JP6306279B2 - Temperature stratified air conditioning system - Google Patents

Temperature stratified air conditioning system Download PDF

Info

Publication number
JP6306279B2
JP6306279B2 JP2012137577A JP2012137577A JP6306279B2 JP 6306279 B2 JP6306279 B2 JP 6306279B2 JP 2012137577 A JP2012137577 A JP 2012137577A JP 2012137577 A JP2012137577 A JP 2012137577A JP 6306279 B2 JP6306279 B2 JP 6306279B2
Authority
JP
Japan
Prior art keywords
air
temperature
loop duct
duct
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012137577A
Other languages
Japanese (ja)
Other versions
JP2014001892A (en
Inventor
茂 水島
茂 水島
聡 植村
聡 植村
聖士 内山
聖士 内山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanki Engineering Co Ltd
Original Assignee
Sanki Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanki Engineering Co Ltd filed Critical Sanki Engineering Co Ltd
Priority to JP2012137577A priority Critical patent/JP6306279B2/en
Publication of JP2014001892A publication Critical patent/JP2014001892A/en
Application granted granted Critical
Publication of JP6306279B2 publication Critical patent/JP6306279B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、温度成層型空調システムに関するものである。   The present invention relates to a temperature stratified air conditioning system.

従来、工場や体育館等の天井の高い大空間を内部に有する建物内に冷暖房による快適な空気環境を形成するには、建物高さ方向全体の空気を混合して全体に一律の空気温度となるよう、室内上部に多数の吹出口を設け、大風量の空調機で所定の吹き出し温度に調和された調和空気を吹出口から供給し、在室する人に向かってまんべんなく調和空気を送風し、天井や壁面に設ける還気口から還気を空調機に戻す、混合空調が行われていた。   Conventionally, in order to create a comfortable air environment by heating and cooling in buildings with large ceilings such as factories and gymnasiums, the entire air in the building height direction is mixed to obtain a uniform air temperature. In the upper part of the room, a large number of air outlets are provided, conditioned air harmonized with a predetermined blowing temperature is supplied from the air outlet by a large air volume air conditioner, and the conditioned air is blown evenly toward the people in the room. In addition, mixed air-conditioning was performed to return the return air to the air conditioner from the return air port provided on the wall.

しかし、このような従来技術では、室内上部空間から調和空気を送風するため、不必要に室内空気を攪拌し、人の存在しない天井付近の空気まで冷暖房を行うこととなり、調和空気を無駄に温調して空調機も大きくなりエネルギーも非常に多く消費してしまう。   However, in such a conventional technique, conditioned air is blown from the indoor upper space. Therefore, the room air is unnecessarily agitated and air-conditioning is performed to the air near the ceiling where no people are present. As a result, the air conditioner becomes larger and consumes a lot of energy.

このような混合空調の弊害を防止する温度成層型の空調システムが、近年、換気方式として導入された置換換気システムの応用として提唱されている。   In recent years, a temperature stratification type air conditioning system that prevents such adverse effects of mixed air conditioning has been proposed as an application of a replacement ventilation system introduced as a ventilation system.

換気方式としての置換換気システムは、空気の温度差による換気力を利用した自然換気に更に送風機で換気する機械換気を組み合わせたもので、床レベルから室温より少し低い温度の新鮮空気を外部から供給すると、室内の熱負荷によって空気が加熱され上昇気流となり、この上昇気流の力を利用して天井レベルに熱い空気を導くことで室内の換気力として利用し、居住域の空気を清浄に保つものである。   The replacement ventilation system as a ventilation system is a combination of natural ventilation using ventilation force due to temperature difference of air and mechanical ventilation that ventilates with a blower, and supplies fresh air at a temperature slightly lower than room temperature from the floor level. Then, the air is heated by the heat load in the room to become an updraft, and by using the force of this updraft to guide the hot air to the ceiling level, it is used as indoor ventilation and keeps the air in the living area clean It is.

この置換換気システムを空調方式として応用し、空調機への還気を、室温より少し低い温度として温調し、床面近傍に吹出口を有する給気ユニットから低風速で水平方向へ吹き出し、その温調空気は室内熱負荷により熱上昇流となって、周囲の空気をゆっくり上昇させて天井付近に熱い空気として滞留させ、該熱い空気が天井面に設置した還気口から、空調機へ還気されるか、或いはその一部が熱い排気として排出されるようにした空調システムが、温度成層型の空調システムである。   Applying this replacement ventilation system as an air conditioning system, the return air to the air conditioner is adjusted to a temperature slightly lower than room temperature, and blown out horizontally from the air supply unit having a blower outlet near the floor surface at a low wind speed. The temperature-controlled air becomes a heat rising flow due to the indoor heat load, and the surrounding air slowly rises and stays as hot air near the ceiling, and the hot air is returned to the air conditioner from the return vent installed on the ceiling surface. An air conditioning system in which the air is discharged or a part thereof is discharged as hot exhaust gas is a temperature stratification type air conditioning system.

このような工場や体育館等の大空間を内部に有する建物において、冷暖房を行うための温度成層型の空調システムは、例えば、図12〜図15に示されるようなものがある。   In a building having a large space such as a factory or a gymnasium, there are temperature stratification type air conditioning systems for performing cooling and heating, for example, as shown in FIGS.

前記温度成層型の空調システムは、建物1の外壁、或いは外壁と内部室間仕切り壁との間の非空調通路等、建物1の外部から熱負荷が伝わる領域であるペリメータゾーンにおける建物1の床面レベルに、前述の床面近傍の吹出口である、多数の孔が穿設されたパンチングメタル等の金属板で形成された給気ユニット2を、建物1の周方向に所要間隔をあけて複数配備すると共に(図13参照)、該各給気ユニット2の背面側における建物1の外側、或いは外壁と内部室間仕切り壁との間の非空調通路に、各給気ユニット2へ冷暖房用空気を送り込むための空調機3を設置し、前記給気ユニット2の上方に、前記建物1内の空気を前記空調機3に吸い込むための還気口4を設けることによって構成されている。   The temperature-stratified air conditioning system includes a floor surface of the building 1 in the perimeter zone, which is a region where a heat load is transmitted from the outside of the building 1, such as an outer wall of the building 1 or a non-air-conditioning passage between the outer wall and the partition wall of the internal room. A plurality of air supply units 2 formed of a metal plate such as a punching metal having a large number of holes, which are air outlets in the vicinity of the floor surface described above, are provided at a necessary interval in the circumferential direction of the building 1. While deploying (see FIG. 13), air for heating and cooling is supplied to each air supply unit 2 on the outside of the building 1 on the back side of each air supply unit 2 or in a non-air-conditioning passage between the outer wall and the partition wall between the internal rooms. The air conditioner 3 for sending in is installed, and the return air port 4 for sucking the air in the building 1 into the air conditioner 3 is provided above the air supply unit 2.

