JP6317874B2 - Method for producing substrate with antireflection film and photoelectric cell - Google Patents

Method for producing substrate with antireflection film and photoelectric cell Download PDF

Info

Publication number
JP6317874B2
JP6317874B2 JP2012143396A JP2012143396A JP6317874B2 JP 6317874 B2 JP6317874 B2 JP 6317874B2 JP 2012143396 A JP2012143396 A JP 2012143396A JP 2012143396 A JP2012143396 A JP 2012143396A JP 6317874 B2 JP6317874 B2 JP 6317874B2
Authority
JP
Japan
Prior art keywords
refractive index
substrate
antireflection film
index layer
electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012143396A
Other languages
Japanese (ja)
Other versions
JP2014006443A5 (en
JP2014006443A (en
Inventor
夕子 箱嶋
夕子 箱嶋
政幸 松田
政幸 松田
良 村口
良 村口
小松 通郎
通郎 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JGC Catalysts and Chemicals Ltd
Original Assignee
Catalysts and Chemicals Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Catalysts and Chemicals Industries Co Ltd filed Critical Catalysts and Chemicals Industries Co Ltd
Priority to JP2012143396A priority Critical patent/JP6317874B2/en
Priority to KR1020130072048A priority patent/KR102018592B1/en
Priority to CN201310256586.3A priority patent/CN103515457B/en
Priority to TW102122663A priority patent/TWI572045B/en
Publication of JP2014006443A publication Critical patent/JP2014006443A/en
Publication of JP2014006443A5 publication Critical patent/JP2014006443A5/ja
Application granted granted Critical
Publication of JP6317874B2 publication Critical patent/JP6317874B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/113Anti-reflection coatings using inorganic layer materials only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/209Light trapping arrangements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2036Light-sensitive devices comprising an oxide semiconductor electrode comprising mixed oxides, e.g. ZnO covered TiO2 particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0216Coatings
    • H01L31/02161Coatings for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/02167Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/02168Coatings for devices characterised by at least one potential jump barrier or surface barrier for solar cells the coatings being antireflective or having enhancing optical properties for the solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Sustainable Energy (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Photovoltaic Devices (AREA)
  • Hybrid Cells (AREA)

Description

本発明は、光エネルギーを電気エネルギーに変換して取り出すための光電気セルに好適に用いることのできる反射防止膜付基材の製造方法ならびに該基材を備えた光電気セル(太陽電池)とに関する。さらに詳しくは可視光の利用率を高めるために、基材上に形成された高屈折率層と、該高屈折率層上に形成された低屈折率層とからなる反射防止膜付基材の製造方法であって、反射防止性能、光透過率等に優れ、且つ、表面硬度、耐擦傷性に優れた反射防止膜付基材の製造方法、および該基材を備えた光電気セルとに関する。   The present invention relates to a method for producing a substrate with an antireflection film that can be suitably used for a photoelectric cell for converting light energy into electric energy and taking it out, and a photoelectric cell (solar cell) comprising the substrate, About. More specifically, in order to increase the utilization rate of visible light, an antireflection film-coated substrate comprising a high refractive index layer formed on a substrate and a low refractive index layer formed on the high refractive index layer. The present invention relates to a method for producing a substrate with an antireflection film excellent in antireflection performance, light transmittance, etc., and having excellent surface hardness and scratch resistance, and a photoelectric cell equipped with the substrate. .

光電変換材料は光エネルギーを電気エネルギーとして連続して取り出せる材料であり、電極間の電気化学反応を利用して光エネルギーを電気エネルギーに変換する材料である。このような光電変換材料に光を照射すると、一方の電極側で電子が発生し、対電極に移動し、対電極に移動した電子は、電解質中をイオンとして移動して一方の電極に戻る。この光電エネルギーの変換は連続的に起きているので、たとえば、太陽電池などに利用されている。   The photoelectric conversion material is a material that can continuously extract light energy as electric energy, and is a material that converts light energy into electric energy using an electrochemical reaction between electrodes. When such a photoelectric conversion material is irradiated with light, electrons are generated on one electrode side, move to the counter electrode, and the electrons moved to the counter electrode move as ions in the electrolyte and return to the one electrode. Since this photoelectric energy conversion occurs continuously, it is used, for example, in solar cells.

一般的な太陽電池は、先ず透明性導電膜を形成したガラス板などの支持体上に光電変換材料用半導体の膜を形成して電極とし、次に、対電極として別の透明性導電膜を形成したガラス板などの支持体を備え、これらの電極間に電解質を封入して構成されている。光電変換材料用半導体に吸着した光増感材に太陽光を照射すると、光増感材は可視領域の光を吸収して励起する。この励起によって発生する電子は半導体に移動し、次いで、透明導電性ガラス電極に移動し、2つの電極を接続する導線を通って対電極に移動し、対電極に移動した電子は電解質中の酸化還元系を還元する。一方、半導体に電子を移動させた光増感材は、酸化体の状態になっているが、この酸化体は電解質中の酸化還元系によって還元され、元の状態に戻る。このようにして電子が連続的に流れ、光電変換材料は光電気セル(太陽電池)として機能する。   In general solar cells, a semiconductor film for a photoelectric conversion material is first formed on a support such as a glass plate on which a transparent conductive film is formed, and then another transparent conductive film is used as a counter electrode. A support such as a formed glass plate is provided, and an electrolyte is sealed between these electrodes. When the photosensitizer adsorbed on the semiconductor for photoelectric conversion material is irradiated with sunlight, the photosensitizer absorbs light in the visible region and is excited. The electrons generated by this excitation move to the semiconductor, then move to the transparent conductive glass electrode, move to the counter electrode through the conducting wire connecting the two electrodes, and the electrons transferred to the counter electrode are oxidized in the electrolyte. Reduce the reduction system. On the other hand, the photosensitizer that has moved electrons to the semiconductor is in an oxidant state, but this oxidant is reduced by the redox system in the electrolyte and returns to its original state. In this way, electrons flow continuously, and the photoelectric conversion material functions as a photoelectric cell (solar cell).

この光電変換材料としては、半導体表面に可視光領域に吸収を持つ分光増感色素を吸着させたものが用いられている。たとえば、特開平1-220380号公報(特許文献1)には、金属酸化物半導体層の表面に、ルテニウム錯体などの遷移金属錯体からなる分光増感色素層を有する太陽電池が記載されている。また、特表平5-504023号公報(特許文献2)には、金属イオンでドープした酸化チタン半導体層の表面に、ルテニウム錯体などの遷移金属錯体からなる分光増感色素層を有する太陽電池が記載されている。   As this photoelectric conversion material, a material obtained by adsorbing a spectral sensitizing dye having absorption in the visible light region on the semiconductor surface is used. For example, Japanese Patent Laid-Open No. 1-220380 (Patent Document 1) describes a solar cell having a spectral sensitizing dye layer made of a transition metal complex such as a ruthenium complex on the surface of a metal oxide semiconductor layer. Japanese Patent Publication No. 5-504023 (Patent Document 2) discloses a solar cell having a spectral sensitizing dye layer made of a transition metal complex such as a ruthenium complex on the surface of a titanium oxide semiconductor layer doped with metal ions. Have been described.

このような太陽電池では、太陽光の利用率や変換効率を高めるために、太陽光の反射を抑制することが考えられ、このために、基材上に基材よりも屈折率の低い反射防止膜を設けることがおこなわれている。さらに、反射防止性能を向上するために基材と反射防止膜との間に高屈折率層を設けることが行われている。   In such a solar cell, it is conceivable to suppress the reflection of sunlight in order to increase the utilization factor and conversion efficiency of sunlight, and for this reason, the antireflection which has a lower refractive index than the substrate on the substrate. A film is provided. Furthermore, in order to improve the antireflection performance, a high refractive index layer is provided between the base material and the antireflection film.

本願出願人は、酸化チタンコロイド粒子等とマトリックス前駆体とからなる紫外線遮蔽膜形成用塗布液を用いて紫外線遮蔽膜を形成し、その上に内部に空洞を有するシリカ系無機酸化物粒子とマトリックス前駆体とからなる可視光反射防止膜形成用塗布液を用いて可視光反射防止膜を形成することにより、ボトム反射率、視感反射率は低く、耐久性、光電変換効率に優れた光電気セルが得られることを開示している。(特許文献3:特開2002-134178号公報)   The applicant of the present application forms an ultraviolet shielding film using a coating liquid for forming an ultraviolet shielding film comprising titanium oxide colloidal particles and the like and a matrix precursor, and silica-based inorganic oxide particles and a matrix having cavities therein. By forming a visible light anti-reflection film using a coating liquid for forming a visible light anti-reflection film composed of a precursor, photoelectricity is excellent in durability and photoelectric conversion efficiency with low bottom reflectance and luminous reflectance. It is disclosed that a cell is obtained. (Patent Document 3: JP 2002-134178 A)

特開平1-220380号公報Japanese Unexamined Patent Publication No. 1-220380 特表平5-504023号公報Japanese National Patent Publication No. 5-504023 特開2002-134178号公報JP 2002-134178 A

しかしながら、従来の製造方法で得られた可視光反射防止膜は、耐久性(信頼性)が低く、温度、湿度等の環境変化、長期使用による劣化によって反射防止膜にクラックが入ったり、膜の膨張・収縮等によって屈折率が変化し、反射防止性能が低下する場合があった。このため、高光電変換効率の維持が困難となる場合があった。   However, the visible light antireflection film obtained by the conventional manufacturing method has low durability (reliability), the antireflection film is cracked due to environmental changes such as temperature and humidity, and deterioration due to long-term use. The refractive index may change due to expansion / contraction, and the antireflection performance may be deteriorated. For this reason, it may be difficult to maintain high photoelectric conversion efficiency.

このような状況のもと、本発明者らは、上記問題点を解決すべく鋭意検討した結果、基材上に、酸化チタン微粒子(高屈折率の金属酸化物微粒子)と塩基性窒素化合物を含む分散液を塗布し、乾燥し、ついで、シリカ前駆体を含む低屈折率層形成成分分散液を塗布し、ついで加熱したところ、得られる反射防止膜の硬度が著しく向上することを見出して本発明を完成するに至った。
具体的には、この反射防止膜付基材は、基材上に、塩基性窒素化合物を1〜1000ppm含む、屈折率が1.50〜2.40の金属酸化物粒子の分散液を塗布する工程、塩基性窒素化合物の沸点未満の温度で分散媒を除去する工程、低屈折率層形成成分分散液を塗布する工程、前記低屈折率層形成成分分散液の分散媒を除去し、ついで、120〜700℃で加熱する工程を備えた製造方法によって得られる。
この製造方法によって作成された、基材上に形成された高屈折率層と、該高屈折率層上に形成された低屈折率層とが、積層されている反射防止膜付基材は、光電気セルの前面に使用することができる。
Under such circumstances , the present inventors have intensively studied to solve the above problems. As a result, titanium oxide fine particles (high refractive index metal oxide fine particles) and a basic nitrogen compound are formed on a substrate. It was found that the hardness of the resulting antireflection film was remarkably improved by applying a dispersion liquid containing, drying, and then applying a low refractive index layer-forming component dispersion liquid containing a silica precursor and then heating. The invention has been completed.
Specifically, this base material with an antireflection film is coated with a dispersion of metal oxide particles having a basic nitrogen compound of 1 to 1000 ppm and a refractive index of 1.50 to 2.40 on the base material. Removing the dispersion medium at a temperature lower than the boiling point of the basic nitrogen compound, applying the low refractive index layer forming component dispersion, removing the dispersion medium of the low refractive index layer forming component dispersion, It is obtained by a production method including a step of heating at 120 to 700 ° C.
The base material with an antireflection film, which is produced by this manufacturing method and is formed by laminating a high refractive index layer formed on a base material and a low refractive index layer formed on the high refractive index layer, It can be used on the front surface of a photovoltaic cell.

本発明は、硬度が高く、クラック、擦傷等の発生が抑制された反射防止膜付基材の製造方法および反射防止膜付基材ならびに該基材を備え、可視光の利用率が高く、このため長期にわたって安定的に高い光電変換効率等を維持できる光電気セル(太陽電池)を提供することができる。 The present invention comprises a method for producing a substrate with an antireflection film that has high hardness and suppresses occurrence of cracks, scratches, etc., a substrate with an antireflection film, and the substrate, and has a high utilization rate of visible light. Therefore, it is possible to provide a photoelectric cell (solar cell) that can stably maintain high photoelectric conversion efficiency and the like over a long period of time.

本発明に係る光電気セルの概略断面図を示す。1 shows a schematic cross-sectional view of a photovoltaic cell according to the present invention.

[反射防止膜付基材の製造方法]
本発明は、下記の工程(a)〜(e)からなることを特徴とする。
(a)高屈折金属酸化物粒子分散液の塗布工程
(b)分散液の乾燥工程
(c)低屈折率層形成成分分散液の塗布工程
(d)溶媒の除去、(e)加熱工程
基材
本発明に用いる基材としては、従来公知のガラス、ポリカーボネート、アクリル樹脂、PET、TAC等のプラスチックシート、プラスチックフィルム等、プラスチックパネル等を用いることができるが、なかでもガラス基材は硬度に優れた反射防止膜付基材が得られるので好ましい。
[Method for producing base material with antireflection film]
The present invention is characterized by comprising the following steps (a) to (e).
(A) Application process of high refractive metal oxide particle dispersion (b) Drying process of dispersion (c) Application process of low refractive index layer forming component dispersion (d) Removal of solvent, (e) Heating process
Substrate As the substrate used in the present invention, conventionally known glass, polycarbonate, acrylic resin, plastic sheets such as PET and TAC, plastic films and the like, plastic panels, etc. can be used. It is preferable because a base material with an antireflection film is obtained.

また、前記基材は、光電気セルに用いる場合、表面に凹凸を有し、その表面粗さ(RaA)が30nm〜1μm、さらには50nm〜0.8μmの範囲にあることが好ましい。
この範囲の凹凸を有すると、防眩性が高く、映り込みも抑制される。さらに、光電気セルに用いた場合は、反射を抑制して光透過率を向上させ、光利用率の向上による光電変換効率向上の効果が高い。
Further, the substrate, when used in photovoltaic cell having an uneven surface, the surface roughness (Ra A) is 30Nm~1myuemu, more preferably in the range of 50Nm~0.8Myuemu.
When it has the unevenness | corrugation of this range, anti-glare property is high and reflection is also suppressed. Furthermore, when used in a photoelectric cell, reflection is suppressed and the light transmittance is improved, and the effect of improving the photoelectric conversion efficiency by improving the light utilization rate is high.

基材としては、表面に所望の凹凸を有する市販の基板を用いることができる他、表面が平坦なガラス基板をサンドブラスト処理したり、表面が平坦なガラス基板上にゲル分散液を塗布、乾燥、硬化させたり、金属酸化物粒子とゲルとの混合分散液を塗布、乾燥、硬化するなど従来公知の方法で凹凸を形成して用いることができる。なお基材表面には電極層が形成されていてもよい。   As the base material, a commercially available substrate having desired irregularities on the surface can be used, a glass substrate with a flat surface is sandblasted, a gel dispersion is applied on a glass substrate with a flat surface, and dried. It can be used by forming irregularities by a conventionally known method such as curing or applying, drying and curing a mixed dispersion of metal oxide particles and gel. An electrode layer may be formed on the substrate surface.

本発明では、前記表面粗さ(RaA)および後述する表面粗さ(RaB)、表面粗さ(RaC)は、原子間力顕微鏡(AFM)、またはレーザー顕微鏡によって測定する。
表面粗さ(RaA)が概ね100nm以下の場合はAFMで,測定し、100nmを超えるとレーザー顕微鏡によって測定する。
In the present invention, the surface roughness (Ra A ), the surface roughness (Ra B ), and the surface roughness (Ra C ) described later are measured by an atomic force microscope (AFM) or a laser microscope.
When the surface roughness (RaA) is approximately 100 nm or less, it is measured by AFM, and when it exceeds 100 nm, it is measured by a laser microscope.

本発明に用いる基材は、屈折率が1.45〜1.64の範囲にあることが好ましい。
光学用途で屈折率が前記範囲の下限未満の汎用ガラス基材は得ることが困難であり、基材の屈折率が高すぎると、基材と基材上に設ける高屈折率層との屈折率差が小さく、透過率向上効果が充分得られない場合がある。
The substrate used in the present invention preferably has a refractive index in the range of 1.45 to 1.64.
It is difficult to obtain a general-purpose glass substrate having a refractive index less than the lower limit of the above range for optical applications. If the refractive index of the substrate is too high, the refractive index of the substrate and the high refractive index layer provided on the substrate There is a case where the difference is small and the effect of improving the transmittance cannot be obtained sufficiently.

光電気セルに使用する場合、基板および電極層の可視光透過率は高い方が好ましく、具体的には50%以上、特に好ましくは90%以上であることが望ましい。電極層の抵抗値は、各々100Ω/cm2以下であることが好ましい。
工程(a)
前記基材上に、高屈折率金属酸化物粒子と、塩基性窒素化合物を1〜1,000ppmとを含む分散液を塗布する。
When used in a photoelectric cell, the visible light transmittance of the substrate and the electrode layer is preferably high, specifically 50% or more, particularly preferably 90% or more. Each of the resistance values of the electrode layers is preferably 100 Ω / cm 2 or less.
Process (a)
A dispersion containing high refractive index metal oxide particles and 1 to 1,000 ppm of basic nitrogen compound is applied onto the substrate.

本発明に用いる金属酸化物粒子としては、屈折率が1.50〜2.40、さらには1.55〜2.30の範囲にある金属酸化物粒子を用いることが好ましい。
金属酸化物粒子の屈折率が小さいと、基材の屈折率によっても異なるが、基材との屈折率差が小さく、透過率の向上効果が不十分となる場合がある。金属酸化物粒子の屈折率が高すぎても、金属酸化物粒子による散乱が起こり、透過率の向上効果が不十分となる場合がある。
As the metal oxide particles used in the present invention, metal oxide particles having a refractive index of 1.50 to 2.40, more preferably 1.55 to 2.30 are preferably used.
If the refractive index of the metal oxide particles is small, the refractive index difference from the substrate is small, and the effect of improving the transmittance may be insufficient, although it depends on the refractive index of the substrate. Even if the refractive index of the metal oxide particles is too high, scattering by the metal oxide particles occurs, and the effect of improving the transmittance may be insufficient.

本発明では、基材の屈折率と高屈折率層の屈折率との差が概ね0.1〜1.0、さらには0.5〜1.0の範囲にあることが好ましい。
金属酸化物粒子としてはTiO2、ZrO2、Al23、ZnO、SnO2、Sb25、In23、Nb25等の金属酸化物粒子、これらの混合物粒子、複合酸化物粒子が挙げられる。
In the present invention, the difference between the refractive index of the substrate and the refractive index of the high refractive index layer is preferably in the range of about 0.1 to 1.0, more preferably 0.5 to 1.0.
As the metal oxide particles, metal oxide particles such as TiO 2 , ZrO 2 , Al 2 O 3 , ZnO, SnO 2 , Sb 2 O 5 , In 2 O 3 , Nb 2 O 5 , a mixture particle thereof, composite oxidation Physical particles.

これらの金属酸化物粒子は、分散性、安定性に優れた金属酸化物粒子の分散液を得ることができ、特に、平均粒子径が小さく透明性に優れた光学用途に好適に使用できる粒子を容易に得ることができる。   These metal oxide particles can obtain a dispersion of metal oxide particles having excellent dispersibility and stability. Particularly, particles having a small average particle diameter and excellent transparency can be suitably used for optical applications. Can be easily obtained.

金属酸化物粒子の平均粒子径は、5〜100nm、さらには7〜50nmの範囲にあることが好ましい。
金属酸化物粒子の平均粒子径が小さいものは、容易に凝集し、分散液の安定性が不十分となり、このような金属酸化物粒子の分散液を用いて形成される高屈折層は緻密化が不十分となり、最終的に得られる反射防止膜の硬度、耐擦傷性が不十分となる場合がある。金属酸化物粒子の平均粒子径が大きすぎると、ミー散乱が起こるようになり、光透過率が不十分となり、光電気セルに用いた場合に光電変換効率の向上効果が不十分となる場合がある。
The average particle diameter of the metal oxide particles is preferably in the range of 5 to 100 nm, more preferably 7 to 50 nm.
When the average particle diameter of the metal oxide particles is small, they easily aggregate and the dispersion stability becomes insufficient, and the highly refractive layer formed using such a dispersion of metal oxide particles is densified. May be insufficient, and the hardness and scratch resistance of the finally obtained antireflection film may be insufficient. If the average particle diameter of the metal oxide particles is too large, Mie scattering will occur, the light transmittance will be insufficient, and the effect of improving the photoelectric conversion efficiency may be insufficient when used in a photoelectric cell. is there.

金属酸化物粒子分散液の分散媒としては、例えば、メタノール、エタノール、プロパノール、2-プロパノール(IPA)、ブタノール、ジアセトンアルコール、フルフリルアルコール、テトラヒドロフルフリルアルコール等のアルコール類;酢酸メチル、酢酸エチル、酢酸イソプルピル、酢酸プルピル、酢酸イソブチル、酢酸ブチル、酢酸イソペンチル、酢酸ペンチル、酢酸3−メトキシブチル、酢酸2−エチルブチル、酢酸シクロヘキシル、エチレングリコールモノアセテート等のエステル類、エチレングリコール、ヘキシレングリコール等のグリコール類;ジエチルエーテル、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、エチレングリコールイソプルピルエーテル、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プルピレングリコールモノエチルエーテル、プロピレングリコールモノプロピルエーテル等のエーテル類を含む親水性溶媒、酢酸プルピル、酢酸イソブチル、酢酸ブチル、酢酸イソペンチル、酢酸ペンチル、酢酸3−メトキシブチル、酢酸2−エチルブチル、酢酸シクロヘキシル、エチレングリコールものアセタートなどのエステル類;アセトン、メチルエチルケトン、メチルイソブチルケトン、ブチルメチルケトン、シクロヘキサノン、メチルシクロヘキサノン、ジプロピルケトン、メチルペンチルケトン、ジイソブチルケトン等のケトン類;トルエン等極性溶媒が挙げられる。これらは単独で使用してもよく、また2種以上混合して使用してもよい。   Examples of the dispersion medium for the metal oxide particle dispersion include alcohols such as methanol, ethanol, propanol, 2-propanol (IPA), butanol, diacetone alcohol, furfuryl alcohol, tetrahydrofurfuryl alcohol; methyl acetate, acetic acid Ethyl acetate, isopropyl acetate, propyl acetate, isobutyl acetate, butyl acetate, isopentyl acetate, pentyl acetate, 3-methoxybutyl acetate, 2-ethylbutyl acetate, cyclohexyl acetate, esters such as ethylene glycol monoacetate, ethylene glycol, hexylene glycol, etc. Glycols: diethyl ether, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, ethylene glycol isopropyl Ether, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, hydrophilic solvents including ethers such as propylene glycol monopropyl ether, propyl acetate, isobutyl acetate, butyl acetate, isopentyl acetate, Esters such as pentyl acetate, 3-methoxybutyl acetate, 2-ethylbutyl acetate, cyclohexyl acetate, ethylene glycol acetate; acetone, methyl ethyl ketone, methyl isobutyl ketone, butyl methyl ketone, cyclohexanone, methyl cyclohexanone, dipropyl ketone, methyl pentyl ketone And ketones such as diisobutyl ketone; polar solvents such as toluene. These may be used singly or in combination of two or more.

