JP6317687B2 - Scale remover and boiler cleaning method using the scale remover - Google Patents

Scale remover and boiler cleaning method using the scale remover Download PDF

Info

Publication number
JP6317687B2
JP6317687B2 JP2015038216A JP2015038216A JP6317687B2 JP 6317687 B2 JP6317687 B2 JP 6317687B2 JP 2015038216 A JP2015038216 A JP 2015038216A JP 2015038216 A JP2015038216 A JP 2015038216A JP 6317687 B2 JP6317687 B2 JP 6317687B2
Authority
JP
Japan
Prior art keywords
acid
scale
scale remover
cleaning method
boiler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015038216A
Other languages
Japanese (ja)
Other versions
JP2016160457A (en
Inventor
崇博 三甘
崇博 三甘
佐藤 文則
文則 佐藤
肇 安藤
肇 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ebara Industrial Cleaning Co Ltd
Original Assignee
Ebara Industrial Cleaning Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ebara Industrial Cleaning Co Ltd filed Critical Ebara Industrial Cleaning Co Ltd
Priority to JP2015038216A priority Critical patent/JP6317687B2/en
Publication of JP2016160457A publication Critical patent/JP2016160457A/en
Application granted granted Critical
Publication of JP6317687B2 publication Critical patent/JP6317687B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、発電プラント等の化学洗浄工事において用いるスケール除去剤に関し、特に、給水に酸素処理を施したボイラでの蒸発管内部のパウダースケールを効果的に除去するためのスケール除去剤と、これを用いた化学洗浄方法に関する。   The present invention relates to a scale remover for use in chemical cleaning work such as a power plant, and in particular, a scale remover for effectively removing powder scale inside an evaporation pipe in a boiler in which oxygen treatment is performed on feed water, and this This invention relates to a chemical cleaning method using

発電プラントのボイラ等では、ボイラ水に極微量溶け込んでいる金属イオンが、蒸発管等の特に熱負荷の高い部分を中心として沈積して、難溶解性のスケールとして付着する。通常、スケールの主成分は酸化鉄であり、その90%以上を占めている。蒸発管内壁等に付着したスケールの熱伝導率は、母材金属の1/10以下であり、スケール付着量が増加すると伝熱を阻害し、過熱による膨出を招くことがある。また、成長に伴い波状スケールを形成し、ボイラの圧力損失が上昇することや、母材金属とスケールの熱膨張率が異なるため、ボイラの停止及び起動時の熱変化により、厚く成長したスケールが割れて剥がれ、配管の屈曲部で閉塞を起こすことがある。そのため、蒸発管内のスケール付着の程度によって、ボイラを停止して化学洗浄工事によりこれらのスケールを除去することが必要とされる。   In boilers and the like of power plants, metal ions that are dissolved in a very small amount in boiler water deposit around a particularly high heat load such as an evaporation tube and adhere as a hardly soluble scale. Usually, the main component of the scale is iron oxide, accounting for 90% or more. The thermal conductivity of the scale adhering to the inner wall of the evaporator tube is 1/10 or less of that of the base metal, and when the amount of scale adhering increases, heat transfer is hindered and bulging due to overheating may occur. In addition, a wavy scale is formed with the growth, and the pressure loss of the boiler rises, and because the coefficient of thermal expansion of the base metal and the scale is different, the scale that has grown thick due to the thermal change at the time of boiler stop and startup It may break off and peel off, causing clogging at the bent part of the pipe. Therefore, depending on the degree of scale adhesion in the evaporation pipe, it is necessary to stop the boiler and remove these scales by chemical cleaning work.

中でも、貫流ボイラは、構造上薬液の完全排出が難しく、化学洗浄時に薬液が残留する可能性があるため、従来、化学洗浄工事では腐食性の低い有機混酸、たとえばグリコール酸とクエン酸との混合酸を使用してきた。   Among them, once-through boilers are difficult to completely discharge chemicals due to their structure, and chemicals may remain during chemical cleaning. Conventionally, chemical cleaning is a mixture of organic acids that are not corrosive, such as glycolic acid and citric acid. I have used acid.

一方、ボイラ給水の水質を管理する方法として、酸素処理がある。これは、高純度水に微量の酸素を注入し、溶存酸素濃度を調節することで、スケールをより溶解度の低いヘマタイト(Fe)にするものである。酸素処理の特徴として、スケールの成長が遅いこと、粒塊の粒子径が小さく、揮発性物質処理の場合に発生するマグネタイト(Fe)が波状のスケールを生成するのとは違い、ヘマタイトは表面が滑らかなスケールを生成するため圧力損失が低減されることなどがある。 On the other hand, there is oxygen treatment as a method for managing the quality of boiler feed water. This is to inject hematite (Fe 2 O 3 ) with lower solubility by injecting a small amount of oxygen into high-purity water and adjusting the dissolved oxygen concentration. The characteristics of oxygen treatment are that hematite is different from magnetite (Fe 3 O 4 ) generated in the case of volatile substance treatment, in which the growth of the scale is slow, the particle size of the agglomerates is small, and wavy scale is generated. May produce a scale with a smooth surface, thus reducing pressure loss.

しかし、酸素処理を実施しているボイラでも、ボイラへの鉄流入量が増加すると、ヘマタイトスケールが成長する。また、ヘマタイトスケールは、粒塊が小さくてポーラスな構造であるため、パウダースケールと呼ばれており、熱伝導性が悪く、配管などの構成部材である金属の温度を上昇させる原因となる。そのため、酸素処理を実施していても、ボイラの化学洗浄工事は必要となる。   However, even in a boiler that performs oxygen treatment, when the amount of iron flowing into the boiler increases, the hematite scale grows. Further, the hematite scale is called a powder scale because it has a porous structure with small agglomerates, and is poor in thermal conductivity, causing a rise in the temperature of a metal that is a constituent member such as piping. Therefore, even if oxygen treatment is being performed, chemical cleaning work for the boiler is required.

