JP6308749B2 - Exposure equipment - Google Patents

Exposure equipment Download PDF

Info

Publication number
JP6308749B2
JP6308749B2 JP2013225235A JP2013225235A JP6308749B2 JP 6308749 B2 JP6308749 B2 JP 6308749B2 JP 2013225235 A JP2013225235 A JP 2013225235A JP 2013225235 A JP2013225235 A JP 2013225235A JP 6308749 B2 JP6308749 B2 JP 6308749B2
Authority
JP
Japan
Prior art keywords
optical member
region
optical
amount
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013225235A
Other languages
Japanese (ja)
Other versions
JP2015088586A5 (en
JP2015088586A (en
Inventor
猛 中嶋
猛 中嶋
誠人 佐藤
誠人 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2013225235A priority Critical patent/JP6308749B2/en
Publication of JP2015088586A publication Critical patent/JP2015088586A/en
Publication of JP2015088586A5 publication Critical patent/JP2015088586A5/en
Application granted granted Critical
Publication of JP6308749B2 publication Critical patent/JP6308749B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Description

本発明は、露光装置に関する。   The present invention relates to an exposure apparatus.

従来の露光装置は、マスクからの光をワークに投影する、光学薄板を含む投影光学系を有する。マスクからの光によってワークに投影されるパターン像は、マスクの変形、投影光学系の変形・製造誤差によって、歪みを生じている。かかる歪みを補正するために、前記光学薄板を支持する複数の支持部材と、前記投影光学系の光軸の方向に前記複数の支持部材を個別に移動する駆動機構とを設け、前記駆動機構によって前記光学薄板を曲げている(特許文献1参照)。   A conventional exposure apparatus has a projection optical system including an optical thin plate that projects light from a mask onto a workpiece. The pattern image projected onto the workpiece by the light from the mask is distorted due to the deformation of the mask and the deformation / manufacturing error of the projection optical system. In order to correct such distortion, a plurality of support members that support the optical thin plate and a drive mechanism that individually moves the plurality of support members in the direction of the optical axis of the projection optical system are provided. The optical thin plate is bent (see Patent Document 1).

特開2009−206323号公報JP 2009-206323 A

しかし、従来の露光装置では、支持部材を光学薄板の光線透過領域内には配置できず、光線透過領域外に配置していたため、光学薄板の光線透過領域の変位量を正確にコントロールすることが困難であった。よって、光学薄板の光線透過領域をパターン像の歪みを補正するための理想形状にするために、駆動機構を複数回駆動する必要があった。もしくは、光線透過領域の変位量を測定するセンサを設けなければならなかった。   However, in the conventional exposure apparatus, the support member cannot be disposed in the light transmission region of the optical thin plate and is disposed outside the light transmission region, so that the amount of displacement of the light transmission region of the optical thin plate can be accurately controlled. It was difficult. Therefore, it is necessary to drive the drive mechanism a plurality of times in order to make the light transmission region of the optical thin plate an ideal shape for correcting the distortion of the pattern image. Alternatively, a sensor for measuring the amount of displacement of the light transmission region had to be provided.

そこで、本発明は、板状の光学部材の変形量の計測結果を用いることなく光学部材を変形させる駆動機構を駆動するだけで、光学部材を目標形状に変形してマスクのパターン像の歪みを制御することが可能な露光装置を提供することを目的とする。 In view of this, the present invention merely deforms the optical member into the target shape and drives the distortion of the mask pattern image only by driving the driving mechanism that deforms the optical member without using the measurement result of the deformation amount of the plate-like optical member. An object of the present invention is to provide an exposure apparatus that can be controlled .