溶媒は使用する塩基性窒素化合物の沸点よりも低いか、同程度のものが使用される。
金属酸化物粒子分散液中の金属酸化物粒子の濃度は固形分として0.5〜20重量%、さらには1〜10重量%の範囲にあることが好ましい。金属酸化物粒子の濃度が固形分として前記範囲にない場合、後述する平均膜厚の高屈折率層の形成が困難となる場合がある。
The solvent is lower than or equal to the boiling point of the basic nitrogen compound used.
The concentration of the metal oxide particles in the metal oxide particle dispersion is preferably 0.5 to 20% by weight, more preferably 1 to 10% by weight as the solid content. When the concentration of the metal oxide particles is not within the above range as the solid content, it may be difficult to form a high refractive index layer having an average film thickness described later.

塩基性窒素化合物は、高屈折率層上に塗布した低屈折率層形成成分の緻密化および硬化を促進に寄与する。このような塩基性窒素化合物は、乾燥時に蒸散しないものが好ましく、沸点が40〜250℃、好ましくは80〜150℃の範囲にあるものが好ましい。   The basic nitrogen compound contributes to promoting densification and curing of the low refractive index layer-forming component applied on the high refractive index layer. Such a basic nitrogen compound is preferably one that does not evaporate during drying, and preferably has a boiling point in the range of 40 to 250 ° C, preferably 80 to 150 ° C.

具体的には、例えば、nプロピルアミン(沸点48.0℃)、nブチルアミン(沸点77.0℃)、イソブチルアミン(沸点67.5℃)、secブチルアミン(沸点62.5℃)、tertブチルアミン(沸点43.6℃)、ペンチルアミン(沸点104℃)、2エチルヘキシルアミン(沸点169.2℃)、アリルアミン(沸点53.3℃)、アニリン(沸点184.7℃)、N−メチルアニリン(沸点196.1℃)、o−トルイジン(沸点200.7℃)、m−トルイジン(沸点202℃)、p−トリイジン(沸点200.4℃)、シクロヘキシルアミン(沸点134.5℃)、ピロール(沸点129℃)、ピペリジン(沸点105℃)、ピリジン(沸点115.3℃)、α−ピコリン(沸点129.4℃)、β−ピコリン(沸点144.1℃)、γ−ピコリン(沸点145.4℃)、キノリン(沸点237.1℃)、イソキノリン(沸点243.2℃)、ホルムアミド(沸点210.5℃)、N−メチルホルムアミド(沸点182.5℃)、アセトアミド(沸点221.2℃)、N−メチルアセトアミド(沸点206℃)、N−メチルプロピオンアミド(沸点148℃)、ジエチルアミン(沸点55.5℃)等の1級アミン、ジプロピルアミン(沸点109.4℃)、ジイソプロピルアミン(沸点83.5℃)、ジブチルアミン(沸点159.6℃)、ジイソブチルアミン(沸点138℃)、ジペンチルアミン(沸点92℃)、ジメチルアニリン(沸点193℃)、ジエチルアニリン(沸点217℃)、ジシクロヘキシルアミン(沸点113.5℃)、2,4−ルチジン(沸点157.5℃)、2,6−ルチジン(沸点144℃)、エチレンジアミン(沸点117.3℃)、プロピレンジアミン(沸点119.3℃)、ジエチレントリアミン(沸点207.1℃)、N,N−ジメチルホルムアミド(沸点153.0℃)、N,N−ジエチルホルムアミド(沸点177.5℃)、N,N−ジメチルアセトアミド(沸点166.1℃)等の2級アミン、トリエチルアミン(沸点89.6℃)、トリブチルアミン(沸点91.5℃)、トリペンチルアミン(沸点130℃)等の3級アミン、テトラメチルアンモニウムヒロリド(沸点110℃)、テトラエチルアンモニウムヒロリド(沸点110℃)、テトラプロピルアンモニウムヒロリド(沸点100℃)、テトラブチルアンモニウムヒロリド(沸点100℃)等の4級アンモニウム塩等が挙げられる。   Specifically, for example, n-propylamine (boiling point 48.0 ° C), n-butylamine (boiling point 77.0 ° C), isobutylamine (boiling point 67.5 ° C), sec butylamine (boiling point 62.5 ° C), tertbutylamine (Boiling point 43.6 ° C), pentylamine (boiling point 104 ° C), 2-ethylhexylamine (boiling point 169.2 ° C), allylamine (boiling point 53.3 ° C), aniline (boiling point 184.7 ° C), N-methylaniline ( Boiling point 196.1 ° C), o-toluidine (boiling point 200.7 ° C), m-toluidine (boiling point 202 ° C), p-tolyidine (boiling point 200.4 ° C), cyclohexylamine (boiling point 134.5 ° C), pyrrole ( Boiling point 129 ° C), piperidine (boiling point 105 ° C), pyridine (boiling point 115.3 ° C), α-picoline (boiling point 129.4 ° C), β-picoline (boiling point 144.1 ° C), γ-picoline (boiling point 145. 4 ° C), quinoline (Boiling point 237.1 ° C), isoquinoline (boiling point 243.2 ° C), formamide (boiling point 210.5 ° C), N-methylformamide (boiling point 182.5 ° C), acetamide (boiling point 221.2 ° C), N-methyl Primary amines such as acetamide (boiling point 206 ° C), N-methylpropionamide (boiling point 148 ° C), diethylamine (boiling point 55.5 ° C), dipropylamine (boiling point 109.4 ° C), diisopropylamine (boiling point 83.5 ° C) ° C), dibutylamine (boiling point 159.6 ° C), diisobutylamine (boiling point 138 ° C), dipentylamine (boiling point 92 ° C), dimethylaniline (boiling point 193 ° C), diethylaniline (boiling point 217 ° C), dicyclohexylamine (boiling point 113). .5 ° C), 2,4-lutidine (boiling point 157.5 ° C), 2,6-lutidine (boiling point 144 ° C), ethylenediamine (boiling point 117.3 ° C), propylene dia (Boiling point 119.3 ° C), diethylenetriamine (boiling point 207.1 ° C), N, N-dimethylformamide (boiling point 153.0 ° C), N, N-diethylformamide (boiling point 177.5 ° C), N, N- Secondary amines such as dimethylacetamide (boiling point 166.1 ° C), tertiary amines such as triethylamine (boiling point 89.6 ° C), tributylamine (boiling point 91.5 ° C), tripentylamine (boiling point 130 ° C), tetramethyl And quaternary ammonium salts such as ammonium hydride (boiling point 110 ° C.), tetraethylammonium hydride (boiling point 110 ° C.), tetrapropylammonium hydride (boiling point 100 ° C.), tetrabutylammonium hydride (boiling point 100 ° C.), and the like. .

なかでも、これらの塩基性窒素化合物を用いると、後述する工程(d)で乾燥する際に、塩基性窒素化合物が、上層に塗布された低屈折率層形成用分散液の低屈折率層形成成分の緻密化を促進し、ついで、工程(e)で加熱処理することにより、塩基性窒素化合物により、上層に塗布された低屈折率層形成用分散液の低屈折率層形成成分の緻密化を促進され、硬度、耐擦傷性等に優れた反射防止膜を形成することができる。 Among these, when these basic nitrogen compounds are used, the low refractive index layer formation of the low refractive index layer forming dispersion in which the basic nitrogen compound is applied to the upper layer when drying in the step (d) described later is used. The densification of the components of the low refractive index layer in the dispersion for forming the low refractive index layer applied to the upper layer by the basic nitrogen compound is promoted by promoting densification of the components and then heat treatment in step (e) . And an antireflection film excellent in hardness, scratch resistance and the like can be formed.

金属酸化物粒子分散液中の塩基性窒素化合物の濃度は1〜1,000ppm、さらには5〜500ppmの範囲にあることが好ましい。
金属酸化物粒子分散液中の塩基性窒素化合物が少ないと、該化合物の効果が低く、前記した工程(d)における低屈折率層の緻密化が不十分となり、最終的に得られる反射防止膜の硬度、耐擦傷性の向上効果が充分得られない場合がある。金属酸化物粒子分散液中の塩基性窒素化合物が多すぎても、金属酸化物粒子分散液中の粒子に影響するためか分散液が不安定化し、最終的に得られる反射防止膜の硬度、耐擦傷性が不十分となる場合がある。
The concentration of the basic nitrogen compound in the metal oxide particle dispersion is preferably 1 to 1,000 ppm, more preferably 5 to 500 ppm.
When the basic nitrogen compound in the metal oxide particle dispersion is small, the effect of the compound is low, the densification of the low refractive index layer in the step (d) described above becomes insufficient, and the antireflection film finally obtained The effect of improving the hardness and scratch resistance may not be sufficiently obtained. Even if there is too much basic nitrogen compound in the metal oxide particle dispersion, the dispersion becomes unstable because it affects the particles in the metal oxide particle dispersion, and the hardness of the antireflection film finally obtained, Scratch resistance may be insufficient.

高屈折率層形成用金属酸化物粒子分散液には、必要に応じてマトリックス形成成分を含んでいてもよい。
マトリックス形成成分としては、後述する低屈折率層形成成分と同様のものを用いることができ、具体的にはシリカ前駆体であることが好ましい。
The metal oxide particle dispersion for forming a high refractive index layer may contain a matrix-forming component as necessary.
As the matrix forming component, those similar to the low refractive index layer forming component described later can be used, and specifically, a silica precursor is preferable.

塩基性窒素化合物を含む金属酸化物粒子分散液中のマトリックス形成成分の濃度は固形分として4重量%以下、さらには0.3〜4重量%の範囲にあることが好ましい。
マトリックスを含むと緻密な高屈折率層を形成できるとともに、低屈折率層や基材との密着性が向上する。
The concentration of the matrix-forming component in the metal oxide particle dispersion containing the basic nitrogen compound is preferably 4% by weight or less, more preferably in the range of 0.3 to 4% by weight as the solid content.
When the matrix is included, a dense high refractive index layer can be formed, and adhesion to the low refractive index layer and the substrate is improved.

高屈折率層形成用金属酸化物粒子分散液の全固形分濃度は0.6〜24重量%、さらには1.3〜14重量%の範囲にあることが好ましい。高屈折率層形成用金属酸化物粒子分散液の全固形分濃度が前記範囲にない場合は、後述する所定範囲の平均膜厚の高屈折率層の形成が困難となる場合がある。   The total solid concentration of the metal oxide particle dispersion for forming a high refractive index layer is preferably in the range of 0.6 to 24% by weight, more preferably 1.3 to 14% by weight. When the total solid content concentration of the metal oxide particle dispersion for forming a high refractive index layer is not within the above range, it may be difficult to form a high refractive index layer having an average film thickness within a predetermined range described later.

このような塩基性窒素化合物を含む金属酸化物粒子分散液を基材に塗布する方法としては、基材上に均一に塗布できれば特に制限はなく、従来公知の方法を採用することができる。たとえば、バーコーター法、ディップ法、スプレー法、スピナー法、ロールコート法、グラビアコート法、スリットコート法等が挙げられる。
工程(b)
ついで、塩基性窒素化合物の沸点未満の温度で分散媒を除去し、塗膜を乾燥させる。具体的には、50〜120℃、好ましくは60〜100℃(ただし溶媒の沸点以上)で乾燥する。
The method for applying such a metal oxide particle dispersion containing a basic nitrogen compound to a substrate is not particularly limited as long as it can be uniformly applied on the substrate, and a conventionally known method can be employed. Examples thereof include a bar coater method, a dip method, a spray method, a spinner method, a roll coat method, a gravure coat method, and a slit coat method.
Process (b)
Next, the dispersion medium is removed at a temperature lower than the boiling point of the basic nitrogen compound, and the coating film is dried. Specifically, it is dried at 50 to 120 ° C., preferably 60 to 100 ° C. (however, it is higher than the boiling point of the solvent).

乾燥時間は、乾燥温度によっても異なるが、概ね20分以下、好ましくは30秒〜10分間である。
なお、光電気セルに使用される場合、基材上に形成された高屈折率層の表面粗さ(RaB)が30nm〜1μm、さらには50nm〜0.8μmの範囲にあることが望ましい。高屈折率層の表面粗さ(RaB)が30nm未満の場合は、充分な光透過率の向上が得られない場合がある。
The drying time varies depending on the drying temperature, but is generally about 20 minutes or less, preferably 30 seconds to 10 minutes.
When used in a photoelectric cell, it is desirable that the surface roughness (Ra B ) of the high refractive index layer formed on the substrate is in the range of 30 nm to 1 μm, more preferably 50 nm to 0.8 μm. When the surface roughness (Ra B ) of the high refractive index layer is less than 30 nm, sufficient light transmittance may not be improved.

また、本発明で推奨する分散液塗布法では、高屈折率層の表面粗さ(RaB)が1μmを超えることはない。
高屈折率層の平均厚みは50〜200nm、さらには80〜120nmの範囲にあることが好ましい。
In the dispersion coating method recommended in the present invention, the surface roughness (Ra B ) of the high refractive index layer does not exceed 1 μm.
The average thickness of the high refractive index layer is preferably 50 to 200 nm, more preferably 80 to 120 nm.

高屈折率層の平均厚みが薄いと、反射率が低下しない為に十分な光透過率の向上効果が得られず、光電気セルに用いた場合は、光利用率の向上による光電変換効率向上の効果が充分得られない場合がある。高屈折率層の平均厚みが厚いと、充分な光透過率が得られない場合があり、光電気セルに用いた場合、充分な光電変換効率向上効果が得られない場合がある。   If the average thickness of the high-refractive index layer is thin, the reflectance does not decrease, so a sufficient light transmittance improvement effect cannot be obtained. When used in a photoelectric cell, the photoelectric conversion efficiency is improved by improving the light utilization rate. In some cases, the above effect cannot be sufficiently obtained. When the average thickness of the high refractive index layer is thick, sufficient light transmittance may not be obtained, and when used in a photoelectric cell, a sufficient photoelectric conversion efficiency improvement effect may not be obtained.

なお、表面に凹凸を有する高屈折率層の平均厚みは、高屈折率層付基材重量から基材の重量を減じ、これを高屈折率層の比重で除して求めることができる。
工程(c)
次に、前記高屈折率層の上に低屈折率層形成成分分散液を塗布して、低屈折率層を形成する。
The average thickness of the high refractive index layer having irregularities on the surface can be obtained by subtracting the weight of the substrate from the weight of the substrate with the high refractive index layer and dividing this by the specific gravity of the high refractive index layer.
Process (c)
Next, a low refractive index layer forming component dispersion is applied on the high refractive index layer to form a low refractive index layer.

低屈折率層形成成分としては、前記高屈折率層の屈折率よりも低屈折率で、強度、耐擦傷性に優れた低屈折率層を形成できれば特に制限はないが、本発明ではシリカ前駆体または、シリカ前駆体およびシリカゾルが好適に用いられる。   The low refractive index layer forming component is not particularly limited as long as it can form a low refractive index layer having a lower refractive index than that of the high refractive index layer and excellent in strength and scratch resistance. Or a silica precursor and silica sol are preferably used.

また、シリカ前駆体としては、有機ケイ素化合物の部分加水分解物、加水分解物、加水分解縮重合物のほかシラザンの重合物であるポリシラザン、シランの重合物であるポリシラン、酸性珪酸液等が好適に用いられる。   As the silica precursor, a partial hydrolyzate of an organosilicon compound, a hydrolyzate, a hydrolytic condensation polymer, a polysilazane that is a polymer of silazane, a polysilane that is a polymer of silane, an acidic silicic acid solution, and the like are suitable. Used for.

有機ケイ素化合物としては、下記式(1)で表される有機ケイ素化合物が用いられる。
n−SiX4-n (1)
(但し、式中、Rは炭素数1〜10の非置換または置換炭化水素基であって、互いに同一であっても異なっていてもよい。X:炭素数1〜4のアルコキシ基、水酸基、ハロゲン、水素、n:0〜3の整数)
なかでも、n=0の4官能の有機ケイ素化合物が好ましく、具体的には、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシシラン、テトラブトキシシラン等の加水分解物、加水分解重縮合物を好適に用いることができる。
As the organosilicon compound, an organosilicon compound represented by the following formula (1) is used.
R n -SiX 4-n (1 )
(In the formula, R is an unsubstituted or substituted hydrocarbon group having 1 to 10 carbon atoms, and may be the same or different from each other. X: an alkoxy group having 1 to 4 carbon atoms, a hydroxyl group, Halogen, hydrogen, n: an integer of 0 to 3)
Of these, tetrafunctional organosilicon compounds with n = 0 are preferable, and specifically, hydrolyzates such as tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, and tetrabutoxysilane, and hydrolysis polycondensates are preferable. Can be used.

また、シラザンとしては、下記式(2)で表されるシラザンが用いられる。   Moreover, as a silazane, the silazane represented by following formula (2) is used.

Figure 0006317874
(式中、R1 、R2 およびR3 は、それぞれ独立して水素原子および炭素数1〜8のアルキル基から選ばれる基であり、nは1以上の整数である。)
上記式[2]でR1、R2およびR3がすべて水素原子であり、1分子中にケイ素原子が55〜65重量%、窒素原子が20〜30重量%、水素原子が10〜15重量%であるような量で存在している無機ポリシラザンが特に好ましい。このようなポリシラザンを用いると、低屈折率層中にカーボンなどの不純分が残存せず、緻密でな低屈折率層を形成することができる。
Figure 0006317874
(In the formula, R 1 , R 2 and R 3 are each independently a group selected from a hydrogen atom and an alkyl group having 1 to 8 carbon atoms, and n is an integer of 1 or more.)
In the above formula [2], R 1 , R 2 and R 3 are all hydrogen atoms, 55 to 65% by weight of silicon atom, 20 to 30% by weight of nitrogen atom and 10 to 15% by weight of hydrogen atom in one molecule. Inorganic polysilazane present in an amount such as% is particularly preferred. When such polysilazane is used, an impurity such as carbon does not remain in the low refractive index layer, and a dense low refractive index layer can be formed.

また、ポリシラザン中のSi原子とN原子との比(Si/N比)は、1.0〜1.3であることが好ましい。このような無機ポリシラザンは、たとえば、ジハロシランと塩基とを反応させてジハロシランのアダクツを形成させたのち、アンモニアと反応させる方法(特公昭63−16325号公報)、メチルフェニルジクロロシランやジメチルジクロロシランなどとアンモニアを反応させる方法(特開昭62−88327号公報)などの公知の方法に従って製造することができる。   Moreover, it is preferable that ratio (Si / N ratio) of Si atom and N atom in polysilazane is 1.0-1.3. Examples of such inorganic polysilazanes include a method of reacting dihalosilane with a base to form an adduct of dihalosilane and then reacting with ammonia (Japanese Examined Patent Publication No. 63-16325), methylphenyldichlorosilane, dimethyldichlorosilane, etc. It can be produced according to a known method such as a method of reacting ammonia with ammonia (Japanese Patent Laid-Open No. Sho 62-88327).

上記式(2)で表される繰り返し単位を有するポリシラザンは、直鎖状であっても、環状であってもよく、直鎖状のポリシラザンと環状のポリシラザンとの混合物でもよい。
これらのポリシラザンのポリスチレンに換算した数平均分子量は500〜10000、好ましくは1000〜4000であることが望ましい。数平均分子量が500未満の場合は低誘電率シリカ系被膜を形成する場合に、後述する工程(b)あるいは工程(c)で低分子量のポリシラザンが揮発したり、シリカ系被膜が大きく収縮する場合がある。また、10000を越える場合は、塗布液の流動性が低下することから塗布性が低下し、平坦性、均一な膜厚の低誘電率のシリカ系被膜が得られない場合がある。
The polysilazane having a repeating unit represented by the above formula (2) may be linear or cyclic, or a mixture of linear polysilazane and cyclic polysilazane.
The number average molecular weight of these polysilazanes in terms of polystyrene is 500 to 10,000, preferably 1000 to 4000. When the number average molecular weight is less than 500, when a low dielectric constant silica-based film is formed, polysilazane having a low molecular weight is volatilized or the silica-based film is greatly contracted in the step (b) or step (c) described later. There is. On the other hand, when it exceeds 10,000, the fluidity of the coating solution is lowered, so that the coating property is lowered, and a low-permittivity silica-based film having flatness and uniform film thickness may not be obtained.

さらに、数平均分子量が1000以下である低分子量ポリシラザンは、ポリシラザン全体に対し、10〜40重量%、好ましくは15〜40重量%であることが望ましい。低分子量ポリシラサンが、ポリシラザン全体に対し、このような範囲にあれば、配線による段差を平滑に被覆し、平坦性に優れた膜表面を得ることができる。数平均分子量が1000以下である低分子量ポリシラザンの量が40重量%以上あると、乾燥から焼成間での膜収縮が大きく、平坦性が悪い、ストレスが高くクラックが入り易いなどの問題が生じる。   Furthermore, the low molecular weight polysilazane having a number average molecular weight of 1000 or less is 10 to 40% by weight, preferably 15 to 40% by weight, based on the whole polysilazane. If the low molecular weight polysilazane is in such a range with respect to the entire polysilazane, the step due to the wiring can be covered smoothly and a film surface excellent in flatness can be obtained. When the amount of the low molecular weight polysilazane having a number average molecular weight of 1000 or less is 40% by weight or more, problems such as large film shrinkage between drying and firing, poor flatness, high stress, and easy cracking.

また、シランとしては、下記式(3)〜(5)で表されるポリシラン化合物が用いられる。
4Si(X13 ・・・(3)
(式(3)中、R4は炭素数1〜10のアルキル基を表し、X1はハロゲン原子を表す。)
5Si(X23 ・・・(4)
(式(4)中、R5は置換基を有していてもよい芳香族炭化水素基を表し、X2はハロゲン原子を表す。
Moreover, as a silane, the polysilane compound represented by following formula (3)-(5) is used.
R 4 Si (X 1 ) 3 (3)
(In formula (3), R 4 represents an alkyl group having 1 to 10 carbon atoms, and X 1 represents a halogen atom.)
R 5 Si (X 2 ) 3 (4)
(In the formula (4), R 5 represents an aromatic hydrocarbon group which may have a substituent, and X 2 represents a halogen atom.