前記従来の温度成層型の空調システムにおいては、夏期冷房時、空調機3から冷房用空気が給気ユニット2へ送り込まれ、該給気ユニット2から冷房用空気が建物1内へ低速で床面に沿って吹き出され、該建物1内の温度を下げながら室内熱負荷での熱上昇気流の発生も行われ、還気口4から建物1内の熱負荷により高温になった空気が吸い込まれて前記空調機3に循環されるようになっている。   In the conventional temperature-stratified air conditioning system, during the summer cooling, the cooling air is sent from the air conditioner 3 to the air supply unit 2, and the air from the air supply unit 2 enters the building 1 at a low speed on the floor surface. As the temperature inside the building 1 is lowered, a heat rising air flow is generated at the indoor heat load, and the air heated by the heat load inside the building 1 is sucked in from the return port 4 The air conditioner 3 is circulated.

一方、冬期暖房時には、空調機3から暖房用空気が給気ユニット2へ送り込まれ、該給気ユニット2から暖房用空気が建物1内へ吹き出され、該建物1内の温度を上げることが行われ、還気口4から建物1内の空気が吸い込まれて前記空調機3に循環されるようになっている。   On the other hand, during the winter heating, air for heating is sent from the air conditioner 3 to the air supply unit 2, and the air for heating is blown into the building 1 from the air supply unit 2 to raise the temperature in the building 1. The air in the building 1 is sucked from the return air port 4 and circulated to the air conditioner 3.

尚、大空間の暖房に関連する一般的技術水準を示すものとしては、例えば、特許文献1がある。この技術は、燃料燃焼による空気加熱を行う温風暖房機から供給される高温の空気を、建屋のペリメータ外側の外壁に沿って流すことで、コールドドラフト現象による侵入冷気を加温して、大空間で天井が高い場合に生じる上下温度差を低減し、室内の対流を利用して暖房するものである。   In addition, there exists patent document 1 as what shows the general technical level relevant to the heating of large space, for example. This technology warms the intruding cold air due to the cold draft phenomenon by flowing hot air supplied from a hot air heater that performs air heating by fuel combustion along the outer wall outside the perimeter of the building. It reduces the temperature difference between the top and bottom, which occurs when the ceiling is high in the space, and heats it using indoor convection.

又、大空間ではないが、冷暖房用空気を室内下部の空調領域空気吹出口から床面に沿って水平に吹き出して室内に温度成層をなして冷暖房を行い、室内上方の空気を還気口から吸い込んで空調機に循環させる温度成層型の空調システムに関連する一般的技術水準を示すものとしては、例えば、特許文献2がある。   In addition, although it is not a large space, air for cooling and heating is blown horizontally from the air outlet at the lower part of the room along the floor surface, temperature stratification is performed in the room, air conditioning is performed, and air above the room is discharged from the return air vent. For example, Patent Document 2 shows a general technical level related to a temperature stratification type air conditioning system which is sucked and circulated to an air conditioner.

更に又、床面から給気し居住域(インテリアゾーン)に温度成層を形成して、汚染質は上昇気流に乗せて搬送し天井面の排気口から排出する、いわゆる置換換気に関する技術を示すものとしては、例えば、非特許文献1がある。   In addition, it shows the technology related to so-called replacement ventilation, in which air is supplied from the floor surface, temperature stratification is formed in the living area (interior zone), and pollutants are transported in an updraft and discharged from the exhaust port on the ceiling surface. As Non-patent Document 1, for example.

特開2010−121808号公報JP 2010-121808 A 特開2002−310450号公報JP 2002-310450 A

REHVA Federation of European Heating and Air-conditioning Associations 編集、社団法人 空気調和・衛生工学会 翻訳・編集、「置換換気ガイドブック−基礎と応用−」、初版第1刷、社団法人 空気調和・衛生工学会 発行、平成19年3月26日、P.10〜13、P.22,23、P.72,73Edited by REHVA Federation of European Heating and Air-conditioning Associations, Japan Air Conditioning and Hygiene Engineering Association Translation and editing, “Replacement Ventilation Guidebook-Fundamentals and Applications”, first edition, first edition, Japan Air Conditioning and Hygiene Engineering Association published March 26, 2007, P.10-13, P.22,23, P.72,73

ところで、置換換気がなされている居室における気流パターンは対象居室に存在する発熱体と吸熱体からの対流に支配される。暖かい空気層は空間上部に、冷たい空気層は空間の下部に形成される。空気は水平方向の空気層内では容易に移動するが、空気層の間を上下に移動するには、より大きな駆動力がファン等に必要となる。(非特許文献1参照)   By the way, the airflow pattern in the room where the replacement ventilation is performed is dominated by the convection from the heating element and the heat absorption body existing in the target room. A warm air layer is formed in the upper part of the space, and a cold air layer is formed in the lower part of the space. Although air easily moves in an air layer in the horizontal direction, a larger driving force is required for a fan or the like to move up and down between the air layers. (See Non-Patent Document 1)

又、特許文献2に開示されたものでは、内壁に設けた吹出口から吹き出す冷風はコアンダ効果(壁面や天井に接近して吹き出された気流は、その面に吸い寄せられて付着するように流れる傾向があるという気流現象)により低層域に留まろうとする。   Moreover, in what was disclosed by patent document 2, the cold wind which blows off from the blower outlet provided in the inner wall tends to flow so that the Coanda effect (the air current blown near the wall surface and the ceiling is sucked and adhered to the surface) It tries to stay in the low-rise area due to the airflow phenomenon).

このように、特許文献2に開示されたものは、自然対流を利用した技術であり、垂直温度分布は50%ルールに従う。因みに、50%ルールとは、非特許文献1に記載されているように、床近傍の空気温度が給気温度(例えば、16[℃])と排気温度(例えば、34[℃])の中間(例えば、25[℃])であることをいう。又、非特許文献1では、排気口の位置について述べているが、これは排気口と同様に機械的に空気を空調機3へ吸い込む還気口4についても同様のことが言える。   Thus, what was disclosed in Patent Document 2 is a technique using natural convection, and the vertical temperature distribution follows the 50% rule. Incidentally, as described in Non-Patent Document 1, the 50% rule means that the air temperature in the vicinity of the floor is intermediate between the supply air temperature (for example, 16 [° C.]) and the exhaust gas temperature (for example, 34 [° C.]). (For example, 25 [° C.]). In Non-Patent Document 1, the position of the exhaust port is described. The same can be said for the return air port 4 that mechanically sucks air into the air conditioner 3 in the same manner as the exhaust port.

