JP6312439B2 - Moisture adsorbent and method for producing the same - Google Patents

Moisture adsorbent and method for producing the same Download PDF

Info

Publication number
JP6312439B2
JP6312439B2 JP2014001621A JP2014001621A JP6312439B2 JP 6312439 B2 JP6312439 B2 JP 6312439B2 JP 2014001621 A JP2014001621 A JP 2014001621A JP 2014001621 A JP2014001621 A JP 2014001621A JP 6312439 B2 JP6312439 B2 JP 6312439B2
Authority
JP
Japan
Prior art keywords
calcium oxide
polar solvent
aprotic polar
moisture
moisture adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014001621A
Other languages
Japanese (ja)
Other versions
JP2014147927A (en
Inventor
渡辺 高行
高行 渡辺
明紘 本
明紘 本
拓也 三島
拓也 三島
佐野 聡
聡 佐野
植木 明
明 植木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Material Industries Ltd
Original Assignee
Ube Material Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Material Industries Ltd filed Critical Ube Material Industries Ltd
Priority to JP2014001621A priority Critical patent/JP6312439B2/en
Publication of JP2014147927A publication Critical patent/JP2014147927A/en
Application granted granted Critical
Publication of JP6312439B2 publication Critical patent/JP6312439B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/28Selection of materials for use as drying agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/261Drying gases or vapours by adsorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3021Milling, crushing or grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/3085Chemical treatments not covered by groups B01J20/3007 - B01J20/3078
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F11/00Compounds of calcium, strontium, or barium
    • C01F11/02Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2251/00Reactants
    • B01D2251/40Alkaline earth metal or magnesium compounds
    • B01D2251/404Alkaline earth metal or magnesium compounds of calcium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • B01D2253/1124Metal oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/20Organic adsorbents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/30Physical properties of adsorbents
    • B01D2253/302Dimensions
    • B01D2253/306Surface area, e.g. BET-specific surface
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/80Water

Description

本発明は、水分吸着剤及びその製造方法に関するものである。より詳細には、特に有機EL素子用として有用な、表面に非プロトン性極性溶媒層を有する酸化カルシウム粒子を主成分とする水分吸着剤及びその製造方法に関するものである。   The present invention relates to a moisture adsorbent and a method for producing the same. More specifically, the present invention relates to a moisture adsorbent mainly composed of calcium oxide particles having an aprotic polar solvent layer on the surface, which is particularly useful for an organic EL device, and a method for producing the same.

有機EL素子に用いられる有機発光材料は、水分により劣化し寿命が短くなるという問題点があり、従来から、有機EL素子製造時に素子内に残留する水分や、外部から浸入する水分を吸収するために、吸湿性材料(水分ゲッター)を配置することが行われている。
水分ゲッターは、封止後に水分を急速に吸着することが要求されるため、酸化バリウムや酸化ストロンチウム、もしくは水分吸着速度を速めた酸化カルシウムが使用されている。そして、水分吸着速度を速めた酸化カルシウムは、例えば特許文献1に開示されているように、水酸化カルシウムを減圧条件下にて焼成することにより得ることができる。
Organic light-emitting materials used in organic EL elements have a problem that they deteriorate due to moisture and shorten their lifetime. Conventionally, the organic light-emitting materials absorb moisture remaining in the element during manufacturing of the organic EL element and moisture entering from the outside. In addition, a hygroscopic material (moisture getter) is disposed.
Since the moisture getter is required to rapidly adsorb moisture after sealing, barium oxide, strontium oxide, or calcium oxide with an increased moisture adsorption rate is used. And the calcium oxide which accelerated | stimulated the water | moisture-content adsorption | suction speed | rate can be obtained by baking calcium hydroxide on pressure-reduced conditions as disclosed by patent document 1, for example.

特許第4387870号公報Japanese Patent No. 4387870

しかしながら、特許文献1に記載されているような減圧焼成された酸化カルシウムは、(1)製造に真空焼成炉が必要であるため高コストである、(2)強アルカリ性のため樹脂等の有機高分子材料に充填して使用した場合、高分子の結合を切断する恐れがあり、フッ素樹脂など一部の樹脂にしか利用できない、(3)酸化カルシウムが親水性であるため疎水性の樹脂等の有機高分子材料には充填しにくいという問題点がある。
従来、これら(2)及び(3)の問題点を解決する方法として、粒子表面を脂肪酸などの疎水性の表面処理剤でコーティングする方法が知られているが、有機EL素子などの用途に関しては、疎水性コーティングを行うと吸湿速度が低下し、本来の吸湿剤としての性能が低下することが問題となる。
However, calcium oxide fired under reduced pressure as described in Patent Document 1 is (1) expensive because a vacuum firing furnace is required for production, and (2) highly alkaline and highly organic such as resin. When used in a molecular material, there is a risk of breaking the polymer bond, which can only be used for some resins such as fluororesins. (3) Since calcium oxide is hydrophilic, hydrophobic resins, etc. Organic polymer materials have a problem that they are difficult to fill.
Conventionally, as a method for solving the problems (2) and (3), a method of coating the particle surface with a hydrophobic surface treatment agent such as fatty acid is known. When the hydrophobic coating is applied, the moisture absorption rate is lowered, and the performance as the original moisture absorbent is lowered.

本発明は、上記問題点に鑑みてなされたものであり、低コストで製造することができ、高い分散性及び疎水性を有し且つ吸湿速度が低下しない水分吸着剤及びその製造方法を提供することを目的とする。   The present invention has been made in view of the above problems, and provides a moisture adsorbent that can be produced at low cost, has high dispersibility and hydrophobicity, and does not decrease the moisture absorption rate, and a method for producing the same. For the purpose.

本発明者らは、以上の目的を達成するために、鋭意検討した結果、表面に非プロトン性極性溶媒の薄い液層が存在する酸化カルシウム粒子は、凝集が抑制され分散性が高いまま保たれ、疎水性と高い吸湿速度を有し高分子材料に充填する乾燥剤として好適な機能を有することを見出し、本発明に至った。すなわち本発明は、表面に非プロトン性極性溶媒層を有する酸化カルシウム粒子を主成分とすることを特徴とする水分吸着剤に関する。   As a result of intensive studies to achieve the above object, the present inventors have found that calcium oxide particles having a thin liquid layer of an aprotic polar solvent on the surface are kept from aggregation and highly dispersible. The present inventors have found that it has a hydrophobic function and a high moisture absorption rate, and has a function suitable as a desiccant for filling a polymer material. That is, the present invention relates to a moisture adsorbent characterized by comprising, as a main component, calcium oxide particles having an aprotic polar solvent layer on the surface.