ヘマタイトはマグネタイトよりも溶解性が悪く、化学洗浄工事では、パウダースケールが溶解して配管内壁から剥離し、ヘマタイトからなる粒子径の小さい難溶解性のスラッジが発生する。スラッジは、配管内部の循環流速の小さい部分に沈積するほか、薬液中にも分散する。このスラッジは粒子径が小さいため捕集が難しく、洗浄液の循環によりボイラ内に持ち込まれる。そのため、化学洗浄工事後にボイラ内にスラッジが残留し、蒸発管等の膨出等の原因となる恐れがある。   Hematite has a lower solubility than magnetite, and in chemical cleaning work, the powder scale dissolves and peels from the inner wall of the pipe, resulting in a slightly soluble sludge made of hematite and having a small particle size. Sludge is deposited in the portion of the pipe where the circulation flow rate is small, and is also dispersed in the chemical solution. Since this sludge has a small particle size, it is difficult to collect and the sludge is brought into the boiler by circulation of the cleaning liquid. Therefore, sludge remains in the boiler after chemical cleaning work, which may cause expansion of the evaporation pipe and the like.

小さなスラッジを除去するために、洗浄液循環路にフィルタや遠心分離器を設けることが提案されている(特許文献1)が、目の細かなフィルタを複数用いる必要があり、洗浄循環路が大型化し、フィルタの目詰まりによる循環水流の減少や頻繁なフィルタ交換などにより、運転コストが高くなるという問題がある。   In order to remove small sludge, it has been proposed to provide a filter or a centrifuge in the cleaning liquid circulation path (Patent Document 1). However, it is necessary to use a plurality of fine filters, and the cleaning circulation path is enlarged. There is a problem that the operating cost is increased due to a decrease in circulating water flow due to clogging of the filter and frequent filter replacement.

一方、酸化鉄スケールを溶解除去する洗浄方法としては、キレート化剤と0.05×10−3〜1.0×10−3mol/Lの還元性二価金属の有機酸塩を共存させ、pHを4.0〜5.0の範囲に保持してマグネタイトを溶解除去する方法(特許文献2)、マロン酸、グリコール酸、及びL−アスコルビン酸(還元剤)をマロン酸:グリコール酸:還元剤=1:0.5〜1.5:0.5〜2(重量比)で含むヘマタイトを溶解除去できる化学洗浄剤組成物(特許文献3)が提案されている。 On the other hand, as a cleaning method for dissolving and removing the iron oxide scale, a chelating agent and an organic acid salt of 0.05 × 10 −3 to 1.0 × 10 −3 mol / L of a reducing divalent metal are allowed to coexist, and the pH is adjusted to 4. A method of dissolving and removing magnetite while maintaining in the range of 0 to 5.0 (Patent Document 2), malonic acid, glycolic acid, and L-ascorbic acid (reducing agent) are malonic acid: glycolic acid: reducing agent = 1: There has been proposed a chemical detergent composition (Patent Document 3) capable of dissolving and removing hematite contained at 0.5 to 1.5: 0.5 to 2 (weight ratio).

特許第5569217号公報Japanese Patent No. 5556217 特公平7−65204号公報Japanese Examined Patent Publication No. 7-65204 特許第3640148号公報Japanese Patent No. 3640148

本発明の目的は、貫流ボイラの蒸発管などの配管内へのスケール付着を防止するために行う化学洗浄において、酸素処理水を給水することに伴い形成される低溶解性のヘマタイトを溶解除去することができるスケール除去剤を提供することにある。   An object of the present invention is to dissolve and remove the low-solubility hematite formed by supplying oxygen-treated water in chemical cleaning performed to prevent scale adhesion in piping such as an evaporation pipe of a once-through boiler. It is to provide a descaling agent that can be used.

また、本発明の目的は、微細なスラッジの発生量が少なく、運転コストを低減できる効率的な貫流ボイラの化学洗浄方法を提供することにある。   It is another object of the present invention to provide an efficient once-through boiler chemical cleaning method that generates a small amount of fine sludge and can reduce operating costs.

本発明者らは、上記問題点に鑑み、ヘマタイトからなる微細スラッジが貫流ボイラの蒸発管などの配管内へ残留することを抑制するために、ヘマタイトを溶解する薬剤の開発を検討した。その結果、本発明者らは、シュウ酸及び/又はシュウ酸のアンモニウム塩を含み、キレート剤と、シュウ酸とは異なる有機酸と還元剤を含有するスケール除去剤を採用することで、かかる問題点が解決されることを知見し、本発明を完成させた。   In view of the above problems, the present inventors have studied the development of a drug that dissolves hematite in order to prevent fine sludge made of hematite from remaining in piping such as an evaporation pipe of a once-through boiler. As a result, the present inventors have adopted this problem by adopting a scale remover containing oxalic acid and / or an ammonium salt of oxalic acid, containing a chelating agent, an organic acid different from oxalic acid, and a reducing agent. The present invention was completed by finding out that the problem can be solved.