仮に、図9(c)に示されるように、排気口や還気口4が吹出口と同等の高さ(例えば、3[m]前後)にあって低い場合、室内の垂直温度の勾配は、
(34−25)/3=3[℃/m]
となり、排気口や還気口4が天井近くの高さ(図9(b)に示されるように、例えば、6[m]程度)にある場合の室内の垂直温度の勾配が、
(34−25)/6=1.5[℃/m]
となるのに比べ、温度勾配が急となる。因みに、温熱環境に関する国際規格としてのISO7730では、温度勾配は、床上0.1[m]から1.1[m]の間において、3[℃/m]より小さくすべきであると述べられている。即ち、排気口や還気口4の高さが低い場合は、垂直温度の勾配が急となり、ISO7730の規定を満たさない場合があり、室内は良好な環境とならない。
As shown in FIG. 9C, when the exhaust port and the return air port 4 are at the same height (for example, around 3 [m]) as the air outlet and are low, the indoor vertical temperature gradient is ,
(34-25) / 3 = 3 [° C./m]
The vertical temperature gradient in the room when the exhaust port and the return air port 4 are at a height near the ceiling (for example, about 6 [m] as shown in FIG. 9B).
(34-25) /6=1.5 [° C./m]
The temperature gradient is steeper than Incidentally, ISO7730 as an international standard for thermal environment states that the temperature gradient should be smaller than 3 [° C / m] between 0.1 [m] and 1.1 [m] on the floor. Yes. That is, when the height of the exhaust port and the return air port 4 is low, the gradient of the vertical temperature becomes steep and the ISO 7730 standard may not be satisfied, and the indoor environment is not good.

又、図9(c)に示されるように、3[℃/m]の垂直温度の勾配の場合、室内の居住者の姿勢が座位の場合1.1[m]、立位の場合1.5[m]程度の高さに顔面があり、16[℃]の吹き出し温度にもかかわらず、顔面高さの空気温度は28〜30[℃]程度となり不快な環境となってしまう。   9C, in the case of a vertical temperature gradient of 3 [° C./m], the occupant's posture is 1.1 [m] in the sitting position, and 1.1 in the standing position. The face is at a height of about 5 [m], and the air temperature at the height of the face is about 28 to 30 [° C.] in spite of the blowing temperature of 16 [° C.].

こうした理由により、自然対流を利用している特許文献2に開示されているような従来の温度成層型のものの場合、機械的に空気を空調機3へ吸い込む還気口4を天井近くに設置しなくてはならないが、このように還気口4を天井近くに設置すると、室内の上部熱気を吸い込むこととなり、空調機3の消費エネルギーが大きくなるという不具合を有していた。   For these reasons, in the case of the conventional temperature stratification type as disclosed in Patent Document 2 using natural convection, a return air inlet 4 that mechanically sucks air into the air conditioner 3 is installed near the ceiling. Although it is necessary, if the return air port 4 is installed near the ceiling in this way, the indoor hot air is sucked in, and the energy consumption of the air conditioner 3 is increased.

そして、図12及び図13に示されるような従来の温度成層型の空調システムにおいて、夏期冷房時に、前記空調機3から給気ユニット2へ冷房用空気を送り込み、該給気ユニット2から建物1内へ冷房用空気を吹き出すと、図14に示されるように、冷房用空気は、床面に沿うように流れて建物1内部に冷気が溜まっていき、温度成層が形成されるものの、前記コアンダ効果により低温空気が低層域に留まることによる温度成層を良好に形成するためには、垂直方向の温度勾配を適切にするために、還気口4を高い位置に設置する必要があり、空調機3の消費エネルギーが大きくなって充分な省エネルギー化を図ることができなかった。   In the conventional temperature stratification type air conditioning system as shown in FIGS. 12 and 13, during the summer cooling, cooling air is sent from the air conditioner 3 to the air supply unit 2, and from the air supply unit 2 to the building 1. When the air for cooling is blown into the interior, as shown in FIG. 14, the air for cooling flows along the floor surface and cool air is accumulated inside the building 1 to form temperature stratification. In order to satisfactorily form temperature stratification due to the low temperature air remaining in the low-rise area due to the effect, it is necessary to install the return air port 4 at a high position in order to make the temperature gradient in the vertical direction appropriate. As a result, the energy consumption of No. 3 was increased and sufficient energy saving could not be achieved.

又、冬期暖房時に、前記空調機3から給気ユニット2へ暖房用空気を送り込み、該給気ユニット2から建物1内へ暖房用空気を吹き出すと、図15に示されるように、低速で水平方向へ吹き出される暖房用空気は、自身の高い温度による上昇気流によりコアンダ効果が得られず、吹き出された直後から上昇するため、床面に暖房用空気が行き渡らず足元に冷気溜りが生じやすかった。   Further, when heating air is sent from the air conditioner 3 to the air supply unit 2 and heated from the air supply unit 2 into the building 1 at the time of heating in winter, as shown in FIG. The heating air blown out in the direction does not have the Coanda effect due to the rising air flow due to its own high temperature, and rises immediately after being blown out, so the heating air does not reach the floor and the cold air pool is likely to occur. It was.

更に又、前記給気ユニット2が建物1の床面レベルにその周方向へ所要間隔をあけて複数配備されるため、暖房用空気も冷房用空気も局所的にしか吹き出されず、建物1内部の温度や湿度のムラが生じやすくなると共に、床面に接するように前記給気ユニット2を配置することによってフロアスペースの一部が利用できなくなっていた。   Furthermore, since a plurality of the air supply units 2 are arranged at the floor level of the building 1 with a required interval in the circumferential direction, both the heating air and the cooling air are blown out locally. As a result, the air supply unit 2 is disposed so as to be in contact with the floor surface, and a part of the floor space cannot be used.

本発明は、上記従来の問題点に鑑みてなしたもので、夏期冷房時には高さ方向に小さい体積の低温空気層を有する温度成層を形成することで充分な省エネルギー化を図り、且つ冬期暖房時には空調機を夏期と同じ風量で運転しながらコールドドラフトを抑制して足元の冷気溜りの発生を抑えつつ、建物内部の高さ方向に小さい体積領域を温度や湿度のムラなく均一に暖房空調することができ、更に、フロアスペースを最大限効率的に利用できる温度成層型空調システムを提供しようとするものである。   The present invention has been made in view of the above-described conventional problems, and at the time of cooling in summer, energy saving is achieved by forming a temperature stratification having a low-temperature air layer with a small volume in the height direction, and during heating in winter While operating the air conditioner with the same air volume as in the summer, it suppresses the cold draft and suppresses the occurrence of cold air accumulation in the building, and uniformly heats and air-conditions a small volume area in the height direction inside the building without temperature and humidity unevenness Furthermore, the present invention intends to provide a temperature stratified air conditioning system that can utilize floor space as efficiently as possible.

