
(5)降温を待ち、所定の冷却温度に達した時点で熱融着完了信号(ヒーターブロック12の上昇信号)を制御部15へ出力する。
FIG. 7 is an explanatory diagram showing the behavior when the control of the reference example is applied in which the holding time ΔT for keeping the heating temperature T at the target temperature Ttarget is constant. In this reference example, heating is performed according to the following procedure.
(1) Heating is started after completion of pressure bonding by the lowering signal of the heater block 12.
(2) Raise the heating temperature T to the target temperature Ttarget.
(3) A constant holding time ΔT and a heating temperature are maintained in the vicinity of the target temperature Ttarget from the time when the target temperature Ttarget is reached.
(4) When a certain holding time ΔT has elapsed, heating (temperature control) is stopped.
(5) Wait for the temperature to drop, and when the predetermined cooling temperature is reached, a heat fusion completion signal (up signal of the heater block 12) is output to the control unit 15.

図7に示すように、対象となるフィルム外装電池1毎に、加圧−昇温−温度維持−加圧解除−空冷のサイクルが順次行われるが、(a)はサイクルタイムが長い、つまり生産ラインの稼働開始時や作業対象となるフィルム外装電池1が少ない場合のように、サイクル間の空冷時間が長い場合であり、(b)はサイクルタイムが短い、つまりフィルム外装電池1が多く、サイクル間の空冷時間が短い場合である。(a)に示すように、サイクルタイムが長い場合、サイクル間の空冷時間が長くなり、加熱開始温度が低くなることから、加熱温度Tが狙い温度Ttargetに達するまでの時間が長くなり、この間にもシール部11が加熱されることから、上記の加熱温度積算値ΔQに対応するシール部11への加熱量ΔQ1(熱融着に寄与するトータルの熱量)が相対的に多くなる。このため、加熱量ΔQ1が多くなり過ぎるおそれがある。一方、サイクルタイムが短い場合には、加熱温度Tが狙い温度Ttargetに達するまでの時間が短いために、相対的にシール部11への加熱量ΔQ2が少なくなる(ΔQ2<ΔQ1)。従って、トータルの加熱量が過小となるおそれがある。
As shown in FIG. 7, a cycle of pressurization-temperature rise-temperature maintenance-pressure release-air cooling is sequentially performed for each target film-covered battery 1, and (a) has a long cycle time, that is, production. This is a case where the air cooling time between cycles is long, such as when there are few film-clad batteries 1 to be operated or when the line is in operation, and (b) is a short cycle time, that is, there are many film-clad batteries 1 and cycles. This is a case where the air cooling time is short. As shown in (a), when the cycle time is long, the air cooling time between cycles becomes long and the heating start temperature becomes low, so the time until the heating temperature T reaches the target temperature Ttarget becomes long. Since the seal portion 11 is heated, the heating amount ΔQ1 (total heat amount contributing to heat fusion) to the seal portion 11 corresponding to the heating temperature integrated value ΔQ is relatively increased. For this reason, there exists a possibility that heating amount (DELTA) Q1 may increase too much. On the other hand, if the cycle time is short, the heating temperature T in order short time to reach the aim temperature Ttarget, heating amount ΔQ2 is reduced to relatively seal portion 11 (ΔQ 2 <ΔQ 1) . Therefore, there is a possibility that the total heating amount becomes excessively small.

このように、保持時間を一定とする参考例では、実際にシール部11に与えられる加熱量にばらつきを生じるために、熱融着の品質が安定せず、シール部11の厚さのばらつきやシール不良等を招くおそれがある。例えば、サイクルタイムが長い場合にあわせて保持時間ΔTを設定した場合、サイクルタイムが短い場合に、シール部11への加熱量(入熱量)が足りなくなり、シール部11のシール不良や厚さが厚くなるといった不具合を生じるおそれがある。   As described above, in the reference example in which the holding time is constant, the amount of heat actually applied to the seal portion 11 varies, so that the quality of heat fusion is not stable, and the thickness of the seal portion 11 varies. There is a risk of causing a sealing failure. For example, when the holding time ΔT is set in accordance with the case where the cycle time is long, when the cycle time is short, the heating amount (heat input amount) to the seal portion 11 is insufficient, and the seal failure or thickness of the seal portion 11 is insufficient. There is a risk of causing problems such as thickening.