また、本発明者らは、酸化カルシウムを非プロトン性極性溶媒存在下で粉砕することにより、微粒化して活性を高め、且つ疎水性を有し吸湿性に優れる酸化カルシウム粒子が得られることを見出し、本発明に至った。すなわち本発明は、酸化カルシウムを非プロトン性極性溶媒存在下にて乾式粉砕を行うことを特徴とする水分吸着剤の製造方法に関する。また、本発明は、酸化カルシウムを非プロトン性極性溶媒存在下にて湿式粉砕を行った後、固液分離および/または乾燥を行うことを特徴とする水分吸着剤の製造方法に関する。   In addition, the present inventors have found that by pulverizing calcium oxide in the presence of an aprotic polar solvent, it is possible to obtain calcium oxide particles that are atomized to increase activity and have hydrophobicity and excellent hygroscopicity. The present invention has been reached. That is, the present invention relates to a method for producing a water adsorbent characterized by dry pulverizing calcium oxide in the presence of an aprotic polar solvent. The present invention also relates to a method for producing a water adsorbent characterized by performing solid-liquid separation and / or drying after wet pulverization of calcium oxide in the presence of an aprotic polar solvent.

以上のように、本発明によれば、低コストで製造することができ、高い分散性及び疎水性を有し且つ吸湿速度が低下しない水分吸着剤及びその製造方法を提供することができる。   As described above, according to the present invention, it is possible to provide a moisture adsorbent that can be produced at low cost, has high dispersibility and hydrophobicity, and does not decrease the moisture absorption rate, and a method for producing the same.

本発明に係る水分吸着剤は、表面に非プロトン性極性溶媒層を有する酸化カルシウム粒子を主成分とすることを特徴とする。非プロトン性極性溶媒層は、その酸化カルシウム粒子表面に存在し、例えば、アセトン、アセトニトリル、N,N−ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、N,N−ジメチルアセトアミド、テトラヒドロフラン、ジオキサン、ヘキサメチルホスホトリアミド、エチレングリコールジメチルエーテル、プロピオニトリル、メチルエチルケトン、ジエチレングリコールジメチルエーテル、トリエチレングリコールジメチルエーテル、N−メチルピロリドンなどの層が挙げられ、特にN−メチルピロリドンの層が好ましく用いられる。本発明に係る水分吸着剤において、非プロトン性極性溶媒層の厚さは、下記数1のように定義することができ、0.2〜5nmが好ましい。   The water adsorbent according to the present invention is characterized in that the main component is calcium oxide particles having an aprotic polar solvent layer on the surface. The aprotic polar solvent layer is present on the surface of the calcium oxide particles. For example, acetone, acetonitrile, N, N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), N, N-dimethylacetamide, tetrahydrofuran, dioxane, Examples include layers such as hexamethylphosphotriamide, ethylene glycol dimethyl ether, propionitrile, methyl ethyl ketone, diethylene glycol dimethyl ether, triethylene glycol dimethyl ether, and N-methylpyrrolidone. In particular, a layer of N-methylpyrrolidone is preferably used. In the moisture adsorbent according to the present invention, the thickness of the aprotic polar solvent layer can be defined as the following formula 1, and is preferably 0.2 to 5 nm.

Figure 0006312439
Figure 0006312439

また、本発明に係る水分吸着剤のBET比表面積は、1〜100m/gが好ましく、5〜100m/gがより好ましく、10〜60m/gがさらに好ましい。BET比表面積が小さすぎると水分吸着速度が遅くなるので好ましくなく、大きすぎると水分吸着速度が速すぎて取り扱いが困難になり望ましくない。また、平均粒子径は、0.05〜10μmが好ましく、0.2〜5μmがより好ましく、0.5〜3μmがさらに好ましい。平均粒子径が小さすぎると吸着速度が速すぎて取り扱いが困難になり望ましくなく、大きすぎると塗布や充填物として使用した際に外観が悪くなり望ましくない。 Moreover, 1-100 m < 2 > / g is preferable, as for the BET specific surface area of the moisture adsorption agent which concerns on this invention, 5-100 m < 2 > / g is more preferable, and 10-60 m < 2 > / g is more preferable. If the BET specific surface area is too small, the moisture adsorption rate is slow, which is not preferable. If the BET specific surface area is too large, the moisture adsorption rate is too fast and handling becomes difficult. Moreover, 0.05-10 micrometers is preferable, as for an average particle diameter, 0.2-5 micrometers is more preferable, and 0.5-3 micrometers is further more preferable. If the average particle size is too small, the adsorption rate is too high and the handling becomes difficult, which is undesirable. If it is too large, the appearance is deteriorated when used as a coating or filling material.

本発明に係る水分吸着剤の機能が発現するメカニズムとしては、酸化カルシウム表面に存在する非プロトン性極性溶媒層の有極性が吸湿性及び酸化カルシウムとの親和性を付与し、非プロトン性が樹脂に対する相溶性(樹脂を溶解する)を付与しているものと考えられる。非プロトン性極性溶媒層は、例えば酸化カルシウム表面にアルコキシド層をコーティングする場合と異なり、アルコキシドが加水分解し、水とアルコールとに分解し、アルコールと酸化カルシウムとの反応によりアルコキシドが生成するといった反応を伴わないため、上記反応を伴うコーティングよりも高い吸湿性を発揮することができると考えられる。本発明に係る水分吸着剤において、吸湿性の評価としては、例えば120分後(温度24℃、相対湿度55%)の水分吸着剤の重量増加率から評価することができ、上記重量増加率が、10%以上が好ましく、10〜30%が更に好ましい。   As a mechanism for expressing the function of the moisture adsorbent according to the present invention, the polarity of the aprotic polar solvent layer present on the surface of calcium oxide gives hygroscopicity and affinity with calcium oxide, and the aproticity is a resin. It is thought that the compatibility (dissolving the resin) with respect to is imparted. Unlike the case of coating an alkoxide layer on the surface of calcium oxide, for example, the aprotic polar solvent layer is a reaction in which the alkoxide is hydrolyzed, decomposed into water and alcohol, and the alkoxide is generated by the reaction between the alcohol and calcium oxide. Therefore, it is considered that hygroscopicity higher than that of the coating involving the reaction can be exhibited. In the moisture adsorbent according to the present invention, the hygroscopicity can be evaluated, for example, from the weight increase rate of the moisture adsorbent after 120 minutes (temperature 24 ° C., relative humidity 55%). 10% or more is preferable and 10 to 30% is more preferable.