本発明は、天井の高い大空間を内部に有する建物の外部から熱負荷が伝わる領域であるペリメータゾーンにおける設定高さレベルに全体として閉ループを形成するよう配設されるループダクトと、
空気を冷却する冷却コイル及び空気を加熱する温水コイルが内蔵され前記ループダクトへ冷暖房用空気を送り込むための空調機と、
前記ループダクトの下面にその長手方向へ設定ピッチで挿入配置される円筒状部材を有し、該円筒状部材の前記ループダクトの中心軸と平行な上端開口のループダクト内方への差込長さを調節自在に設け、前記空調機によって前記ループダクトへ送り込まれた冷暖房用空気を前記円筒状部材の下端から下降流として吹き出す空気吹出ノズルと、
前記大空間内の前記ループダクトと同一高さレベル又は低いレベルに配設される還気口と
を備えたことを特徴とする温度成層型空調システムにかかるものである。
The present invention is a loop duct arranged to form a closed loop as a whole at a set height level in a perimeter zone, which is a region where a heat load is transmitted from the outside of a building having a large space with a high ceiling inside,
A cooling coil for cooling the air and a hot water coil for heating the air, and an air conditioner for sending air for heating and cooling into the loop duct;
A cylindrical member inserted and arranged at a set pitch in the longitudinal direction on the lower surface of the loop duct, and the insertion length of the cylindrical member into the loop duct at the upper end opening parallel to the central axis of the loop duct An air blowing nozzle that blows out air for cooling and heating sent to the loop duct by the air conditioner as a downward flow from the lower end of the cylindrical member;
The present invention relates to a temperature stratified air conditioning system comprising a return air outlet disposed at the same height level or a low level as the loop duct in the large space.

上記手段によれば、以下のような作用が得られる。   According to the above means, the following operation can be obtained.

空調機から冷暖房用空気をループダクトへ送り込むと、冷暖房用空気は、空気吹出ノズルの円筒状部材の下端から下降流として吹き出される。   When air-conditioning air is sent from the air conditioner to the loop duct, the air-conditioning air is blown out as a downward flow from the lower end of the cylindrical member of the air blowing nozzle.

通常のダクトからの空気吹出ノズルは、ダクト内への差込長さを0[cm]とするような接続をするが、この場合、ダクト長手方向に直交する空気吹出ノズルの断面形状寸法を、空調機のダクトに対する接続箇所から、ダクト長手方向最遠箇所まで同じ形状、同じ寸法として均等に吹き出すのは著しく困難である。その原因として、以下の三点が考えられる。   The air blowing nozzle from the normal duct is connected so that the insertion length into the duct is 0 [cm]. In this case, the cross-sectional shape dimension of the air blowing nozzle perpendicular to the duct longitudinal direction is It is extremely difficult to blow out evenly as the same shape and the same dimension from the connection place to the duct of the air conditioner to the farthest place in the longitudinal direction of the duct. The following three points are considered as the cause.

その1)空調ダクトの元側に備わる空調機が内蔵する送風機から吐出される、全ての空気吹出口から吹き出す空気量の合算量を同じ断面積のダクト内を通過させるため、まだ空気吹出口から空気量が減少していないダクト元側は、ダクト末端と比較して高速となる。元側に設けた空気吹出口上方ダクト内のダクト延長方向速度が大、つまり動圧が大となり、そこまでの摩擦抵抗を無視すると、送風機で生じた全圧のうちのその位置における動圧が占める割合が大きく、トレードオフとしてダクトの周囲へ押し出す静圧は小さくなっている。よって、ダクト内静圧が小さいことにより元側の空気吹出口からの吹き出しが弱く、風量が小さくなる。   Part 1) Since the total amount of air discharged from the air blower built in the air conditioner provided on the original side of the air conditioning duct passes through the duct having the same cross-sectional area, it is still from the air outlet. The duct base side where the amount of air is not reduced becomes faster than the duct end. The duct extending direction speed in the air outlet upper duct provided on the original side is large, that is, the dynamic pressure is large, and if the frictional resistance up to that is ignored, the dynamic pressure at that position of the total pressure generated by the blower is The proportion of the occupancy is large, and the static pressure that pushes out around the duct is small as a trade-off. Therefore, since the static pressure in the duct is small, blowing from the air outlet on the original side is weak and the air volume is small.

その2)ダクトの延長方向に配置される各空気吹出口から空調空気の一部が流出していくと、その下流の空調ダクト内を流れる空気量が減少し、空気の流速が減少するものの、ダクトの長手方向直交断面形状が同じ、つまりダクト断面積が同じなので、動圧が小さくなっていくものの、全圧も空気量減少分小さくなっていくので、静圧が上昇しない。   2) When a part of the conditioned air flows out from each air outlet arranged in the duct extension direction, the amount of air flowing in the downstream air conditioning duct decreases, and the air flow velocity decreases. Since the longitudinal cross-sectional shapes of the ducts are the same, that is, the duct cross-sectional areas are the same, the dynamic pressure decreases, but the total pressure also decreases as the air amount decreases, so the static pressure does not increase.

その3)ダクトの元側から中間に掛けての空気吹出口から、期待している空気量が吹き出されないので、ダクト内に余分な空気が残存し、その下流にある空気吹出口の設計合計風量よりも大量の空気が、結局ダクトの末端近くまで持ち越され、該ダクトの閉鎖されている末端で空気の動圧が失われると、全圧が静圧に急激に変換され、前記ダクトの末端付近の空気吹出口から多量の空気が吹き出す。   3) Since the expected air volume is not blown out from the air outlet from the original side of the duct to the middle, excess air remains in the duct and the design total air volume of the downstream air outlet If a larger amount of air is eventually carried over to near the end of the duct and the dynamic pressure of the air is lost at the closed end of the duct, the total pressure is suddenly converted to static pressure, near the end of the duct. A large amount of air blows out from the air outlet.

上記のようなメカニズムを理由として、ダクトの長手方向に沿って不均一な吹出し風量となり、ダクトの末端近くからの吹出し風量が多いダクト装置となってしまうと考えられる。   Due to the above-described mechanism, it is considered that a non-uniform amount of blown air flows along the longitudinal direction of the duct, resulting in a duct device having a large amount of blown air from near the end of the duct.