その目的を達成するために、本発明の一側面としての露光装置は、マスクのパターンを基板に投影して基板を露光する露光装置であって、前記マスクのパターンを前記基板に投影する投影光学系の光路内に配置され、変形可能な板状の光学部材と、前記光学部材を透過する光の領域外に配置され、前記光学部材を透過する光の領域外における第1位置で前記光学部材を支持する第1支持部材と、前記光学部材を透過する光の領域外に配置され、前記第1位置とは異なり、前記光学部材を透過する光の領域外における第2位置で前記光学部材を支持する第2支持部材と、前記光学部材を透過する光の領域外に配置された、前記第1支持部材を移動させる第1駆動機構と、前記光学部材を透過する光の領域外に配置された、前記第2支持部材を移動させる第2駆動機構と、を有し、前記第1駆動機構の駆動量に対する前記光学部材を透過する光の領域内の複数の位置のそれぞれにおける前記光学部材の移動量と、前記第2駆動機構の駆動量に対する前記光学部材を透過する光の領域内の複数の位置のそれぞれにおける前記光学部材の移動量と、を含む情報を用いて、前記光学部材が目標形状になるように前記第1駆動機構及び前記第2駆動機構を制御することによって、前記マスクのパターンの像の歪みを制御する、ことを特徴とする。 In order to achieve the object, an exposure apparatus according to one aspect of the present invention is an exposure apparatus that projects a mask pattern onto a substrate to expose the substrate, and projects the mask pattern onto the substrate. A deformable plate-like optical member disposed in the optical path of the system; and the optical member disposed at a first position outside the region of the light transmitted through the optical member and disposed outside the region of the light transmitted through the optical member. a first support member for supporting the said is placed outside the area of the light transmitted through the optical member, the first Unlike position, the second position that put the region out of the light transmitted through the optical member A second support member that supports the optical member; a first drive mechanism that moves the first support member disposed outside a region of light that passes through the optical member; and an outside region of light that passes through the optical member. disposed with, move the second supporting member And a second drive mechanism for the, for driving amount of the first drive mechanism, the moving amount of the optical member in each of a plurality of positions in the area of light transmitted through the optical member, the second drive The information including the amount of movement of the optical member at each of a plurality of positions in the region of the light transmitted through the optical member with respect to the driving amount of the mechanism is used so that the optical member has a target shape. The distortion of the image of the mask pattern is controlled by controlling the first driving mechanism and the second driving mechanism.

本発明によれば、板状の光学部材の変形量の計測結果を用いることなく光学部材を変形させる駆動機構を駆動するだけで、光学部材を目標形状に変形してマスクのパターン像の歪みを制御することが可能な露光装置を提供することができる。 According to the present invention, the optical member is deformed into the target shape by simply driving the driving mechanism that deforms the optical member without using the measurement result of the deformation amount of the plate-like optical member, and the mask pattern image is distorted. An exposure apparatus that can be controlled can be provided.

本発明の一実施例に係る露光装置の全体構成を表す図である。It is a figure showing the whole structure of the exposure apparatus which concerns on one Example of this invention. 図1の露光装置における調整機構を説明するための図である。It is a figure for demonstrating the adjustment mechanism in the exposure apparatus of FIG. 本発明の効果を説明するための、図2の調整機構を備えない例を説明するための図である。It is a figure for demonstrating the example which is not provided with the adjustment mechanism of FIG. 2 for demonstrating the effect of this invention. 図2の調整機構の光学薄板の各支持部と光線透過領域各点の関係を示した図である。It is the figure which showed the relationship between each support part of the optical thin plate of the adjustment mechanism of FIG. 2, and each point of a light transmissive area | region. 本発明の実施例1の調整機構を示した図である。It is the figure which showed the adjustment mechanism of Example 1 of this invention. 本発明の実施例1の、支持部駆動量と光線透過領域変位量の比例係数の行列式である。It is a determinant of the proportionality coefficient of the support part drive amount and the light transmission region displacement amount of Example 1 of the present invention. 本発明の実施例1の、支持部駆動量と光線透過領域変位量の比例係数の逆行列式である。It is an inverse determinant of the proportionality coefficient of the support part drive amount of the Example 1 of this invention and a light transmission area | region displacement amount. 本発明の実施例1の、シミュレーション結果を示した図である。It is the figure which showed the simulation result of Example 1 of this invention. 本発明のパターン像の歪み補正方法を説明するためのフローチャートである。It is a flowchart for demonstrating the distortion correction method of the pattern image of this invention.