本発明に係る水分吸着剤は、酸化カルシウムを非プロトン性極性溶媒存在下にて乾式粉砕もしくは湿式粉砕を行った後、必要に応じて乾燥処理を行い非プロトン性極性溶媒層の厚さを調整することによって製造することができる。湿式粉砕を行う場合は、ろ過等により固液分離を行った後に乾燥処理を行ってもよい。   The moisture adsorbent according to the present invention adjusts the thickness of the aprotic polar solvent layer by subjecting calcium oxide to dry pulverization or wet pulverization in the presence of an aprotic polar solvent, followed by drying treatment as necessary. Can be manufactured. When wet pulverization is performed, a drying treatment may be performed after solid-liquid separation by filtration or the like.

本発明に係る水分吸着剤の製造方法において、原料として用いられる酸化カルシウムのBET比表面積は、特に制限されるものではないが、0.1〜60m/gが好ましく、0.5〜30m/gがより好ましい。また、酸化カルシウムの平均粒子径は、特に制限されるものではないが、0.1μm〜5mmが好ましい。 In the method for producing a moisture adsorbent according to the present invention, the BET specific surface area of calcium oxide used as a raw material is not particularly limited, but is preferably 0.1 to 60 m 2 / g, and preferably 0.5 to 30 m 2. / G is more preferable. Moreover, the average particle diameter of calcium oxide is not particularly limited, but is preferably 0.1 μm to 5 mm.

本発明の製造方法において、使用される非プロトン性極性溶媒としては、上記非プロトン性極性溶媒層と同様のものが挙げられ、これらは、単独又は2種以上を混合して使用してもよい。乾式粉砕の場合、非プロトン性極性溶媒の使用量は、酸化カルシウムに対して0.1〜51質量%が好ましく、1〜20質量%がより好ましく、1〜15質量%が更に好ましい。非プロトン性極性溶媒を使用して粉砕すると、溶媒が粉砕助剤として作用し、高い分散性を保ったまま、微細で活性が高い微粒子まで粉砕することができる。湿式粉砕の場合、非プロトン性極性溶媒の使用量は、酸化カルシウムに対して52〜10000質量%が好ましく、500〜5000質量%がより好ましく、1000〜2000質量%が特に好ましい。また、非プロトン性極性溶媒は、沸点が100℃以上であることが好ましく、150℃以上がより好ましい。沸点が100℃未満では、非プロトン性極性溶媒層が揮発しやすくなるため好ましくない。   In the production method of the present invention, examples of the aprotic polar solvent used include those similar to the above aprotic polar solvent layer, and these may be used alone or in admixture of two or more. . In the case of dry pulverization, the amount of the aprotic polar solvent used is preferably from 0.1 to 51 mass%, more preferably from 1 to 20 mass%, still more preferably from 1 to 15 mass%, based on calcium oxide. When pulverized using an aprotic polar solvent, the solvent acts as a pulverization aid and can be pulverized into fine and highly active fine particles while maintaining high dispersibility. In the case of wet pulverization, the amount of the aprotic polar solvent used is preferably from 52 to 10000 mass%, more preferably from 500 to 5000 mass%, particularly preferably from 1000 to 2000 mass%, based on calcium oxide. The aprotic polar solvent preferably has a boiling point of 100 ° C. or higher, more preferably 150 ° C. or higher. A boiling point of less than 100 ° C. is not preferable because the aprotic polar solvent layer is likely to volatilize.

本発明において、粉砕の方法は、特に限定されないが、メディアミル、回転ボールミル、振動ボールミル、遊星ボールミル、ロッキングミル、ペイントシェーカー、気流式粉砕機などの粉砕装置を使用することができる。粉砕装置の中で好ましいものは、メディアミル、ロッキングミルなどの媒体として金属や樹脂、セラミックの媒体を用いた粉砕装置である。媒体の材質は、コンタミの少なさから、ナイロン製や磨耗が少ないジルコニア製が望ましい。なお、メディアの大きさは、被粉砕物の粒径に応じて適宜選択することができる。また、粉砕は、不活性ガス雰囲気中で行われることが好ましい。不活性ガスとしては、ヘリウムやアルゴンなども挙げられるが、経済的な見地から窒素ガス雰囲気中で行われることが特に好ましい。なお、粉砕処理は、一段で行ってもよいが、メディア径や粉砕装置を換えて多段で粉砕を行ってもよい。   In the present invention, the pulverization method is not particularly limited, and a pulverizing apparatus such as a media mill, a rotating ball mill, a vibration ball mill, a planetary ball mill, a rocking mill, a paint shaker, and an airflow pulverizer can be used. Among the pulverizers, a pulverizer using a metal, resin, or ceramic medium as a medium such as a media mill or a rocking mill is preferable. The material of the medium is preferably made of nylon or zirconia with little wear because of its low contamination. The size of the media can be appropriately selected according to the particle size of the material to be crushed. The pulverization is preferably performed in an inert gas atmosphere. Examples of the inert gas include helium and argon, but it is particularly preferable that the inert gas is performed in a nitrogen gas atmosphere from an economical viewpoint. The pulverization process may be performed in one stage, but the pulverization may be performed in multiple stages by changing the media diameter and the pulverization apparatus.

また、本発明に係る水分吸着剤は、粒度分布の90%粒径(D90)と10%粒径(D10)の比率D90/D10が1.5〜40の範囲であることが好ましく、1.5〜5.0の範囲となるように粒度分布をシャープにすることがより好ましい。
その場合、気流式粉砕機の中でも特にジェットミルが、微細で且つシャープな粒度分布の紛体が得られるため好ましい。粒度分布がシャープであると、酸化カルシウムの吸湿速度安定化のため好ましい。さらに、ジェットミルは、気流中で粒子が粉砕されるため、粒子表面の非プロトン性極性溶媒が部分的に除去される。そのため、乾燥プロセスを簡便化あるいは省略することができる利点がある。なお、ジェットミルでの粉砕条件としては、例えば原料供給速度5.0kg/hにおいては、粉砕圧力を、0.3〜1.5MPa、より好ましくは0.3〜1.0MPaにすることで、上述のようにD90/D10を1.5〜5.0の範囲内でシャープにすることができる。
In the moisture adsorbent according to the present invention, the ratio D 90 / D 10 of 90% particle size (D 90 ) and 10% particle size (D 10 ) of the particle size distribution is in the range of 1.5 to 40. Preferably, the particle size distribution is sharpened so as to be in the range of 1.5 to 5.0.
In that case, the jet mill is particularly preferable among the airflow type pulverizers because a fine and sharp powder having a particle size distribution can be obtained. A sharp particle size distribution is preferable for stabilizing the moisture absorption rate of calcium oxide. Further, in the jet mill, since the particles are pulverized in an air stream, the aprotic polar solvent on the particle surface is partially removed. Therefore, there is an advantage that the drying process can be simplified or omitted. As the pulverization conditions in the jet mill, for example, at a raw material supply rate of 5.0 kg / h, the pulverization pressure is set to 0.3 to 1.5 MPa, more preferably 0.3 to 1.0 MPa. As described above, D 90 / D 10 can be sharpened within a range of 1.5 to 5.0.