67Si(X32 ・・・(5)
(式(5)中、R6は炭素数1〜10のアルキル基を表し、R7は置換基を有していてもよい芳香族炭化水素基を表し、X3はハロゲン原子を表す。)
ポリシランの製造方法は、メチルフェニルジクロロシラン、メチルトリクロロシラン及びフェニルトリクロロシラン等を、金属ナトリウム存在下に縮重合させる方法(特開2007−145879号公報)などの公知の方法に従って製造することができる。
R 6 R 7 Si (X 3 ) 2 (5)
(In the formula (5), R 6 represents an alkyl group having 1 to 10 carbon atoms, R 7 represents an aromatic hydrocarbon group which may have a substituent group, X 3 represents a halogen atom.)
The polysilane can be produced according to a known method such as a method of polycondensation of methylphenyldichlorosilane, methyltrichlorosilane, phenyltrichlorosilane, etc. in the presence of metallic sodium (Japanese Patent Laid-Open No. 2007-145879). .

シラン化合物(3)の具体例としては、R1SiCl3(式中、R1は前記と同じ意味を表す。)で示されるアルキルトリクロロシラン化合物が挙げられる。アルキルトリクロロシラン化合物としては、メチルトリクロロシラン、エチルトリクロロシラン、n−プロピルトリクロロシラン、イソプロピルトリクロロシラン、n−ブチルトリクロロシラン、t−ブチルトリクロロシラン等が挙げられる。これらの化合物は一種単独で、あるいは二種以上を組み合わせて用いることができる。 Specific examples of the silane compound (3) include an alkyltrichlorosilane compound represented by R 1 SiCl 3 (wherein R 1 represents the same meaning as described above). Examples of the alkyltrichlorosilane compound include methyltrichlorosilane, ethyltrichlorosilane, n-propyltrichlorosilane, isopropyltrichlorosilane, n-butyltrichlorosilane, and t-butyltrichlorosilane. These compounds can be used alone or in combination of two or more.

シラン化合物(4)の具体例としては、フェニルトリクロロシラン、2−クロロフェニルトリクロロシラン、4−メチルフェニルトリクロロシラン、2,4,6−トリメチルフェニルトリクロロシラン、1−ナフチルトリクロロシラン、2−ナフチルトリクロロシラン等が挙げられる。これらの化合物は一種単独で、あるいは二種以上を組み合わせて用いることができる。   Specific examples of the silane compound (4) include phenyltrichlorosilane, 2-chlorophenyltrichlorosilane, 4-methylphenyltrichlorosilane, 2,4,6-trimethylphenyltrichlorosilane, 1-naphthyltrichlorosilane, and 2-naphthyltrichlorosilane. Etc. These compounds can be used alone or in combination of two or more.

シラン化合物(5)の具体例としては、メチルフェニルジクロロシラン、エチルフェニルジクロロシラン、n−プロピルフェニルジクロロシラン、イソプロピルフェニルジクロロシラン、メチル1−ナフチルジクロロシラン、メチル2−ナフチルジクロロシランが好ましく、メチルフェニルジクロロシラン、エチルフェニルジクロロシラン、n−プロピルフェニルジクロロシラン、イソプロピルフェニルジクロロシランがより好ましく、メチルフェニルジクロロシランが特に好ましい。   Specific examples of the silane compound (5) include methylphenyldichlorosilane, ethylphenyldichlorosilane, n-propylphenyldichlorosilane, isopropylphenyldichlorosilane, methyl 1-naphthyldichlorosilane, and methyl 2-naphthyldichlorosilane. Phenyldichlorosilane, ethylphenyldichlorosilane, n-propylphenyldichlorosilane, and isopropylphenyldichlorosilane are more preferable, and methylphenyldichlorosilane is particularly preferable.

ポリシランとしては、直鎖型、環状型、分岐型が知られている。屈折率の温度による変化が少ないことや照射光による屈折率の変化が高感度であることなどの理由から、分岐型が好ましい。   As the polysilane, a linear type, a cyclic type, and a branched type are known. The branched type is preferred because the change in refractive index due to temperature is small and the change in refractive index due to irradiation light is highly sensitive.

ポリシラン化合物の重量平均分子量(Mw)はポリスチレンに換算した数平均分子量は500〜50000、好ましくは1000〜20000であることが望ましい。数平均分子量が低いものはシリカ系被膜を形成する場合に、低分子量のポリシランが揮発したり、シリカ系被膜が大きく収縮する場合がある。また、分子量が多すぎると、溶解性が低下して溶媒中に溶解することができない。   As for the weight average molecular weight (Mw) of the polysilane compound, the number average molecular weight converted to polystyrene is 500 to 50,000, preferably 1000 to 20,000. When a silica-based film is formed with a low number average molecular weight, low-molecular weight polysilane may volatilize or the silica-based film may shrink significantly. Moreover, when there is too much molecular weight, solubility will fall and it cannot melt | dissolve in a solvent.

また、酸性珪酸液としては、珪酸アルカリ水溶液をイオン交換樹脂等で脱アルカリして得られる、酸性珪酸液が用いられる。
シリカ粒子とシリカ前駆体は混合使用することもできる。混合使用する場合、形成される低屈折率層中のシリカ粒子の含有量がSiO2として0.1〜40重量%、さらには0.5〜30重量%の範囲にあることが好ましい。シリカ粒子の含有量がこの範囲にあると、より緻密で硬度、耐擦傷性等に優れた低屈折率層を形成することができる。
Moreover, as an acidic silicic acid solution, an acidic silicic acid solution obtained by dealkalizing an aqueous alkali silicate solution with an ion exchange resin or the like is used.
The silica particles and the silica precursor can be mixed and used. When mixed and used, the content of silica particles in the low refractive index layer to be formed is preferably in the range of 0.1 to 40% by weight, more preferably 0.5 to 30% by weight as SiO 2 . When the content of the silica particles is within this range, a denser low refractive index layer having excellent hardness, scratch resistance and the like can be formed.

このシリカゾルには、本願出願人の出願による特開2001−233611号公報、特開2004−203683号公報等に開示した低屈折率のシリカ系微粒子分散ゾルを含む。   This silica sol includes the low-refractive-index silica-based fine particle dispersion sol disclosed in Japanese Patent Application Laid-Open Nos. 2001-233611 and 2004-203683 filed by the present applicant.

このときのシリカ粒子の平均粒子径は概ね5〜100nm、さらには7〜80nmの範囲にあることが好ましい。この範囲の粒子径のシリカゾルは、安定に分散し、低屈性率膜も緻密化し、反射防止膜の硬度、耐擦傷性が高い。   At this time, the average particle size of the silica particles is preferably in the range of about 5 to 100 nm, more preferably 7 to 80 nm. A silica sol having a particle diameter in this range is stably dispersed, the low-refractive-index film is also densified, and the antireflection film has high hardness and scratch resistance.

シリカ粒子の平均粒子径が小さいと、粒子が容易に凝集し、低屈折率層形成成分分散液の安定性が不十分となり、このような分散液を用いて形成される低屈折率膜は緻密化が不十分となり、最終的に得られる反射防止膜の硬度、耐擦傷性が不十分となる場合がある。シリカ粒子の平均粒子径が大きすぎると、前記した塩基性窒素化合物による緻密化が不十分となり、最終的に得られる反射防止膜の硬度、耐擦傷性が不十分となる場合がある。また、仮に緻密化できたとしてもミー散乱が起こり、光透過率が不十分となる場合がある。   When the average particle diameter of the silica particles is small, the particles easily aggregate and the stability of the low refractive index layer forming component dispersion becomes insufficient, and the low refractive index film formed using such a dispersion is dense. In some cases, the hardness and scratch resistance of the antireflection film finally obtained may be insufficient. When the average particle diameter of the silica particles is too large, the above-described densification with the basic nitrogen compound is insufficient, and the hardness and scratch resistance of the finally obtained antireflection film may be insufficient. Moreover, even if it can be densified, Mie scattering occurs and the light transmittance may be insufficient.

低屈折率層形成成分分散液の分散媒としては、前記高屈折率層形成時に使用されたものと同様のものが挙げられる。
低屈折率層形成成分分散液の濃度は固形分として0.1〜10重量%、さらには0.5〜5重量%の範囲にあることが好ましい。
Examples of the dispersion medium for the low refractive index layer forming component dispersion include the same ones used in the formation of the high refractive index layer.
The concentration of the low refractive index layer forming component dispersion is preferably 0.1 to 10% by weight, more preferably 0.5 to 5% by weight as the solid content.

低屈折率層形成成分分散液の濃度が薄いと、塗布方法にもよるが、1回の塗布で低屈折率層の厚みが30nmを超える低屈折率層を形成できない場合がある。また、低屈折率層の表面粗さ(RaC)を所望の範囲に調整できない場合がある。 If the concentration of the low refractive index layer-forming component dispersion is low, depending on the coating method, a low refractive index layer with a thickness of the low refractive index layer exceeding 30 nm may not be formed by one coating. Further, the surface roughness (Ra C ) of the low refractive index layer may not be adjusted to a desired range.

低屈折率層形成成分分散液の濃度が濃すぎても、塗布液の安定性が低く、このような低屈折率層形成成分分散液を用いて低屈折率層を形成しても緻密化しにくいためか、最終的に得られる反射防止膜の硬度、耐擦傷性が不十分となる場合がある。   Even if the concentration of the low refractive index layer forming component dispersion is too high, the stability of the coating solution is low, and even if a low refractive index layer is formed using such a low refractive index layer forming component dispersion, it is difficult to densify. For this reason, the hardness and scratch resistance of the finally obtained antireflection film may be insufficient.

低屈折率層形成成分分散液の塗布方法としては、高屈折率層上に緻密に、均一に塗布できれば特に制限はなく、従来公知の方法を採用することができる。たとえば、前記高屈折率層を形成する際と同様のバーコーター法、ディップ法、スプレー法、スピナー法、ロールコート法、グラビアコート法、スリットコート法等が挙げられる。
工程(d)および(e)
ついで(d)分散媒を除去し、ついで、(e)120〜700℃、好ましくは150〜500℃で加熱処理する。
The application method of the low refractive index layer forming component dispersion is not particularly limited as long as it can be applied densely and uniformly on the high refractive index layer, and a conventionally known method can be employed. For example, the same bar coater method, dip method, spray method, spinner method, roll coat method, gravure coat method, slit coat method and the like as in the case of forming the high refractive index layer can be mentioned.
-Steps (d) and (e)
Next, (d) the dispersion medium is removed, and then (e) heat treatment is performed at 120 to 700 ° C., preferably 150 to 500 ° C.

分散媒の除去方法としては分散液の分散媒が実質的に除去でき、具体的には、分散媒の沸点などによるが50〜120℃、さらには60〜100℃の範囲の乾燥温度が好ましい。   As a method for removing the dispersion medium, the dispersion medium of the dispersion liquid can be substantially removed. Specifically, although it depends on the boiling point of the dispersion medium, a drying temperature in the range of 50 to 120 ° C., more preferably 60 to 100 ° C. is preferable.

乾燥温度が低すぎると、分散媒の除去が不十分となる場合があり、ついで、加熱処理した際に低屈折率層中にボイドが生じる場合があり、この場合、低屈折率層および最終的に得られる反射防止膜の硬度、耐擦傷性が不十分となる場合がある。   If the drying temperature is too low, removal of the dispersion medium may be insufficient, and then voids may be generated in the low refractive index layer during the heat treatment. In this case, the low refractive index layer and the final In some cases, the antireflection film obtained may have insufficient hardness and scratch resistance.

乾燥温度が高いと、塗膜の表面の乾燥が急激に起こり、表面の皮張り現象を生じ、この場合、低屈折率層中にボイドが生じ、低屈折率層および最終的に得られる反射防止膜の硬度、耐擦傷性が不十分となる場合がある。
乾燥時間は、乾燥温度によっても異なるが、この場合も概ね20分以下、好ましくは30秒〜10分間である。
If the drying temperature is high, the surface of the coating will dry rapidly, resulting in a skinning phenomenon. In this case, voids are generated in the low refractive index layer, and the low refractive index layer and finally the antireflection obtained. The film hardness and scratch resistance may be insufficient.
The drying time varies depending on the drying temperature, but in this case as well, it is generally 20 minutes or less, preferably 30 seconds to 10 minutes.

前記範囲で加熱処理すると、高屈折率層中に含まれる塩基性窒素化合物が、低屈折率層形成成分を緻密化させると共に、低屈折率層の硬化を促進させる。
加熱処理温度が低いと、高屈折率層および低屈折率層の硬化が不十分となり、最終的に得られる反射防止膜の硬度、耐擦傷性が不十分となる場合がある。なお、前記範囲を超えて加熱しても、基材の種類によっては変形、変質等する場合がある。
When the heat treatment is performed in the above range, the basic nitrogen compound contained in the high refractive index layer densifies the low refractive index layer forming component and promotes curing of the low refractive index layer.
When the heat treatment temperature is low, the high refractive index layer and the low refractive index layer are not sufficiently cured, and the hardness and scratch resistance of the finally obtained antireflection film may be insufficient. In addition, even if it heats exceeding the said range, depending on the kind of base material, it may deform | transform and degenerate.

このようにして形成した本発明に係る低屈折率層の表面粗さ(RaC)は所望に応じて適宜選定できる。
たとえば、表面粗さ(RaC)を30nm以下、さらには10nm以下としてもよい。この範囲のものでは平滑性が高く、光透過率が高いものの、硬度、耐擦傷性が若干低下することもある。
The surface roughness (Ra C ) of the low refractive index layer according to the present invention thus formed can be appropriately selected as desired.
For example, the surface roughness (Ra C ) may be 30 nm or less, and further 10 nm or less. Within this range, the smoothness is high and the light transmittance is high, but the hardness and scratch resistance may be slightly reduced.

また、反射防止膜の表面粗さ(RaC)を、30nm〜1μm、さらには50nm〜0.8μmとしてもよい。この範囲に凹凸を有するものは、光透過率が高く、光電変換効率を高めることができるが、凹凸によって耐擦傷性体が低下することがある。 Further, the surface roughness (Ra C ) of the antireflection film may be 30 nm to 1 μm, and more preferably 50 nm to 0.8 μm. Those having irregularities in this range have high light transmittance and can improve the photoelectric conversion efficiency, but the scratch-resistant body may be deteriorated by the irregularities.

このような表面粗さは、基材の表面粗さ、高屈折率層中の金属酸化物粒子径や高屈折率層厚、塗布方法や各分散液の濃度にもよるが、凹凸を設ける場合、凹凸基材や、粒子径が大きいものを使用することが望ましい。   Such surface roughness depends on the surface roughness of the substrate, the metal oxide particle diameter and the high refractive index layer thickness in the high refractive index layer, the coating method and the concentration of each dispersion, but when unevenness is provided It is desirable to use a concavo-convex base material or one having a large particle size.

低屈折率層の平均厚みは30〜200nm、さらには50〜150nmの範囲にあることが好ましい。低屈折率層の平均厚みが薄いと、光透過率を向上させる効果が充分得られず、透明被膜付基材を光電気セルに用いた場合に光電変換効率を向上させる効果が充分得られない場合がある。低屈折率層の平均厚みが厚すぎても、光透過率を向上させる効果が充分得られず、透明被膜付基材を光電気セルに用いた場合に光電変換効率を向上させる効果が充分得られない場合がある。   The average thickness of the low refractive index layer is preferably 30 to 200 nm, more preferably 50 to 150 nm. If the average thickness of the low refractive index layer is thin, the effect of improving the light transmittance cannot be sufficiently obtained, and the effect of improving the photoelectric conversion efficiency cannot be obtained sufficiently when the substrate with a transparent coating is used in the photoelectric cell. There is a case. Even if the average thickness of the low refractive index layer is too thick, the effect of improving the light transmittance cannot be obtained sufficiently, and the effect of improving the photoelectric conversion efficiency is sufficiently obtained when a substrate with a transparent coating is used for the photoelectric cell. It may not be possible.

ここで、表面に凹凸を有する低屈折率層の平均厚みは、反射防止膜(高屈折率層と低屈折率層)付基材重量から高屈折率層付基材の重量を減じ、これを低屈折率層の比重で除して求めることができる。 Here, the average thickness of the low refractive index layer having irregularities on the surface is obtained by subtracting the weight of the base material with the high refractive index layer from the weight of the base material with the antireflection film (high refractive index layer and low refractive index layer ). It can be determined by dividing by the specific gravity of the low refractive index layer .

このようにして形成された反射防止膜付基材の反射防止膜の厚みは、高屈折率層の平均厚みと低屈折率層の平均厚みの合計であり、80〜400nm、さらには130〜270nmの範囲にあることが好ましい。   The thickness of the antireflection film of the base material with the antireflection film thus formed is the sum of the average thickness of the high refractive index layer and the average thickness of the low refractive index layer, and is 80 to 400 nm, more preferably 130 to 270 nm. It is preferable that it exists in the range.

反射防止膜の硬度(鉛筆硬度)は7H以上、さらには8H以上であることが好ましい。
反射防止膜の硬度(鉛筆硬度)が6H以下の場合は、電子デバイス、太陽電池として長期に使用した際に傷が入り、光透過率が不十分となる場合がある。このため、太陽電池に使用した場合は、光電変換効率が徐々に低下する場合がある。
[反射防止膜付基材]
本発明の反射防止膜付基材は、前記製造方法によって得られてなり、前記基材と、高屈折率層と、低屈折率層とが、積層されてなる。
The antireflection film has a hardness (pencil hardness) of preferably 7H or more, more preferably 8H or more.
When the antireflection film has a hardness (pencil hardness) of 6H or less, it may be damaged when used for a long time as an electronic device or a solar battery, and the light transmittance may be insufficient. For this reason, when it uses for a solar cell, photoelectric conversion efficiency may fall gradually.
[Base material with antireflection film]
The base material with an antireflection film of the present invention is obtained by the above production method, and the base material, a high refractive index layer, and a low refractive index layer are laminated.

高屈折率層の平均厚みが50〜200nm、好ましくは80〜120nmの範囲にあることが望ましい。高屈折率層の平均厚みが薄いと、反射率が低下しない為に十分な光透過率の向上効果が得られず、光利用率の向上による光電変換効率向上の効果が充分得られない場合がある。高屈折率層の平均厚みが厚いと、充分な光透過率が得られない場合があり、充分な光電変換効率向上効果が得られない場合がある。   The average thickness of the high refractive index layer is 50 to 200 nm, preferably 80 to 120 nm. If the average thickness of the high refractive index layer is thin, the reflectance does not decrease, so that sufficient light transmittance improvement effect cannot be obtained, and the photoelectric conversion efficiency improvement effect due to the improvement of the light utilization rate may not be sufficiently obtained. is there. If the average thickness of the high refractive index layer is thick, sufficient light transmittance may not be obtained, and sufficient photoelectric conversion efficiency improvement effect may not be obtained.

低屈折率層の平均厚みは30〜200nm、さらには50〜150nmの範囲にあることが好ましい。低屈折率層の平均厚みが薄いと、光透過率を向上させる効果が充分得られず、透明被膜付基材を光電気セルに用いた場合に光電変換効率を向上させる効果が充分得られない場合がある。低屈折率層の平均厚みが厚すぎても、光透過率を向上させる効果が充分得られず、透明被膜付基材を光電気セルに用いた場合に光電変換効率を向上させる効果が不十分となる。   The average thickness of the low refractive index layer is preferably 30 to 200 nm, more preferably 50 to 150 nm. If the average thickness of the low refractive index layer is thin, the effect of improving the light transmittance cannot be sufficiently obtained, and the effect of improving the photoelectric conversion efficiency cannot be obtained sufficiently when the substrate with a transparent coating is used in the photoelectric cell. There is a case. Even if the average thickness of the low refractive index layer is too thick, the effect of improving the light transmittance is not sufficiently obtained, and the effect of improving the photoelectric conversion efficiency is insufficient when a substrate with a transparent coating is used for a photoelectric cell. It becomes.

基材上に形成された高屈折率層の表面粗さ(RaB)が30nm〜1μm、さらには50nm〜0.8μmの範囲にあることが望ましい。高屈折率層の表面粗さ(RaB)が小さいと、充分な光透過率の向上が得られない場合がある。表面粗さ(RaB)の上限は1μmを超えることはない。 The surface roughness (Ra B ) of the high refractive index layer formed on the substrate is desirably in the range of 30 nm to 1 μm, more preferably 50 nm to 0.8 μm. If the surface roughness (Ra B ) of the high refractive index layer is small, sufficient light transmittance may not be improved. The upper limit of the surface roughness (Ra B ) does not exceed 1 μm.

このようにして形成した本発明に係る低屈折率層の表面粗さ(RaC)は所望に応じて適宜選定できる。
また、低屈折率層では、表面粗さ(RaC)を30nm以下、さらには10nm以下としてもよい。この範囲のものでは平滑性が高く、耐擦傷性は良好であるが、防眩性がやや劣ることもある。
The surface roughness (Ra C ) of the low refractive index layer according to the present invention thus formed can be appropriately selected as desired.
In the low refractive index layer, the surface roughness (Ra C ) may be 30 nm or less, and further 10 nm or less. In this range, the smoothness is high and the scratch resistance is good, but the antiglare property may be slightly inferior.

また、反射防止膜の表面粗さ(RaC)を、30nm〜1μm、さらには50nm〜0.8μmとしてもよい。この範囲に凹凸を有するものは、防眩性、光電変換効率を高めることができるが、凹凸によって耐擦傷性体が低下することがある。 Further, the surface roughness (Ra C ) of the antireflection film may be 30 nm to 1 μm, and more preferably 50 nm to 0.8 μm. Those having irregularities in this range can improve the antiglare property and photoelectric conversion efficiency, but the scratch-resistant body may be deteriorated by the irregularities.

このような表面粗さは、基材の表面粗さ、高屈折率層中の金属酸化物粒子径や高屈折率層厚、塗布方法や各分散液の濃度にもよるが、凹凸を設ける場合、凹凸基材や、粒子径が大きいものを使用することが望ましい。   Such surface roughness depends on the surface roughness of the substrate, the metal oxide particle diameter and the high refractive index layer thickness in the high refractive index layer, the coating method and the concentration of each dispersion, but when unevenness is provided It is desirable to use a concavo-convex base material or one having a large particle size.

光電気セルに使用する場合、低屈折率層の表面粗さ(RaC)は30nm〜1μm、さらには50nm〜0.8μmの範囲とすることが好ましいこの範囲あると、耐擦傷性が高く、また光線透過率も大きいので、光電変換効率を高めることができるので後述する光電気セルに好適に用いることができる。 When used in a photoelectric cell, the surface roughness (Ra C ) of the low refractive index layer is preferably 30 nm to 1 μm, more preferably 50 nm to 0.8 μm. Moreover, since the light transmittance is also large, the photoelectric conversion efficiency can be increased, so that it can be suitably used for a photoelectric cell described later.

このような反射防止膜付基材の鉛筆硬度が7H以上であり、非常に高い耐擦傷性を有する。   Such a substrate with an antireflection film has a pencil hardness of 7H or more, and has very high scratch resistance.