ここで、前記空気吹出ノズルのループダクト内方への前記差込長さを0[cm]より大とした場合、ループダクト内を流れる空気が空気吹出ノズルの差込部分による影響を受け、上流側の流れが持ち上げられて空気吹出ノズルに流れ込み、その下流側に渦が発生し、これが大きな流路抵抗を生じさせることとなる。このため、ループダクト全長に亘る各空気吹出ノズルの位置で、ループダクト内を流れる空気の運動エネルギーである動圧から静圧への変換が進み、それぞれの空気吹出ノズルから所定の風量をループダクト長手方向と直交する方向に押し出す静圧が、各空気吹出ノズルの円筒状部材のループダクトの中心軸と平行な上端開口位置で得られて、各空気吹出ノズルで均一な吹き出し風量が得られることとなる。   Here, when the insertion length of the air blowing nozzle into the loop duct is larger than 0 [cm], the air flowing in the loop duct is affected by the insertion portion of the air blowing nozzle, and the upstream The flow on the side is lifted and flows into the air blowing nozzle, and a vortex is generated on the downstream side thereof, which causes a large flow resistance. For this reason, conversion from dynamic pressure, which is kinetic energy of air flowing in the loop duct, to static pressure proceeds at the position of each air blowing nozzle over the entire length of the loop duct, and a predetermined air volume is transferred from each air blowing nozzle to the loop duct. The static pressure pushed out in the direction perpendicular to the longitudinal direction is obtained at the upper end opening position parallel to the central axis of the loop duct of the cylindrical member of each air blowing nozzle, and a uniform blowing air volume is obtained at each air blowing nozzle It becomes.

この空気吹出ノズルは、円筒状部材の内径をφ60〜150[mm]とし、円筒状部材での通過風速を2〜7[m/s]としているので、前記空気吹出ノズル下端の高さを床面から2.3[m]以上の位置とすれば、居住者が座位で位置する1.1〜1.2[m]の高さ位置では、風速を0.5[m/s]未満とすることができる。よって、夏期冷房時、前記空気吹出ノズルの真下であっても、気流が肌に触れて不快と感じる、いわゆるドラフト感がほとんどなく、しかも、ゆっくりとした気流が床面に沿って形成されることにより、温度成層が形成される。   In this air blowing nozzle, the inner diameter of the cylindrical member is set to φ60 to 150 [mm], and the passing air speed in the cylindrical member is set to 2 to 7 [m / s]. If the position is 2.3 [m] or more from the surface, the wind speed is less than 0.5 [m / s] at a height of 1.1 to 1.2 [m] where the resident is seated. can do. Therefore, there is almost no so-called draft feeling that feels uncomfortable when the airflow touches the skin even during the cooling in summer, and a slow airflow is formed along the floor surface. Thus, temperature stratification is formed.

建物の外部から熱負荷が伝わる領域であるペリメータゾーンにループダクトを設定高さレベルに設置し、該ループダクトに前記均一に空気を吹き出す空気吹出ノズルを挿入配置することにより、吹出し当初は下降流であった気流がペリメータゾーンを包み込むように床に同速度で到達し、一部気流は床面に沿って、他の一部気流は床面にぶつかって少し上方へそれぞれ押し出し流れを形成する。そして、還気口がループダクトと同一高さか又は低いレベルに配設されるのでループダクト下方に冷気が澱むこととなる。   A loop duct is installed at a set height level in the perimeter zone, where heat load is transmitted from the outside of the building, and the air blow nozzle that blows out the air uniformly is inserted into the loop duct, so that the downward flow at the beginning of the blowout The airflow reaches the floor at the same speed so as to wrap around the perimeter zone, and a part of the airflow hits the floor surface and the other part of the airflow hits the floor surface to form a slightly upward flow. And since a return air port is arrange | positioned at the same height as a loop duct, or a low level, cold air will stagnate below a loop duct.

この結果、夏期冷房時の室内温度分布は、ループダクトより下層の作業エリアのみが冷房され、上層の人がいないエリアは冷房されないため、大きな省エネルギー効果が得られる。   As a result, the indoor temperature distribution during the summer cooling can be greatly reduced because only the work area below the loop duct is cooled and the area where there is no upper person is not cooled.

冬期暖房時も夏期冷房時と同じ風量で吹き出すので、前記空気吹出ノズルの真下であっても、前記ドラフト感がほとんどなく、しかも、冬期、建物の外壁から侵入しようとする冷気を、多数の空気吹出ノズルから吹き下ろす吹き出し風により形成される、建物内の壁面に沿ったカーテン状の暖房気流によって遮断することが可能となる。この結果、吹出ダクトから建物内へ暖房用空気を吹き出した際に、該暖房用空気が吹き出された直後から上昇するようなことが避けられ、足元に冷気溜りが生じにくくなって、足元まで快適な暖房が実現される。又、特許文献1に記載の温風暖房機は、重油やガス等の燃料を燃焼させて空気を加熱し、温風の温度を吹き出し直後で40[℃]以上130[℃]以下にするようになっているが、本発明の加熱は、45〜55[℃]の温水を熱媒とする温水コイルを用いて、暖房時における空気吹出ノズルからの温風の吹き出し温度は40[℃]未満でも暖房気流が成立することから、前記空調機としての要求は、熱媒となる温水を加熱してその温度を55[℃]まで上昇させて温水コイルへ導入すれば良いので、空調機と別体の加熱源としては、一般的なヒートポンプ熱源の利用が可能となる。更に本発明では、燃料の燃焼を必要としないので、1次エネルギー換算のエネルギー消費を大きく削減できる。   Since air is blown out in the same way as in summer cooling during winter heating, there is almost no draft feeling even underneath the air blowing nozzle, and in the winter, cold air that tries to invade from the outer wall of the building It can be blocked by a curtain-shaped heating airflow along the wall surface in the building, which is formed by the blowing air blown down from the blowing nozzle. As a result, when heating air is blown into the building from the blowout duct, it is avoided that the heating air rises immediately after it is blown out, and it is difficult for cold air to accumulate at the feet, making it comfortable to the feet. Heating is realized. Moreover, the warm air heater described in Patent Document 1 burns fuel such as heavy oil and gas to heat the air, and the temperature of the warm air is set to 40 [° C.] or more and 130 [° C.] or less immediately after blowing. However, the heating of the present invention uses a hot water coil using hot water of 45 to 55 [° C.] as a heat medium, and the temperature of hot air blown from the air blowing nozzle during heating is less than 40 [° C.]. However, since the heating airflow is established, the requirement for the air conditioner is that heating water as a heating medium is heated to 55 [° C.] and introduced into the hot water coil. As a body heat source, a general heat pump heat source can be used. Furthermore, in the present invention, since fuel combustion is not required, energy consumption in terms of primary energy can be greatly reduced.