また、乾燥処理は、加熱乾燥により行うことが好ましく減圧乾燥を行ってもよい、乾燥装置としては、棚式乾燥機、回転式乾燥機、振動式乾燥機、真空乾燥機などが挙げられる。非プロトン性極性溶媒層を有する酸化カルシウム粒子の乾燥は、雰囲気中の水蒸気や二酸化炭素との反応により、非プロトン性極性溶媒層が分解したり、水酸化カルシウムや炭酸カルシウムが生成しないようにするために、乾燥機内に窒素ガスやアルゴンガスなどの不活性ガスを導入しながら行うことが好ましい。加熱乾燥処理の温度は、非プロトン性極性溶媒層の沸点以下で、例えば、N−メチルピロリドンの場合では80〜180℃が好ましく、120〜170℃がより好ましい。なお、湿式粉砕により製造する場合は、ろ過や遠心分離等の固液分離装置により余分の溶媒を除去した後に乾燥処理を行うことが望ましい。乾燥条件を適宜調整して余分な溶媒を除去することで、非プロトン性極性溶媒層の厚みを所定の値に調整することができる。   The drying treatment is preferably performed by heat drying, and may be performed under reduced pressure. Examples of the drying device include a shelf dryer, a rotary dryer, a vibration dryer, and a vacuum dryer. Drying of calcium oxide particles having an aprotic polar solvent layer prevents the aprotic polar solvent layer from being decomposed or formed from calcium hydroxide or calcium carbonate by reaction with water vapor or carbon dioxide in the atmosphere. Therefore, it is preferable to carry out the process while introducing an inert gas such as nitrogen gas or argon gas into the dryer. The temperature of the heat drying treatment is not higher than the boiling point of the aprotic polar solvent layer. For example, in the case of N-methylpyrrolidone, 80 to 180 ° C is preferable, and 120 to 170 ° C is more preferable. In addition, when manufacturing by wet crushing, it is desirable to perform a drying process after removing an excess solvent with solid-liquid separators, such as filtration and centrifugation. The thickness of the aprotic polar solvent layer can be adjusted to a predetermined value by appropriately adjusting the drying conditions and removing excess solvent.

本発明によれば、高い分散性及び疎水性を有し且つ通常の酸化カルシウムと比べても吸湿速度が低下しない水分吸着剤を低コストで製造することができる。さらに、本発明に係る水分吸着剤は、かさ密度が大きく樹脂に充填しやすい、吸油量が小さく樹脂に高充填できるなどの優れた効果を有する。なお、吸油量は、粉末の樹脂への充填性を評価する指標であり、この方法が充填性の評価に使用できる(雑誌「工業材料」vol.39、No.1、p116−117(1991))。本発明に係る水分吸着剤の吸油量は、45ml/100g以下が好ましい。   ADVANTAGE OF THE INVENTION According to this invention, the water | moisture-content adsorption agent which has high dispersibility and hydrophobicity, and a moisture absorption rate does not fall compared with normal calcium oxide can be manufactured at low cost. Furthermore, the moisture adsorbent according to the present invention has excellent effects such as high bulk density and easy filling of the resin, low oil absorption and high filling of the resin. The amount of oil absorption is an index for evaluating the filling property of the powder into the resin, and this method can be used for the evaluation of the filling property (magazine "Industrial Materials" vol. 39, No. 1, p116-117 (1991). ). The oil absorption amount of the moisture adsorbent according to the present invention is preferably 45 ml / 100 g or less.

本発明の水分吸着剤は、そのまま或いは任意の形状に成形して使用することができる。また、適当な溶媒や高分子材料に充填した塗料、高分子材料に充填したテープやフィルムなどとして使用することができる。そのため、有機EL、液晶等の水分を忌避する電子デバイス用乾燥剤、冷蔵庫・二重ガラスなどの断熱層用乾燥剤、バリアフィルムの水分吸着層、密閉容器のパッキン用(化学品、医薬品、食品の劣化防止)、真空配管の内面塗布用、Oリング用(高真空維持)などにも好適に使用することができる。   The moisture adsorbent of the present invention can be used as it is or after being molded into an arbitrary shape. Further, it can be used as a paint filled with an appropriate solvent or polymer material, or a tape or film filled with a polymer material. Therefore, desiccants for electronic devices that repel moisture such as organic EL and liquid crystals, desiccants for heat insulation layers such as refrigerators and double glass, moisture adsorption layers for barrier films, and packing for sealed containers (chemicals, pharmaceuticals, foods) Prevention of deterioration), application to the inner surface of vacuum piping, O-ring use (maintaining high vacuum), and the like.

中でも本発明に係る水分吸着剤は、特に有機EL素子用として好適に使用することができる。例えば、有機EL素子用水分吸着剤は、合成樹脂に分散させて、シート状、ペレット状、板状、フィルム状に成形して利用することができる。これらの成形物は、有機ELディスプレイなどの電子機器用の乾燥剤として有利に使用することができる。合成樹脂には、ポリオレフィン樹脂、ポリアクリル樹脂、ポリアクリルニトリル樹脂、ポリアミド樹脂、ポリエステル樹脂、エポキシ樹脂、ポリカーボネート樹脂及びフッ素樹脂を用いることができる。また、本発明に係る水分吸着剤は、通常の吸湿剤に用いられている透湿性の袋や容器に収容して使用することもできる。本発明に係る水分吸着剤は、単独で使用してもよいし、他の吸湿性材料(例えば、シリカゲルやモレキュラーシーブ)と併用してもよい。   Among these, the moisture adsorbent according to the present invention can be suitably used particularly for an organic EL device. For example, the moisture adsorbent for organic EL elements can be used by being dispersed in a synthetic resin and formed into a sheet, pellet, plate, or film. These molded products can be advantageously used as a desiccant for electronic devices such as organic EL displays. As the synthetic resin, polyolefin resin, polyacrylic resin, polyacrylonitrile resin, polyamide resin, polyester resin, epoxy resin, polycarbonate resin, and fluorine resin can be used. Moreover, the water | moisture-content adsorption agent which concerns on this invention can also be accommodated and used for the moisture-permeable bag and container used for the normal moisture absorbent. The moisture adsorbent according to the present invention may be used alone or in combination with other hygroscopic materials (for example, silica gel or molecular sieve).