[光電気セル]
本発明に係る光電気セルは、前記反射防止膜付基材を前面備えたことを特徴としている。
[Photoelectric cell]
The photoelectric cell according to the present invention is characterized in that the antireflection film-coated substrate is provided on the front surface.

本発明に係る光電気セルは、図1に示されるように、表面に電極層(1)を有し、かつ該電極層(1)の表面に光増感材を吸着した金属酸化物半導体膜(2)が形成されてなる基板(P-1)と、表面に電極層(3)を有する基板(P-2)とが、前記電極層(1)および電極層(3)が対向するように配置してなり、少なくとも一方の基板および電極層が透明性を有し、金属酸化物半導体膜(2)と電極層(3)との間に電解質層を設けてなる光電気セルにおいて、少なくとも一方の透明性を有する基板(P-1)および/または基板(P-2)が、前面(セル内部と反対側)に、前記製造方法によって得られた反射防止膜(付基材)を備えたことを特徴としている。   As shown in FIG. 1, the photoelectric cell according to the present invention has a metal oxide semiconductor film having an electrode layer (1) on the surface and adsorbing a photosensitizer on the surface of the electrode layer (1). The substrate (P-1) on which (2) is formed and the substrate (P-2) having the electrode layer (3) on the surface, the electrode layer (1) and the electrode layer (3) face each other. In the photoelectric cell comprising at least one substrate and the electrode layer having transparency, and having an electrolyte layer provided between the metal oxide semiconductor film (2) and the electrode layer (3), at least One transparent substrate (P-1) and / or substrate (P-2) is provided with an antireflection film (base material) obtained by the above production method on the front surface (the side opposite to the inside of the cell). It is characterized by that.

図1は、本発明に係る光電気セルの一実施例を示す概略断面図であり、表面に透明電極層1を有し、かつ該透明電極層1表面に光増感材を吸着した多孔質金属酸化物半導体膜2が形成されてなる基板5と、表面に還元触媒能を有する電極層3を有する基板6とが、前記電極層1および3が対向するように配置され、さらに多孔質金属酸化物半導体膜2と透明電極層3との間に電解質4が封入されている。そして基板表面(特に光が透過する表面)に上記した反射防止膜が設けられている。   FIG. 1 is a schematic cross-sectional view showing an embodiment of a photoelectric cell according to the present invention, which has a transparent electrode layer 1 on the surface and a porous material in which a photosensitizer is adsorbed on the surface of the transparent electrode layer 1. A substrate 5 on which a metal oxide semiconductor film 2 is formed and a substrate 6 having an electrode layer 3 having a reduction catalytic ability on the surface are arranged so that the electrode layers 1 and 3 face each other, and further a porous metal An electrolyte 4 is sealed between the oxide semiconductor film 2 and the transparent electrode layer 3. The above-described antireflection film is provided on the substrate surface (particularly the surface through which light is transmitted).

本発明に係る光電気セルは、前記した特定の製造方法によって得られた反射防止膜付基材を備えているので光透過率が高く、光電変換効率に優れている。また、かかる方法で得られた反射防止膜は、表面硬度、耐擦傷性も高いので、表面保護性能に優れている。   Since the photoelectric cell according to the present invention includes the base material with an antireflection film obtained by the specific manufacturing method described above, the light transmittance is high and the photoelectric conversion efficiency is excellent. Moreover, since the antireflection film obtained by such a method has high surface hardness and scratch resistance, the surface protection performance is excellent.

このような光電気セルとしては、たとえば、本願出願人による特開2010-153232号公報、特開2010-153231号公報、特開2010-108855号公報、特開2010-073543号公報、特開2010-040172号公報、特開2009-289669号公報、特開2009-218218号公報、特開2008-277019号公報、特開2008-258099号公報、特開2008-210713号公報などに示すものが挙げられる。   As such a photoelectric cell, for example, Japanese Patent Application Laid-Open No. 2010-153232, Japanese Patent Application Laid-Open No. 2010-153231, Japanese Patent Application Laid-Open No. 2010-108855, Japanese Patent Application Laid-Open No. 2010-073543, and Japanese Patent Application Laid-Open No. 2010-073543 by the present applicant. -040172, 2009-289669, 2009-218218, 2008-277019, 2008-258099, 2008-210713, etc. It is done.

一方の基板としてはガラス基板、PET等の有機ポリマー基板等の透明でかつ絶縁性を有する基板を用いることができる。他の一方の基板としては使用に耐える強度を有していれば特に制限はなく、ガラス基板、PET等の有機ポリマー基板等の絶縁性基板の他に、金属チタン、金属アルミニウム、金属銅、金属ニッケルなどの導電性基板を使用することができる。なお、基板は反射防止膜が形成された基材が相当する。また、基板は少なくとも一方が透明であればよい。   As one substrate, a transparent and insulating substrate such as a glass substrate or an organic polymer substrate such as PET can be used. The other substrate is not particularly limited as long as it has enough strength to withstand use. In addition to insulating substrates such as glass substrates and organic polymer substrates such as PET, metal titanium, metal aluminum, metal copper, metal A conductive substrate such as nickel can be used. The substrate corresponds to a base material on which an antireflection film is formed. Further, it is sufficient that at least one of the substrates is transparent.

基材(1)表面に形成された電極層(1)としては、酸化錫、Sb、FまたはPがドーピングされた酸化錫、Snおよび/またはFがドーピングされた酸化インジウム、酸化アンチモン、酸化亜鉛、貴金属等などの従来公知の電極を使用することができる。このような電極層(1)は、熱分解法、CVD法などの従来公知の方法により形成することができる。また、他の一方の基板(2)表面に形成された電極層(2)としては、還元触媒能を有するものであれば特に制限されるものでなく、白金、ロジウム、ルテニウム金属、ルテニウム酸化物等の電極材料、酸化錫、Sb、FまたはPがドーピングされた酸化錫、Snおよび/またはFがドーピングされた酸化インジウム、酸化アンチモンなどの導電性材料の表面に前記電極材料をメッキあるいは蒸着した電極、カーボン電極など従来公知の電極を用いることができる。このような電極層(2)は、基板(2)上に前記電極を直接コーティング、メッキあるいは蒸着させて、導電性材料を熱分解法、CDV法等の従来公知の方法により導電層を形成した後、該導電層上に前記電極材料をメッキあるいは蒸着するなど従来公知の方法により形成することができる。   The electrode layer (1) formed on the surface of the substrate (1) includes tin oxide, tin oxide doped with Sb, F or P, indium oxide doped with Sn and / or F, antimony oxide, zinc oxide Conventionally known electrodes such as noble metals can be used. Such an electrode layer (1) can be formed by a conventionally known method such as a thermal decomposition method or a CVD method. In addition, the electrode layer (2) formed on the surface of the other substrate (2) is not particularly limited as long as it has a reduction catalytic ability, and is composed of platinum, rhodium, ruthenium metal, ruthenium oxide. The electrode material was plated or deposited on the surface of a conductive material such as tin oxide, tin oxide doped with Sb, F or P, indium oxide doped with Sn and / or F, or antimony oxide. Conventionally known electrodes such as electrodes and carbon electrodes can be used. Such an electrode layer (2) was formed by directly coating, plating or vapor-depositing the electrode on the substrate (2), and forming a conductive layer by a conventionally known method such as a thermal decomposition method or a CDV method. Thereafter, the electrode material can be formed on the conductive layer by a conventionally known method such as plating or vapor deposition.

なお、基板(2)は、基板(1)と同様に透明基板であってもよく、また電極層(2)は、電極層(1)と同様に透明電極であってもよい。さらに、基板(2)は基板(1)と同じものであってもよく、電極層(2)は電極層(1)と同じものであってもよい。   The substrate (2) may be a transparent substrate similarly to the substrate (1), and the electrode layer (2) may be a transparent electrode similarly to the electrode layer (1). Furthermore, the substrate (2) may be the same as the substrate (1), and the electrode layer (2) may be the same as the electrode layer (1).

透明基板(1)と透明電極層(1)の可視光透過率は高い方が好ましく、具体的には50%以上、特に好ましくは90%以上であることが望ましい。電極層(1)および電極層(2)の抵抗値は、各々100Ω/cm2以下であることが好ましい。 The visible light transmittance of the transparent substrate (1) and the transparent electrode layer (1) is preferably higher, specifically 50% or more, particularly preferably 90% or more. The resistance values of the electrode layer (1) and the electrode layer (2) are each preferably 100 Ω / cm 2 or less.

必要に応じて電極層(1)上に酸化チタン薄膜(1)を形成されていてもよく、膜厚が10〜70nm、さらには20〜40nmの範囲にあればよい。また、酸化チタン薄膜(1)は適当な細孔を有していてもよい。   If necessary, a titanium oxide thin film (1) may be formed on the electrode layer (1), and the film thickness may be in the range of 10 to 70 nm, and further 20 to 40 nm. The titanium oxide thin film (1) may have appropriate pores.

前記電極層(1)上、または必要に応じて設ける酸化チタン薄膜(1)上に多孔質金属酸化物半導体膜が形成されている。多孔質金属酸化物半導体膜(1)は、平均細孔径が10〜40nmの範囲にあり、細孔容積が0.25〜0.8ml/gの範囲にあればよい。多孔質金属酸化物半導体としては、特に制限はなく、酸化チタン、酸化ランタン、酸化ジルコニウム、酸化ニオビウム、酸化タングステン、酸化ストロンチウム、酸化亜鉛、酸化スズ、酸化インジウムの1種または2種以上の金属酸化物からなることが好ましい。なかでも結晶性の酸化チタン、たとえば、アナタース型酸化チタン、ブルッカイト型酸化チタン、ルチル型酸化チタンは好適に用いることができる。また、多孔質金属酸化物半導体膜(1)の膜厚は0.1〜50μmの範囲にあることが好ましい。 A porous metal oxide semiconductor film is formed on the electrode layer (1) or a titanium oxide thin film (1) provided as necessary. The porous metal oxide semiconductor film (1) may have an average pore diameter in the range of 10 to 40 nm and a pore volume in the range of 0.25 to 0.8 ml / g. There are no particular limitations on the porous metal oxide semiconductor, and one or more metal oxides of titanium oxide, lanthanum oxide, zirconium oxide, niobium oxide, tungsten oxide, strontium oxide, zinc oxide, tin oxide, and indium oxide are oxidized. It is preferable to consist of a thing. Among these, crystalline titanium oxides such as anatase type titanium oxide, brookite type titanium oxide, and rutile type titanium oxide can be suitably used. Moreover, it is preferable that the film thickness of a porous metal oxide semiconductor film (1) exists in the range of 0.1-50 micrometers.

このような半導体膜に吸着している光増感材としては、可視光領域、紫外光領域、赤外光領域の光を吸収して励起するものであれば特に制限はなく、たとえば有機色素、金属錯体などを用いることができる。   The photosensitizer adsorbed on the semiconductor film is not particularly limited as long as it absorbs and excites light in the visible light region, the ultraviolet light region, and the infrared light region. A metal complex or the like can be used.

有機色素としては、分子中にカルボキシル基、ヒドロキシアルキル基、ヒドロキシル基、スルホン基、カルボキシアルキル基等の官能基を有する従来公知の有機色素が使用できる。 具体的には、メタルフリーフタロシアニン、シアニン系色素、メタロシアニン系色素、トリフェニルメタン系色素およびウラニン、エオシン、ローズベンガル、ローダミンB、ジブロムフルオレセイン等のキサンテン系色素等が挙げられる。これらの有機色素は金属酸化物半導体膜への吸着速度が早いという特性を有している。また、金属錯体としては、特開平1-220380号公報、特表平5-504023号公報などに記載された銅フタロシアニン、チタニルフタロシアニンなどの金属フタロシアニン、クロロフィル、ヘミン、ルテニウム-トリス(2,2'-ビスピリジル-4,4'-ジカルボキシラート)、シス-(SCN-)-ビス(2,2'-ビピリジル-4,4'-ジカルボキシレート)ルテニウム、ルテニウム-シス-ジアクア-ビス(2,2'-ビピリジル-4,4'-ジカルボキシラート)などのルテニウム-シス-ジアクア-ビピリジル錯体、亜鉛-テトラ(4-カルボキシフェニル)ポルフィンなどのポルフィリン、鉄-ヘキサシアニド錯体等のルテニウム、オスミウム、鉄、亜鉛などの錯体を挙げることができる。これらの金属錯体は分光増感の効果や耐久性に優れている。多孔質金属酸化物半導体膜の光増感材の吸着量は多孔質金属酸化物半導体膜の比表面積1cm2あたり100μg以上、さらには150μg以上であることが好ましい。 As the organic dye, a conventionally known organic dye having a functional group such as a carboxyl group, a hydroxyalkyl group, a hydroxyl group, a sulfone group, or a carboxyalkyl group in the molecule can be used. Specific examples include metal-free phthalocyanines, cyanine dyes, methocyanine dyes, triphenylmethane dyes, and xanthene dyes such as uranin, eosin, rose bengal, rhodamine B, and dibromofluorescein. These organic dyes have a characteristic that the adsorption rate to the metal oxide semiconductor film is fast. Examples of the metal complex include metal phthalocyanines such as copper phthalocyanine and titanyl phthalocyanine described in JP-A-1-220380 and JP-A-5-504023, chlorophyll, hemin, ruthenium-tris (2,2 ′ -Bispyridyl-4,4′-dicarboxylate), cis- (SCN ) -bis (2,2′-bipyridyl-4,4′-dicarboxylate) ruthenium, ruthenium-cis-diaqua-bis (2, Ruthenium-cis-diaqua-bipyridyl complexes such as 2'-bipyridyl-4,4'-dicarboxylate), porphyrins such as zinc-tetra (4-carboxyphenyl) porphine, ruthenium such as iron-hexocyanide complexes, osmium, iron And complexes of zinc and the like. These metal complexes are excellent in the effect of spectral sensitization and durability. The adsorption amount of the photosensitizer on the porous metal oxide semiconductor film is preferably 100 μg or more, more preferably 150 μg or more per 1 cm 2 of the specific surface area of the porous metal oxide semiconductor film.

電解質としては、電気化学的に活性な塩とともに酸化還元系を形成する少なくとも1種の化合物との混合物が使用される。電気化学的に活性な塩としては、テトラプロピルアンモニウムアイオダイドなどの4級アンモニウム塩が挙げられる。酸化還元系を形成する化合物としては、キノン、ヒドロキノン、沃素(I-/I- 3)、沃化カリウム、臭素(Br-/Br- 3)、臭化カリウム等が挙げられる。場合によってはこれらを混合して使用することもできる。 As the electrolyte, a mixture with at least one compound that forms a redox system with an electrochemically active salt is used. Examples of the electrochemically active salt include quaternary ammonium salts such as tetrapropylammonium iodide. Examples of the compound forming the redox system, quinone, hydroquinone, iodine (I - / I - 3) , potassium iodide, bromine (Br - / Br - 3) , potassium bromide, and the like. In some cases, these may be used in combination.

このような電解質の使用量は、電解質の種類、後述する溶媒の種類によっても異なるが、概ね0.1〜5モル/リットルの範囲にあることが好ましい。
電解質層には、従来公知の溶媒を用いることができる。具体的には水、アルコール類、オリゴエーテル類、プロピオンカーボネート等のカーボネート類、燐酸エステル類、ジメチルホルムアミド、ジメチルスルホキシド、N-メチルピロリドン、N-ビニルピロリドン、スルホラン66の硫黄化合物、炭酸エチレン、アセトニトリル、γ−ブチロラクトン等が挙げられる。
The amount of the electrolyte used is preferably approximately in the range of 0.1 to 5 mol / liter, although it varies depending on the type of electrolyte and the type of solvent described later.
A conventionally well-known solvent can be used for an electrolyte layer. Specifically, carbonates such as water, alcohols, oligoethers, propionate carbonate, phosphate esters, dimethylformamide, dimethylsulfoxide, N-methylpyrrolidone, N-vinylpyrrolidone, sulfur compounds of sulfolane 66, ethylene carbonate, acetonitrile , Γ-butyrolactone and the like.

[実施例]
以下、実施例により本発明をさらに具体的に説明するが、本発明はこれらの実施例により限定されるものではない。
[Example]
EXAMPLES Hereinafter, although an Example demonstrates this invention further more concretely, this invention is not limited by these Examples.

[実施例1]
高屈折率層形成用金属酸化物粒子分散液(1)の調製
酸化チタンコロイドメタノール分散液(日揮触媒化成(株)製:オプトレイク1120Z、平均粒子径12nm、TiO2濃度20.5重量%、分散媒:メタノール、TiO2粒子屈折率2.30)100gに正珪酸エチル(多摩化学工業(株)製:正珪酸エチル‐A、SiO2濃度28.8重量%)1.88gを混合し、ついで、超純水を3.1g添加し、50℃で6時間攪拌して固形分濃度20.5重量%の表面処理酸化チタン粒子メタノール分散液を調製した。
[Example 1]
Preparation of metal oxide particle dispersion (1) for forming a high refractive index layer Titanium oxide colloid methanol dispersion (manufactured by JGC Catalysts & Chemicals Co., Ltd .: OPTRAIQUE 1120Z, average particle diameter 12 nm, TiO 2 concentration 20.5% by weight, Dispersion medium: methanol, TiO 2 particle refractive index 2.30) 100 g mixed with normal ethyl silicate (manufactured by Tama Chemical Industry Co., Ltd .: normal ethyl silicate-A, SiO 2 concentration 28.8 wt%), Subsequently, 3.1 g of ultrapure water was added and stirred at 50 ° C. for 6 hours to prepare a methanol dispersion of surface-treated titanium oxide particles having a solid content concentration of 20.5% by weight.

ついで、固形分濃度20.5重量%の表面処理酸化チタン粒子メタノール分散液100gにプロピレングリコールモノプロピルエーテル(PGME)80gと、変性アルコール(日本アルコール販売(株)製:ソルミックスAP−11:エタノール85.5重量%、イソプロピルアルコール9.8重量%、メタノール4.7重量%)220gと、塩基性窒素化合物としてトリエチルアミン(沸点:90℃)が塗布液中に50ppmとなるように2gを添加し、ついで、25℃で30分間撹拌して固形分濃度5重量%の高屈折率層形成用金属酸化物粒子分散液(1)を調製した。   Next, 100 g of a surface-treated titanium oxide particle methanol dispersion having a solid content concentration of 20.5% by weight, 80 g of propylene glycol monopropyl ether (PGME), and denatured alcohol (manufactured by Nippon Alcohol Sales Co., Ltd .: Solmix AP-11: Ethanol) 25.5 g of 85.5 wt%, isopropyl alcohol 9.8 wt%, methanol 4.7 wt%) and 2 g of triethylamine (boiling point: 90 ° C.) as a basic nitrogen compound were added to the coating solution. Subsequently, the mixture was stirred at 25 ° C. for 30 minutes to prepare a metal oxide particle dispersion (1) for forming a high refractive index layer having a solid concentration of 5% by weight.

低屈折率層形成成分分散液(1)の調製
ソルミックスA−11(日本アルコール販売(株)製)72.5gに水10.0gと濃度61重量%の硝酸0.1gを添加し、ついで、25℃で10分撹拌した後、正珪酸エチル(多摩化学工業(株)製:正珪酸エチル‐A、SiO2濃度28.8重量%)17.4gを添加し、30℃で30分間撹拌して固形分濃度5.0重量%の正珪酸エチル加水分解物分散液100gを調製した。正珪酸エチル加水分解物のポリエチレン換算分子量は1000であった。
Preparation of low refractive index layer forming component dispersion liquid (1 ) To 72.5 g of Solmix A-11 (manufactured by Nippon Alcohol Sales Co., Ltd.) was added 10.0 g of water and 0.1 g of nitric acid having a concentration of 61% by weight. After stirring at 25 ° C. for 10 minutes, 17.4 g of normal ethyl silicate (manufactured by Tama Chemical Industry Co., Ltd .: normal ethyl silicate-A, SiO 2 concentration 28.8 wt%) was added and stirred at 30 ° C. for 30 minutes. Thus, 100 g of a normal ethyl silicate hydrolyzate dispersion having a solid content concentration of 5.0% by weight was prepared. The polyethylene-converted molecular weight of the normal ethyl silicate hydrolyzate was 1000.

ついで、固形分濃度5.0重量%の正珪酸エチル加水分解物分散液100gに、プロピレングリコールモノプロピルエーテル(PGME)33gと変性アルコール(日本アルコール販売(株)製:ソルミックスAP−11:エタノール85.5重量%、イソプロピルアルコール9.8重量%、メタノール4.7重量%)33gを添加し、ついで、25℃で30分間撹拌して固形分濃度3.0重量%の低屈折率層形成成分分散液(1)を調製した。   Next, 100 g of a normal ethyl silicate hydrolyzate dispersion having a solid content concentration of 5.0% by weight, 33 g of propylene glycol monopropyl ether (PGME) and denatured alcohol (manufactured by Nippon Alcohol Sales Co., Ltd .: Solmix AP-11: ethanol) 33 g of 85.5 wt%, isopropyl alcohol 9.8 wt%, methanol 4.7 wt%), and then stirred at 25 ° C. for 30 minutes to form a low refractive index layer with a solid content concentration of 3.0 wt% Component dispersion (1) was prepared.

反射防止膜付基材(1)の製造
ガラス基板(浜新(株)製:FL硝子、厚さ:3mm、屈折率:1.51)をサンドブラスト処理し、表面粗さ(RaA)が500nmのガラス基板(1)を作成した。
Manufacture of base material with antireflection film (1) Glass substrate ( manufactured by Hamashin Co., Ltd .: FL glass, thickness: 3 mm, refractive index: 1.51) is sandblasted and has a surface roughness (Ra A ) of 500 nm. A glass substrate (1) was prepared.

ついで、高屈折率層形成用金属酸化物粒子分散液(1)を、ガラス基板(1)の表面粗さを有する面にバーコーター法(#5)で塗布し、80℃で120秒間乾燥した。このとき、高屈折率層の平均厚みは100nmであった。また、表面粗さ(RaB)および屈折率を測定し、結果を表に示す。屈折率は、エリプソメーター(ULVAC社製、EMS−1)により測定した。 Next, the metal oxide particle dispersion liquid (1) for forming a high refractive index layer was applied to the surface having the surface roughness of the glass substrate (1) by the bar coater method (# 5) and dried at 80 ° C. for 120 seconds. . At this time, the average thickness of the high refractive index layer was 100 nm. Further, the surface roughness (Ra B ) and the refractive index were measured, and the results are shown in the table. The refractive index was measured with an ellipsometer (manufactured by ULVAC, EMS-1).