図8は、シール部11への加熱量(熱融着に寄与するトータルの入熱量)を一定とした本実施例の制御を適用した場合の挙動を示す説明図である。本実施例では、上述したように、シール部11へ与えられるトータルの熱量に相当する加熱温度積算値ΔQが一定となるように制御している。従って、サイクルタイムが長く、加熱開始温度が低い場合(a)や、サイクルタイムが短く、加熱開始温度が高い場合(b)のいずれの場合であっても、シール部11へのトータルの加熱量ΔQを一定とすることができる。この結果、熱融着のばらつきやシール部11の厚さのばらつきを抑制し、熱融着による封止品質を大幅に向上することができる。   FIG. 8 is an explanatory diagram showing the behavior when the control of the present embodiment is applied in which the amount of heating to the seal portion 11 (total amount of heat input contributing to heat fusion) is constant. In the present embodiment, as described above, the heating temperature integrated value ΔQ corresponding to the total amount of heat given to the seal portion 11 is controlled to be constant. Therefore, the total amount of heat applied to the seal portion 11 regardless of whether the cycle time is long and the heating start temperature is low (a) or the cycle time is short and the heating start temperature is high (b). ΔQ can be made constant. As a result, it is possible to suppress variations in thermal fusion and thickness of the seal portion 11 and greatly improve the sealing quality by thermal fusion.

また本実施例では、加熱温度Tが所定の狙い温度Ttargetに達したら、この狙い温度Ttargetを維持するように加熱温度Tを制御することによって、最も短時間で効率的に適切な熱量をシール部11に与えることができる。   Further, in this embodiment, when the heating temperature T reaches the predetermined target temperature Ttarget, the heating temperature T is controlled so as to maintain the target temperature Ttarget. 11 can be given.

更に、本実施例のようにシール部11が合成樹脂からなる熱融着層51を有するラミネートフィルムの場合、仮に熱融着層51の接着樹脂の融点より低い加熱温度の段階から加熱温度の積算を開始すると、熱融着に寄与しない分の熱量も積算されてしまい、熱融着に必要な熱エネルギーに達する前に加熱温度積算値ΔQが閾値ΔQtargetに達して加熱を解除するおそれがある。本実施例では、加熱温度Tが、熱融着が実質的に行われる所定の実効温度Ttriggerを超えてから加熱温度積算値ΔQの積算を開始しており、つまり加熱温度Tが実効温度Ttriggerに達するまでは加熱中であっても加熱温度積算値ΔQの積算を行わない構成としたので、生産ラインの稼働開始時等のように低い加熱温度から加熱を開始するような場合であっても、加熱開始温度にかかわらずに精度良く加熱温度積算値ΔQを算出することができる。   Further, in the case where the sealing portion 11 is a laminated film having a heat-sealing layer 51 made of a synthetic resin as in the present embodiment, it is assumed that the heating temperature is integrated from the stage of heating temperature lower than the melting point of the adhesive resin of the heat-sealing layer 51. Is started, the amount of heat that does not contribute to heat fusion is also integrated, and there is a possibility that the heating temperature integrated value ΔQ reaches the threshold value ΔQtarget before the heat energy necessary for heat fusion is reached and the heating is released. In the present embodiment, the integration of the heating temperature integrated value ΔQ is started after the heating temperature T exceeds a predetermined effective temperature Ttrigger at which the thermal fusion is substantially performed, that is, the heating temperature T becomes the effective temperature Ttrigger. Even when heating is being performed, the heating temperature integrated value ΔQ is not integrated, so even when heating is started from a low heating temperature, such as when the production line starts operation, The heating temperature integrated value ΔQ can be accurately calculated regardless of the heating start temperature.