以下、本発明を実施例に基づいて具体的に説明するが、これらは本発明の目的を限定するものではない。まず、得られた酸化カルシウム粉末の物性の測定方法を以下に示す。   EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, these do not limit the objective of this invention. First, the measuring method of the physical property of the obtained calcium oxide powder is shown below.

[吸湿性評価:120分後の重量増加率]
予め乾燥した秤量瓶の重量を測定し[A(g)]とした。測定対象となる粉末約0.6gを秤量瓶に仕込み、重量を正確に秤量し[B(g)]とした。粉体を仕込んだ秤量瓶の蓋を開け24℃、相対湿度55%に保った恒温恒湿槽に入れ120分後の重量を計測し[C(g)]として、下記式(1)によって重量増加率を算出した。
[Hygroscopic evaluation: Weight increase after 120 minutes]
The weight of the pre-dried weighing bottle was measured and defined as [A (g)]. About 0.6 g of the powder to be measured was charged into a weighing bottle, and the weight was accurately weighed to obtain [B (g)]. Open the lid of the weighing bottle containing the powder, put it in a constant temperature and humidity chamber maintained at 24 ° C. and relative humidity 55%, measure the weight after 120 minutes, and calculate the weight according to the following formula (1) as [C (g)]. The rate of increase was calculated.

Figure 0006312439
Figure 0006312439

[吸油量の測定方法]
JIS K 5101−13−2:2004顔料試験方法−第13部:吸油量−第2節:煮あまに油法に従って測定を行った。所定量の粉末試料に煮あまに油を滴下し煮あまに油と練り合わせた試料がらせん形に巻くことができる状態になった終点の滴下量より吸油量(mL/100g)を求めた。
[Measurement method of oil absorption]
JIS K 5101-13-2: 2004 Pigment test method-Part 13: Oil absorption-Section 2: Measurement was carried out according to the oil method. The oil absorption amount (mL / 100 g) was determined from the amount of dripping at the end point at which a sample prepared by dropping oil into boiled sesame and kneading with oil into a predetermined amount of powder sample could be wound into a spiral shape.

[粒度分布の測定方法]
試料の分散溶媒としてエタノールを使用し、超音波ホモジナイザー(MODEL US−150T、(株)目本精機製作所製)で3分間分散処理を行った。分散させた試料をレーザー回折法粒度分布測定装置(MICROTRAC HRA9320−X100、日機装(株)製)、又は動的光散乱法粒度分布測定装置(Nanotrac UPA−EX150、日機装(株)製)を用いて粒度分布(D10,D50,D90)の測定をした。
[Measuring method of particle size distribution]
Ethanol was used as a dispersion solvent for the sample, and dispersion treatment was performed for 3 minutes with an ultrasonic homogenizer (MODEL US-150T, manufactured by Memoto Seiki Seisakusho). Using a laser diffraction particle size distribution measuring device (MICROTRAC HRA9320-X100, manufactured by Nikkiso Co., Ltd.) or a dynamic light scattering particle size distribution measuring device (Nanotrac UPA-EX150, manufactured by Nikkiso Co., Ltd.) The particle size distribution (D 10 , D 50 , D 90 ) was measured.

[BET比表面積の測定方法]
BET比表面積の測定は、Monosorb(Quantachrome製)を用いてBET一点法により測定した。
[Measurement method of BET specific surface area]
The BET specific surface area was measured by the BET single point method using Monosorb (manufactured by Quantachrome).

[有機溶媒への分散性評価方法]
試料の有機溶媒への分散性評価は、n−ヘキサンを用いて行った。ガラス瓶にn−ヘキサン5mlをとり、試料を約0.1g加え、一分間振盪後、静置し30秒後の溶液の様子を観察した。ヘキサン中に分散して濁っていれば、有機溶媒に対する試料の分散性が良好(○)であると評価し、ヘキサン中では凝集してヘキサンが透明のまま試料が沈殿していれば有機溶媒に対する試料の分散性は悪い(×)と評価した。
[Method for evaluating dispersibility in organic solvents]
Evaluation of dispersibility of the sample in an organic solvent was performed using n-hexane. 5 ml of n-hexane was placed in a glass bottle, about 0.1 g of the sample was added, shaken for 1 minute, allowed to stand, and the state of the solution after 30 seconds was observed. If the sample is dispersed and turbid in hexane, it is evaluated that the sample has good dispersibility in the organic solvent (○). If the sample is agglomerated in hexane and the sample is precipitated while the hexane is transparent, The dispersibility of the sample was evaluated as bad (x).

[かさ密度の測定方法]
窒素充填したグローブボックス内で容積4.4cmの石英容器(底面10mm×10mm、高さ44mm)に試料を静かに詰め、山盛り充填した。粉の表面をすり切って試料重量を正確に秤量し[D(g)]として、下記式(2)によりかさ密度を算出した。
[Measurement method of bulk density]
The sample was gently packed in a quartz container (bottom 10 mm × 10 mm, height 44 mm) with a volume of 4.4 cm 3 in a nitrogen-filled glove box and filled in piles. The surface of the powder was ground and the sample weight was accurately weighed, and the bulk density was calculated by the following formula (2) as [D (g)].

Figure 0006312439
Figure 0006312439

[コート層厚さの計算方法]
熱天秤(TG)測定による20℃から250℃の重量減少から非プロトン性極性溶媒(実施例1では、N−メチルピロリドン)の質量を算出し、溶媒の比重(N−メチルピロリドンの場合、1.028)で割って、酸化カルシウム1gあたりの溶媒体積を算出した。それをBET比表面積測定により求めた酸化カルシウム1gあたりの表面積で割ることで、コート層である非プロトン性極性溶媒の層厚を算出した。
[Calculation method of coat layer thickness]
The mass of the aprotic polar solvent (N-methylpyrrolidone in Example 1) is calculated from the weight loss from 20 ° C. to 250 ° C. measured by a thermobalance (TG), and the specific gravity of the solvent (in the case of N-methylpyrrolidone, 1 Divided by .028) to calculate the solvent volume per gram of calcium oxide. By dividing this by the surface area per 1 g of calcium oxide determined by BET specific surface area measurement, the layer thickness of the aprotic polar solvent as the coating layer was calculated.