ついで、低屈折率層形成成分分散液(1)をバーコーター法(#4)で塗布し、80℃で2分間乾燥した後、500℃で30分間加熱して硬化させて低屈折率層を形成して反射防止膜付基材(1)を製造した。このとき、低屈折率層の平均厚みは100nmであった。また、表面粗さ(RaC)および屈折率を測定し、結果を表に示す。低屈折率層の屈折率は、反射率計(大塚電子(株)製:FE−3000)により測定した。 Next, the low refractive index layer forming component dispersion (1) is applied by the bar coater method (# 4), dried at 80 ° C. for 2 minutes, and then heated and cured at 500 ° C. for 30 minutes to form a low refractive index layer. Thus, a base material (1) with an antireflection film was produced. At this time, the average thickness of the low refractive index layer was 100 nm. Further, the surface roughness (Ra C ) and refractive index were measured, and the results are shown in the table. The refractive index of the low refractive index layer was measured with a reflectometer (manufactured by Otsuka Electronics Co., Ltd .: FE-3000).

反射防止膜付基材(1)について、全光線透過率、ヘイズは、ヘーズメーター(スガ試験機(株)製)により、反射率は分光光度計(日本分光社、Ubest-55)により夫々測定した。なお、未塗布のガラス基板は全光線透過率が99.0%、ヘイズが0.1%、波長550nmの光線の反射率が5.0%であった。
1)鉛筆硬度の測定
JIS−K−5400に準じて鉛筆硬度試験器により測定した。
2)耐擦傷性の測定
#0000スチールウールを用い、荷重2kg/cm2で10回摺動し、膜の表面を目視観察し、以下の基準で評価し、結果を表1に示す。
For the substrate with antireflection film (1), the total light transmittance and haze are measured with a haze meter (manufactured by Suga Test Instruments Co., Ltd.), and the reflectance is measured with a spectrophotometer (JASCO Corporation, Ubest-55). did. The uncoated glass substrate had a total light transmittance of 99.0%, a haze of 0.1%, and a reflectance of light having a wavelength of 550 nm of 5.0%.
1) Measurement of pencil hardness It measured with the pencil hardness tester according to JIS-K-5400.
2) Measurement of scratch resistance Using # 0000 steel wool, sliding 10 times with a load of 2 kg / cm 2 , visually observing the surface of the film and evaluating it according to the following criteria, the results are shown in Table 1.

評価基準:
筋条の傷が認められない :◎
筋条に傷が僅かに認められる:○
筋条に傷が多数認められる :△
面が全体的に削られている :×
Evaluation criteria:
No streak injury is found: ◎
Slightly scratched streak: ○
Many scratches are found in the streak: △
The surface has been cut entirely: ×

光電気セル(1-1)の作成
反射防止膜付基材(1)の反射防止膜の反対側にフッ素ドープした酸化スズを電極として形成した電極付反射防止膜付基材(1-1)を作成した。
Preparation of photoelectric cell (1-1) Antireflection film-coated substrate (1-1) formed with fluorine-doped tin oxide as an electrode on the opposite side of the antireflection film substrate (1) It was created.

半導体膜用金属酸化物粒子の調製
5gの水素化チタンを1Lの純水に懸濁し、濃度5%過酸化水素液400gを30分かけて添加し、ついで80℃に加熱して溶解してペルオキソチタン酸の溶液を調製した。これに濃アンモニア水を添加してpH9に調整し、オートクレーブに入れ、250℃で5時間、飽和蒸気圧下で水熱処理を行ってチタニアコロイド粒子(A)を調製した。X線回折により結晶性の高いアナターゼ型酸化チタンであった。平均粒子径は表40nmであった。
Preparation of metal oxide particles for semiconductor film 5 g of titanium hydride is suspended in 1 L of pure water, 400 g of 5% hydrogen peroxide solution is added over 30 minutes, then heated to 80 ° C. to dissolve and peroxo A solution of titanic acid was prepared. Concentrated aqueous ammonia was added thereto to adjust the pH to 9, and the mixture was placed in an autoclave and subjected to hydrothermal treatment at 250 ° C. for 5 hours under saturated vapor pressure to prepare titania colloidal particles (A). It was anatase type titanium oxide having high crystallinity by X-ray diffraction. The average particle size was 40 nm.

半導体膜形成用塗布液の調製
次に、上記で得られたチタニアコロイド粒子(A)を濃度10%まで濃縮し、これに前記ペルオキソチタン酸溶液を混合し、この混合物中のチタンをTiO2に換算したときの重量の30重量%となるように、膜形成助剤であるヒドロキシプロピルセルロースを添加して半導体膜形成用塗布液を調製した。
Preparation of coating solution for forming semiconductor film Next, the titania colloidal particles (A) obtained above are concentrated to a concentration of 10%, and the peroxotitanic acid solution is mixed therewith, and the titanium in the mixture is converted into TiO 2 . A coating solution for forming a semiconductor film was prepared by adding hydroxypropylcellulose, which is a film forming aid, so as to be 30% by weight of the converted weight.

半導体膜の形成
次いで、電極付反射防止膜付基材(1)の電極面上に半導体膜形成用塗布液を塗布し、自然乾燥し、引き続き低圧水銀ランプを用いて6000mJ/cm2 の紫外線を照射してペルオキソチタン酸を分解(加水分解・重縮合)させ、半導体膜を硬化させた。さらに、300℃で30分間加熱してヒドロキシプロピルセルロースの分解およびアニーリングを行って酸化チタン半導体膜(A)を形成した。
得られた酸化チタン半導体膜(A)の膜厚は20μm、窒素吸着法によって求めた細孔容積は0.60ml/g、平均細孔径は22nmであった。
Formation of semiconductor film Next, a coating solution for forming a semiconductor film is applied on the electrode surface of the substrate with antireflection film with electrode (1), air-dried, and subsequently irradiated with 6000 mJ / cm 2 ultraviolet rays using a low-pressure mercury lamp. Irradiation decomposed peroxotitanic acid (hydrolysis and polycondensation) to cure the semiconductor film. Furthermore, the titanium oxide semiconductor film (A) was formed by heating at 300 ° C. for 30 minutes to decompose and anneal hydroxypropylcellulose.
The obtained titanium oxide semiconductor film (A) had a thickness of 20 μm, a pore volume determined by a nitrogen adsorption method of 0.60 ml / g, and an average pore diameter of 22 nm.

分光増感色素の吸着
分光増感色素としてシス-(SCN- )-ビス(2,2'-ビピリジル-4,4'-ジカルボキシレート)ルテニウム(II)で表されるルテニウム錯体の濃度3×10-4 モル/リットルのエタノール溶液を調製した。この分光増感色素溶液を、rpm100スピナーを用いて、酸化チタン半導体膜(A)上へ塗布して乾燥した。この塗布および乾燥工程を5回行った。得られた酸化チタン半導体膜の分光増感色素の吸着量は150μg/cm2であった。このとき、酸化チタン膜(A)の比表面積1cm2あたりの吸着量として示す。なお、塗布乾燥後の半導体膜の重量増分を吸着量とした。
Adsorption of spectral sensitizing dye Concentration of ruthenium complex represented by cis- (SCN-)-bis (2,2'-bipyridyl-4,4'-dicarboxylate) ruthenium (II) as a spectral sensitizing dye 3 × A 10 -4 mol / liter ethanol solution was prepared. This spectral sensitizing dye solution was applied onto the titanium oxide semiconductor film (A) using an rpm 100 spinner and dried. This coating and drying process was performed five times. The amount of spectral sensitizing dye adsorbed on the obtained titanium oxide semiconductor film was 150 μg / cm 2 . At this time, the adsorption amount per 1 cm 2 of the specific surface area of the titanium oxide film (A) is shown. In addition, the weight increment of the semiconductor film after application | coating drying was made into adsorption amount.

ついで、溶媒としてアセトニトリルと炭酸エチレンの体積比が1:4の比でを混合した溶媒にテトラプロピルアンモニウムアイオダイドとヨウ素とを、それぞれの濃度が0.46モル/L、0.06モル/Lとなるように溶解して電解質溶液を調製した。   Subsequently, tetrapropylammonium iodide and iodine are mixed in a solvent in which acetonitrile and ethylene carbonate are mixed at a volume ratio of 1: 4, and the respective concentrations are 0.46 mol / L and 0.06 mol / L. The electrolyte solution was prepared by dissolving so as to be.

前記で電極付反射防止膜付基材(1)を一方の電極とし、他方の電極としてフッ素ドープした酸化スズを電極として形成し、その上に白金を担持した透明ガラス基板を対向して配置し、側面を樹脂にてシールし、電極間に上記の電解質溶液を封入し、さらに電極間をリード線で接続して光電気セル(1-1)を作製した。   The base material with an antireflection film with electrode (1) is used as one electrode, and fluorine doped tin oxide is formed as the other electrode as an electrode, and a transparent glass substrate carrying platinum thereon is disposed oppositely. Then, the side surface was sealed with resin, the above electrolyte solution was sealed between the electrodes, and the electrodes were connected with lead wires to produce a photoelectric cell (1-1).

得られた光電気セル(1-1)について、性能を評価した。
性能評価(1)(初期性能評価)
光電気セル(1)は、ソーラーシュミレーターで100W/m2の強度の光を照射して、Voc(開回路状態の電圧)、Joc(回路を短絡したときに流れる電流の密度)、FF(曲線因子)およびη(変換効率)を測定し結果を表に示した。
The performance of the obtained photoelectric cell (1-1) was evaluated.
Performance evaluation (1) (initial performance evaluation)
The photoelectric cell (1) is irradiated with light of 100 W / m 2 by a solar simulator, Voc (voltage in an open circuit state), Joc (density of current that flows when the circuit is short-circuited), FF (curve) Factor) and η (conversion efficiency) were measured and the results are shown in the table.

性能評価(2)(耐擦傷性試験後)
耐擦傷性を測定した反射防止膜付基材(1)の反射防止膜の反対側にフッ素ドープした酸化スズを電極として形成した電極付反射防止膜付基材(1-2)を作成し、これを用いた以外は同様にして光電気セル(1-2)を作製し、同様に性能を評価し、結果を表に示す。
Performance evaluation (2) (after scratch resistance test)
Create a substrate with antireflection film with electrode (1-2) formed with fluorine-doped tin oxide as an electrode on the opposite side of the antireflection film of antireflection film with measured scratch resistance (1), A photoelectric cell (1-2) was prepared in the same manner except that this was used, the performance was evaluated in the same manner, and the results are shown in the table.

[実施例2]
ガラス基板(2)の作成
表面粗さ形成用塗布液(1)の調製
変性アルコール(日本アルコール販売(株)製:ソルミックスAP−11:エタノール85.5重量%、イソプロピルアルコール9.8重量%、メタノール4.7重量%)72.5gに水10.0gと濃度61重量%の硝酸0.1gを添加し、ついで、25℃で10分撹拌した後、正珪酸エチル(多摩化学工業(株)製:正珪酸エチル‐A、SiO2濃度28.8重量%)17.4gを添加し、30℃で30分間撹拌して固形分濃度5.0重量%の正珪酸エチル加水分解物分散液
100gを調製した。正珪酸エチル加水分解物のポリエチレン換算分子量は1000であった。
[Example 2]
Creation of glass substrate (2)
Preparation of surface roughness forming coating solution (1) Modified alcohol (manufactured by Nippon Alcohol Sales Co., Ltd .: Solmix AP-11: ethanol 85.5% by weight, isopropyl alcohol 9.8% by weight, methanol 4.7% by weight ) After adding 10 g of water and 0.1 g of nitric acid having a concentration of 61% by weight to 72.5 g, the mixture was stirred at 25 ° C. for 10 minutes, and then ethyl ethyl silicate (manufactured by Tama Chemical Industry Co., Ltd .: normal ethyl silicate- A, SiO 2 concentration 28.8 wt%) 17.4 g was added and stirred at 30 ° C. for 30 min to prepare 100 g of a normal ethyl silicate hydrolyzate dispersion having a solid content concentration of 5.0 wt%. The polyethylene-converted molecular weight of the normal ethyl silicate hydrolyzate was 1000.

ついで、固形分濃度5.0重量%の正珪酸エチル加水分解物分散液100gに、プロピレングリコールモノプロピルエーテル(PGME)7.5gとメタノール142.5gを添加し、ついで、25℃で30分間撹拌して固形分濃度2.0重量%の表面粗さ形成用塗布液(1)を調製した。   Next, 7.5 g of propylene glycol monopropyl ether (PGME) and 142.5 g of methanol are added to 100 g of a normal ethyl silicate hydrolyzate dispersion having a solid content concentration of 5.0% by weight, followed by stirring at 25 ° C. for 30 minutes. Thus, a coating solution (1) for forming a surface roughness having a solid content concentration of 2.0% by weight was prepared.

表面粗さ形成用塗布液(1)をガラス基板(浜新(株)製:FL硝子、厚さ:3mm、屈折率:1.51)にスプレー塗布した。スプレー塗布は、ガラス基板を40〜42℃に加温し、口径2mmのガラスノズルでエアー流量25L/min,エアー圧0.4mPaで塗布した。その後、塗布基板を80℃で10分乾燥し、150℃で30分焼成して、表面粗さ(RaA)が100nmのガラス基板(2)を作成した。 The surface roughness forming coating solution (1) was spray-coated on a glass substrate (Hamashin Co., Ltd .: FL glass, thickness: 3 mm, refractive index: 1.51). For spray coating, the glass substrate was heated to 40 to 42 ° C., and was applied with a glass nozzle having a diameter of 2 mm at an air flow rate of 25 L / min and an air pressure of 0.4 mPa. Thereafter, the coated substrate was dried at 80 ° C. for 10 minutes and baked at 150 ° C. for 30 minutes to prepare a glass substrate (2) having a surface roughness (Ra A ) of 100 nm.

反射防止膜付基材(2)の製造
ついで、実施例1と同様にして調製した高屈折率層形成用金属酸化物粒子分散液(1)を、ガラス基板(2)にバーコーター法(#5)で塗布し、80℃で120秒間乾燥した。このとき、高屈折率層の平均厚みは100nmであった。また、表面粗さ(RaB)および屈折率を測定し、結果を表に示す。
Production of base material with antireflection film (2) Next, a metal oxide particle dispersion (1) for forming a high refractive index layer prepared in the same manner as in Example 1 was applied to a glass substrate (2) by a bar coater method (# 5), and dried at 80 ° C. for 120 seconds. At this time, the average thickness of the high refractive index layer was 100 nm. Further, the surface roughness (Ra B ) and the refractive index were measured, and the results are shown in the table.

実施例1と同様にして調製した低屈折率層形成成分分散液(1)をバーコーター法(#4)で塗布し、80℃で2分間乾燥した後、500℃で30分間加熱して硬化させて低屈折率層を形成して反射防止膜付基材(2)を製造した。このとき、低屈折率層の平均厚みは100nmであった。また、表面粗さ(RaC)および屈折率を測定し、結果を表に示す。
反射防止膜付基材(2)について、全光線透過率、ヘイズ、鉛筆硬度および耐擦傷性を測定し、結果を表に示す。
The low refractive index layer forming component dispersion (1) prepared in the same manner as in Example 1 was applied by the bar coater method (# 4), dried at 80 ° C. for 2 minutes, and then heated at 500 ° C. for 30 minutes to cure. Thus, a low refractive index layer was formed to produce a substrate (2) with an antireflection film. At this time, the average thickness of the low refractive index layer was 100 nm. Further, the surface roughness (Ra C ) and refractive index were measured, and the results are shown in the table.
For the substrate with antireflection film (2), the total light transmittance, haze, pencil hardness and scratch resistance were measured, and the results are shown in the table.

光電気セル(2)の作成
反射防止膜付基材(2)の反射防止膜の反対側にフッ素ドープした酸化スズを電極として形成した電極付反射防止膜付基材(2)を作成した。
Production of Photoelectric Cell (2) An antireflection film-coated substrate (2) was formed by forming fluorine-doped tin oxide as an electrode on the opposite side of the antireflection film of the substrate (2) with an antireflection film.

次いで、実施例1と同様にして電極付反射防止膜付基材(2)の電極面上に半導体膜を形成し、分光増感色素を吸着させ、電極付反射防止膜付基材(2)を一方の電極とし、他方の電極としてフッ素ドープした酸化スズを電極として形成し、その上に白金を担持した透明ガラス基板を対向して配置し、側面を樹脂にてシールし、電極間に上記の電解質溶液を封入し、さらに電極間をリード線で接続して光電気セル(2-1)を作製した。   Next, in the same manner as in Example 1, a semiconductor film was formed on the electrode surface of the substrate with antireflection film with electrode (2), the spectral sensitizing dye was adsorbed, and the substrate with antireflection film with electrode (2) Is used as one electrode, and fluorine-doped tin oxide is formed as the other electrode, and a transparent glass substrate carrying platinum is disposed on the opposite side, and the side surfaces are sealed with resin, The electrolyte solution was sealed, and the electrodes were connected with lead wires to produce a photoelectric cell (2-1).

また、実施例1と同様に、耐擦傷性を測定した反射防止膜付基材(2)を用いて同様にして光電気セル(2-2)を作製した。
得られた光電気セルについて、性能評価(1)および性能評価(2)を行い、結果を表に示す。
Further, in the same manner as in Example 1, a photoelectric cell (2-2) was produced in the same manner using the antireflection film-coated substrate (2) whose scratch resistance was measured.
About the obtained photoelectric cell, performance evaluation (1) and performance evaluation (2) are performed, and a result is shown to a table | surface.

[実施例3]
ガラス基板(3)の作成
表面粗さ形成用塗布液(2)の調製
シリカ微粒子分散液(1)(日揮触媒化成(株)製:CATALOID SS−300;平均粒子径300nm、SiO2濃度18.00重量%、分散媒:水)1000gに純水を333g添加して固形分濃度を20重量%に調整し、ついで、陽イオン交換樹脂(三菱化学(株)製:ダイヤイオンSK1B)336gを用い、80℃で3時間イオン交換して洗浄を行い、固形分濃度20重量%のシリカ微粒子分散液を得た。
[Example 3]
Creation of glass substrate (3)
Preparation of surface roughness forming coating liquid (2) Silica fine particle dispersion (1) (manufactured by JGC Catalysts & Chemicals Co., Ltd .: CATALOID SS-300; average particle diameter 300 nm, SiO 2 concentration 18.00 wt%, dispersion medium: Water) 333 g of pure water was added to 1000 g to adjust the solid content concentration to 20% by weight, and then cation exchange resin (manufactured by Mitsubishi Chemical Corporation: Diaion SK1B) 336 g was used at 80 ° C. for 3 hours. The silica fine particle dispersion having a solid concentration of 20% by weight was obtained by exchanging and washing.

この分散液を限外濾過膜を用いてメタノールにて溶媒置換して固形分濃度20重量%のシリカ微粒子メタノール分散液を得た。
シリカ微粒子メタノール分散液100gに正珪酸エチル(多摩化学工業(株)製:正珪酸エチル‐A、SiO2濃度28.8重量%)1.88gを混合し、ついで、超純水を3.1g添加し、50℃で6時間攪拌して固形分濃度20.5重量%の表面処理シリカ微粒子メタノール分散液を調製した。
This dispersion was subjected to solvent substitution with methanol using an ultrafiltration membrane to obtain a silica fine particle methanol dispersion having a solid concentration of 20% by weight.
1.88 g of normal ethyl silicate (manufactured by Tama Chemical Industry Co., Ltd .: normal ethyl silicate-A, SiO 2 concentration 28.8 wt%) was mixed with 100 g of silica fine particle methanol dispersion, and then 3.1 g of ultrapure water was added. The mixture was stirred at 50 ° C. for 6 hours to prepare a surface-treated silica fine particle methanol dispersion having a solid content concentration of 20.5% by weight.

表面処理シリカ粒子メタノール分散液100gにNMP1g,PGM49gを添加し、ついで、25℃で30分間撹拌して固形分濃度10.0重量%の表面粗さ形成用塗布液(2)を調製した。   To 100 g of the surface-treated silica particle methanol dispersion, 1 g of NMP and 49 g of PGM were added, followed by stirring at 25 ° C. for 30 minutes to prepare a surface roughness forming coating solution (2) having a solid content concentration of 10.0% by weight.

表面粗さ形成用塗布液(2)を、ガラス基板(浜新(株)製:FL硝子、厚さ:3mm、屈折率:1.51)にバーコーター法(#3)で塗布し、80℃で120秒間乾燥し、150℃で30分焼成して、表面粗さ(RaA)が300nmのガラス基板(3)を作成した。 The surface roughness forming coating solution (2) was applied to a glass substrate (Hamashin Co., Ltd .: FL glass, thickness: 3 mm, refractive index: 1.51) by the bar coater method (# 3), 80 The glass substrate (3) having a surface roughness (Ra A ) of 300 nm was prepared by drying at 150 ° C. for 120 seconds and baking at 150 ° C. for 30 minutes.

反射防止膜付基材(3)の製造
実施例1と同様にして調製した高屈折率層形成用金属酸化物粒子分散液(1)を、ガラス基板(3)にバーコーター法(#5)で塗布し、80℃で120秒間乾燥した。このとき、高屈折率層の平均厚みは100nmであった。また、表面粗さ(RaB)および屈折率を測定し、結果を表に示す。
Production of substrate with antireflection film (3) A metal oxide particle dispersion (1) for forming a high refractive index layer prepared in the same manner as in Example 1 was applied to a glass substrate (3) by the bar coater method (# 5). And dried at 80 ° C. for 120 seconds. At this time, the average thickness of the high refractive index layer was 100 nm. Further, the surface roughness (Ra B ) and the refractive index were measured, and the results are shown in the table.

実施例1と同様にして調製した低屈折率層形成成分分散液(1)をバーコーター法(#4)で塗布し、80℃で2分間乾燥した後、500℃で30分間加熱して硬化させて低屈折率層を形成して反射防止膜付基材(3)を製造した。このとき、低屈折率層の平均厚みは100nmであった。また、表面粗さ(RaC)および屈折率を測定し、結果を表に示す。
反射防止膜付基材(3)について、全光線透過率、ヘイズ、鉛筆硬度および耐擦傷性を測定し、結果を表に示す。
The low refractive index layer forming component dispersion (1) prepared in the same manner as in Example 1 was applied by the bar coater method (# 4), dried at 80 ° C. for 2 minutes, and then heated at 500 ° C. for 30 minutes to cure. Thus, a low refractive index layer was formed to produce a base material (3) with an antireflection film. At this time, the average thickness of the low refractive index layer was 100 nm. Further, the surface roughness (Ra C ) and refractive index were measured, and the results are shown in the table.
With respect to the base material (3) with an antireflection film, the total light transmittance, haze, pencil hardness and scratch resistance were measured, and the results are shown in the table.

光電気セル(3)の作成
反射防止膜付基材(3)の反射防止膜の反対側にフッ素ドープした酸化スズを電極として形成した電極付反射防止膜付基材(3)を作成した。
Production of Photoelectric Cell (3) An antireflective film-coated substrate (3) was formed by forming fluorine-doped tin oxide as an electrode on the opposite side of the antireflective film-coated substrate (3).