以下に、本発明の好ましい実施形態を添付の図面に基づいて詳細に説明する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings.

〔第1実施形態〕
図1は、従来例であり、本発明の適用対象の一例でもある走査型露光装置の構成を示す。同図において、1はスリット状に整形された照明光を照射する照明系、2はマスク3とワーク10のアライメントマークを検出する検出系である。また、4は照明系1により照明されるマスク3上のパターン像をワーク10上に投影する投影光学系、5は投影光学系4の出口側の光路上に配置した光学薄板である。なお、ここでは、投影光学系4としてミラー光学系を用いている。また、光学薄板5は投影光学系4の入口側の光路上に配置してもよい。
[First embodiment]
FIG. 1 shows a configuration of a scanning exposure apparatus which is a conventional example and is also an example of an application target of the present invention. In the figure, reference numeral 1 denotes an illumination system for irradiating illumination light shaped in a slit shape, and 2 denotes a detection system for detecting alignment marks of the mask 3 and the workpiece 10. Reference numeral 4 denotes a projection optical system for projecting a pattern image on the mask 3 illuminated by the illumination system 1 onto the workpiece 10, and 5 denotes an optical thin plate disposed on the optical path on the exit side of the projection optical system 4. Here, a mirror optical system is used as the projection optical system 4. Further, the optical thin plate 5 may be disposed on the optical path on the entrance side of the projection optical system 4.

図2は本発明の一実施例に係る露光装置における光学薄板部分を示す斜視図である。この露光装置は、光学薄板13を変形させる機構以外は、図1のものと同じ構成を有する。   FIG. 2 is a perspective view showing an optical thin plate portion in an exposure apparatus according to an embodiment of the present invention. This exposure apparatus has the same configuration as that of FIG. 1 except for a mechanism for deforming the optical thin plate 13.

図2において、投影光学系4は、その結像位置のずれ以外の結像性能に対し実質的に影響を与えない程度の光学的厚さで、かつ変形自在な光学薄板5を光路中に有する。本実施形態の調整機構13は、図2に示すように、光学薄板5と、支持部材11と、駆動機構12を有する。支持部材11は、光学薄板5の光線透過領域外を複数の箇所(例えば、11a〜11lの12箇所)で保持する。支持部材11は駆動機構12に取り付けられている。前記支持部材11は光学薄板5に対してZ軸(投影光学系4の光軸)方向に駆動可能であり、光学薄板5の変位量を制御する。光学薄板5は、変形することで露光光の入射方向(Z方向)に対する傾きに応じて結像位置をX軸とY軸(投影光学系4の光軸に垂直)方向に変化させる。   In FIG. 2, the projection optical system 4 has an optical thin plate 5 in the optical path that has an optical thickness that does not substantially affect the imaging performance other than the shift of the imaging position and that is deformable. . As shown in FIG. 2, the adjustment mechanism 13 of this embodiment includes an optical thin plate 5, a support member 11, and a drive mechanism 12. The support member 11 holds the outside of the light transmission region of the optical thin plate 5 at a plurality of locations (for example, 12 locations 11a to 11l). The support member 11 is attached to the drive mechanism 12. The support member 11 can be driven in the Z-axis (optical axis of the projection optical system 4) direction with respect to the optical thin plate 5 and controls the amount of displacement of the optical thin plate 5. The optical thin plate 5 is deformed to change the imaging position in the X-axis and Y-axis (perpendicular to the optical axis of the projection optical system 4) direction according to the inclination with respect to the incident direction (Z direction) of the exposure light.