1…フィルム外装電池(シール部品)
2,3…端子
4…発電要素
5…外装体
6…正極板
7…負極板
11…シール部
12…ヒーターブロック(圧着部,加熱部)
13…温度センサ(温度検出手段)
14…圧着検知センサ(圧着検出手段)
15…制御部
1 ... Film-clad battery (seal parts)
DESCRIPTION OF SYMBOLS 2, 3 ... Terminal 4 ... Power generation element 5 ... Exterior body 6 ... Positive electrode plate 7 ... Negative electrode plate 11 ... Seal part 12 ... Heater block (crimp part, heating part)
13. Temperature sensor (temperature detection means)
14 ... Crimp detection sensor (crimp detection means)
15 ... Control unit

Claims (5)

シール部品のシール部を圧着する圧着部と、上記シール部を加熱する加熱部と、を有し、上記圧着部により上記シール部を圧着しつつ上記加熱部により上記シール部を加熱することにより、上記シール部を熱融着するシール部品の製造装置において、
上記加熱部による加熱温度を検出する加熱温度検出手段と、
上記圧着部により上記シール部が圧着していることを検出する圧着検出手段と、
上記圧着部が上記シール部を圧着している間の単位時間毎の上記加熱温度を積算して加熱温度積算値を算出する加熱温度積算手段と、
上記加熱温度積算値が所定の閾値を超えた時点で、上記圧着部による上記シール部の圧着を解除する圧着解除手段と、
を有し
上記加熱温度積算手段は、所定の実効温度に達してから、上記加熱温度の積算を開始することを特徴とするシール部品の製造装置。
A pressure-bonding part that pressure-bonds the seal part of the seal component, and a heating part that heats the seal part, and heating the seal part by the heating part while pressure-bonding the seal part by the pressure-bonding part, In an apparatus for manufacturing a seal part for heat-sealing the seal part,
A heating temperature detecting means for detecting a heating temperature by the heating unit;
A crimp detection means for detecting that the seal portion is crimped by the crimp portion;
A heating temperature integrating means for calculating a heating temperature integrated value by integrating the heating temperature per unit time while the crimping portion is crimping the seal portion;
When the heating temperature integrated value exceeds a predetermined threshold value, a pressure-bonding releasing means for releasing the pressure-bonding of the seal part by the pressure-bonding part,
Have,
The apparatus for manufacturing a seal part, wherein the heating temperature integration means starts integration of the heating temperature after reaching a predetermined effective temperature .
シール部品のシール部を圧着する圧着部と、上記シール部を加熱する加熱部と、を有し、上記圧着部により上記シール部を圧着しつつ上記加熱部により上記シール部を加熱することにより、上記シール部を熱融着するシール部品の製造装置において、
上記加熱部による加熱温度を検出する加熱温度検出手段と、
上記圧着部により上記シール部が圧着していることを検出する圧着検出手段と、
上記圧着部が上記シール部を圧着している間の単位時間毎の上記加熱温度を積算して加熱温度積算値を算出する加熱温度積算手段と、
上記加熱温度積算値が所定の閾値を超えた時点で、上記圧着部による上記シール部の圧着を解除する圧着解除手段と、
を有し
上記シール部品が、正極板および負極板をセパレータを介して積層してなる発電要素が、ラミネートフィルムからなる外装体の内部に電解液とともに収容され、端子を導出した状態で上記外装体が密封されてなる偏平なフィルム外装電池であることを特徴とするシール部品の製造装置。
A pressure-bonding part that pressure-bonds the seal part of the seal component, and a heating part that heats the seal part, and heating the seal part by the heating part while pressure-bonding the seal part by the pressure-bonding part, In an apparatus for manufacturing a seal part for heat-sealing the seal part,
A heating temperature detecting means for detecting a heating temperature by the heating unit;
A crimp detection means for detecting that the seal portion is crimped by the crimp portion;
A heating temperature integrating means for calculating a heating temperature integrated value by integrating the heating temperature per unit time while the crimping portion is crimping the seal portion;
When the heating temperature integrated value exceeds a predetermined threshold value, a pressure-bonding releasing means for releasing the pressure-bonding of the seal part by the pressure-bonding part,
Have,
A power generation element in which the sealing component is formed by laminating a positive electrode plate and a negative electrode plate through a separator is housed together with an electrolyte in an exterior body made of a laminate film, and the exterior body is sealed in a state where terminals are led out. An apparatus for producing a seal part, characterized in that the flat film-clad battery comprises:
上記加熱温度が所定の狙い温度に達したら、この狙い温度を維持するように上記加熱温度を制御することを特徴とする請求項1又は2に記載のシール部品の製造装置。   3. The seal part manufacturing apparatus according to claim 1, wherein when the heating temperature reaches a predetermined target temperature, the heating temperature is controlled so as to maintain the target temperature. シール部品のシール部を圧着する圧着部と、上記シール部を加熱する加熱部と、を有し、上記圧着部により上記シール部を圧着しつつ上記加熱部により上記シール部を加熱することにより、上記シール部を熱融着するシール部品の製造方法において、
上記加熱部による加熱温度を検出し、
上記圧着部により上記シール部が圧着していることを検出し、
所定の実効温度に達してから上記圧着部が上記シール部を圧着している間の単位時間毎の上記加熱温度積算を開始して加熱温度積算値を算出し、
上記加熱温度積算値が所定の閾値を超えた時点で、上記圧着部による上記シール部の圧着を解除する、
ことを特徴とするシール部品の製造方法。
A pressure-bonding part that pressure-bonds the seal part of the seal component, and a heating part that heats the seal part, and heating the seal part by the heating part while pressure-bonding the seal part by the pressure-bonding part, In the method of manufacturing a seal part for heat-sealing the seal part,
Detect the heating temperature by the heating part,
Detecting that the sealing part is crimped by the crimping part,
Calculate the heating temperature integrated value by starting the integration of the heating temperature per unit time while the pressure-bonding portion is crimping the seal portion after reaching a predetermined effective temperature ,
When the heating temperature integrated value exceeds a predetermined threshold value, release the pressure bonding of the seal portion by the pressure bonding portion,
The manufacturing method of the sealing components characterized by the above-mentioned.
シール部品のシール部を圧着する圧着部と、上記シール部を加熱する加熱部と、を有し、上記圧着部により上記シール部を圧着しつつ上記加熱部により上記シール部を加熱することにより、上記シール部を熱融着するシール部品の製造方法において、
上記シール部品が、正極板および負極板をセパレータを介して積層してなる発電要素が、ラミネートフィルムからなる外装体の内部に電解液とともに収容され、端子を導出した状態で上記外装体が密封されてなる偏平なフィルム外装電池であって、
上記加熱部による加熱温度を検出し、
上記圧着部により上記シール部が圧着していることを検出し、
上記圧着部が上記シール部を圧着している間の単位時間毎の上記加熱温度を積算して加熱温度積算値を算出し、
上記加熱温度積算値が所定の閾値を超えた時点で、上記圧着部による上記シール部の圧着を解除する、
ことを特徴とするシール部品の製造方法。
A pressure-bonding part that pressure-bonds the seal part of the seal component, and a heating part that heats the seal part, and heating the seal part by the heating part while pressure-bonding the seal part by the pressure-bonding part, In the method of manufacturing a seal part for heat-sealing the seal part,
A power generation element in which the sealing component is formed by laminating a positive electrode plate and a negative electrode plate through a separator is housed together with an electrolyte in an exterior body made of a laminate film, and the exterior body is sealed in a state where terminals are led out. A flat film-clad battery,
Detect the heating temperature by the heating part,
Detecting that the sealing part is crimped by the crimping part,
The heating temperature integrated value is calculated by accumulating the heating temperature per unit time while the crimping part is crimping the seal part,
When the heating temperature integrated value exceeds a predetermined threshold value, release the pressure bonding of the seal portion by the pressure bonding portion,
The manufacturing method of the sealing components characterized by the above-mentioned.
JP2013242447A 2013-11-25 2013-11-25 Sealing part manufacturing apparatus and manufacturing method Active JP6318577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013242447A JP6318577B2 (en) 2013-11-25 2013-11-25 Sealing part manufacturing apparatus and manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013242447A JP6318577B2 (en) 2013-11-25 2013-11-25 Sealing part manufacturing apparatus and manufacturing method

Publications (2)