次いで、実施例1と同様にして電極付反射防止膜付基材(3)の電極面上に半導体膜を形成し、分光増感色素を吸着させ、電極付反射防止膜付基材(3)を一方の電極とし、他方の電極としてフッ素ドープした酸化スズを電極として形成し、その上に白金を担持した透明ガラス基板を対向して配置し、側面を樹脂にてシールし、電極間に上記の電解質溶液を封入し、さらに電極間をリード線で接続して光電気セル(3-1)を作製した。また、実施例1と同様に、耐擦傷性を測定した反射防止膜付基材(3)を用いて光電気セル(3-2)を作製した。
得られた光電気セルについて、性能評価(1)および性能評価(2)を行い、結果を表に示す。
Next, in the same manner as in Example 1, a semiconductor film was formed on the electrode surface of the substrate with antireflection film with electrode (3), the spectral sensitizing dye was adsorbed, and the substrate with antireflection film with electrode (3) Is used as one electrode, and fluorine-doped tin oxide is formed as the other electrode, and a transparent glass substrate carrying platinum is disposed on the opposite side, and the side surfaces are sealed with resin, The electrolyte solution was sealed, and the electrodes were connected with lead wires to produce a photoelectric cell (3-1). Further, in the same manner as in Example 1, a photoelectric cell (3-2) was produced using a base material (3) with an antireflection film whose scratch resistance was measured.
About the obtained photoelectric cell, performance evaluation (1) and performance evaluation (2) are performed, and a result is shown to a table | surface.

[実施例4]
高屈折率層形成用金属酸化物粒子分散液(2)の調製
実施例1において、塩基性窒素化合物としてトリエチルアミンが塗布液中に5ppmとなるように0.05gを添加した以外は同様にして固形分濃度5重量%の高屈折率層形成用金属酸化物粒子分散液(2)を調製した。
[Example 4]
Preparation of Metal Oxide Particle Dispersion (2) for Formation of High Refractive Index Layer In Example 1, the solid solid was similarly prepared except that 0.05 g of triethylamine as a basic nitrogen compound was added to the coating solution at 5 ppm. A metal oxide particle dispersion (2) for forming a high refractive index layer having a partial concentration of 5% by weight was prepared.

反射防止膜付基材(4)の製造
ついで、実施例1において、高屈折率層形成用金属酸化物粒子分散液(2)を用いた以外は同様にして、ガラス基板(1)に高屈折率層を形成した。高屈折率層の平均厚みは100nmであった。また、表面粗さ(RaB)および屈折率を測定し、結果を表に示す。
Production of base material with antireflection film (4) Next, in Example 1, high refractive index was similarly applied to the glass substrate (1) except that the metal oxide particle dispersion (2) for forming a high refractive index layer was used. A rate layer was formed. The average thickness of the high refractive index layer was 100 nm. Further, the surface roughness (Ra B ) and the refractive index were measured, and the results are shown in the table.

実施例1と同様にして調製した低屈折率層形成成分分散液(1)をバーコーター法(#4)で塗布し、80℃で2分間乾燥した後、500℃で30分間加熱して硬化させて低屈折率層を形成して反射防止膜付基材(4)を製造した。このとき、低屈折率層の平均厚みは100nmであった。また、表面粗さ(RaC)および屈折率を測定し、結果を表に示す。
反射防止膜付基材(4)ついて、全光線透過率、ヘイズ、鉛筆硬度および耐擦傷性を測定し、結果を表に示す。
The low refractive index layer forming component dispersion (1) prepared in the same manner as in Example 1 was applied by the bar coater method (# 4), dried at 80 ° C. for 2 minutes, and then heated at 500 ° C. for 30 minutes to cure. Thus, a low refractive index layer was formed to produce a substrate (4) with an antireflection film. At this time, the average thickness of the low refractive index layer was 100 nm. Further, the surface roughness (Ra C ) and refractive index were measured, and the results are shown in the table.
For the substrate with antireflection film (4), the total light transmittance, haze, pencil hardness and scratch resistance were measured, and the results are shown in the table.

光電気セル(4-1)の作成
反射防止膜付基材(4)の反射防止膜の反対側にフッ素ドープした酸化スズを電極として形成した電極付反射防止膜付基材(4)を作成した。
Production of photoelectric cell (4-1) Production of substrate with antireflection film (4) with electrode made of tin oxide doped with fluorine on the opposite side of antireflection film of substrate with antireflection film (4) did.

次いで、実施例1と同様にして電極付反射防止膜付基材(4)の電極面上に半導体膜を形成し、分光増感色素を吸着させ、電極付反射防止膜付基材(4)を一方の電極とし、他方の電極としてフッ素ドープした酸化スズを電極として形成し、その上に白金を担持した透明ガラス基板を対向して配置し、側面を樹脂にてシールし、電極間に上記の電解質溶液を封入し、さらに電極間をリード線で接続して光電気セル(4-1)を作製した。また、実施例1と同様に耐擦傷性を測定した反射防止膜付基材(4)を用いて光電気セル(4-2)を作製した。
得られた光電気セルについて、性能評価(1)および性能評価(2)を行い、結果を表に示す。
Next, in the same manner as in Example 1, a semiconductor film is formed on the electrode surface of the substrate with antireflection film with electrode (4), the spectral sensitizing dye is adsorbed, and the substrate with antireflection film with electrode (4) Is used as one electrode, and fluorine-doped tin oxide is formed as the other electrode, and a transparent glass substrate carrying platinum is disposed on the opposite side, and the side surfaces are sealed with resin, The electrolyte solution was sealed, and the electrodes were connected with lead wires to produce a photoelectric cell (4-1). Moreover, the photoelectric cell (4-2) was produced using the base material (4) with an antireflection film whose abrasion resistance was measured in the same manner as in Example 1.
About the obtained photoelectric cell, performance evaluation (1) and performance evaluation (2) are performed, and a result is shown to a table | surface.

[実施例5]
高屈折率層形成用金属酸化物粒子分散液(3)の調製
実施例1において、塩基性窒素化合物としてトリエチルアミンが塗布液中に200ppmとなるように2gを添加した以外は同様にして固形分濃度5重量%の高屈折率層形成用金属酸化物粒子分散液(3)を調製した。
[Example 5]
Preparation of Metal Oxide Particle Dispersion (3) for Formation of High Refractive Index Layer In Example 1, the solid content concentration was the same except that 2 g of triethylamine was added as a basic nitrogen compound to 200 ppm in the coating solution. A 5% by weight metal oxide particle dispersion (3) for forming a high refractive index layer was prepared.

反射防止膜付基材(5)の製造
ついで、実施例1において、高屈折率層形成用金属酸化物粒子分散液(3)を用いた以外は同様にして、ガラス基板(1)に高屈折率層を形成した。高屈折率層の平均厚みは100nmであった。また、表面粗さ(RaB)および屈折率を測定し、結果を表に示す。
Production of substrate with antireflection film (5) Next, in Example 1, high refractive index was similarly applied to the glass substrate (1) except that the metal oxide particle dispersion (3) for forming a high refractive index layer was used. A rate layer was formed. The average thickness of the high refractive index layer was 100 nm. Further, the surface roughness (Ra B ) and the refractive index were measured, and the results are shown in the table.

実施例1と同様にして調製した低屈折率層形成成分分散液(1)をバーコーター法(#4)で塗布し、80℃で2分間乾燥した後、500℃で30分間加熱して硬化させて低屈折率層を形成して反射防止膜付基材(5)を製造した。このとき、低屈折率層の平均厚みは100nmであった。また、表面粗さ(RaC)および屈折率を測定し、結果を表に示す。
反射防止膜付基材(5)ついて、全光線透過率、ヘイズ、鉛筆硬度および耐擦傷性を測定し、結果を表に示す。
The low refractive index layer forming component dispersion (1) prepared in the same manner as in Example 1 was applied by the bar coater method (# 4), dried at 80 ° C. for 2 minutes, and then heated at 500 ° C. for 30 minutes to cure. Thus, a low refractive index layer was formed to produce a substrate (5) with an antireflection film. At this time, the average thickness of the low refractive index layer was 100 nm. Further, the surface roughness (Ra C ) and refractive index were measured, and the results are shown in the table.
For the substrate with antireflection film (5), the total light transmittance, haze, pencil hardness and scratch resistance were measured, and the results are shown in the table.

光電気セル(5)の作成
反射防止膜付基材(5)の反射防止膜の反対側にフッ素ドープした酸化スズを電極として形成した電極付反射防止膜付基材(5)を作成した。
Production of Photoelectric Cell (5) A substrate with antireflection film with electrode (5) was produced by forming fluorine-doped tin oxide as an electrode on the side opposite to the antireflection film of substrate with antireflection film (5).

次いで、実施例1と同様にして電極付反射防止膜付基材(5)の電極面上に半導体膜を形成し、分光増感色素を吸着させ、電極付反射防止膜付基材(5)を一方の電極とし、他方の電極としてフッ素ドープした酸化スズを電極として形成し、その上に白金を担持した透明ガラス基板を対向して配置し、側面を樹脂にてシールし、電極間に上記の電解質溶液を封入し、さらに電極間をリード線で接続して光電気セル(5-1)を作製した。また、実施例1と同様にして、耐擦傷性を測定した反射防止膜付基材(5)を用いて光電気セル(5-2)を作製した。
得られた光電気セル(5-1)および光電気セル(5-2)について、性能評価(1)および性能評価(2)を行い、結果を表に示す。
Next, in the same manner as in Example 1, a semiconductor film was formed on the electrode surface of the substrate with antireflection film with electrode (5), the spectral sensitizing dye was adsorbed, and the substrate with antireflection film with electrode (5) Is used as one electrode, and fluorine-doped tin oxide is formed as the other electrode, and a transparent glass substrate carrying platinum is disposed on the opposite side, and the side surfaces are sealed with resin, The electrolyte solution was sealed, and the electrodes were connected with lead wires to produce a photoelectric cell (5-1). Further, in the same manner as in Example 1, a photoelectric cell (5-2) was produced using the antireflection film-coated substrate (5) whose scratch resistance was measured.
Performance evaluation (1) and performance evaluation (2) were performed on the obtained photoelectric cell (5-1) and photoelectric cell (5-2), and the results are shown in the table.

[実施例6]
高屈折率層形成用金属酸化物粒子分散液(4)の調製
実施例1において、トリエチルアミンに代えて塩基性窒素化合物としてトリプロピルアミン(沸点:155℃)が塗布液中に50ppmとなるように0.5gを添加した以外は同様にして固形分濃度5重量%の高屈折率層形成用金属酸化物粒子分散液(4)を調製した。
[Example 6]
Preparation of high refractive index layer-forming metal oxide particle dispersion (4) In Example 1, tripropylamine (boiling point: 155 ° C.) as a basic nitrogen compound instead of triethylamine was adjusted to 50 ppm in the coating solution. A metal oxide particle dispersion (4) for forming a high refractive index layer having a solid concentration of 5% by weight was prepared in the same manner except that 0.5 g was added.

反射防止膜付基材(6)の製造
ついで、実施例1において、高屈折率層形成用金属酸化物粒子分散液(4)を用いた以外は同様にして、ガラス基板(1)に高屈折率層を形成した。高屈折率層の平均厚みは100nmであった。また、表面粗さ(RaB)および屈折率を測定し、結果を表に示す。
Production of base material with antireflection film (6) Next, in Example 1, high refractive index was similarly applied to the glass substrate (1) except that the metal oxide particle dispersion (4) for forming a high refractive index layer was used. A rate layer was formed. The average thickness of the high refractive index layer was 100 nm. Further, the surface roughness (Ra B ) and the refractive index were measured, and the results are shown in the table.

実施例1と同様にして調製した低屈折率層形成成分分散液(1)をバーコーター法(#4)で塗布し、80℃で2分間乾燥した後、500℃で30分間加熱して硬化させて低屈折率層を形成して反射防止膜付基材(5)を製造した。このとき、低屈折率層の平均厚みは100nmであった。また、表面粗さ(RaC)および屈折率を測定し、結果を表に示す。
反射防止膜付基材(6)ついて、全光線透過率、ヘイズ、鉛筆硬度および耐擦傷性を測定し、結果を表に示す。
The low refractive index layer forming component dispersion (1) prepared in the same manner as in Example 1 was applied by the bar coater method (# 4), dried at 80 ° C. for 2 minutes, and then heated at 500 ° C. for 30 minutes to cure. Thus, a low refractive index layer was formed to produce a substrate (5) with an antireflection film. At this time, the average thickness of the low refractive index layer was 100 nm. Further, the surface roughness (Ra C ) and refractive index were measured, and the results are shown in the table.
For the substrate with antireflection film (6), the total light transmittance, haze, pencil hardness and scratch resistance were measured, and the results are shown in the table.

光電気セル(6)の作成
反射防止膜付基材(6)の反射防止膜の反対側にフッ素ドープした酸化スズを電極として形成した電極付反射防止膜付基材(6)を作成した。
Production of Photoelectric Cell (6) A substrate with antireflection film with electrode (6) was produced by forming fluorine-doped tin oxide as an electrode on the side opposite to the antireflection film of substrate with antireflection film (6).

次いで、実施例1と同様にして電極付反射防止膜付基材(6)の電極面上に半導体膜を形成し、分光増感色素を吸着させ、電極付反射防止膜付基材(6)を一方の電極とし、他方の電極としてフッ素ドープした酸化スズを電極として形成し、その上に白金を担持した透明ガラス基板を対向して配置し、側面を樹脂にてシールし、電極間に上記の電解質溶液を封入し、さらに電極間をリード線で接続して光電気セル(6-1)を作製した。また、実施例1と同様に、耐擦傷性を測定した反射防止膜付基材(6)を用いて光電気セル(6-2)を作製した。
得られた光電気セルについて、性能評価(1)および性能評価(2)を行い、結果を表に示す。
Next, in the same manner as in Example 1, a semiconductor film was formed on the electrode surface of the substrate with an antireflection film with electrode (6), the spectral sensitizing dye was adsorbed, and the substrate with an antireflection film with electrode (6) Is used as one electrode, and fluorine-doped tin oxide is formed as the other electrode, and a transparent glass substrate carrying platinum is disposed on the opposite side, and the side surfaces are sealed with resin, The electrolyte solution was sealed, and the electrodes were connected with lead wires to produce a photoelectric cell (6-1). Further, in the same manner as in Example 1, a photoelectric cell (6-2) was produced using a base material (6) with an antireflection film whose scratch resistance was measured.
About the obtained photoelectric cell, performance evaluation (1) and performance evaluation (2) are performed, and a result is shown to a table | surface.

[実施例7]
高屈折率層形成用金属酸化物粒子分散液(5)の調製
実施例1において、トリエチルアミンに代えて塩基性窒素化合物としてトリエタノールアミン(沸点:208℃)が塗布液中に50ppmとなるように0.5gを添加した以外は同様にして固形分濃度5重量%の高屈折率層形成用金属酸化物粒子分散液(5)を調製した。
[Example 7]
Preparation of metal oxide particle dispersion liquid (5) for forming a high refractive index layer In Example 1, triethanolamine (boiling point: 208 ° C.) as a basic nitrogen compound instead of triethylamine was adjusted to 50 ppm in the coating liquid. A metal oxide particle dispersion (5) for forming a high refractive index layer having a solid content concentration of 5% by weight was prepared in the same manner except that 0.5 g was added.

反射防止膜付基材(7)の製造
ついで、実施例1において、高屈折率層形成用金属酸化物粒子分散液(5)を用いた以外は同様にして、ガラス基板(1)に高屈折率層を形成した。高屈折率層の平均厚みは100nmであった。また、表面粗さ(RaB)および屈折率を測定し、結果を表に示す。
Production of substrate with antireflection film (7) Next, in Example 1, high refractive index was applied to the glass substrate (1) in the same manner except that the metal oxide particle dispersion (5) for forming a high refractive index layer was used. A rate layer was formed. The average thickness of the high refractive index layer was 100 nm. Further, the surface roughness (Ra B ) and the refractive index were measured, and the results are shown in the table.

実施例1と同様にして調製した低屈折率層形成成分分散液(1)をバーコーター法(#4)で塗布し、80℃で2分間乾燥した後、500℃で30分間加熱して硬化させて低屈折率層を形成して反射防止膜付基材(7)を製造した。このとき、低屈折率層の平均厚みは100nmであった。また、表面粗さ(RaC)および屈折率を測定し、結果を表に示す。
反射防止膜付基材(7)ついて、全光線透過率、ヘイズ、鉛筆硬度および耐擦傷性を測定し、結果を表に示す。
The low refractive index layer forming component dispersion (1) prepared in the same manner as in Example 1 was applied by the bar coater method (# 4), dried at 80 ° C. for 2 minutes, and then heated at 500 ° C. for 30 minutes to cure. Thus, a low refractive index layer was formed to produce a substrate (7) with an antireflection film. At this time, the average thickness of the low refractive index layer was 100 nm. Further, the surface roughness (Ra C ) and refractive index were measured, and the results are shown in the table.
For the substrate with antireflection film (7), the total light transmittance, haze, pencil hardness and scratch resistance were measured, and the results are shown in the table.

光電気セル(7)の作成
反射防止膜付基材(7)の反射防止膜の反対側にフッ素ドープした酸化スズを電極として形成した電極付反射防止膜付基材(7)を作成した。
Production of Photoelectric Cell (7) An antireflective film-coated substrate (7) was formed by forming fluorine-doped tin oxide as an electrode on the opposite side of the antireflective film-coated substrate (7).

次いで、実施例1と同様にして電極付反射防止膜付基材(7)の電極面上に半導体膜を形成し、分光増感色素を吸着させ、電極付反射防止膜付基材(7)を一方の電極とし、他方の電極としてフッ素ドープした酸化スズを電極として形成し、その上に白金を担持した透明ガラス基板を対向して配置し、側面を樹脂にてシールし、電極間に上記の電解質溶液を封入し、さらに電極間をリード線で接続して光電気セル(7-1)を作製した。また、実施例1と同様に、耐擦傷性を測定した反射防止膜付基材(7)を用いて光電気セル(7-2)を作製した。
得られた光電気セルについて、性能評価(1)および性能評価(2)を行い、結果を表に示す。
Next, in the same manner as in Example 1, a semiconductor film was formed on the electrode surface of the substrate with antireflection film with electrode (7), the spectral sensitizing dye was adsorbed, and the substrate with antireflection film with electrode (7) Is used as one electrode, and fluorine-doped tin oxide is formed as the other electrode, and a transparent glass substrate carrying platinum is disposed on the opposite side, and the side surfaces are sealed with resin, The electrolyte solution was sealed, and the electrodes were connected with lead wires to produce a photoelectric cell (7-1). Further, in the same manner as in Example 1, a photoelectric cell (7-2) was produced using the antireflection film-coated substrate (7) whose scratch resistance was measured.
About the obtained photoelectric cell, performance evaluation (1) and performance evaluation (2) are performed, and a result is shown to a table | surface.

[実施例8]
反射防止膜付基材(8)の製造
実施例1において、低屈折率層形成成分分散液(1)をバーコーター法(#4)で塗布し、80℃で2分間乾燥した後、300℃で30分間加熱して硬化させた以外は同様にして反射防止膜付基材(8)を製造した。このとき、低屈折率層の平均厚みは100nmであった。また、表面粗さ(RaC)および屈折率を測定し、結果を表に示す。
反射防止膜付基材(8)ついて、全光線透過率、ヘイズ、鉛筆硬度および耐擦傷性を測定し、結果を表に示す。
[Example 8]
Production of antireflection film-coated substrate (8) In Example 1, the low refractive index layer forming component dispersion (1) was applied by the bar coater method (# 4), dried at 80 ° C. for 2 minutes, and then 300 ° C. A substrate with an antireflection film (8) was produced in the same manner except that it was cured by heating for 30 minutes. At this time, the average thickness of the low refractive index layer was 100 nm. Further, the surface roughness (Ra C ) and refractive index were measured, and the results are shown in the table.
The substrate (8) with an antireflection film was measured for total light transmittance, haze, pencil hardness and scratch resistance, and the results are shown in the table.

光電気セル(8)の作成
反射防止膜付基材(8)の反射防止膜の反対側にフッ素ドープした酸化スズを電極として形成した電極付反射防止膜付基材(8)を作成した。
Production of Photoelectric Cell (8) A substrate with antireflection film with electrode (8) was prepared by forming fluorine-doped tin oxide as an electrode on the opposite side of the antireflection film of substrate with antireflection film (8).

次いで、実施例1と同様にして電極付反射防止膜付基材(8)の電極面上に半導体膜を形成し、分光増感色素を吸着させ、電極付反射防止膜付基材(8)を一方の電極とし、他方の電極としてフッ素ドープした酸化スズを電極として形成し、その上に白金を担持した透明ガラス基板を対向して配置し、側面を樹脂にてシールし、電極間に上記の電解質溶液を封入し、さらに電極間をリード線で接続して光電気セル(8)を作製した。また、実施例1と同様に、耐擦傷性を測定した反射防止膜付基材(8)を用いて光電気セル(8-2)を作製した。
得られた光電気セルについて、性能評価(1)および性能評価(2)を行い、結果を表に示す。
Next, in the same manner as in Example 1, a semiconductor film was formed on the electrode surface of the substrate with antireflection film with electrode (8), the spectral sensitizing dye was adsorbed, and the substrate with antireflection film with electrode (8) Is used as one electrode, and fluorine-doped tin oxide is formed as the other electrode, and a transparent glass substrate carrying platinum is disposed on the opposite side, and the side surfaces are sealed with resin, The electrolyte solution was sealed, and the electrodes were connected with lead wires to produce a photoelectric cell (8). Further, in the same manner as in Example 1, a photoelectric cell (8-2) was produced using a base material (8) with an antireflection film whose scratch resistance was measured.
About the obtained photoelectric cell, performance evaluation (1) and performance evaluation (2) are performed, and a result is shown to a table | surface.

[実施例9]
反射防止膜付基材(9)の製造
実施例1において、低屈折率層形成成分分散液(1)をバーコーター法(#4)で塗布し、80℃で2分間乾燥した後、650℃で30分間加熱して硬化させた以外は同様にして反射防止膜付基材(9)を製造した。このとき、低屈折率層の平均厚みは100nmであった。また、表面粗さ(RaC)および屈折率を測定し、結果を表に示す。
反射防止膜付基材(9)ついて、全光線透過率、ヘイズ、鉛筆硬度および耐擦傷性を測定し、結果を表に示す。
[Example 9]
Production Example 1 of Substrate with Antireflection Film (9) In Example 1, the low refractive index layer forming component dispersion (1) was applied by the bar coater method (# 4), dried at 80 ° C. for 2 minutes, and then 650 ° C. A substrate with an antireflection film (9) was produced in the same manner except that it was cured by heating for 30 minutes. At this time, the average thickness of the low refractive index layer was 100 nm. Further, the surface roughness (Ra C ) and refractive index were measured, and the results are shown in the table.
For the substrate with antireflection film (9), the total light transmittance, haze, pencil hardness and scratch resistance were measured, and the results are shown in the table.