本発明によれば、下記構成のスケール除去剤及びボイラの化学洗浄方法が提供される。
[1]シュウ酸及び/又はシュウ酸のアンモニウム塩を含み、キレート剤と、シュウ酸とは異なる有機酸と、還元剤と、を含有するスケール除去剤。
[2]前記キレート剤は、エチレンジアミン四酢酸四アンモニウム、エチレンジアミン四酢酸三アンモニウム、エチレンジアミン四酢酸二アンモニウム、エチレンジアミン四酢酸四ナトリウム、エチレンジアミン四酢酸三ナトリウム、エチレンジアミン四酢酸二ナトリウムから選択される少なくとも1つ以上である、[1]のスケール除去剤。
[3]前記有機酸は、クエン酸、グリコール酸、リンゴ酸、グルコン酸、酢酸、蟻酸、乳酸、酒石酸、マロン酸、ピルビン酸、マレイン酸、グルタル酸、琥珀酸から選択される少なくとも1つ以上である、[1]又は[2]のスケール除去剤
[4]前記還元剤は、L−アスコルビン酸、L−アスコルビン酸塩、エリソルビン酸、エリソルビン酸塩、ヒドラジンから選択される少なくとも1つ以上である、[1]〜[3]のいずれか1のスケール除去剤
[5]前記シュウ酸及び/又はシュウ酸のアンモニウム塩を0.38〜19wt%、前記キレート剤を3.8〜38wt%、前記有機酸を3.8〜26.3wt%、前記還元剤を3.8〜38wt%の範囲で含み、pHが3〜8の範囲である、[1]〜[4]のいずれかに記載のスケール除去剤。
[6]酸素処理を施した給水を用いるボイラの蒸発管の化学洗浄方法であって、
当該蒸発管の底部と頂部にそれぞれ流入口及び流出口を有する洗浄用循環路を設け、当該循環路中に請求項1のスケール除去剤を注入して循環させ、平均粒径20μm未満のスケール粒子を溶解除去することを特徴とするボイラの化学洗浄方法。
[7]前記スケール除去剤は、pHが4〜8の範囲、前記シュウ酸及び/又はシュウ酸のアンモニウム塩が0.1〜5wt%、前記キレート剤が1〜10wt%、前記有機酸が1〜7wt%、前記還元剤が1〜10wt%の範囲である、[6]に記載の化学洗浄方法。
[8]前記循環路に遠心分離器を設置し、当該遠心分離器にて平均粒径50μmよりも大きいスラッジを除去することをさらに含む、[6]又は[7]に記載の洗浄方法。
According to the present invention, a scale remover and a boiler chemical cleaning method having the following configurations are provided.
[1] A scale remover containing oxalic acid and / or an ammonium salt of oxalic acid, containing a chelating agent, an organic acid different from oxalic acid, and a reducing agent.
[2] The chelating agent is at least one selected from ethylenediaminetetraacetic acid tetraammonium, ethylenediaminetetraacetic acid triammonium, ethylenediaminetetraacetic acid diammonium, ethylenediaminetetraacetic acid tetrasodium, ethylenediaminetetraacetic acid trisodium, and ethylenediaminetetraacetic acid disodium. The scale removing agent according to [1], which is described above.
[3] The organic acid is at least one selected from citric acid, glycolic acid, malic acid, gluconic acid, acetic acid, formic acid, lactic acid, tartaric acid, malonic acid, pyruvic acid, maleic acid, glutaric acid, and succinic acid. [1] or [2] scale remover [4] The reducing agent is at least one selected from L-ascorbic acid, L-ascorbate, erythorbic acid, erythorbate, and hydrazine. A scale remover according to any one of [1] to [3] [5] 0.38 to 19 wt% of the oxalic acid and / or ammonium salt of oxalic acid, 3.8 to 38 wt% of the chelating agent, The organic acid is contained in a range of 3.8 to 26.3 wt%, the reducing agent is contained in a range of 3.8 to 38 wt%, and the pH is in the range of 3 to 8, in any one of [1] to [4] Scale removal .
[6] A method for chemically cleaning an evaporator pipe of a boiler using water treated with oxygen,
A cleaning circulation path having an inlet and an outlet is provided at the bottom and the top of the evaporation pipe, respectively, and the scale remover of claim 1 is injected into the circulation path and circulated to form a scale particle having an average particle size of less than 20 μm. A chemical cleaning method for a boiler, characterized in that it is dissolved and removed.
[7] The scale remover has a pH in the range of 4 to 8, the oxalic acid and / or ammonium salt of oxalic acid is 0.1 to 5 wt%, the chelating agent is 1 to 10 wt%, and the organic acid is 1 The chemical cleaning method according to [6], wherein ˜7 wt% and the reducing agent is in the range of 1 to 10 wt%.
[8] The cleaning method according to [6] or [7], further including installing a centrifuge in the circulation path and removing sludge having an average particle size larger than 50 μm with the centrifuge.

三価の鉄イオンとシュウ酸の塩は溶解性があるが、二価の鉄イオンとシュウ酸の塩は、極めて溶解しにくく、スケール表面に皮膜を作って、反応の進行を阻害する。シュウ酸とEDTAを組み合わせると、シュウ酸によって溶出した鉄イオンをEDTAが保持し、シュウ酸鉄(II)の皮膜が生成せず、溶解反応が進行する。更に還元剤添加量を増やすと、ヘマタイトの溶解性が向上する。   Trivalent iron ions and oxalic acid salts are soluble, but divalent iron ions and oxalic acid salts are extremely difficult to dissolve and form a film on the scale surface to inhibit the progress of the reaction. When oxalic acid and EDTA are combined, iron ions eluted by oxalic acid are retained by EDTA, and a film of iron (II) oxalate is not formed, and the dissolution reaction proceeds. When the amount of the reducing agent added is further increased, the solubility of hematite is improved.

本発明のスケール除去剤は、パウダースケールを構成しているヘマタイトを9割以上溶解可能であり、ヘマタイトからなる微細なスラッジの発生を抑制できる。   The scale remover of the present invention can dissolve 90% or more of the hematite constituting the powder scale, and can suppress the generation of fine sludge made of hematite.

本発明の化学洗浄方法によれば、溶解性のマグネタイトのみではなく、低溶解性のヘマタイトも溶解除去できるため、難溶解性のスラッジの発生を大きく低減できる。   According to the chemical cleaning method of the present invention, not only soluble magnetite but also low-solubility hematite can be dissolved and removed, so that the generation of hardly soluble sludge can be greatly reduced.