図3は、本発明に係る光学薄板および支持部材を含む調整手段を搭載しない露光装置において、歪みを有するパターン像15が投影されている状態を示す。一方、図2の構成では、支持部材11によって保持された光学薄板5をワーク10と投影光学系4との間に配置し、駆動機構としてのアクチュエータで支持部材11を駆動することにより、光学薄板の局所的な傾きを調整している。アクチュエータは、例えばパルスモーターとボールねじからなる。このように構成することで、パターン像の歪み、または、マスク上のパターンとワーク上のパターンとの間の位置ずれが補正できる。また、別の露光装置での露光を経て形成されたワーク上のパターンに対する重ね合わせ精度を向上させることもできる。   FIG. 3 shows a state in which a distorted pattern image 15 is projected in an exposure apparatus not equipped with an adjusting means including an optical thin plate and a support member according to the present invention. On the other hand, in the configuration of FIG. 2, the optical thin plate 5 held by the support member 11 is disposed between the workpiece 10 and the projection optical system 4, and the support member 11 is driven by an actuator as a drive mechanism, thereby the optical thin plate The local inclination of is adjusted. The actuator is composed of, for example, a pulse motor and a ball screw. With this configuration, the distortion of the pattern image or the positional deviation between the pattern on the mask and the pattern on the workpiece can be corrected. It is also possible to improve the overlay accuracy with respect to the pattern on the workpiece formed through exposure by another exposure apparatus.

そして、本調整機構は、駆動機構12の駆動量に対する光学薄板の変位量の比例定数を有する。図4に示すように一つの駆動機構12aの駆動量に対する、光学薄板の光線透過領域内の点14aの移動量を、駆動機構12aに対する光線透過領域14aの比例定数として計測する。全ての駆動機構12a〜12lそれぞれに対する光線透過領域全点14a〜14eについて、比例定数を計測する。   The adjustment mechanism has a proportional constant of the displacement amount of the optical thin plate with respect to the drive amount of the drive mechanism 12. As shown in FIG. 4, the movement amount of the point 14a in the light transmission region of the optical thin plate with respect to the drive amount of one drive mechanism 12a is measured as a proportionality constant of the light transmission region 14a with respect to the drive mechanism 12a. Proportional constants are measured for all points 14a to 14e in the light transmission region for all the driving mechanisms 12a to 12l.

図2のマスク3上のアライメントマークと投影光学系を介したワーク10上のアライメントマークの像との相対位置関係を検出系2により検出する。そして、これにより、パターン像の歪み量を計算する。計算されたパターン像の歪みから、パターン像の歪みを補正するための光学薄板の理想形状を算出する。そして比例定数を用いて最適化計算を行うことで、光学薄板が理想形状となる駆動機構12の駆動量を算出する。算出した駆動量で駆動機構12を駆動し支持部材11を駆動することで、光学薄板5を理想形状とする。理想形状となった光学薄板5を通過したパターン像は、歪み成分が補正されたパターン像となり、ワーク10に転写される。   The relative positional relationship between the alignment mark on the mask 3 in FIG. 2 and the image of the alignment mark on the workpiece 10 via the projection optical system is detected by the detection system 2. Thus, the distortion amount of the pattern image is calculated. An ideal shape of the optical thin plate for correcting the distortion of the pattern image is calculated from the calculated distortion of the pattern image. Then, by performing optimization calculation using the proportional constant, the driving amount of the driving mechanism 12 in which the optical thin plate has an ideal shape is calculated. By driving the drive mechanism 12 with the calculated drive amount and driving the support member 11, the optical thin plate 5 is brought into an ideal shape. The pattern image that has passed through the optical thin plate 5 having an ideal shape becomes a pattern image in which the distortion component is corrected, and is transferred to the workpiece 10.

[実施例1]
図5は本発明の実施例1の調整機構13の図である。
[Example 1]
FIG. 5 is a diagram of the adjusting mechanism 13 according to the first embodiment of the present invention.

光学薄板5は、縦260mm、横450mm、厚さ3mmの石英ガラスである。支持部材11は、光線透過領域外で光学薄板5を保持する。支持部材の数は20個ある。図示しない駆動部は、支持部材11をZ軸方向に駆動する。これにより、支持部材11をZ軸方向に駆動することで光学薄板5を変形させる。   The optical thin plate 5 is quartz glass having a length of 260 mm, a width of 450 mm, and a thickness of 3 mm. The support member 11 holds the optical thin plate 5 outside the light transmission region. There are 20 support members. A drive unit (not shown) drives the support member 11 in the Z-axis direction. Thereby, the optical thin plate 5 is deformed by driving the support member 11 in the Z-axis direction.