光電気セル(9)の作成
反射防止膜付基材(9)の反射防止膜の反対側にフッ素ドープした酸化スズを電極として形成した電極付反射防止膜付基材(9)を作成した。
Production of Photoelectric Cell (9) A substrate with antireflection film with electrode (9) was produced by forming fluorine doped tin oxide as an electrode on the opposite side of the antireflection film of substrate with antireflection film (9).

実施例1と同様にして電極付反射防止膜付基材(9)の電極面上に半導体膜を形成し、分光増感色素を吸着させ、電極付反射防止膜付基材(9)を一方の電極とし、他方の電極としてフッ素ドープした酸化スズを電極として形成し、その上に白金を担持した透明ガラス基板を対向して配置し、側面を樹脂にてシールし、電極間に上記の電解質溶液を封入し、さらに電極間をリード線で接続して光電気セル(9-1)を作製した。また、実施例1と同様に、耐擦傷性を測定した反射防止膜付基材(9)を用いて光電気セル(9-2)を作製した。
得られた光電気セルについて、性能評価(1)および性能評価(2)を行い、結果を表に示す。
In the same manner as in Example 1, a semiconductor film was formed on the electrode surface of the substrate with antireflection film with electrode (9), the spectral sensitizing dye was adsorbed, and the substrate with electrode with antireflection film (9) was The other electrode is made of fluorine-doped tin oxide as an electrode, a transparent glass substrate carrying platinum thereon is placed oppositely, the side surfaces are sealed with a resin, and the above electrolyte is interposed between the electrodes. The solution was sealed, and the electrodes were connected with lead wires to produce a photoelectric cell (9-1). Further, in the same manner as in Example 1, a photoelectric cell (9-2) was produced using a base material (9) with an antireflection film whose scratch resistance was measured.
About the obtained photoelectric cell, performance evaluation (1) and performance evaluation (2) are performed, and a result is shown to a table | surface.

[実施例10]
高屈折率層形成用金属酸化物粒子分散液(6)の調製
実施例1と同様にして調製した固形分濃度20.5重量%の表面処理酸化チタン粒子メタノール分散液10.24gと、実施例1と同様にして調製した固形分濃度5.0重量%の正珪酸エチル加水分解物分散液 (1)18.0gと、プロピレングリコールモノプロピルエーテル(PGME)20.00gと、メタノールとエタノールとイソプロピルアルコールの変性アルコール(日本アルコール販売(株)製:ソルミックスAP−11:エタノール85.5重量%、イソプロピルアルコール9.8重量%、メタノール4.7重量%)51.76gと、塩基性窒素化合物としてトリエチルアミン(沸点:90℃)が塗布液中に50ppmとなるように2gとを混合し、ついで、25℃で30分間撹拌して固形分濃度5重量%の高屈折率層形成用金属酸化物粒子分散液(6)を調製した。
[Example 10]
Preparation of Metal Oxide Particle Dispersion (6) for Formation of High Refractive Index Layer 10.24 g of a surface-treated titanium oxide particle methanol dispersion with a solid content concentration of 20.5% by weight prepared in the same manner as in Example 1, (1) 18.0 g, propylene glycol monopropyl ether (PGME) 20.00 g, methanol, ethanol and isopropyl 51.76 g of a denatured alcohol of alcohol (manufactured by Nippon Alcohol Sales Co., Ltd .: Solmix AP-11: ethanol 85.5 wt%, isopropyl alcohol 9.8 wt%, methanol 4.7 wt%), and basic nitrogen compound As a mixture, 2 g of triethylamine (boiling point: 90 ° C.) was mixed to make 50 ppm in the coating solution, and then stirred at 25 ° C. for 30 minutes. A solid part concentration of 5% by weight of the high refractive index layer-forming metal oxide particle dispersion liquid (6) was prepared.

反射防止膜付基材(10)の製造
実施例1と同様にして高屈折率層形成用金属酸化物粒子分散液(6)を、ガラス基板(2)にバーコーター法(#5)で塗布し、80℃で120秒間乾燥した。このとき、高屈折率層の平均厚みは100nmであった。また、表面粗さ(RaB)および屈折率を測定し、結果を表に示す。ついで、実施例1と同様にして調製した低屈折率層形成成分分散液(1)をバーコーター法(#4)で塗布し、80℃で2分間乾燥した後、500℃で30分間加熱して硬化させて低屈折率層を形成して反射防止膜付基材(10)を製造した。このとき、低屈折率層の平均厚みは100nmであった。また、表面粗さ(RaC)および屈折率を測定し、結果を表に示す。
反射防止膜付基材(10)について、全光線透過率、ヘイズ、鉛筆硬度および耐擦傷性を測定し、結果を表に示す。
Preparation of base material with antireflection film (10) The metal oxide particle dispersion (6) for forming a high refractive index layer was applied to the glass substrate (2) by the bar coater method (# 5) in the same manner as in Example 1. And dried at 80 ° C. for 120 seconds. At this time, the average thickness of the high refractive index layer was 100 nm. Further, the surface roughness (Ra B ) and the refractive index were measured, and the results are shown in the table. Next, the low refractive index layer forming component dispersion (1) prepared in the same manner as in Example 1 was applied by the bar coater method (# 4), dried at 80 ° C. for 2 minutes, and then heated at 500 ° C. for 30 minutes. And a low refractive index layer was formed by curing to produce a substrate (10) with an antireflection film. At this time, the average thickness of the low refractive index layer was 100 nm. Further, the surface roughness (Ra C ) and refractive index were measured, and the results are shown in the table.
For the substrate with antireflection film (10), the total light transmittance, haze, pencil hardness and scratch resistance were measured, and the results are shown in the table.

光電気セル(10)の作成
反射防止膜付基材(10)の反射防止膜の反対側にフッ素ドープした酸化スズを電極として形成した電極付反射防止膜付基材(10)を作成した。次いで、実施例1と同様にして電極付反射防止膜付基材(10)の電極面上に半導体膜を形成し、分光増感色素を吸着させ、電極付反射防止膜付基材(10)を一方の電極とし、他方の電極としてフッ素ドープした酸化スズを電極として形成し、その上に白金を担持した透明ガラス基板を対向して配置し、側面を樹脂にてシールし、電極間に上記の電解質溶液を封入し、さらに電極間をリード線で接続して光電気セル(10-1)を作製した。また、実施例1と同様にして、耐擦傷性を測定した反射防止膜付基材(10)を用いて光電気セル(10-2)を作製した。
得られた光電気セルについて、性能評価(1)および性能評価(2)を行い、結果を表に示す。
Production of Photoelectric Cell (10) A substrate (10) with an antireflective coating with electrodes formed by using fluorine-doped tin oxide as an electrode on the opposite side of the antireflection coating of the substrate (10) with antireflective coating was produced. Next, in the same manner as in Example 1, a semiconductor film was formed on the electrode surface of the substrate with antireflection film with electrode (10), the spectral sensitizing dye was adsorbed, and the substrate with antireflection film with electrode (10) Is used as one electrode, and fluorine-doped tin oxide is formed as the other electrode, and a transparent glass substrate carrying platinum is disposed on the opposite side, and the side surfaces are sealed with resin, The electrolyte solution was sealed, and the electrodes were connected with lead wires to produce a photoelectric cell (10-1). Further, in the same manner as in Example 1, a photoelectric cell (10-2) was produced using the base material (10) with an antireflection film whose scratch resistance was measured.
About the obtained photoelectric cell, performance evaluation (1) and performance evaluation (2) are performed, and a result is shown to a table | surface.

[実施例11]
低屈折率層形成成分分散液(2)の調製
変性アルコール(日本アルコール販売(株)製:ソルミックスAP−11:エタノール85.5重量%、イソプロピルアルコール9.8重量%、メタノール4.7重量%)72.5gに水10.0gと濃度61重量%の硝酸0.1gを添加し、ついで、25℃で10分撹拌した後、正珪酸エチル(多摩化学工業(株)製:正珪酸エチル‐A、SiO2濃度28.8重量%)17.4gを添加し、30℃で30分間撹拌して固形分濃度5.0重量%の正珪酸エチル加水分解物分散液100gを調製した。正珪酸エチル加水分解物のポリエチレン換算分子量は1000であった。
[Example 11]
Preparation of low refractive index layer forming component dispersion liquid (2) Modified alcohol (manufactured by Nippon Alcohol Sales Co., Ltd .: Solmix AP-11: Ethanol 85.5% by weight, Isopropyl alcohol 9.8% by weight, Methanol 4.7% by weight %) 12.5 g of water and 0.1 g of nitric acid having a concentration of 61% by weight were added to 72.5 g, followed by stirring at 25 ° C. for 10 minutes, and then normal ethyl silicate (manufactured by Tama Chemical Industry Co., Ltd .: normal ethyl silicate). -A, SiO 2 concentration 28.8 wt%) 17.4 g was added and stirred at 30 ° C. for 30 min to prepare 100 g of a normal ethyl silicate hydrolyzate dispersion having a solid content concentration of 5.0 wt%. The polyethylene-converted molecular weight of the normal ethyl silicate hydrolyzate was 1000.

ついで、固形分濃度5.0重量%の正珪酸エチル加水分解物分散液40.0gに、シリカ粒子として、シリカ系中空微粒子分散液(日揮触媒化成(株)製:スルーリア4320、固形分濃度20.5重量%、分散媒イソプロピルアルコール、シリカ系中空微粒子の平均粒子径=60nm、屈折率=1.25)5.85g、プロピレングリコールモノプロピルエーテル(PGME)20.00gと変性アルコール(日本アルコール販売(株)製:ソルミックスAP−11:エタノール85.5重量%、イソプロピルアルコール9.8重量%、メタノール4.7重量%)34.15gを添加し、ついで、25℃で30分間撹拌して固形分濃度3.0重量%の低屈折率層形成成分分散液(2)を調製した。   Subsequently, silica-based hollow fine particle dispersion (manufactured by JGC Catalysts & Chemicals Co., Ltd .: Thruria 4320, solid concentration 20 0.5% by weight, dispersion medium isopropyl alcohol, silica-based hollow fine particles average particle size = 60 nm, refractive index = 1.25) 5.85 g, propylene glycol monopropyl ether (PGME) 20.00 g and denatured alcohol (Japan alcohol sales) Co., Ltd .: Solmix AP-11: 34.15 g of ethanol (85.5 wt% ethanol, 9.8 wt% isopropyl alcohol, 4.7 wt% methanol), and then stirred at 25 ° C. for 30 minutes. A low refractive index layer forming component dispersion liquid (2) having a solid content concentration of 3.0% by weight was prepared.

反射防止膜付基材(11)の製造
実施例1と同様にして高屈折率層形成用金属酸化物粒子分散液(1)を、ガラス基板(1)にバーコーター法(#5)で塗布し、80℃で120秒間乾燥した後、低屈折率層形成成分分散液(2)をバーコーター法(#4)で塗布し、80℃で2分間乾燥した後、500℃で30分間加熱して硬化させて低屈折率層を形成して反射防止膜付基材(11)を製造した。このとき、低屈折率層の平均厚みは100nmであった。また、表面粗さ(RaC)および屈折率を測定し、結果を表に示す。
反射防止膜付基材(11)について、全光線透過率、ヘイズ、鉛筆硬度および耐擦傷性を測定し、結果を表に示す。
Preparation of base material with antireflection film (11) In the same manner as in Example 1, the metal oxide particle dispersion (1) for forming a high refractive index layer was applied to the glass substrate (1) by the bar coater method (# 5). After drying at 80 ° C. for 120 seconds, the low refractive index layer forming component dispersion (2) is applied by the bar coater method (# 4), dried at 80 ° C. for 2 minutes, and then heated at 500 ° C. for 30 minutes. And a low refractive index layer was formed by curing to produce a substrate (11) with an antireflection film. At this time, the average thickness of the low refractive index layer was 100 nm. Further, the surface roughness (Ra C ) and refractive index were measured, and the results are shown in the table.
For the substrate with antireflection film (11), the total light transmittance, haze, pencil hardness and scratch resistance were measured, and the results are shown in the table.

光電気セル(11)の作成
反射防止膜付基材(11)の反射防止膜の反対側にフッ素ドープした酸化スズを電極として形成した電極付反射防止膜付基材(11)を作成した。次いで、実施例1と同様にして電極付反射防止膜付基材(11)の電極面上に半導体膜を形成し、分光増感色素を吸着させ、電極付反射防止膜付基材(11)を一方の電極とし、他方の電極としてフッ素ドープした酸化スズを電極として形成し、その上に白金を担持した透明ガラス基板を対向して配置し、側面を樹脂にてシールし、電極間に上記の電解質溶液を封入し、さらに電極間をリード線で接続して光電気セル(11-1)を作製した。また、実施例1と同様にして、耐擦傷性を測定した反射防止膜付基材(11)を用いて光電気セル(11-2)を作製した。
得られた光電気セル(11)について、性能評価(1)および性能評価(2)を行い、結果を表に示す。
Production of Photoelectric Cell (11) A substrate with antireflection film with electrode (11) was produced by forming fluorine-doped tin oxide as an electrode on the side opposite to the antireflection film of substrate with antireflection film (11). Next, in the same manner as in Example 1, a semiconductor film was formed on the electrode surface of the substrate with antireflection film with electrode (11), the spectral sensitizing dye was adsorbed, and the substrate with antireflection film with electrode (11) Is used as one electrode, and fluorine-doped tin oxide is formed as the other electrode, and a transparent glass substrate carrying platinum is disposed on the opposite side, and the side surfaces are sealed with resin, The electrolyte solution was sealed, and the electrodes were connected with lead wires to produce a photoelectric cell (11-1). Further, in the same manner as in Example 1, a photoelectric cell (11-2) was produced using the base material (11) with an antireflection film whose scratch resistance was measured.
The obtained photovoltaic cell (11) was subjected to performance evaluation (1) and performance evaluation (2), and the results are shown in the table.

[実施例12]
低屈折率層形成成分分散液(3)の調製
変性アルコール(日本アルコール販売(株)製:ソルミックスAP−11:エタノール85.5重量%、イソプロピルアルコール9.8重量%、メタノール4.7重量%)72.5gに水10.0gと濃度61重量%の硝酸0.1gを添加し、ついで、25℃で10分撹拌した後、正珪酸エチル(多摩化学工業(株)製:正珪酸エチル‐A、SiO2濃度28.8重量%)17.4gを添加し、30℃で30分間撹拌して固形分濃度5.0重量%の正珪酸エチル加水分解物分散液100gを調製した。正珪酸エチル加水分解物のポリエチレン換算分子量は1000であった。
[Example 12]
Preparation of low refractive index layer forming component dispersion liquid (3) Modified alcohol (manufactured by Nippon Alcohol Sales Co., Ltd .: Solmix AP-11: ethanol 85.5% by weight, isopropyl alcohol 9.8% by weight, methanol 4.7% by weight %) 12.5 g of water and 0.1 g of nitric acid having a concentration of 61% by weight were added to 72.5 g, followed by stirring at 25 ° C. for 10 minutes, and then normal ethyl silicate (manufactured by Tama Chemical Industry Co., Ltd .: normal ethyl silicate). -A, SiO 2 concentration 28.8 wt%) 17.4 g was added and stirred at 30 ° C. for 30 min to prepare 100 g of a normal ethyl silicate hydrolyzate dispersion having a solid content concentration of 5.0 wt%. The polyethylene-converted molecular weight of the normal ethyl silicate hydrolyzate was 1000.

ついで、固形分濃度5.0重量%の正珪酸エチル加水分解物分散液100gに、プロピレングリコールモノプロピルエーテル(PGME)33gと変性アルコール(日本アルコール販売(株)製:ソルミックスAP−11:エタノール85.5重量%、イソプロピルアルコール9.8重量%、メタノール4.7重量%)16gとDAA(沸点:168℃)17gとを添加し、ついで、25℃で30分間撹拌して固形分濃度3.0重量%の低屈折率層形成成分分散液(3)を調製した。   Next, 100 g of a normal ethyl silicate hydrolyzate dispersion having a solid content concentration of 5.0% by weight, 33 g of propylene glycol monopropyl ether (PGME) and denatured alcohol (manufactured by Nippon Alcohol Sales Co., Ltd .: Solmix AP-11: ethanol) 85.5 wt%, isopropyl alcohol 9.8 wt%, methanol 4.7 wt%) 16 g and DAA (boiling point: 168 ° C) 17 g were added, and then stirred at 25 ° C for 30 minutes to obtain a solid content concentration of 3 A 0% by weight low refractive index layer forming component dispersion liquid (3) was prepared.

反射防止膜付基材(12)の製造
実施例2と同様にして高屈折率層形成用金属酸化物粒子分散液(1)を、ガラス基板(2)にバーコーター法(#5)で塗布し、80℃で120秒間乾燥した後、低屈折率層形成成分分散液(3)をバーコーター法(#4)で塗布し、80℃で2分間乾燥した後、500℃で30分間加熱して硬化させて低屈折率層を形成して反射防止膜付基材(12)を製造した。このとき、低屈折率層の平均厚みは100nmであった。
Preparation of substrate with antireflection film (12) In the same manner as in Production Example 2, the metal oxide particle dispersion (1) for forming a high refractive index layer was applied to the glass substrate (2) by the bar coater method (# 5). After drying at 80 ° C. for 120 seconds, the low refractive index layer forming component dispersion (3) is applied by the bar coater method (# 4), dried at 80 ° C. for 2 minutes, and then heated at 500 ° C. for 30 minutes. And a low refractive index layer was formed by curing to produce a substrate with antireflection film (12). At this time, the average thickness of the low refractive index layer was 100 nm.

また、表面粗さ(RaC)および屈折率を測定し、結果を表に示す。
反射防止膜付基材(12)について、全光線透過率、ヘイズ、鉛筆硬度および耐擦傷性を測定し、結果を表に示す。
Further, the surface roughness (Ra C ) and refractive index were measured, and the results are shown in the table.
The substrate with antireflection film (12) was measured for total light transmittance, haze, pencil hardness and scratch resistance, and the results are shown in the table.

光電気セル(12-1)の作成
反射防止膜付基材(12)の反射防止膜の反対側にフッ素ドープした酸化スズを電極として形成した電極付反射防止膜付基材(12)を作成した。
Production of photoelectric cell (12-1) Production of substrate with antireflection film (12) with electrode formed by using fluorine-doped tin oxide as an electrode on the opposite side of antireflection film of substrate with antireflection film (12) did.

次いで、実施例1と同様にして電極付反射防止膜付基材(12)の電極面上に半導体膜を形成し、分光増感色素を吸着させ、電極付反射防止膜付基材(12)を一方の電極とし、他方の電極としてフッ素ドープした酸化スズを電極として形成し、その上に白金を担持した透明ガラス基板を対向して配置し、側面を樹脂にてシールし、電極間に上記の電解質溶液を封入し、さらに電極間をリード線で接続して光電気セル(12-1)を作製した。また、実施例1において、耐擦傷性を測定した反射防止膜付基材(12)を用いた以外は同様にして光電気セル(12-2)を作製した。
得られた光電気セル(12-1)および光電気セル(12-2)について、性能評価(1)および性能評価(2)を行い、結果を表に示す。
Next, in the same manner as in Example 1, a semiconductor film was formed on the electrode surface of the substrate with antireflection film with electrode (12), the spectral sensitizing dye was adsorbed, and the substrate with antireflection film with electrode (12) Is used as one electrode, and fluorine-doped tin oxide is formed as the other electrode, and a transparent glass substrate carrying platinum is disposed on the opposite side, and the side surfaces are sealed with resin, The electrolyte solution was sealed, and the electrodes were connected with lead wires to produce a photoelectric cell (12-1). In addition, a photoelectric cell (12-2) was produced in the same manner as in Example 1 except that the base material with antireflection film (12) whose scratch resistance was measured was used.
Performance evaluation (1) and performance evaluation (2) were performed on the obtained photoelectric cell (12-1) and photoelectric cell (12-2), and the results are shown in the table.

[比較例1]
高屈折率層形成用金属酸化物粒子分散液(R1)の調製
実施例1において、テトラエチルアミンを添加しなかった以外は同様にして固形分濃度5重量%の高屈折率層形成用金属酸化物粒子分散液(R1)を調製した。
[Comparative Example 1]
Preparation of metal oxide particle dispersion (R1) for forming a high refractive index layer In Example 1, a metal oxide for forming a high refractive index layer having a solid content concentration of 5% by weight was used except that tetraethylamine was not added. A particle dispersion (R1) was prepared.

反射防止膜付基材(R1)の製造
ついで、実施例1において、高屈折率層形成用金属酸化物粒子分散液(R1)を用いた以外は同様にして、ガラス基板(1)に高屈折率層を形成した。高屈折率層の平均厚みは100nmであった。また、表面粗さ(RaB)および屈折率を測定し、結果を表に示す。
Production of substrate with antireflection film (R1) Next, in Example 1, high refractive index was applied to the glass substrate (1) in the same manner except that the metal oxide particle dispersion (R1) for forming a high refractive index layer was used. A rate layer was formed. The average thickness of the high refractive index layer was 100 nm. Further, the surface roughness (Ra B ) and the refractive index were measured, and the results are shown in the table.

実施例1と同様にして調製した低屈折率層形成成分分散液(1)をバーコーター法(#4)で塗布し、80℃で2分間乾燥した後、500℃で30分間加熱して硬化させて低屈折率層を形成して反射防止膜付基材(R1)を製造した。このとき、低屈折率層の平均厚みは100nmであった。また、表面粗さ(RaC)および屈折率を測定し、結果を表に示す。
反射防止膜付基材(R1)ついて、全光線透過率、ヘイズ、鉛筆硬度および耐擦傷性を測定し、結果を表に示す。
The low refractive index layer forming component dispersion (1) prepared in the same manner as in Example 1 was applied by the bar coater method (# 4), dried at 80 ° C. for 2 minutes, and then heated at 500 ° C. for 30 minutes to cure. Thus, a low refractive index layer was formed to produce a substrate (R1) with an antireflection film. At this time, the average thickness of the low refractive index layer was 100 nm. Further, the surface roughness (Ra C ) and refractive index were measured, and the results are shown in the table.
For the substrate with antireflection film (R1), the total light transmittance, haze, pencil hardness and scratch resistance were measured, and the results are shown in the table.

光電気セル(R1)の作成
反射防止膜付基材(R1)の反射防止膜の反対側にフッ素ドープした酸化スズを電極として形成した電極付反射防止膜付基材(R1)を作成した。
Production of Photoelectric Cell (R1) An antireflective film-coated substrate (R1) was formed by forming fluorine-doped tin oxide as an electrode on the opposite side of the antireflective film-coated substrate (R1).