洗浄循環路に遠心分離器を設けることにより、平均粒径が50μm以上の比較的粗大なスラッジも捕集が可能であり、更にスケール除去効果を上げることができる。   By providing a centrifugal separator in the washing circuit, it is possible to collect relatively coarse sludge having an average particle diameter of 50 μm or more, and further enhance the scale removal effect.

また、従来使用されている腐食性の低い有機混酸は酸性(pH2〜4)で使用するのに対して、本発明のスケール除去剤は、中性付近(pH4〜8)で使用するため、化学洗浄工事における安全性が向上する。   Moreover, the organic mixed acid with low corrosiveness used conventionally is acidic (pH 2-4), whereas the scale remover of the present invention is used near neutral (pH 4-8). Safety in cleaning work is improved.

更に、有機混酸と比較してスケールの溶解速度が大きいため、洗浄時間を短縮でき、母材の腐食速度がほぼ同等であるため、腐食量を抑えることが可能である。   Further, since the dissolution rate of the scale is larger than that of the organic mixed acid, the cleaning time can be shortened, and the corrosion rate of the base material is almost the same, so that the amount of corrosion can be suppressed.

本発明のスケール除去剤を用いるボイラの化学洗浄方法を示す概略説明図である。It is a schematic explanatory drawing which shows the chemical cleaning method of the boiler using the scale removal agent of this invention. 実施例2及び実施例3で使用した実験装置図である。It is the experimental apparatus figure used in Example 2 and Example 3. FIG. 実施例2における実験結果を示すグラフである。10 is a graph showing experimental results in Example 2. 実施例2における実験結果を示すグラフである。10 is a graph showing experimental results in Example 2. 実施例3における実験結果を示すグラフである。10 is a graph showing experimental results in Example 3.

[スケール除去剤]
本発明のスケール除去剤は、シュウ酸及び/又はシュウ酸アンモニウムと、キレート剤と、シュウ酸とは異なる有機酸と、還元剤と、を含有する。
[Scale remover]
The scale remover of the present invention contains oxalic acid and / or ammonium oxalate, a chelating agent, an organic acid different from oxalic acid, and a reducing agent.

シュウ酸及びシュウ酸アンモニウムは、ボイラの洗浄水中にシュウ酸イオン及びアンモニウムイオンとして溶解して残留しないため好適である。シュウ酸塩として、たとえばナトリウム塩やカリウム塩などは洗浄水中にナトリウムイオンやカリウムイオンが残留し、これらアルカリ金属イオンが加熱により塩として析出する可能性があるため適切ではない。   Oxalic acid and ammonium oxalate are preferred because they do not remain dissolved in the boiler wash water as oxalate ions and ammonium ions. As oxalates, for example, sodium salts and potassium salts are not suitable because sodium ions and potassium ions remain in the wash water, and these alkali metal ions may be precipitated as salts by heating.

キレート剤としては、金属イオンと配位結合を形成することが可能な化合物で、水溶性のものであれば特に限定されないが、エチレンジアミン四酢酸四アンモニウム、エチレンジアミン四酢酸三アンモニウム、エチレンジアミン四酢酸二アンモニウム、エチレンジアミン四酢酸四ナトリウム、エチレンジアミン四酢酸三ナトリウム、エチレンジアミン四酢酸二ナトリウム等(EDTA)を好ましく用いることができる。中でも、スケール溶解に伴う鉄イオン濃度によるpH変化を抑制するためには、薬液のイオン積が大きい方が望ましく、また弱塩基によるバッファ効果の観点から、エチレンジアミン四酢酸四アンモニウムが好ましい。   The chelating agent is a compound capable of forming a coordination bond with a metal ion and is not particularly limited as long as it is water-soluble, but ethylenediaminetetraacetic acid tetraammonium, ethylenediaminetetraacetic acid triammonium, ethylenediaminetetraacetic acid diammonium , Ethylenediaminetetraacetic acid tetrasodium, ethylenediaminetetraacetic acid trisodium, ethylenediaminetetraacetic acid disodium, etc. (EDTA) can be preferably used. Among them, in order to suppress the pH change due to the iron ion concentration accompanying the dissolution of the scale, it is desirable that the ionic product of the chemical solution is large, and from the viewpoint of the buffer effect by the weak base, ethylenediaminetetraacetic acid tetraammonium is preferable.

有機酸としては、クエン酸、グリコール酸、リンゴ酸、グルコン酸、酢酸、蟻酸、乳酸、酒石酸、マロン酸、ピルビン酸、マレイン酸、グルタル酸、琥珀酸を好ましく用いることができる。中でも、酸化鉄に対する溶解力と鉄との錯体形成の知見から、クエン酸が好ましい。   As the organic acid, citric acid, glycolic acid, malic acid, gluconic acid, acetic acid, formic acid, lactic acid, tartaric acid, malonic acid, pyruvic acid, maleic acid, glutaric acid and oxalic acid can be preferably used. Among these, citric acid is preferred from the knowledge of the solubility in iron oxide and the formation of a complex with iron.

還元剤としては、L−アスコルビン酸、L−アスコルビン酸塩、エリソルビン酸、エリソルビン酸塩、ヒドラジンを好ましく用いることができる。中でもL−アスコルビン酸が好ましい。   As the reducing agent, L-ascorbic acid, L-ascorbate, erythorbic acid, erythorbate, and hydrazine can be preferably used. Of these, L-ascorbic acid is preferred.

本発明のスケール除去剤は、上記必須成分に加えて腐食抑制剤を含んでいてもよい。   The scale remover of the present invention may contain a corrosion inhibitor in addition to the above essential components.