従来の方式では、光線透過領域の任意の点(例えば14a)を変位させるために、光線透過領域14aに最も近い支持部11aのみを駆動していた。また、支持部11aの駆動量は、光学薄板5を理想形状とする時の光線透過領域14aの変位量と一致させていた。しかしこの方式では、光学薄板5の弾性変形により支持部11aの駆動量と光線透過領域14aの変位量は一致せず、理想形状に対して誤差が生じ、パターン像の歪みを補正することが出来なかった。よって従来の方式では、光学薄板5が理想形状となるまで駆動機構12を複数回繰り返して駆動する必要があり、パターン像の歪みの補正に時間がかかっていた。もしくは、1度の駆動で理想形状とするためには、光線透過領域の変位量を測定するセンサを取り付けその計測値をフィードバックして駆動機構12を駆動する必要があり、コストがかかっていた。   In the conventional method, in order to displace an arbitrary point (for example, 14a) in the light transmission region, only the support portion 11a closest to the light transmission region 14a is driven. Further, the driving amount of the support portion 11a was made to coincide with the displacement amount of the light transmission region 14a when the optical thin plate 5 was made into an ideal shape. However, in this system, due to the elastic deformation of the optical thin plate 5, the driving amount of the support portion 11a and the displacement amount of the light transmission region 14a do not coincide with each other. There wasn't. Therefore, in the conventional method, it is necessary to repeatedly drive the drive mechanism 12 a plurality of times until the optical thin plate 5 becomes an ideal shape, and it takes time to correct the distortion of the pattern image. Alternatively, in order to obtain an ideal shape by driving once, it is necessary to attach a sensor for measuring the amount of displacement of the light transmission region and feed back the measured value to drive the drive mechanism 12, which is costly.

本特許では、まずシミュレーションで支持部材11aに対しZ方向に駆動量Z11aの変位を与えることで、光学薄板5の光線透過領域の点14aの変位量Z14aを算出する。そして、Z14a/Z11aを支持部材11aに対する光線透過領域14aの比例定数A11a14aとする。支持部材11aに対して、全ての光線透過領域の点(14a〜14t)について、比例定数(A11a14a〜A11a14t)を算出する。同様に、残りの全ての支持部(11b〜11t)に対して、全ての光線透過領域の点(14a〜14t)について、比例定数(A11b14a〜A11b14t、A11c14a〜A11c14t、・・・、A11t14a〜A11t14t)を算出する。この比例定数の算出は、変位センサによる実測値でもよい。この比例定数を図6に示す行列式で表わし、その行列式から図7に示す逆行列式を算出する。光学薄板を理想形状とするための全ての光線透過領域の駆動量(Z14a〜Z14t)から、図7の逆行列式を用いることで、全ての支持部材の駆動量(Z11a〜Z11t)を算出する。そして、算出した支持部材の駆動量(Z11a〜Z11t)で駆動機構12を駆動することで、光学薄板5を理想形状とすることが出来、パターン像の歪みを補正することが可能となる。本実施例では、支持部材の数と光線透過領域の点の数を一致させ、逆行列式を用いて支持部材の駆動量を算出している。しかし、支持部材の数と光線透過領域の点の数は一致させなくてもよく、支持部材の駆動量の算出は線形計画法等の最適化計算手法を用いてもよい。 In this patent, first, the displacement Z14a of the point 14a of the light transmission region of the optical thin plate 5 is calculated by giving a displacement of the driving amount Z11a in the Z direction to the support member 11a by simulation. Z14a / Z11a is set as a proportional constant A11a14a of the light transmission region 14a with respect to the support member 11a. For the support member 11a, proportional constants ( A11a14a to A11a14t ) are calculated for all the points (14a to 14t) in the light transmission region. Similarly, proportional constants ( A11b14a to A11b14t , A11c14a to A11c14t ,...) For all the light transmission region points (14a to 14t) with respect to all the remaining support portions (11b to 11t). , A 11t14a to A 11t14t ). The calculation of the proportionality constant may be an actual measurement value by a displacement sensor. This proportionality constant is represented by the determinant shown in FIG. 6, and the inverse determinant shown in FIG. 7 is calculated from the determinant. The drive amounts (Z11a to Z11t) of all the support members are calculated from the drive amounts (Z14a to Z14t) of all the light transmission regions for making the optical thin plate an ideal shape by using the inverse determinant of FIG. . Then, by driving the drive mechanism 12 with the calculated drive amounts (Z11a to Z11t) of the support member, the optical thin plate 5 can be formed into an ideal shape, and the distortion of the pattern image can be corrected. In this embodiment, the number of support members and the number of points in the light transmission region are matched, and the drive amount of the support members is calculated using an inverse determinant. However, the number of support members and the number of points in the light transmission region do not have to coincide with each other, and an optimization calculation method such as linear programming may be used to calculate the drive amount of the support member.