次いで、実施例1と同様にして電極付反射防止膜付基材(R1)の電極面上に半導体膜を形成し、分光増感色素を吸着させ、電極付反射防止膜付基材(R1)を一方の電極とし、他方の電極としてフッ素ドープした酸化スズを電極として形成し、その上に白金を担持した透明ガラス基板を対向して配置し、側面を樹脂にてシールし、電極間に上記の電解質溶液を封入し、さらに電極間をリード線で接続して光電気セル(R1-1)を作製した。また、実施例1と同様に、耐擦傷性を測定した反射防止膜付基材(R1)を用いて光電気セル(R1-2)を作製した。
得られた光電気セルについて、性能評価(1)および性能評価(2)を行い、結果を表に示す。
Next, in the same manner as in Example 1, a semiconductor film is formed on the electrode surface of the substrate with antireflection film with electrode (R1), the spectral sensitizing dye is adsorbed, and the substrate with antireflection film with electrode (R1). Is used as one electrode, and fluorine-doped tin oxide is formed as the other electrode, and a transparent glass substrate carrying platinum is disposed on the opposite side, and the side surfaces are sealed with resin, The electrolyte solution was sealed, and the electrodes were connected with lead wires to produce a photoelectric cell (R1-1). Further, in the same manner as in Example 1, a photoelectric cell (R1-2) was produced using a base material (R1) with an antireflection film whose scratch resistance was measured.
About the obtained photoelectric cell, performance evaluation (1) and performance evaluation (2) are performed, and a result is shown to a table | surface.

[比較例3]
反射防止膜付基材(R3)の製造
実施例1において、高屈折率層形成用金属酸化物粒子分散液(1)を、ガラス基板(1)の表面粗さを有する面にバーコーター法(#5)で塗布した後、45℃で120秒間乾燥して高屈折率層を形成した。このとき、高屈折率層の平均厚みは100nmであった。また、表面粗さ(RaB)および屈折率を測定し、結果を表に示す。
[Comparative Example 3]
In Production Example 1 of the base material with antireflection film (R3), the metal oxide particle dispersion (1) for forming the high refractive index layer was applied to the surface having the surface roughness of the glass substrate (1) by the bar coater method ( After coating in # 5), the film was dried at 45 ° C. for 120 seconds to form a high refractive index layer. At this time, the average thickness of the high refractive index layer was 100 nm. Further, the surface roughness (Ra B ) and the refractive index were measured, and the results are shown in the table.

実施例1と同様にして調製した低屈折率層形成成分分散液(1)をバーコーター法(#4)で塗布し、80℃で2分間乾燥した後、500℃で30分間加熱して硬化させて低屈折率層を形成して反射防止膜付基材(R3)を製造した。このとき、低屈折率層の平均厚みは100nmであった。また、表面粗さ(RaC)および屈折率を測定し、結果を表に示す。
反射防止膜付基材(R3)ついて、全光線透過率、ヘイズ、鉛筆硬度および耐擦傷性を測定し、結果を表に示す。
The low refractive index layer forming component dispersion (1) prepared in the same manner as in Example 1 was applied by the bar coater method (# 4), dried at 80 ° C. for 2 minutes, and then heated at 500 ° C. for 30 minutes to cure. Thus, a low refractive index layer was formed to produce a base material (R3) with an antireflection film. At this time, the average thickness of the low refractive index layer was 100 nm. Further, the surface roughness (Ra C ) and refractive index were measured, and the results are shown in the table.
For the substrate with antireflection film (R3), the total light transmittance, haze, pencil hardness and scratch resistance were measured, and the results are shown in the table.

光電気セル(R3)の作成
反射防止膜付基材(R3)の反射防止膜の反対側にフッ素ドープした酸化スズを電極として形成した電極付反射防止膜付基材(R3)を作成した。
Production of Photoelectric Cell (R3) An antireflective film-coated substrate (R3) was formed by forming fluorine-doped tin oxide as an electrode on the opposite side of the antireflective film-coated substrate (R3).

次いで、実施例1と同様にして電極付反射防止膜付基材(R3)の電極面上に半導体膜を形成し、分光増感色素を吸着させ、電極付反射防止膜付基材(R3)を一方の電極とし、他方の電極としてフッ素ドープした酸化スズを電極として形成し、その上に白金を担持した透明ガラス基板を対向して配置し、側面を樹脂にてシールし、電極間に上記の電解質溶液を封入し、さらに電極間をリード線で接続して光電気セル(R3-1)を作製した。また、実施例1と同様に、耐擦傷性を測定した反射防止膜付基材(R3)を用いて、光電気セル(R3-2)を作製した。
得られた光電気セルについて、性能評価(1)および性能評価(2)を行い、結果を表に示す。
Next, in the same manner as in Example 1, a semiconductor film was formed on the electrode surface of the substrate with antireflection film with electrode (R3), the spectral sensitizing dye was adsorbed, and the substrate with electrode with antireflection film (R3) was prepared. Is used as one electrode, and fluorine-doped tin oxide is formed as the other electrode, and a transparent glass substrate carrying platinum is disposed on the opposite side, and the side surfaces are sealed with resin, An electrolyte cell (R3-1) was prepared by sealing the electrolyte solution and connecting the electrodes with lead wires. Further, in the same manner as in Example 1, a photoelectric cell (R3-2) was produced using a base material (R3) with an antireflection film whose scratch resistance was measured.
About the obtained photoelectric cell, performance evaluation (1) and performance evaluation (2) are performed, and a result is shown to a table | surface.

[比較例4]
反射防止膜付基材(R4)の製造
実施例1において、高屈折率層形成用金属酸化物粒子分散液(1)を、ガラス基板(1)の表面粗さを有する面にバーコーター法(#5)で塗布した後、130℃で120秒間乾燥して高屈折率層を形成した。このとき、高屈折率層の平均厚みは100nmであった。また、表面粗さ(RaB)および屈折率を測定し、結果を表に示す。
[Comparative Example 4]
In production example 1 of the base material with antireflection film (R4), the metal oxide particle dispersion (1) for forming a high refractive index layer was applied to the surface having the surface roughness of the glass substrate (1) by the bar coater method ( After coating in # 5), the film was dried at 130 ° C. for 120 seconds to form a high refractive index layer. At this time, the average thickness of the high refractive index layer was 100 nm. Further, the surface roughness (Ra B ) and the refractive index were measured, and the results are shown in the table.

ついで、実施例1と同様にして調製した低屈折率層形成成分分散液(1)をバーコーター法(#4)で塗布し、80℃で2分間乾燥した後、500℃で30分間加熱して硬化させて低屈折率層を形成して反射防止膜付基材(R4)を製造した。このとき、低屈折率層の平均厚みは100nmであった。また、表面粗さ(RaC)および屈折率を測定し、結果を表に示す。
反射防止膜付基材(R4)ついて、全光線透過率、ヘイズ、鉛筆硬度および耐擦傷性を測定し、結果を表に示す。
Next, the low refractive index layer forming component dispersion (1) prepared in the same manner as in Example 1 was applied by the bar coater method (# 4), dried at 80 ° C. for 2 minutes, and then heated at 500 ° C. for 30 minutes. Then, a low refractive index layer was formed by curing to produce a substrate with antireflection film (R4). At this time, the average thickness of the low refractive index layer was 100 nm. Further, the surface roughness (Ra C ) and refractive index were measured, and the results are shown in the table.
For the substrate with antireflection film (R4), the total light transmittance, haze, pencil hardness and scratch resistance were measured, and the results are shown in the table.

光電気セル(R4)の作成
反射防止膜付基材(R4)の反射防止膜の反対側にフッ素ドープした酸化スズを電極として形成した電極付反射防止膜付基材(R4)を作成した。
次いで、実施例1と同様にして電極付反射防止膜付基材(R4)の電極面上に半導体膜を形成し、分光増感色素を吸着させ、電極付反射防止膜付基材(R4)を一方の電極とし、他方の電極としてフッ素ドープした酸化スズを電極として形成し、その上に白金を担持した透明ガラス基板を対向して配置し、側面を樹脂にてシールし、電極間に上記の電解質溶液を封入し、さらに電極間をリード線で接続して光電気セル(R4-1)を作製した。また、実施例1と同様に、耐擦傷性を測定した反射防止膜付基材(R4)を用いて光電気セル(R4)を作製した。
得られた光電気セルについて、性能評価(1)および性能評価(2)を行い、結果を表に示す。
Production of Photoelectric Cell (R4) An antireflective film-coated substrate (R4) was formed by forming fluorine-doped tin oxide as an electrode on the opposite side of the antireflective film-coated substrate (R4).
Next, in the same manner as in Example 1, a semiconductor film was formed on the electrode surface of the substrate with antireflection film with electrode (R4), the spectral sensitizing dye was adsorbed, and the substrate with antireflection film with electrode (R4) Is used as one electrode, and fluorine-doped tin oxide is formed as the other electrode, and a transparent glass substrate carrying platinum is disposed on the opposite side, and the side surfaces are sealed with resin, The electrolyte solution was sealed, and the electrodes were connected with lead wires to produce a photoelectric cell (R4-1). Further, in the same manner as in Example 1, a photoelectric cell (R4) was produced using a base material (R4) with an antireflection film whose scratch resistance was measured.
About the obtained photoelectric cell, performance evaluation (1) and performance evaluation (2) are performed, and a result is shown to a table | surface.

Figure 0006317874
Figure 0006317874

Figure 0006317874
Figure 0006317874

Figure 0006317874
Figure 0006317874

Figure 0006317874
Figure 0006317874

1・・・・・透明電極層
2・・・・・多孔質半導体膜
3・・・・・電極層
4・・・・・電解質
5・・・・・透明基板
6・・・・・基板
DESCRIPTION OF SYMBOLS 1 ... Transparent electrode layer 2 ... Porous semiconductor film 3 ... Electrode layer 4 ... Electrolyte 5 ... Transparent substrate 6 ... Substrate

Claims (11)

基材上に形成された高屈折率層と、該高屈折率層上に形成された低屈折率層とからなる反射防止膜付基材の製造方法であって、
(a)基材上に、塩基性窒素化合物を1〜1000ppm含む、屈折率が1.50〜2.40の金属酸化物粒子の分散液を塗布する工程、
(b)前記塩基性窒素化合物の沸点未満、且つ50〜120℃の温度で前記分散液の分散媒を除去する工程、
(c)低屈折率層形成成分分散液を塗布する工程、
(d)前記低屈折率層形成成分分散液の分散媒を除去する工程
(e)前記基材を300〜650℃で加熱する工程、を順に備える反射防止膜付基材の製造方法。
A method for producing a substrate with an antireflection film comprising a high refractive index layer formed on a substrate and a low refractive index layer formed on the high refractive index layer,
(A) A step of applying a dispersion of metal oxide particles having a refractive index of 1.50 to 2.40 containing 1 to 1000 ppm of a basic nitrogen compound on a substrate;
(B) removing the dispersion medium of the dispersion at a temperature lower than the boiling point of the basic nitrogen compound and at a temperature of 50 to 120 ° C ;
(C) applying a low refractive index layer forming component dispersion;
(D) The manufacturing method of the base material with an antireflection film which comprises the process of removing the dispersion medium of the said low refractive index layer formation component dispersion liquid (e) heating the said base material at 300-650 degreeC in order.
前記低屈折率層形成成分がシリカ前駆体または、シリカ前駆体およびシリカゾルであることを特徴とする請求項1に記載の反射防止膜付基材の製造方法。   The method for producing a substrate with an antireflection film according to claim 1, wherein the low refractive index layer forming component is a silica precursor or a silica precursor and a silica sol. 前記シリカ前駆体が有機ケイ素化合物の部分加水分解物、加水分解物、加水分解縮重合物、ポリシラザン、ポリシラン、酸性珪酸液から撰ばれる少なくとも1種であることを特徴とする請求項2に記載の反射防止膜付基材の製造方法。   The said silica precursor is at least 1 sort (s) selected from the partial hydrolyzate of an organosilicon compound, a hydrolyzate, a hydrolytic polycondensate, polysilazane, polysilane, and acidic silicic acid liquid, The feature of Claim 2 characterized by the above-mentioned. Manufacturing method of base material with antireflection film. 前記低屈折率層形成成分分散液の濃度が、固形分として0.5〜10重量%の範囲にあることを特徴とする請求項1に記載の反射防止膜付基材の製造方法。   The method for producing a substrate with an antireflection film according to claim 1, wherein the concentration of the low refractive index layer forming component dispersion is in the range of 0.5 to 10 wt% as a solid content. 前記塩基性窒素化合物の沸点が40〜250℃の範囲にあることを特徴とする請求項1に記載の反射防止膜付基材の製造方法。   The method for producing a substrate with an antireflection film according to claim 1, wherein the basic nitrogen compound has a boiling point in the range of 40 to 250 ° C. 前記金属酸化物粒子がTiO2、ZrO2、Al23、ZnO、SnO2、Sb25、In23、Nb25から撰ばれる1種以上の金属酸化物、これらの混合物、複合酸化物からなることを特徴とする請求項1に記載の反射防止膜付基材の製造方法。 The metal oxide particles are TiO 2, ZrO 2, Al 2 O 3, ZnO, SnO 2, Sb 2 O 5, In 2 O 3, Nb 1 or more metal oxides selected from 2 O 5, and mixtures thereof The method for producing a substrate with an antireflection film according to claim 1, comprising a composite oxide. 前記金属酸化物粒子の平均粒子径が5〜100nmの範囲にあることを特徴とする請求項6に記載の反射防止膜付基材の製造方法。   The average particle diameter of the said metal oxide particle exists in the range of 5-100 nm, The manufacturing method of the base material with an antireflection film of Claim 6 characterized by the above-mentioned. 前記塩基性窒素化合物を含む金属酸化物粒子分散液中の金属酸化物粒子の濃度が固形分として0.5〜20重量%の範囲にあることを特徴とする請求項1に記載の反射防止膜付基材の製造方法。   2. The antireflection film according to claim 1, wherein the concentration of the metal oxide particles in the metal oxide particle dispersion containing the basic nitrogen compound is in the range of 0.5 to 20% by weight as a solid content. A method for producing a substrate. 前記塩基性窒素化合物を含む金属酸化物粒子分散液がさらにマトリックス形成成分を含み、マトリックス形成成分の濃度が固形分として0.1〜4重量%の範囲にあることを特徴とする請求項1に記載の反射防止膜付基材の製造方法。   The metal oxide particle dispersion containing the basic nitrogen compound further contains a matrix-forming component, and the concentration of the matrix-forming component is in the range of 0.1 to 4% by weight as a solid content. The manufacturing method of the base material with an antireflection film of description. 前記基材が表面に凹凸を有し、表面粗さ(RaA)が30nm〜1μmの範囲にあることを特徴とする請求項1に記載の反射防止膜付基材の製造方法。   The method for producing a substrate with an antireflection film according to claim 1, wherein the substrate has irregularities on the surface and the surface roughness (RaA) is in the range of 30 nm to 1 μm. 前記基材がガラス基材であることを特徴とする請求項1に記載の反射防止膜付基材の製造方法。   The said base material is a glass base material, The manufacturing method of the base material with an antireflection film of Claim 1 characterized by the above-mentioned.
JP2012143396A 2012-06-26 2012-06-26 Method for producing substrate with antireflection film and photoelectric cell Active JP6317874B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2012143396A JP6317874B2 (en) 2012-06-26 2012-06-26 Method for producing substrate with antireflection film and photoelectric cell
KR1020130072048A KR102018592B1 (en) 2012-06-26 2013-06-24 Process for preparing anti-reflection film substrate and photovoltaic cell
CN201310256586.3A CN103515457B (en) 2012-06-26 2013-06-25 The manufacture method and photocell of base material with antireflection film
TW102122663A TWI572045B (en) 2012-06-26 2013-06-26 Method for manufacturing substrate with anti-reflection film and photoelectric cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012143396A JP6317874B2 (en) 2012-06-26 2012-06-26 Method for producing substrate with antireflection film and photoelectric cell

Publications (3)

Publication Number Publication Date
JP2014006443A JP2014006443A (en) 2014-01-16
JP2014006443A5 JP2014006443A5 (en) 2015-07-23
JP6317874B2 true JP6317874B2 (en) 2018-04-25

Family

ID=49897866

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012143396A Active JP6317874B2 (en) 2012-06-26 2012-06-26 Method for producing substrate with antireflection film and photoelectric cell

Country Status (4)

Country Link
JP (1) JP6317874B2 (en)
KR (1) KR102018592B1 (en)
CN (1) CN103515457B (en)
TW (1) TWI572045B (en)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2015353551B2 (en) 2014-11-25 2018-06-28 Ppg Industries Ohio, Inc. Curable film-forming sol-gel compositions and anti-glare coated articles formed from them
WO2017150132A1 (en) * 2016-02-29 2017-09-08 富士フイルム株式会社 Manufacturing method for laminate, glass with anti-reflection film and solar cell module
JP6609202B2 (en) * 2016-03-08 2019-11-20 株式会社フジクラ Photoelectric conversion device
CN106449887B (en) * 2016-11-23 2018-01-16 绍兴文理学院 A kind of light reflecting membrane material for photovoltaic module
JP2019129185A (en) * 2018-01-22 2019-08-01 三菱マテリアル株式会社 Thermistor, method for manufacturing the same, and thermistor sensor
KR102265267B1 (en) * 2021-01-13 2021-06-17 (주)에스케이솔라에너지 Color Photovoltaic Module For Building
CN113788631B (en) * 2021-10-11 2023-05-05 上海西源新能源技术有限公司 ZnO-SiO 2 Double-coating down-conversion antireflection film and preparation method thereof
KR102461977B1 (en) * 2022-01-20 2022-11-03 주식회사 블루비컴퍼니 Display assembly for outputting advertisements
JP2023125378A (en) * 2022-02-28 2023-09-07 株式会社リコー Liquid composition, liquid composition for inkjet discharging, storage container, device for manufacturing layer containing inorganic oxide, method of manufacturing layer containing inorganic oxide, and electrochemical device
CN114879401B (en) * 2022-04-28 2023-10-31 Tcl华星光电技术有限公司 display module

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH674596A5 (en) 1988-02-12 1990-06-15 Sulzer Ag
AU650878B2 (en) 1990-04-17 1994-07-07 Ecole Polytechnique Federale De Lausanne Photovoltaic cells
JP3424876B2 (en) * 1995-07-04 2003-07-07 松下電器産業株式会社 Image display device and method of manufacturing the same
JP4100863B2 (en) 2000-10-23 2008-06-11 触媒化成工業株式会社 Photoelectric cell
JP4080756B2 (en) * 2002-02-01 2008-04-23 富士フイルム株式会社 Antireflection film, method of manufacturing the same, and image display device
JP2006072315A (en) * 2004-05-20 2006-03-16 Fuji Photo Film Co Ltd Polarization plate with antireflection function, process for producing the same and image display unit utilizing the same
FR2898295B1 (en) * 2006-03-10 2013-08-09 Saint Gobain TRANSPARENT ANTIREFLECTION SUBSTRATE WITH NEUTRAL COLOR IN REFLECTION
TWI371864B (en) * 2008-01-29 2012-09-01 Big Sun Energy Technology Inc Solar cell with anti-reflection layer
JP2010127951A (en) * 2008-11-25 2010-06-10 Toray Advanced Film Co Ltd Coating liquid for forming low refractive index layer and method of manufacturing reflection preventing layer
KR101771757B1 (en) * 2009-12-11 2017-08-25 니혼 이타가라스 가부시키가이샤 Cover glass for photoelectric converter and process for producing same
JP2012086477A (en) * 2010-10-20 2012-05-10 Hitachi Chemical Co Ltd Thin-film transfer material, method for manufacturing the same, molding with thin film, and method for manufacturing the same

Also Published As

Publication number Publication date
CN103515457A (en) 2014-01-15
TW201407794A (en) 2014-02-16
CN103515457B (en) 2017-08-25
TWI572045B (en) 2017-02-21
JP2014006443A (en) 2014-01-16
KR20140004004A (en) 2014-01-10
KR102018592B1 (en) 2019-09-05

Similar Documents

Publication Publication Date Title
JP6317874B2 (en) Method for producing substrate with antireflection film and photoelectric cell
JP4100863B2 (en) Photoelectric cell
JP6193244B2 (en) Solar cell module having antiglare film and method for producing the same, antiglare film for solar cell and method for producing the same, and coating solution for forming antiglare film
JP5479327B2 (en) Dye-sensitized photoelectric conversion element
JP4916683B2 (en) Photoelectric cell
WO2015002042A1 (en) Anti-glare film for solar cell module, solar cell module provided with anti-glare film, and method for manufacturing same
Noh et al. Photovoltaic property dependence of dye-sensitized solar cells on sheet resistance of FTO substrate deposited via spray pyrolysis
EP1984535A1 (en) A method for preparing nanocrystalline transparent films of tungsten oxide
Yen et al. Plasmon-induced efficiency enhancement on dye-sensitized solar cell by a 3D TNW-AuNP layer
Keshavarzi et al. Improving efficiency and stability of carbon‐based perovskite solar cells by a multifunctional triple‐layer system: antireflective, uv‐protective, superhydrophobic, and self‐cleaning
JP2008277019A (en) Photoelectric cell and coating material for forming porous semiconductor film for photoelectric cell
JP6266230B2 (en) Surface-modified metal oxide fine particles, coating liquid for thin film formation, substrate with thin film, photoelectric cell, and method for producing surface-modified metal oxide fine particles
EP2267831A1 (en) Paste for dye-sensitized solar cell, transparent insulation film for dye-sensitized solar cell, dye-sensitized solar cell, and dye-sensitized solar cell fabrication method
US6870266B2 (en) Oxide semiconductor electrode and process for producing the same
KR101194258B1 (en) Transparent substrate for solar cell having a broadband anti-reflective multilayered coating thereon and method for preparing the same
Lu et al. Facile preparation of porous SiO2 antireflection film with high transmittance and hardness via self-templating method for perovskite solar cells
Kartikay et al. All Room‐Temperature‐Processed Carbon‐Based Flexible Perovskite Solar Cells with TiO2 Electron Collection Layer
Swathi et al. Photon management by scratch‐resistant antireflection coating for the efficiency enhancement of silicon solar cell
JP4637474B2 (en) Dye-sensitized solar cell
JP2010114032A (en) Method for manufacturing photo-electrode, photo-electrode, photoelectric converting element, and pigment sensitizing solar battery
JP2001102101A (en) Photoelectric cell
JP2013093162A (en) Coating material for formation of porous semiconductor film, and photoelectric cell
Fu et al. Facile sol-gel synthesis of highly durable anti-reflection films with enhanced self-cleaning performance for perovskite solar cells
JP5738126B2 (en) Photoelectric cell and method for producing porous metal oxide semiconductor film for photoelectric cell
JP2012043724A (en) Semiconductor electrode layer and manufacturing method thereof and electrochemical device

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150515

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150515

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150601

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150515

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160223

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160425

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161004

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170104

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170206

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20170414

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180112

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180402

R150 Certificate of patent or registration of utility model

Ref document number: 6317874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250