[FT−IRの測定方法]
FT−IRの測定は、フーリエ変換赤外分光光度計(FT/IR−6100、日本分光(株)製)に1回反射測定装置(ATR PRO470−H)を組み付け測定を行った。測定した波数の範囲は4000〜400cm−1である。
[Measurement method of FT-IR]
Measurement of FT-IR was performed by assembling a Fourier transform infrared spectrophotometer (FT / IR-6100, manufactured by JASCO Corporation) with a single reflection measurement device (ATR PRO470-H). The measured wave number range is 4000 to 400 cm −1 .

[実施例1]
100mL密閉容器(ポリプロピレン製)に直径φ4.0mmのジルコニア製ビーズ((株)ニッカトー製)を120gと水酸化カルシウム微粉末の造粒品を600℃で焼成した高比表面積酸化カルシウム粒状品(BET比表面積16.5m/g、粒度2〜3mm)6gとN−メチルピロリドン0.45gを加え密封した。以上の操作は、窒素を充填したグローブボックス内で行い、本密閉容器が窒素で充填されるようにした。グローブボックスから取り出した本密閉容器をロッキングミル((株)セイワ技研製)で4時間700rpmで粉砕処理した。処理後、窒素充填したグローブボックス内で目開き1mmの篩を用いてジルコニア製ビーズと酸化カルシウム粉末を分離した。分離・回収した酸化カルシウム粉末を棚式乾燥機にて窒素雰囲気中で150℃、18時間乾燥処理を行い、粒子表面を非プロトン性極性溶媒層で覆った実施例1に係る酸化カルシウム粉末を得た。得られた酸化カルシウム粉末は、平均粒子径1.24μm、かさ密度0.77g/cmであった。その他の物性は、表1に示す。
[Example 1]
A high specific surface area calcium oxide granular product (BET) obtained by calcining a granulated product of 120 g of zirconia beads (made by Nikkato Co., Ltd.) having a diameter of 4.0 mm and calcium hydroxide fine powder at 600 ° C. in a 100 mL sealed container (made of polypropylene) 6 g of a specific surface area of 16.5 m 2 / g and a particle size of 2 to 3 mm) and 0.45 g of N-methylpyrrolidone were added and sealed. The above operation was performed in a glove box filled with nitrogen so that the sealed container was filled with nitrogen. The closed container taken out from the glove box was pulverized at 700 rpm for 4 hours with a rocking mill (manufactured by Seiwa Giken Co., Ltd.). After the treatment, zirconia beads and calcium oxide powder were separated using a sieve having an opening of 1 mm in a nitrogen-filled glove box. The separated and collected calcium oxide powder was dried in a nitrogen atmosphere in a shelf dryer at 150 ° C. for 18 hours to obtain the calcium oxide powder according to Example 1 in which the particle surface was covered with an aprotic polar solvent layer. It was. The obtained calcium oxide powder had an average particle size of 1.24 μm and a bulk density of 0.77 g / cm 3 . Other physical properties are shown in Table 1.

[比較例1]
高純度酸化カルシウム粉末(超高純度カルシア(CSQ)、BET比表面積2.3m/g、平均粒子径16.5μm、宇部マテリアルズ(株)製)を使用した。本酸化カルシウム粉末は、平均粒子径16.5μm、かさ密度0.69g/cmであった。その他の物性は、表1に示す。
[Comparative Example 1]
High-purity calcium oxide powder (ultra-high-purity calcia (CSQ), BET specific surface area 2.3 m 2 / g, average particle diameter 16.5 μm, manufactured by Ube Materials Co., Ltd.) was used. This calcium oxide powder had an average particle diameter of 16.5 μm and a bulk density of 0.69 g / cm 3 . Other physical properties are shown in Table 1.

[比較例2]
シグマ・アルドリッチ製酸化カルシウム(nanopowder particle size<160nm(BET))を使用した。本酸化カルシウム粉末は、平均粒子径0.87μm、かさ密度0.21g/cmであった。その他の物性は、表1に示す。
[Comparative Example 2]
Sigma-Aldrich calcium oxide (nanopowder particle size <160 nm (BET)) was used. This calcium oxide powder had an average particle size of 0.87 μm and a bulk density of 0.21 g / cm 3 . Other physical properties are shown in Table 1.

[比較例3]
ステアリン酸0.065gをジエチルエーテル40mLで溶解した。この溶液にシグマ・アルドリッチ製酸化カルシウム(nanopowder particle size<160nm(BET))を1.3g添加し10分間混合した。混合溶液を30℃にて12時間真空乾燥し溶媒を除去した。回収した乾燥粉を窒素充填したグローブボックス内でメノウ乳鉢を用いて解砕処理を行い脂肪酸で表面処理をした比較例3に係る酸化カルシウム粉末を得た。得られた酸化カルシウム粉末は、平均粒子径0.86μm、かさ密度0.79g/cmであった。その他の物性は、表1に示す。
[Comparative Example 3]
0.065 g of stearic acid was dissolved in 40 mL of diethyl ether. To this solution, 1.3 g of calcium oxide manufactured by Sigma-Aldrich (nanopowder particle size <160 nm (BET)) was added and mixed for 10 minutes. The mixed solution was vacuum dried at 30 ° C. for 12 hours to remove the solvent. A calcium oxide powder according to Comparative Example 3 was obtained, which was crushed using an agate mortar in a glove box filled with nitrogen with the collected dried powder and surface-treated with a fatty acid. The obtained calcium oxide powder had an average particle size of 0.86 μm and a bulk density of 0.79 g / cm 3 . Other physical properties are shown in Table 1.