図8は本特許と従来方式を用いた光学薄板5の変形シミュレーション結果である。光学薄板5のX軸方向中央部Z変位量が0mm、両端部(14a、14k、14j、14t)Z変位量が0.1mmとなるサインカーブを理想形状とした。従来方式よりも本特許の方が理想形状に近いことを確認できる。また、パターン像の歪みを補正するためには、光学薄板5を変形させた際の理想形状に対する誤差量を2.5%以下にすることが必要である。従来方式では、誤差量は最大8.3%となった。本特許では、誤差量は最大0.2%となった。よって本特許では、光線透過領域の変位量を測定するセンサを設ける必要無しに、1度の駆動でパターン像の歪みを補正することが可能となる。   FIG. 8 shows the result of deformation simulation of the optical thin plate 5 using this patent and the conventional method. The sine curve in which the X-axis direction central Z displacement amount of the optical thin plate 5 is 0 mm and both end portions (14a, 14k, 14j, 14t) Z displacement amount is 0.1 mm is an ideal shape. It can be confirmed that this patent is closer to the ideal shape than the conventional method. Further, in order to correct the distortion of the pattern image, it is necessary to set the error amount with respect to the ideal shape when the optical thin plate 5 is deformed to 2.5% or less. In the conventional method, the maximum error amount is 8.3%. In this patent, the maximum error amount was 0.2%. Therefore, in this patent, it is possible to correct the distortion of the pattern image by one driving without the need to provide a sensor for measuring the displacement amount of the light transmission region.

〔第2実施形態〕
つぎに、図9に基づいて本発明の一実施形態のパターン像の歪み補正方法について説明する。図9は本発明の一実施形態のパターン像の歪み補正方法のフローチャートである。本実施形態の補正方法は、図9に示すように、まずマスク3上のアライメントマークと投影光学系を介したワーク10上のアライメントマークの像との相対位置関係を検出系2により検出する。そして、これにより、パターン像の歪み(ディストーション)量を測定する(ステップ1001)。次に、測定されたパターン像の歪みが許容値の範囲内であるか判断する(ステップ1002)。測定されたパターン像の歪み許容値の範囲外である場合、歪みを補正するように、支持部材11の駆動量を算出する(ステップ1003)。そして、算出した支持部材11の駆動量に基づいて駆動機構12を駆動し、光学薄板5を変形させる。(ステップ1004)。なお、ステップ1001で測定したパターン像の歪みが許容値の範囲内になるまで、ステップ1001以下を繰り返す。これにより、パターン像の歪みを補正させることができる。
[Second Embodiment]
Next, a pattern image distortion correction method according to an embodiment of the present invention will be described with reference to FIG. FIG. 9 is a flowchart of a pattern image distortion correction method according to an embodiment of the present invention. In the correction method of the present embodiment, as shown in FIG. 9, first, the detection system 2 detects the relative positional relationship between the alignment mark on the mask 3 and the image of the alignment mark on the workpiece 10 via the projection optical system. Thus, the amount of distortion (distortion) of the pattern image is measured (step 1001). Next, it is determined whether the measured distortion of the pattern image is within the allowable range (step 1002). If the measured pattern image is out of the allowable distortion range, the driving amount of the support member 11 is calculated so as to correct the distortion (step 1003). Then, the drive mechanism 12 is driven based on the calculated drive amount of the support member 11 to deform the optical thin plate 5. (Step 1004). Step 1001 and subsequent steps are repeated until the distortion of the pattern image measured in step 1001 falls within the allowable value range. Thereby, distortion of a pattern image can be corrected.