本発明のスケール除去剤は、前記シュウ酸及び/又はシュウ酸のアンモニウム塩を0.38〜19wt%、好ましくは0.38〜3.8wt%と、前記キレート剤を3.8〜38wt%、好ましくは21.6〜36.1wt%含み、前記有機酸を3.8〜26.3wt%、好ましくは11.4〜22.8wt%含み、前記還元剤を3.8〜38wt%、好ましくは3.8〜19wt%含み、pHが3〜8の範囲であることが好ましい。   The scale remover of the present invention comprises 0.38 to 19 wt%, preferably 0.38 to 3.8 wt% of the oxalic acid and / or ammonium salt of oxalic acid, and 3.8 to 38 wt% of the chelating agent, Preferably it contains 21.6-36.1 wt%, the organic acid 3.8-26.3 wt%, preferably 11.4-22.8 wt%, and the reducing agent 3.8-38 wt%, preferably It is preferable that 3.8-19 wt% is included and the pH is in the range of 3-8.

[ボイラの化学洗浄方法]
次に、図1を参照しながら、本発明のスケール除去剤を使用したボイラの化学洗浄方法を説明する。
[Boiler chemical cleaning method]
Next, a chemical cleaning method for a boiler using the scale remover of the present invention will be described with reference to FIG.

酸素処理を施した給水を用いるボイラの蒸発管aの底部bと頂部cにそれぞれ流入口及び流出口を有する洗浄用循環路dを設け、当該循環路d中に上記スケール除去剤を注入して循環させ、平均粒径20μm未満のスケール粒子を溶解除去する。   A cleaning circulation path d having an inlet and an outlet is provided at the bottom b and top c of a boiler evaporation pipe a using oxygen-treated feed water, and the scale remover is injected into the circulation path d. Circulate to dissolve and remove scale particles having an average particle size of less than 20 μm.

本発明のスケール除去剤は、洗浄循環路内を循環するボイラ水中に注入して希釈して用いる。希釈により、シュウ酸の濃度は0.1〜5.0wt%、好ましくは0.1〜1.0wt%、更に好ましくは0.5wt%、キレート剤の濃度は1.0〜10.0wt%、好ましくは5.7〜9.5wt%、有機酸濃度は1.0〜7.0wt%、好ましくは3.0〜6.0wt%、還元剤濃度は1.0〜10.0wt%、好ましくは1.0〜5.0wt%、更に好ましくは1.0〜3.0wt%とする。   The scale remover of the present invention is used after being diluted by being injected into boiler water circulating in the cleaning circuit. By dilution, the concentration of oxalic acid is 0.1 to 5.0 wt%, preferably 0.1 to 1.0 wt%, more preferably 0.5 wt%, the concentration of chelating agent is 1.0 to 10.0 wt%, Preferably 5.7 to 9.5 wt%, organic acid concentration is 1.0 to 7.0 wt%, preferably 3.0 to 6.0 wt%, reducing agent concentration is 1.0 to 10.0 wt%, preferably It is 1.0 to 5.0 wt%, more preferably 1.0 to 3.0 wt%.

ただし、キレート剤1.0wt%で約1,900mg/lの溶出鉄イオンを保持することが可能であり、キレート剤の濃度は溶出鉄イオン濃度の予想値によって調整されるため、特に上記範囲に限定されるものではない。また、有機酸はpH調整剤として使用するため、スケール除去剤を所望のpH範囲に調整できれば特に上記範囲に限定されるものではない。   However, it is possible to retain about 1,900 mg / l of eluted iron ions at 1.0 wt% of the chelating agent, and the concentration of the chelating agent is adjusted by the expected value of the eluted iron ion concentration. It is not limited. Moreover, since an organic acid is used as a pH adjuster, it is not particularly limited to the above range as long as the scale remover can be adjusted to a desired pH range.

還元剤の量が多いほど、ヘマタイトの溶解性は向上するが、反応後の薬液の色が濃くなり、洗浄面の仕上がりが悪くなる傾向があるため、還元剤は上記範囲であることが好ましい。有機酸濃度を濃くすると、酸化鉄に対する溶解性が向上するため、上記範囲であることが好ましい。   As the amount of the reducing agent is increased, the solubility of hematite is improved, but the color of the chemical solution after the reaction tends to be dark and the finish of the cleaning surface tends to be poor. Therefore, the reducing agent is preferably in the above range. When the organic acid concentration is increased, the solubility in iron oxide is improved, and thus the above range is preferable.

また、pHが3以下ではスケール除去剤中のキレート剤EDTAがEDTA・4Hとなり不溶化するため、希釈により本発明のスケール除去剤の化学洗浄使用時のpHは4〜7、好ましくはpH4.5〜5.5とすることが望ましい。   Further, when the pH is 3 or less, the chelating agent EDTA in the scale remover becomes EDTA · 4H and is insolubilized. Therefore, the pH at the time of chemical cleaning use of the scale remover of the present invention by dilution is 4 to 7, preferably pH 4.5 to It is desirable to use 5.5.

化学洗浄対象ボイラのスケール量については、特に限定されるものではないが、付着量が30〜60mg/cm程度で、鉄イオン濃度が15,000mg/L程度までであれば効果的に除去できることが確認されている。 The scale amount of the boiler to be chemically cleaned is not particularly limited, but can be effectively removed if the adhesion amount is about 30 to 60 mg / cm 2 and the iron ion concentration is about 15,000 mg / L. Has been confirmed.

また、平均粒径50μm未満のスラッジも本発明のスケール除去剤を用いて溶解除去することができる。平均粒径50μmを超える大きなスラッジを除去するために、洗浄循環路eに遠心分離器gを取り付けてもよい。   Sludge having an average particle size of less than 50 μm can be dissolved and removed using the scale remover of the present invention. In order to remove large sludge having an average particle size of more than 50 μm, a centrifugal separator g may be attached to the washing circuit e.

以下に実施例を示して本発明をより詳細に説明するが、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited thereto.