一方、本発明では、夏期冷房時、設定高さレベルに設置されたループダクト下面の空気吹出ノズルから冷風を下降流として供給する方式であって、空気吹出ノズルから供給された冷風は、設定高さレベル以下の体積部分において室内に積極的に拡散しようとするため、ループダクト直下からの冷房が可能となる。即ち、冷房区域はループダクト高さに依存するため、ファンの空気搬送力に頼る機械換気として空気を空調機へ吸い込む還気口を、ループダクト高さまで又はそれ以下に下げたとしても、室内温度は、ループダクトが配設される高さまでは略一定となり、良質な垂直温度勾配が得られる。これにより、本発明では還気口から上部の熱気層を吸い込むことがないため、空調機の消費エネルギーを従来と比較して大幅に抑えることが可能となる。   On the other hand, in the present invention, during the summer cooling, the cooling air is supplied as a downward flow from the air blowing nozzle on the lower surface of the loop duct installed at the set height level, and the cold air supplied from the air blowing nozzle is Since it tries to actively diffuse into the room in the volume part below the level, cooling from directly under the loop duct becomes possible. In other words, since the cooling area depends on the loop duct height, even if the return air inlet for sucking air into the air conditioner is lowered to the loop duct height or lower as mechanical ventilation that relies on the air conveying force of the fan, the room temperature Is substantially constant at the height where the loop duct is disposed, and a good vertical temperature gradient is obtained. Thereby, in the present invention, since the upper hot air layer is not sucked from the return air port, the energy consumption of the air conditioner can be significantly reduced as compared with the conventional case.

つまり、従来の温度成層空調のように、温度成層が床上から天井直下にかけて一次直線の垂直温度勾配をなすのではなく、本発明では、床上からループダクトが配設される高さまでは空気温度が略一定、即ち垂直温度勾配がほとんどない状態であり、且つループダクトに勾配変化点を有し、それより上方へ向けてある勾配を有する一次直線的リニアな垂直温度勾配をなすような空気温度分布の状態になるので、還気口の位置を下げやすい温度成層が得られる。   In other words, unlike conventional temperature stratified air conditioning, the temperature stratification does not form a linear vertical temperature gradient from the floor directly below the ceiling.In the present invention, the air temperature is high at the height where the loop duct is disposed from the floor. Air temperature distribution that is substantially constant, i.e., has almost no vertical temperature gradient, has a gradient change point in the loop duct, and forms a linear linear vertical temperature gradient with a gradient upward. Therefore, a temperature stratification that makes it easy to lower the position of the return port is obtained.

しかも、本発明では、従来の空調システムのように、吹出ダクトを建物の床面レベルにその周方向へ所要間隔をあけて複数配備しなくて済み、ループダクトを床面から設定高さレベルに配設すれば良く、建物内部の温度や湿度のムラが生じにくくなると共に、前記吹出ダクトによってフロアスペースの一部が利用できなくなってしまう心配もなく、空間の有効活用が可能となり、非常に好ましい。   In addition, in the present invention, unlike the conventional air conditioning system, it is not necessary to provide a plurality of outlet ducts at the floor level of the building with a required interval in the circumferential direction, and the loop duct is set to the set height level from the floor surface. It is only necessary to dispose the structure, and it becomes difficult to cause uneven temperature and humidity inside the building, and it is possible to effectively use the space without worrying that a part of the floor space cannot be used by the blowout duct, which is very preferable. .

前記温度成層型空調システムにおいては、前記設定高さレベルが床面から2.5〜6[m]の範囲であるようにすることができる。   In the temperature stratified air conditioning system, the set height level may be in a range of 2.5 to 6 [m] from the floor surface.

又、前記温度成層型空調システムにおいては、前記建物の天井位置に天井排気口及び該天井排気口から建物内部の空気を外部へ排気する排気ファンを備え、夏期冷房時に排気ファンを所定の間隔で間欠運転するよう構成することができ、このようにすると、前記設定高さレベルより上方に形成される温度勾配を有する温度成層の最高温の空気を排気することが可能となり、熱溜まりを所定の温度に維持し、且つ前記設定高さレベルより下方の冷房区域の温度成層を乱さないようにすることが可能となる。   In the temperature stratified air conditioning system, the ceiling position of the building is provided with a ceiling exhaust port and an exhaust fan that exhausts the air inside the building from the ceiling exhaust port to the outside. In this way, it is possible to exhaust the highest temperature air in the temperature stratification having a temperature gradient formed above the set height level, so that the heat pool is set to a predetermined level. It is possible to maintain the temperature and not disturb the temperature stratification in the cooling area below the set height level.

更に又、前記温度成層型空調システムにおいては、前記空気吹出ノズルの円筒状部材外周面に雄ネジを切り、内周面に前記雄ネジと螺合する雌ネジが切られた固定部材を前記ループダクトの下面に穿設された孔に固着し、該固定部材に対し前記円筒状部材をねじ込むよう構成することができ、このようにすると、吹出口の構成が簡単であり、吹き出し量の調整も容易となり、ダクトの製造が安価に行えると共に、ダクト設置時や設置後の調整も容易に行える。   Furthermore, in the temperature stratified air conditioning system, the loop is provided with a fixing member in which a male screw is cut on the outer peripheral surface of the cylindrical member of the air blowing nozzle and a female screw that is screwed to the male screw is cut on the inner peripheral surface. The cylindrical member can be fixed to a hole formed in the lower surface of the duct and the cylindrical member can be screwed into the fixing member. In this way, the structure of the outlet is simple and the amount of blowout can be adjusted. This makes it easy to manufacture the duct at a low cost and allows easy adjustment during and after the installation of the duct.

本発明の温度成層型空調システムによれば、夏期冷房時には高さ方向に小さい体積の低温空気層を有する温度成層を形成することで充分な省エネルギー化を図り、且つ冬期暖房時には空調機を夏期と同じ風量で運転しながらコールドドラフトを抑制して足元の冷気溜りの発生を抑えつつ、建物内部の高さ方向に小さい体積領域を温度や湿度のムラなく均一に暖房空調することができ、更に、フロアスペースを最大限効率的に利用できるという優れた効果を奏し得る。   According to the temperature stratification type air conditioning system of the present invention, sufficient energy saving is achieved by forming a temperature stratification having a low-temperature air layer with a small volume in the height direction during cooling in summer, and the air conditioner is set in summer during heating in winter. While operating at the same air volume, it is possible to suppress the cold draft and suppress the occurrence of cold air accumulation at the foot, and to uniformly heat and air-condition a small volume area in the height direction inside the building without uneven temperature and humidity, An excellent effect that the floor space can be used as efficiently as possible can be obtained.