1 照明系
2 検出系
3 マスク
4 投影光学系
5 光学薄板
6 ミラー
7 ミラー
8 凸面ミラー
9 凹面ミラー
10 ワーク
11 光学薄板の支持部材
12 駆動機構
13 調整機構
14 光線透過領域の点
15 補正前のパターン像
DESCRIPTION OF SYMBOLS 1 Illumination system 2 Detection system 3 Mask 4 Projection optical system 5 Optical thin plate 6 Mirror 7 Mirror 8 Convex mirror 9 Concave mirror 10 Work 11 Optical thin plate support member 12 Drive mechanism 13 Adjustment mechanism 14 Light transmission region point 15 Pattern before correction image

Claims (4)

マスクのパターンを基板に投影して基板を露光する露光装置であって、
前記マスクのパターンを前記基板に投影する投影光学系の光路内に配置され、変形可能な板状の光学部材と、
前記光学部材を透過する光の領域外に配置され、前記光学部材を透過する光の領域外における第1位置で前記光学部材を支持する第1支持部材と、
前記光学部材を透過する光の領域外に配置され、前記第1位置とは異なり、前記光学部材を透過する光の領域外における第2位置で前記光学部材を支持する第2支持部材と、
前記光学部材を透過する光の領域外に配置された、前記第1支持部材を移動させる第1駆動機構と、
前記光学部材を透過する光の領域外に配置された、前記第2支持部材を移動させる第2駆動機構と、を有し、
前記第1駆動機構の駆動量に対する前記光学部材を透過する光の領域内の複数の位置のそれぞれにおける前記光学部材の移動量と、前記第2駆動機構の駆動量に対する前記光学部材を透過する光の領域内の複数の位置のそれぞれにおける前記光学部材の移動量と、を含む情報を用いて、前記光学部材が目標形状になるように前記第1駆動機構及び前記第2駆動機構を制御することによって、前記マスクのパターンの像の歪みを制御する、ことを特徴とする露光装置。
An exposure apparatus that exposes a substrate by projecting a mask pattern onto the substrate,
A plate-like optical member that is disposed in an optical path of a projection optical system that projects the pattern of the mask onto the substrate, and is deformable;
A first support member that is disposed outside a region of light that passes through the optical member and supports the optical member at a first position outside the region of light that passes through the optical member ;
Wherein arranged in the region outside of the light transmitted through the optical member, the first Unlike position, the second support member supporting the optical member at a second position that put the region out of the light transmitted through the optical member When,
A first drive mechanism that moves the first support member and is disposed outside a region of light that passes through the optical member ;
A second drive mechanism arranged outside the region of the light transmitted through the optical member and moving the second support member;
For driving amount of the first drive mechanism, the amount of movement of the said optical member in each of a plurality of positions in the region of light transmitted through the optical member, for driving amount of the second drive mechanism, transmitted through the optical member The first drive mechanism and the second drive mechanism are controlled so that the optical member has a target shape using information including the amount of movement of the optical member at each of a plurality of positions in the region of the light to be transmitted An exposure apparatus characterized by controlling distortion of an image of the mask pattern.
前記情報は、前記光学部材を支持する複数の支持部材を駆動する複数の駆動機構の駆動量と前記光学部材を透過する光の領域内の複数の位置のそれぞれにおける前記光学部材の移動量との関係を表す行列式を含む、ことを特徴とする請求項1に記載の露光装置。 The information includes a driving amount of a plurality of driving mechanisms that drive a plurality of supporting members that support the optical member and a moving amount of the optical member at each of a plurality of positions in a region of light that passes through the optical member. The exposure apparatus according to claim 1, further comprising a determinant representing the relationship. 前記第1位置は、前記第2位置に対して、前記光学部材を透過する光の領域を挟んで反対側にあることを特徴とする請求項1又は2に記載の露光装置。3. The exposure apparatus according to claim 1, wherein the first position is on the opposite side of the second position across a region of light transmitted through the optical member. 前記複数の駆動機構の数と、前記光学部材の移動量を表すための前記光学部材を透過する光の領域内の複数の位置の数と、が同じであることを特徴とする請求項1乃至3の何れか1項に記載の露光装置。The number of the plurality of drive mechanisms is the same as the number of the plurality of positions in the region of light transmitted through the optical member for representing the amount of movement of the optical member. 4. The exposure apparatus according to any one of 3 above.
JP2013225235A 2013-10-30 2013-10-30 Exposure equipment Active JP6308749B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013225235A JP6308749B2 (en) 2013-10-30 2013-10-30 Exposure equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013225235A JP6308749B2 (en) 2013-10-30 2013-10-30 Exposure equipment