〔スケール除去剤の調製〕
・薬剤A(本発明のスケール除去剤)
シュウ酸0.5wt%、エチレンジアミン四酢酸四アンモニウム(EDTA)5.7wt%、クエン酸4.6wt%、L−アスコルビン酸2wt%、EBARACS−50A(腐食抑制剤)0.3wt%、残量は水となるように計量して、水に溶解させてスケール除去剤Aを調製した。
・薬剤B(既存のスケール除去剤)
クエン酸3wt%、グリコール酸3wt%、L−アスコルビン酸0.3wt%、EBARACS−50A0.3wt%、残量は水となるように計量して、水に溶解させてスケール除去剤Bを調製した。
[Preparation of scale remover]
Drug A (scale remover of the present invention)
Oxalic acid 0.5 wt%, ethylenediaminetetraacetic acid tetraammonium (EDTA) 5.7 wt%, citric acid 4.6 wt%, L-ascorbic acid 2 wt%, EBARACS-50A (corrosion inhibitor) 0.3 wt%, remaining amount is A scale remover A was prepared by weighing to water and dissolving in water.
・ Drug B (existing scale remover)
Citric acid 3 wt%, glycolic acid 3 wt%, L-ascorbic acid 0.3 wt%, EBARACS-50A 0.3 wt%, the remaining amount was measured to be water, and dissolved in water to prepare scale remover B .

〔実施例1〕
まず、薬剤Aおよび薬剤Bを用いたときの、ヘマタイトとマグネタイトの溶解性の違いを調べた。ヘマタイトとマグネタイトは、市販の試薬(ヘマタイト:和光純薬製 酸化鉄(III)、マグネタイト:和光純薬製 酸化二鉄(III)鉄(II))を使用した。実験条件と結果を表1に示す。
[Example 1]
First, the difference in solubility between hematite and magnetite when using drugs A and B was examined. As the hematite and magnetite, commercially available reagents (hematite: iron (III) oxide manufactured by Wako Pure Chemical Industries, magnetite: ferric oxide (III) iron (II) manufactured by Wako Pure Chemical Industries, Ltd.) were used. Table 1 shows the experimental conditions and results.

本発明のスケール除去剤である薬剤Aでは、ヘマタイト3.00gが残渣0.02gとなり、99.3%の溶解除去率が得られ、鉄イオンとして溶解していることがわかる。   In the drug A which is the scale remover of the present invention, 3.00 g of hematite becomes 0.02 g of residue, and a 99.3% dissolution removal rate is obtained, which indicates that it is dissolved as iron ions.

薬剤Bはマグネタイトに対してある程度溶解力を示すが、ヘマタイトに対しては溶解力が低い。   The drug B exhibits a certain degree of solubility in magnetite, but has low solubility in hematite.

〔実施例2〕
酸素処理を施したボイラから蒸発管を切り出し、図2に示す装置に組み込み、薬剤Aを加えて循環させながら85℃の温度条件で溶解実験を行った。また、比較のため薬剤Bを加えて同じ条件で実験を行った。
[Example 2]
The evaporation tube was cut out from the boiler that had been subjected to oxygen treatment, incorporated into the apparatus shown in FIG. For comparison, the drug B was added and the experiment was performed under the same conditions.

図2において、2が切り出した蒸発管、1は切り出した蒸発管のスケールを完全に除去した対照管である。蒸発管2と対照管1を重ね合わせて上下のフランジで固定して密封する。スケール除去剤貯槽4からスケール除去剤を流入し、蒸発管2及び対照管1を通過させるように洗浄循環路を形成し、スケール除去剤を循環させる。洗浄循環路にはヒータ線6を巻き付け、温度コントローラ5及び温度センサ7を用いて加温する。   In FIG. 2, reference numeral 2 denotes an evaporating tube, and 1 denotes a control tube from which the scale of the extracted evaporating tube has been completely removed. Evaporation tube 2 and control tube 1 are overlapped and fixed with upper and lower flanges and sealed. The scale remover is introduced from the scale remover storage tank 4 and a washing circuit is formed so as to pass through the evaporation pipe 2 and the control pipe 1 to circulate the scale remover. A heater wire 6 is wound around the cleaning circuit and heated using a temperature controller 5 and a temperature sensor 7.

このときの溶出鉄イオン濃度の経時変化を図3に示す。薬剤Aを用いた実験では、現行の薬剤Bを用いた実験の約半分〜1/3の時間で溶出鉄イオン濃度がほぼ一定となった。   The time-dependent change of the eluted iron ion concentration at this time is shown in FIG. In the experiment using the drug A, the concentration of eluted iron ions became almost constant in the time of about half to 1/3 of the experiment using the current drug B.

このときのそれぞれの溶解実験後のスラッジの粒度分布を図4に示す。薬剤Bを用いた洗浄では20μm付近に比較的小粒径のスラッジのピークが認められたが、薬剤Aを用いた洗浄では、このピークは認められず、粒子径が小さいスラッジの除去に効果があることが示された。スラッジ粒径別の残留率を表2に示す。   The particle size distribution of the sludge after each dissolution experiment at this time is shown in FIG. In the cleaning using the medicine B, a peak of sludge having a relatively small particle diameter was observed in the vicinity of 20 μm. However, in the cleaning using the medicine A, this peak was not observed, and it was effective in removing sludge having a small particle diameter. It was shown that there is. Table 2 shows the residual ratio by sludge particle size.

この実験における対照管の内壁の腐食量((対照管洗浄前の重さ−対照管洗浄後の重さ)/接液面積)および腐食速度を表3に示す。腐食速度は、薬剤Aと薬剤Bともにほぼ等しいが、洗浄時間は薬剤Aが薬剤Bの約半分の時間であるため、腐食量は、薬剤Aを用いた方が少なくなった。   Table 3 shows the amount of corrosion of the inner wall of the control tube in this experiment ((weight before washing of control tube−weight after washing of control tube) / wetted area) and corrosion rate. The corrosion rate is approximately the same for both drug A and drug B, but the cleaning time is about half that of drug B for drug A, so the amount of corrosion was lower when drug A was used.