本発明の温度成層型空調システムの実施例を示す全体概要斜視図である。1 is an overall perspective view showing an embodiment of a temperature stratified air conditioning system of the present invention. 本発明の温度成層型空調システムの実施例を示す全体概要側面図である。1 is an overall schematic side view showing an embodiment of a temperature stratified air conditioning system of the present invention. 本発明の温度成層型空調システムの実施例を示す全体概要平面図である。1 is an overall schematic plan view showing an embodiment of a temperature stratified air conditioning system of the present invention. 本発明の温度成層型空調システムの実施例における空気吹出ノズルを示す断面図である。It is sectional drawing which shows the air blowing nozzle in the Example of the temperature stratification type air conditioning system of this invention. 本発明の温度成層型空調システムの実施例における夏期冷房時の気流と風速分布を示す実験データ図である。It is an experimental data figure which shows the airflow and wind speed distribution at the time of the summer cooling in the Example of the temperature stratification type air conditioning system of this invention. 本発明の温度成層型空調システムの実施例における冬期暖房時の気流と風速分布を示す実験データ図である。It is an experimental data figure which shows the airflow and wind speed distribution at the time of the winter season heating in the Example of the temperature stratification type air conditioning system of this invention. 本発明の温度成層型空調システムの実施例における夏期冷房時の室内温度分布を示す実験データ図である。It is an experimental data figure which shows the indoor temperature distribution at the time of the summer cooling in the Example of the temperature stratification type | formula air conditioning system of this invention. 本発明の温度成層型空調システムの実施例における冬期暖房時の室内温度分布を示す実験データ図である。It is an experimental data figure which shows indoor temperature distribution at the time of winter heating in the Example of the temperature stratification type | formula air conditioning system of this invention. (a)は本発明の温度成層型空調システムの実施例における夏期冷房時の室内温度勾配を示す線図、(b)は従来の空調システムの一例において排気口(還気口)の高さが高い場合の夏期冷房時の室内温度勾配を示す線図、(c)は従来の空調システムの一例において排気口(還気口)の高さが低い場合の夏期冷房時の室内温度勾配を示す線図である。(A) is a diagram which shows the indoor temperature gradient at the time of the summer cooling in the Example of the temperature stratification type air conditioning system of this invention, (b) is the height of an exhaust port (return air port) in an example of the conventional air conditioning system. FIG. 5C is a diagram showing the indoor temperature gradient during summer cooling when the temperature is high, and FIG. 6C is a line showing the indoor temperature gradient during summer cooling when the height of the exhaust port (return air port) is low in an example of a conventional air conditioning system. FIG. 本発明の温度成層型空調システムの実施例において、床上+1500[mm]の高さでの温度を基準とする各高さでの温度差が、還気口高さを1[m](ループダクト高さは3[m])、還気口高さを3[m](ループダクト高さも3[m])、還気口高さを6[m](ループダクト高さも6[m])で変化させた場合にどの程度異なるかを示す実験データ線図である。In the embodiment of the temperature stratified air conditioning system of the present invention, the temperature difference at each height based on the temperature at the height of +1500 [mm] above the floor results in a return air outlet height of 1 [m] (loop duct The height is 3 [m]), the return air port height is 3 [m] (the loop duct height is also 3 [m]), and the return air port height is 6 [m] (the loop duct height is also 6 [m]). It is an experimental data diagram which shows how much it is different when it changes by. 本発明の温度成層型空調システムの実施例において、還気口高さを1[m](ループダクト高さは3[m])、還気口高さを3[m](ループダクト高さも3[m])、還気口高さを6[m](ループダクト高さも6[m])で変化させた場合に、夏期冷房負荷が従来と比べどの程度削減されるかを示す実験データグラフである。In the embodiment of the temperature stratified air conditioning system of the present invention, the return air port height is 1 [m] (the loop duct height is 3 [m]) and the return air port height is 3 [m] (the loop duct height is also 3 [m]), experimental data showing how much the summer cooling load is reduced when the return air outlet height is changed to 6 [m] (the loop duct height is also 6 [m]). It is a graph. 従来の空調システムの一例を示す全体概要側面図である。It is a whole outline side view showing an example of the conventional air-conditioning system. 従来の空調システムの一例を示す全体概要平面図である。It is a whole outline top view showing an example of the conventional air-conditioning system. 従来の空調システムの一例における夏期冷房時の気流を示す側面図である。It is a side view which shows the airflow at the time of the summer cooling in an example of the conventional air conditioning system. 従来の空調システムの一例における冬期暖房時の気流を示す側面図である。It is a side view which shows the airflow at the time of winter heating in an example of the conventional air conditioning system.

以下、本発明の実施の形態を添付図面を参照して説明する。   Embodiments of the present invention will be described below with reference to the accompanying drawings.

図1〜図11は本発明の温度成層型空調システムの実施例であって、図中、図12〜図15と同一の符号を付した部分は同一物を表わしており、建物1内の外部との境界となるペリメータゾーンにおける設定高さレベルHに全体として閉ループを形成するようループダクト5を配設し、空気を冷却する冷却コイル(図示せず)及び空気を加熱する温水コイル(図示せず)が内蔵され前記ループダクト5へ冷暖房用空気を供給ダクト6を介して送り込むための空調機3を、前記ループダクト5と同一高さレベルに設け、前記ループダクト5の下面にその長手方向へ設定ピッチPで空気吹出ノズル7を挿入配置し、前記建物1内の空気を前記空調機3に吸い込むよう前記ループダクト5と同一高さレベルに還気口4を配設したものである。   1 to 11 show an embodiment of a temperature stratified air conditioning system according to the present invention. In the figure, the parts denoted by the same reference numerals as those in FIGS. The loop duct 5 is disposed so as to form a closed loop as a whole at the set height level H in the perimeter zone that is the boundary between the cooling coil (not shown) for cooling the air and the hot water coil (not shown) for heating the air. And an air conditioner 3 for sending air for heating and cooling to the loop duct 5 through the supply duct 6 at the same height level as the loop duct 5, and the longitudinal direction on the lower surface of the loop duct 5 The air blowing nozzles 7 are inserted and arranged at a set pitch P, and the return air ports 4 are arranged at the same height level as the loop duct 5 so as to suck the air in the building 1 into the air conditioner 3.

前記設定高さレベルHは、床面から2.5〜6[m]の範囲とし、又、前記設定ピッチPは、ループダクト5の全長、その他の条件に応じて適宜選定すれば良く、例えば、500〜2000[mm]とすることができる。   The set height level H is in the range of 2.5 to 6 [m] from the floor surface, and the set pitch P may be appropriately selected according to the overall length of the loop duct 5 and other conditions. 500 to 2000 [mm].