[比較例4]
100mL密閉容器(ポリプロピレン製)に直径φ4.0mmのジルコニア製ビーズ((株)ニッカトー製)を120gと高純度酸化カルシウム粉末(超高純度カルシア(CSQ)、BET比表面積2.3m/g、平均粒子径16.5μm、宇部マテリアルズ(株)製)6gとエタノール0.45gを加え密封した。以上の操作は、窒素を充填したグローブボックス内で行い、本密閉容器が窒素で充填されるようにした。グローブボックスから取り出した本密閉容器をロッキングミル((株)セイワ技研製)で4時間700rpmで粉砕処理した。処理後、窒素充填したグローブボックス内で目開き500μmの篩を用いてジルコニア製ビーズと酸化カルシウム粉末を分離した。分離・回収した酸化カルシウム粉末を棚式乾燥機にて窒素雰囲気中で150℃、18時間乾燥処理を行い、粒子表面をアルコキシドで覆った比較例4に係る酸化カルシウム粉末を得た。得られた酸化カルシウム粉末の表面にアルコキシド層が存在することをFT−IRにより確認した。得られた酸化カルシウム粉末は、平均粒子径0.83μm、かさ密度0.86g/cmであった。その他の物性は、表1に示す。
[Comparative Example 4]
In a 100 mL sealed container (made of polypropylene), 120 g of zirconia beads (made by Nikkato Co., Ltd.) having a diameter of 4.0 mm and high purity calcium oxide powder (ultra high purity calcia (CSQ), BET specific surface area 2.3 m 2 / g, An average particle size of 16.5 μm, 6 g of Ube Materials Co., Ltd.) and 0.45 g of ethanol were added and sealed. The above operation was performed in a glove box filled with nitrogen so that the sealed container was filled with nitrogen. The closed container taken out from the glove box was pulverized at 700 rpm for 4 hours with a rocking mill (manufactured by Seiwa Giken Co., Ltd.). After the treatment, the beads made of zirconia and the calcium oxide powder were separated using a sieve having an opening of 500 μm in a glove box filled with nitrogen. The separated and recovered calcium oxide powder was subjected to a drying treatment at 150 ° C. for 18 hours in a nitrogen atmosphere using a shelf dryer, to obtain a calcium oxide powder according to Comparative Example 4 in which the particle surface was covered with alkoxide. It was confirmed by FT-IR that an alkoxide layer was present on the surface of the obtained calcium oxide powder. The obtained calcium oxide powder had an average particle size of 0.83 μm and a bulk density of 0.86 g / cm 3 . Other physical properties are shown in Table 1.

[実施例2]
水酸化カルシウム微粉末(BET比表面積13m/g、平均粒子径5.6μm)を600℃で焼成した酸化カルシウム粉末(BET比表面積15m/g、平均粒子径5.1μm)3000gとN−メチルピロリドン105gを内容積33Lの混合機((株)セイシン企業製ニューグラマシン:SEG−350型)を使用し、窒素雰囲気下にて均一混合した。混合機より回収した酸化カルシウム粉末をジェットミル((株)セイシン企業製STJ−200型)にて原料供給速度5.0kg/h、粉砕圧力0.7MPaの条件にて粉砕処理を行い、粒子表面を非プロトン性極性溶媒層で覆った実施例2に係る酸化カルシウム粉末を得た。粉砕処理の際、圧縮流体には窒素ガスを使用し、さらに粉砕装置全体をブースで囲い、ブース内を窒素雰囲気にすることで、紛体と空気が極力接触しないようにした。得られた酸化カルシウム粉末の物性は、表1に示す。
[Example 2]
Calcium hydroxide fine powder (BET specific surface area 13 m 2 / g, average particle size 5.6 μm) calcined at 600 ° C. Calcium oxide powder (BET specific surface area 15 m 2 / g, average particle size 5.1 μm) 3000 g and N− 105 g of methylpyrrolidone was uniformly mixed in a nitrogen atmosphere using a mixer having an internal volume of 33 L (Neugra Machine SEG-350, manufactured by Seishin Enterprise Co., Ltd.). Calcium oxide powder recovered from the mixer is pulverized by jet mill (STJ-200 type, manufactured by Seishin Enterprise Co., Ltd.) under the conditions of a raw material supply rate of 5.0 kg / h and a pulverization pressure of 0.7 MPa. A calcium oxide powder according to Example 2 was obtained in which was covered with an aprotic polar solvent layer. During the pulverization process, nitrogen gas was used as the compressed fluid, and the entire pulverizer was surrounded by a booth, and the inside of the booth was set to a nitrogen atmosphere so that the powder and air were not contacted as much as possible. Table 1 shows the physical properties of the obtained calcium oxide powder.

[実施例3]
N−メチルピロリドンの量を210gとしたことを除いては、実施例2と同じ方法によって製造し、粒子表面を非プロトン性極性溶媒層で覆った実施例3に係る酸化カルシウム粉末を得た。得られた酸化カルシウム粉末の物性は、表1に示す。
[Example 3]
Except that the amount of N-methylpyrrolidone was 210 g, the calcium oxide powder according to Example 3 was produced by the same method as in Example 2 and the particle surface was covered with an aprotic polar solvent layer. Table 1 shows the physical properties of the obtained calcium oxide powder.

Figure 0006312439
Figure 0006312439

Claims (9)

表面に非プロトン性極性溶媒層を有する酸化カルシウム粒子を主成分とする粉末であることを特徴とする水分吸着剤。 A water adsorbent characterized by being a powder mainly composed of calcium oxide particles having an aprotic polar solvent layer on the surface. 下記式(1)で表される非プロトン性極性溶媒層の厚さが、0.2〜5nmであることを特徴とする請求項1記載の水分吸着剤。
Figure 0006312439
The water adsorbent according to claim 1 , wherein the aprotic polar solvent layer represented by the following formula (1) has a thickness of 0.2 to 5 nm .
Figure 0006312439
平均粒子径が、0.05〜10μmであることを特徴とする請求項1又は2記載の水分吸着剤。The moisture adsorbent according to claim 1 or 2, wherein an average particle diameter is 0.05 to 10 µm. 前記非プロトン性極性溶媒がN−メチルピロリドンであることを特徴とする請求項1乃至3いずれか記載の水分吸着剤。 Wherein the aprotic polar solvent is water absorbent according to any one of claims 1 to 3, characterized in that it is N- methyl pyrrolidone. 請求項1乃至4いずれか記載の水分吸着剤を用いることを特徴とする有機EL素子用水分吸着剤。 A moisture adsorbent for an organic EL device, wherein the moisture adsorbent according to claim 1 is used. 酸化カルシウムを非プロトン性極性溶媒存在下にて乾式粉砕を行うことを特徴とする水分吸着剤の製造方法。   A method for producing a water adsorbent, comprising dry pulverizing calcium oxide in the presence of an aprotic polar solvent. 請求項1乃至5いずれか記載の水分吸着剤の製造方法であって、
酸化カルシウムを非プロトン性極性溶媒存在下にて湿式粉砕を行った後、固液分離および/または乾燥を行うことを特徴とする水分吸着剤の製造方法。
A method for producing a moisture adsorbent according to any one of claims 1 to 5,
A method for producing a moisture adsorbent, comprising subjecting calcium oxide to wet pulverization in the presence of an aprotic polar solvent, followed by solid-liquid separation and / or drying.
前記非プロトン性極性溶媒がN−メチルピロリドンであることを特徴とする請求項6又は7記載の水分吸着剤の製造方法。 The method for producing a moisture adsorbent according to claim 6 or 7, wherein the aprotic polar solvent is N-methylpyrrolidone. 前記水分吸着剤が有機EL素子用であることを特徴とする請求項6乃至8いずれか記載の水分吸着剤の製造方法。 The method for producing a moisture adsorbent according to claim 6, wherein the moisture adsorbent is for an organic EL device.
JP2014001621A 2013-01-10 2014-01-08 Moisture adsorbent and method for producing the same Active JP6312439B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014001621A JP6312439B2 (en) 2013-01-10 2014-01-08 Moisture adsorbent and method for producing the same