〔実施例3〕
実施例2と同様に、酸素処理を施したボイラから蒸発管を切出して図2に示す装置に組み込み、薬剤Aを加えて循環させながら85℃の温度条件で溶解実験を行った。また比較のために、同様に蒸発管を組み込んだ装置に薬剤Bを加えて同じ条件で実験を行った。溶出する鉄イオン濃度がほぼ一定となったところを終点とし、残ったスラッジを回収して、X線回折装置で測定した。この結晶相重量比を表4及び図5に示す。
Example 3
In the same manner as in Example 2, the evaporation tube was cut out from the oxygen-treated boiler and incorporated in the apparatus shown in FIG. 2, and a dissolution experiment was performed at a temperature of 85 ° C. while adding and circulating the drug A. For comparison, an experiment was performed under the same conditions by adding the drug B to an apparatus incorporating an evaporation tube. The point at which the concentration of eluted iron ions became almost constant was taken as the end point, and the remaining sludge was collected and measured with an X-ray diffractometer. The crystal phase weight ratio is shown in Table 4 and FIG.

薬剤Bを用いた実験では、スラッジ中のヘマタイトの割合が85%で、溶解前のスケール中のヘマタイトの割合が78%であり、ほぼ変わらないが、薬剤Aを用いた実験では、スラッジ中のヘマタイトの割合が6%に減少した。   In the experiment using the drug B, the ratio of hematite in the sludge is 85% and the ratio of the hematite in the scale before dissolution is 78%, which is almost the same, but in the experiment using the drug A, in the sludge The proportion of hematite was reduced to 6%.

a 蒸発管
b 蒸発管底部
c 蒸発管頂部
d 洗浄用循環路
e 遠心分離器
1 腐食減量測定用対照管
2 溶解実験用蒸発管
3 空気抜き
4 液溜め
5 温度コントローラ
6 加温用ヒータ
7 温度センサ
8 循環ポンプ
9 ドレン
a evaporating tube b evaporating tube bottom c evaporating tube top d cleaning circuit e centrifuge 1 corrosion loss control tube 2 dissolution experiment evaporating tube 3 venting 4 liquid reservoir 5 temperature controller 6 heating heater 7 temperature sensor 8 Circulation pump 9 Drain

Claims (8)

シュウ酸及び/又はシュウ酸アンモニウムと、キレート剤と、シュウ酸とは異なる有機酸と、還元剤と、を含有し、ヘマタイト又はマグネタイトを溶解除去するスケール除去剤。 A scale remover containing oxalic acid and / or ammonium oxalate, a chelating agent, an organic acid different from oxalic acid, and a reducing agent, and dissolving and removing hematite or magnetite . 前記キレート剤は、エチレンジアミン四酢酸四アンモニウム、エチレンジアミン四酢酸三アンモニウム、エチレンジアミン四酢酸二アンモニウム、エチレンジアミン四酢酸四ナトリウム、エチレンジアミン四酢酸三ナトリウム、エチレンジアミン四酢酸二ナトリウムから選択される少なくとも1つ以上である、請求項1に記載のスケール除去剤。 The chelating agent is at least one selected from ethylenediaminetetraacetic acid tetraammonium, ethylenediaminetetraacetic acid triammonium, ethylenediaminetetraacetic acid diammonium, ethylenediaminetetraacetic acid tetrasodium, ethylenediaminetetraacetic acid trisodium, and ethylenediaminetetraacetic acid disodium. The scale remover according to claim 1. 前記有機酸は、クエン酸、グリコール酸、リンゴ酸、グルコン酸、酢酸、蟻酸、乳酸、酒石酸、マロン酸、ピルビン酸、マレイン酸、グルタル酸、琥珀酸から選択される少なくとも1つ以上である、請求項1又は2に記載のスケール除去剤 The organic acid is at least one selected from citric acid, glycolic acid, malic acid, gluconic acid, acetic acid, formic acid, lactic acid, tartaric acid, malonic acid, pyruvic acid, maleic acid, glutaric acid, and succinic acid. The scale remover according to claim 1 or 2. 前記還元剤は、L−アスコルビン酸、L−アスコルビン酸塩、エリソルビン酸、エリソルビン酸塩、ヒドラジンから選択される少なくとも1つ以上である、請求項1〜3のいずれかに記載のスケール除去剤 The scale removing agent according to any one of claims 1 to 3, wherein the reducing agent is at least one selected from L-ascorbic acid, L-ascorbate, erythorbic acid, erythorbate, and hydrazine. 前記シュウ酸及び/又はシュウ酸のアンモニウム塩を0.38〜19wt%、前記キレート剤を3.8〜38wt%、前記有機酸を3.8〜26.3wt%、前記還元剤を3.8〜38wt%の範囲で含み、pHが3〜8の範囲である請求項1〜4のいずれかに記載のスケール除去剤。 0.38 to 19 wt% of the oxalic acid and / or ammonium salt of oxalic acid, 3.8 to 38 wt% of the chelating agent, 3.8 to 26.3 wt% of the organic acid, and 3.8 of the reducing agent The scale remover according to any one of claims 1 to 4, which is contained in a range of -38 wt% and a pH is in a range of 3-8. 酸素処理を施した給水を用いるボイラの蒸発管の化学洗浄方法であって、
当該蒸発管の底部と頂部にそれぞれ流入口及び流出口を有する洗浄用循環路を設け、当該循環路中に請求項1のスケール除去剤を注入して循環させ、平均粒径20μm未満のスケール粒子を溶解除去することを特徴とするボイラの化学洗浄方法。
A chemical cleaning method for an evaporator tube of a boiler using oxygen-treated feed water,
A cleaning circulation path having an inlet and an outlet is provided at the bottom and the top of the evaporation pipe, respectively, and the scale remover of claim 1 is injected into the circulation path and circulated to form a scale particle having an average particle size of less than 20 μm. A chemical cleaning method for a boiler, characterized in that it is dissolved and removed.
前記スケール除去剤は、pHが4〜8の範囲、前記シュウ酸及び/又はシュウ酸アンモニウムが0.1〜5wt%、前記キレート剤が1〜10wt%、前記有機酸が1〜7wt%、前記還元剤が1〜10wt%の範囲である、請求項6に記載の化学洗浄方法。 The scale remover has a pH in the range of 4 to 8, the oxalic acid and / or ammonium oxalate is 0.1 to 5 wt%, the chelating agent is 1 to 10 wt%, the organic acid is 1 to 7 wt%, The chemical cleaning method according to claim 6, wherein the reducing agent is in the range of 1 to 10 wt%. 前記循環路に遠心分離器を設置し、当該遠心分離器にて平均粒径50μmよりも大きいスラッジを除去することをさらに含む、請求項6又は7に記載の洗浄方法。   The cleaning method according to claim 6 or 7, further comprising installing a centrifuge in the circulation path and removing sludge having an average particle diameter of more than 50 µm with the centrifuge.
JP2015038216A 2015-02-27 2015-02-27 Scale remover and boiler cleaning method using the scale remover Active JP6317687B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015038216A JP6317687B2 (en) 2015-02-27 2015-02-27 Scale remover and boiler cleaning method using the scale remover