Publication Number Publication Date
JP2015100976A JP2015100976A (en) 2015-06-04
JP6318577B2 true JP6318577B2 (en) 2018-05-09

Family

ID=53377115

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013242447A Active JP6318577B2 (en) 2013-11-25 2013-11-25 Sealing part manufacturing apparatus and manufacturing method

Country Status (1)

Country Link
JP (1) JP6318577B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6570977B2 (en) * 2015-11-16 2019-09-04 株式会社エンビジョンAescジャパン Surface inspection apparatus and surface inspection method
KR101925090B1 (en) * 2015-11-18 2018-12-04 주식회사 엘지화학 Sealing apparatus of secondary battery
JP6804382B2 (en) * 2017-05-16 2020-12-23 Ckd株式会社 Sealing device
KR20230119554A (en) * 2022-02-07 2023-08-16 주식회사 엘지에너지솔루션 Secondary battery sealing device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6272906U (en) * 1985-10-24 1987-05-11
US5561964A (en) * 1995-03-31 1996-10-08 Eastman Kodak Company Apparatus and method for heat sealing pouches
DE69619008D1 (en) * 1995-03-31 2002-03-21 Eastman Kodak Co Device for vacuum sealing bags
JPH1129109A (en) * 1997-07-09 1999-02-02 Shikoku Kakoki Co Ltd Method and apparatus for producing packaging container
JPH11100008A (en) * 1997-09-24 1999-04-13 Max Co Ltd Temperature control device for sealed heater in impulse sealing device
JP2005112374A (en) * 2003-10-06 2005-04-28 Tosei Denki Kk Heat sealing packer, and heat sealing packaging method
JP2006099970A (en) * 2004-09-28 2006-04-13 Nec Tokin Tochigi Ltd Sealing method and sealing device of lead terminal part

Also Published As

Publication number Publication date
JP2015100976A (en) 2015-06-04

Similar Documents

Publication Publication Date Title
JP6721053B2 (en) Power storage device and method of manufacturing power storage device
JP6407297B2 (en) BATTERY CELL CONTAINING OUTER PERIPHERAL SEALING PORTION FORMED WITH SEALING LINE AND BATTERY CELL SEALING DEVICE FOR PRODUCING THE SAME
TWI479716B (en) A secondary battery manufacturing method, a secondary battery, a welding apparatus
JP5851785B2 (en) Battery and manufacturing method thereof
JP5082263B2 (en) Method for manufacturing film-covered electrical device
KR101216423B1 (en) Process of Improved Productivity for Preparation of Secondary Battery
JP6019224B2 (en) Manufacturing method and manufacturing apparatus for laminate type secondary battery
JP6678768B2 (en) Method of manufacturing film-covered battery and film-covered battery
JP6318577B2 (en) Sealing part manufacturing apparatus and manufacturing method
JP5561315B2 (en) Film exterior electrical device
JP6004112B2 (en) Manufacturing method of laminate-type electricity storage device
CN110993838A (en) Heat-sealing battery
JP2014032924A (en) Film sheathed battery and method for manufacturing the same
JP6491548B2 (en) Secondary battery manufacturing method and manufacturing apparatus
JP6862639B2 (en) Heat block
JP4666131B2 (en) LAMINATE FILM HEAT FUSION METHOD, FILM PACKAGE BATTERY MANUFACTURING METHOD, AND LAMINATE FILM HEAT FUSION DEVICE
JP2007273606A (en) Electronic component packaged with laminating film
JP2006156161A (en) Sealed battery
JP2019061834A (en) Manufacturing method of storage module and storage module
JP2018120803A (en) Method for manufacturing film package battery and film package battery
JP2019003842A (en) Film sheathing battery and manufacturing method therefor
WO2014178238A1 (en) Laminate-type secondary battery manufacturing device and manufacturing method
JP2006099970A (en) Sealing method and sealing device of lead terminal part
JP2010211944A (en) Power storage device and power storage module
JP6584844B2 (en) Secondary battery manufacturing method and manufacturing apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160926

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170829

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171025

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20171114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180206

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20180214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180319

R151 Written notification of patent or utility model registration

Ref document number: 6318577

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250