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013002920 2013-01-10
JP2013002920 2013-01-10
JP2014001621A JP6312439B2 (en) 2013-01-10 2014-01-08 Moisture adsorbent and method for producing the same

Publications (2)

Publication Number Publication Date
JP2014147927A JP2014147927A (en) 2014-08-21
JP6312439B2 true JP6312439B2 (en) 2018-04-18

Family

ID=51166977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014001621A Active JP6312439B2 (en) 2013-01-10 2014-01-08 Moisture adsorbent and method for producing the same

Country Status (5)

Country Link
JP (1) JP6312439B2 (en)
KR (1) KR102165017B1 (en)
CN (1) CN104994934B (en)
TW (1) TWI618576B (en)
WO (1) WO2014109330A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102596127B1 (en) * 2016-02-29 2023-10-30 우베 마테리알즈 가부시키가이샤 Calcium oxide powder and adsorbent and method for producing calcium oxide powder
JP6603614B2 (en) * 2016-05-18 2019-11-06 双葉電子工業株式会社 Desiccant composition, sealing structure, and organic EL device
TWI633525B (en) * 2016-12-09 2018-08-21 正文科技股份有限公司 Parking position sensing device

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5650115A (en) * 1979-09-28 1981-05-07 Hiraki Sonoda Eliminating method for cohesiveness of quick lime powder
JPS58180225A (en) * 1982-04-16 1983-10-21 Adachi Sekkai Kogyo Kk Surface treatment of quicklime powder
JPS6053568A (en) * 1983-09-02 1985-03-27 Teruo Sasao Colored slaked lime powder for marking use
JPS6163528A (en) * 1984-09-03 1986-04-01 Shin Etsu Chem Co Ltd Method for improving fluidity of lime powder
JPS61261242A (en) * 1985-05-15 1986-11-19 大江化学工業株式会社 Lime particle
JP3385992B2 (en) * 1999-01-29 2003-03-10 三浦工業株式会社 Dioxin decomposition treatment agent and decomposition treatment method
JP2004186048A (en) * 2002-12-04 2004-07-02 Sanyo Electric Co Ltd Display device and desiccant
TW200507924A (en) * 2003-02-17 2005-03-01 Getters Spa Composition and devices for gas sorption and process for their manufacturing
JP2006124264A (en) * 2004-04-16 2006-05-18 Showa Denko Kk Calcium oxide dispersion liquid and its manufacturing method
CN1950299A (en) * 2004-04-16 2007-04-18 昭和电工株式会社 Calcium oxide dispersion liquid and process for production thereof
JP4189390B2 (en) * 2004-05-14 2008-12-03 宇部マテリアルズ株式会社 Method for producing porous slaked lime
JP4387870B2 (en) 2004-05-25 2009-12-24 宇部マテリアルズ株式会社 Granular quicklime
EP1655792A1 (en) * 2004-11-08 2006-05-10 Samsung SDI Co., Ltd. Organic electroluminescent device and method for manufacturing the same
JP2007035331A (en) * 2005-07-22 2007-02-08 Optrex Corp Organic el display panel and water-catching material layer formation device
CN107722894A (en) * 2010-11-02 2018-02-23 Lg化学株式会社 Adhesive
KR20120140394A (en) * 2011-06-21 2012-12-31 주식회사 엘지화학 Adhesive composition for encapsulating an organic electronic element
CN103264014B (en) * 2013-04-22 2014-08-27 陕西科技大学 Coating method utilizing organic light-emitting device drying agent which can be coated

Also Published As

Publication number Publication date
JP2014147927A (en) 2014-08-21
CN104994934A (en) 2015-10-21
KR20150106909A (en) 2015-09-22
KR102165017B1 (en) 2020-10-13
TWI618576B (en) 2018-03-21
WO2014109330A1 (en) 2014-07-17
CN104994934B (en) 2017-08-22
TW201434531A (en) 2014-09-16

Similar Documents

Publication Publication Date Title
JP5252327B2 (en) Moisture adsorbent for organic EL device and method for producing the same
US10398652B2 (en) Sodium bicarbonate particles manufactured by atomization
JP6312439B2 (en) Moisture adsorbent and method for producing the same
US20190106331A1 (en) Getter material comprising intrinsic composite nanoparticles and method of production thereof
WO2015151997A1 (en) Powdered tobermorite type calcium silicate-based material and method for producing same
JP6245253B2 (en) Air-metal secondary battery
Sultan et al. Active packaging of chitosan film modified with basil oil encapsulated in silica nanoparticles as an alternate for plastic packaging materials
JP6942495B2 (en) Storage method of hexagonal boron nitride
Castillo et al. Polyethylene with MoS2 nanoparticles toward antibacterial active packaging
JP6759327B2 (en) Calcium oxide powder, adsorbent, and method for producing calcium oxide powder
JP4387870B2 (en) Granular quicklime
JP5937100B2 (en) Dry granulation method for nanometer particles
TWI652226B (en) Magnesium oxide microparticle dispersion liquid and preparation method thereof
JP6705710B2 (en) Method for producing calcium oxide powder and calcium oxide powder
WO2018092804A1 (en) Silica powder for quantitative supply, purification kit for biological material using same, and method for producing same
JP5953217B2 (en) Magnesium oxide fine particle dispersion
CN117136168A (en) Plate-shaped titanium pyrophosphate and method for producing same
WO2014156582A1 (en) Metal-air secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170922

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171010

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180306

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180320

R150 Certificate of patent or registration of utility model

Ref document number: 6312439

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250