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015038216A JP6317687B2 (en) 2015-02-27 2015-02-27 Scale remover and boiler cleaning method using the scale remover

Publications (2)

Publication Number Publication Date
JP2016160457A JP2016160457A (en) 2016-09-05
JP6317687B2 true JP6317687B2 (en) 2018-04-25

Family

ID=56844343

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015038216A Active JP6317687B2 (en) 2015-02-27 2015-02-27 Scale remover and boiler cleaning method using the scale remover

Country Status (1)

Country Link
JP (1) JP6317687B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220010244A1 (en) * 2018-10-02 2022-01-13 Nippon Paint Surf Chemicals Co., Ltd. Surface treatment agent
CN115491681B (en) * 2022-08-31 2024-03-26 西安热工研究院有限公司 Chemical cleaning liquid and cleaning process for boiler with oxygenation working condition

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59157496A (en) * 1983-02-22 1984-09-06 Mitsubishi Heavy Ind Ltd Chemical washing method
JPH0765204B2 (en) * 1985-12-24 1995-07-12 住友化学工業株式会社 Method for dissolving and removing iron oxide
JPS62156281A (en) * 1985-12-26 1987-07-11 Kurita Water Ind Ltd Chemical detergent
JPS62250189A (en) * 1986-04-21 1987-10-31 Kurita Water Ind Ltd Chemical cleaning agent
JPS63178199A (en) * 1987-01-17 1988-07-22 帝国化学産業株式会社 Cleaning composition
JP3339130B2 (en) * 1993-09-28 2002-10-28 東北電力株式会社 Chemical cleaning method
US6740168B2 (en) * 2001-06-20 2004-05-25 Dominion Engineering Inc. Scale conditioning agents
JP5569217B2 (en) * 2010-07-27 2014-08-13 栗田エンジニアリング株式会社 Oxygen treatment boiler cleaning method and apparatus
JP5640663B2 (en) * 2010-11-04 2014-12-17 栗田エンジニアリング株式会社 Descale removal method for chromium-containing steel material
JP5891630B2 (en) * 2011-07-22 2016-03-23 栗田工業株式会社 Boiler water scale removal method

Also Published As

Publication number Publication date
JP2016160457A (en) 2016-09-05

Similar Documents

Publication Publication Date Title
JP5587765B2 (en) Water purification system and downstream purification method
JP2012524653A (en) Catalytic water treatment method and apparatus
JP5692400B2 (en) Method for removing rare earth impurities in electro nickel plating solution
JP2013518179A (en) Method and composition for removing deposits
AU2015249410B2 (en) Method and formulations for removing rust and scale from steel and for regenerating pickling liquor in hot-dip galvanization process
JP6317687B2 (en) Scale remover and boiler cleaning method using the scale remover
JP2013087357A (en) Rust removal/rust preventive agent and rust removal/rust prevention method
JP6256996B2 (en) Additives for removing heat exchanger deposits under wet layup conditions
JPH0588317B2 (en)
JP6319297B2 (en) Method for removing rare earth impurities in electro nickel plating solution
CA2362639C (en) Process for removing deposits from water-carrying systems and devices for water supply
WO2015060250A1 (en) Method and apparatus for treating liquid containing iron-group metal ions, method and apparatus for electrodeposition of co and fe, and method and apparatus for decontamination of radioactive waste ion exchange resin
JP3806869B2 (en) Descaler and inhibitor
EP1344228B1 (en) Method for dissolving solids formed in a nuclear installation
JP6370651B2 (en) Chemical solution preparation method, chemical solution preparation apparatus, and chemical cleaning method
JP7213872B2 (en) Cleaning agent for scale and method for removing scale using the cleaning agent
JP4788721B2 (en) Insolubilizer and insolubilization method of fluorine in steelmaking slag
JP6427920B2 (en) Chemical cleaning method
JP7391302B2 (en) Manganese scale generation inhibitor and manganese scale generation inhibition method
JP2010261070A (en) Indium oxalate solubilizer composition
JP2016191691A (en) Method for processing metal ion-containing acid liquid, and processing unit
JP4139857B2 (en) Water treatment method
JP2008248303A (en) Pitting corrosion inhibitor for circulating cooling water system including copper base material, and method for inhibiting pitting corrosion
WO1999023193A2 (en) Process for avoiding foaming during cleaning of metal salts of intermediate length carboxylic acids from surfaces
WO2002036504A2 (en) Method for cleaning blinded filter media and preventing filter blinding

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170404

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180118

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180131

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180302

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180330

R150 Certificate of patent or registration of utility model

Ref document number: 6317687

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250