Publications (3)

Publication Number Publication Date
JP2015088586A JP2015088586A (en) 2015-05-07
JP2015088586A5 JP2015088586A5 (en) 2016-12-15
JP6308749B2 true JP6308749B2 (en) 2018-04-11

Family

ID=53051073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013225235A Active JP6308749B2 (en) 2013-10-30 2013-10-30 Exposure equipment

Country Status (1)

Country Link
JP (1) JP6308749B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015220537A1 (en) * 2015-10-21 2016-10-27 Carl Zeiss Smt Gmbh Projection exposure system with at least one manipulator

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4875765A (en) * 1988-07-29 1989-10-24 Eastman Kodak Company Method for correction of distortions of a mirror
JP4753009B2 (en) * 2005-05-24 2011-08-17 株式会社ニコン Measuring method, exposure method, and exposure apparatus
US7715107B2 (en) * 2006-04-25 2010-05-11 Asml Netherlands B.V. Optical element for correction of aberration, and a lithographic apparatus comprising same
DE102008042356A1 (en) * 2008-09-25 2010-04-08 Carl Zeiss Smt Ag Projection exposure system with optimized adjustment option

Also Published As

Publication number Publication date
JP2015088586A (en) 2015-05-07

Similar Documents

Publication Publication Date Title
US8472009B2 (en) Exposure apparatus and device manufacturing method
US20090059297A1 (en) Calibration method for image rendering device and image rendering device
JP2785146B2 (en) Automatic focus adjustment controller
JP5264915B2 (en) Calibration of optical device position measuring device
TW200944968A (en) Method and lithographic apparatus for measuring and acquiring height data relating to a substrate surface
JP6535197B2 (en) Exposure apparatus and exposure method
TW201719300A (en) Projection exposure device by transferring the mask pattern to a substrate with an allowable error
JP2006268032A (en) Drawing device and calibrating method for drawing device
JP5494755B2 (en) Mark detection method and apparatus, position control method and apparatus, exposure method and apparatus, and device manufacturing method
JP6308749B2 (en) Exposure equipment
JP2006235204A (en) Correction method of drawing apparatus
JP2012133122A (en) Proximity exposing device and gap measuring method therefor
US20080220344A1 (en) Drawing Method and Apparatus
JPH11121372A (en) Projection aligner and method therefor
JP2007129101A (en) Method for calculating correction information, method for controlling movable stage, and exposure apparatus
JP2840314B2 (en) Projection exposure equipment
JP2018004860A (en) Alignment device, exposure device, and alignment method
JP2009206323A (en) Projection aligner
JP6551562B2 (en) Sheet substrate transfer device
KR20170128599A (en) Exposure device, method for producing flat panel display, method for producing device, and exposure method
KR20090128338A (en) Exposure apparatus and device manufacturing method
JP2005129785A (en) Aligner
JP2009237255A (en) Exposure apparatus and exposure method
TW201602733A (en) Photolithography apparatus comprising projection system for control of image size
JP5632685B2 (en) Exposure apparatus and device manufacturing method

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20150703

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161026

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170707

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170718

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170915

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180213

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180313

R151 Written notification of patent or utility model registration

Ref document number: 6308749

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151