前記建物1の天井位置には、天井排気口10及び該天井排気口10から建物1内部の空気を外部へ排気する排気ファン11を備え、夏期冷房時に排気ファン11を所定の間隔で間欠運転するよう構成してある。尚、前記排気ファン11の間欠運転の間隔は、予め夏期に本発明の温度成層型空調システムについて排気ファン11を停止したまま運転し、天井近傍の温度がある温度に達するまでの温度上昇速度を計測しておき、該温度上昇速度に基づいて排気ファン11の運転停止タイマ時間を決定したり、或いは天井直下に形成される温度成層の高温空気部分体積に見合う量の空気を換気するのに必要な換気回数に基づいて必要な時間を決定したりすることができ、例えば、前記排気ファン11を1時間に一回、例えば天井部の最高温度から2[℃]低い温度層までの高温空気部分体積の0.5回分体積風量を、2.5回分を一時間で換気できる容量の排気ファン11にて12分かけて排気する相当量といった形で設定すれば良い。0.5回分体積風量をゆっくり排気することにより、天井部の最高温度からそれより1[℃]低い空気の大部分は排出され、ループダクト5の所定の設定高さより高い位置の温度成層は維持できるからである。又、前記建物1の側面には、排気によって建物1内が負圧になってしまうことを防止するための外気取入口12を設けてある。   The ceiling position of the building 1 is provided with a ceiling exhaust port 10 and an exhaust fan 11 that exhausts the air inside the building 1 to the outside from the ceiling exhaust port 10, and the exhaust fan 11 is intermittently operated at a predetermined interval during cooling in summer. It is configured as follows. The interval of intermittent operation of the exhaust fan 11 is the temperature increase rate until the temperature in the vicinity of the ceiling reaches a certain temperature when the exhaust fan 11 is operated in advance in the summer with the exhaust fan 11 stopped in the summer. Measured and necessary to determine the stop timer time of the exhaust fan 11 based on the temperature rise rate or to ventilate an amount of air commensurate with the hot air partial volume of the temperature stratification formed immediately below the ceiling The required time can be determined based on the number of times of ventilation. For example, the exhaust fan 11 is turned once an hour, for example, a high-temperature air portion from the maximum temperature of the ceiling to a temperature layer 2 [° C.] lower The volume air volume for 0.5 times of volume may be set in the form of a considerable amount of air exhausted over 12 minutes by the exhaust fan 11 having a capacity that can ventilate 2.5 times in one hour. By slowly exhausting the volume air volume for 0.5 times, most of the air that is 1 [° C] lower than the maximum temperature of the ceiling is exhausted, and the temperature stratification at a position higher than the predetermined set height of the loop duct 5 is maintained. Because it can. In addition, an outside air intake 12 is provided on the side surface of the building 1 to prevent the inside of the building 1 from becoming negative pressure due to exhaust.

前記空気吹出ノズル7は、図4に示す如く、外周面に雄ネジが切られた円筒状部材7aと、該円筒状部材7aの下端に設けられた吹出口7bとからなり、内周面に前記雄ネジと螺合する雌ネジが切られた固定部材8を前記ループダクト5の下面に穿設された孔9に固着し、該固定部材8に対し前記円筒状部材7aをねじ込むことにより、該円筒状部材7aの前記ループダクト5の中心軸と平行な上端開口のループダクト5内方への差込長さSを調節自在に設け、前記空調機3によって前記ループダクト5へ送り込まれた冷暖房用空気を前記円筒状部材7aの下端に設けられた吹出口7bから下降流として吹き出すようにしてある。   As shown in FIG. 4, the air blowing nozzle 7 includes a cylindrical member 7a having a male screw cut on the outer peripheral surface, and an air outlet 7b provided at the lower end of the cylindrical member 7a. By fixing a fixing member 8 having a female screw threadedly engaged with the male screw to a hole 9 drilled in the lower surface of the loop duct 5, and screwing the cylindrical member 7a into the fixing member 8, The insertion length S of the cylindrical member 7a into the loop duct 5 inside the upper end opening parallel to the central axis of the loop duct 5 is provided to be adjustable, and the cylindrical member 7a is fed into the loop duct 5 by the air conditioner 3. Air for cooling and heating is blown out as a downward flow from an outlet 7b provided at the lower end of the cylindrical member 7a.

次に、上記実施例の作用を説明する。   Next, the operation of the above embodiment will be described.

空調機3から供給ダクト6を介して冷暖房用空気をループダクト5へ送り込むと、冷暖房用空気は、空気吹出ノズル7の円筒状部材7aの下端に設けられた吹出口7bから下降流として吹き出される。   When air for cooling and heating is sent from the air conditioner 3 to the loop duct 5 through the supply duct 6, the air for cooling and heating is blown out as a downward flow from the air outlet 7 b provided at the lower end of the cylindrical member 7 a of the air blowing nozzle 7. The

ここで、仮に、前記空気吹出ノズル7の円筒状部材7aの差込長さS(図4参照)を0[cm]とした場合、ループダクト5内におけるその下面に近い部分の空気だけが前記空気吹出ノズル7に流れ、前記ループダクト5の下面より上の流れは空気吹出ノズル7の影響をほとんど受けずに通過するため、ループダクト5内の静圧が小さくなり、前記空気吹出ノズル7からの吹き出しが弱くなって吹き出し風量が小さくなるのに対し、前記差込長さSを0[cm]より大とした場合、ループダクト5内を流れる空気が空気吹出ノズル7の差込部分による影響を受け、上流側の流れが持ち上げられて空気吹出ノズル7に流れ込み、その下流側に渦が発生し、これが大きな流路抵抗を生じさせることとなる。このため、ループダクト5全長に亘る各空気吹出ノズル7の位置で、ループダクト5内を流れる空気の運動エネルギーである動圧から静圧への変換が進み、それぞれの空気吹出ノズル7から所定の風量をループダクト5の長手方向と直交する方向に押し出す静圧が、各空気吹出ノズル7の円筒状部材7aのループダクト5の中心軸と平行な上端開口位置で得られて、各空気吹出ノズル7で均一な吹き出し風量が得られることとなる。   Here, if the insertion length S (see FIG. 4) of the cylindrical member 7a of the air blowing nozzle 7 is set to 0 [cm], only the air near the lower surface in the loop duct 5 is the air. The flow through the air blowing nozzle 7 and the flow above the lower surface of the loop duct 5 passes almost without being affected by the air blowing nozzle 7, so that the static pressure in the loop duct 5 is reduced, and the air blowing nozzle 7 However, when the insertion length S is greater than 0 [cm], the air flowing in the loop duct 5 is affected by the insertion portion of the air blowing nozzle 7. In response, the upstream flow is lifted and flows into the air blowing nozzle 7, and a vortex is generated on the downstream side thereof, which causes a large flow path resistance. For this reason, at the position of each air blowing nozzle 7 over the entire length of the loop duct 5, conversion from dynamic pressure, which is kinetic energy of air flowing in the loop duct 5, to static pressure proceeds, and each air blowing nozzle 7 generates a predetermined amount. A static pressure that pushes the air volume in a direction orthogonal to the longitudinal direction of the loop duct 5 is obtained at the upper end opening position parallel to the central axis of the loop duct 5 of the cylindrical member 7a of each air blowing nozzle 7, and each air blowing nozzle 7, a uniform blown air volume can be obtained.

因みに、前記ループダクト5内の風速分布は、空気が進行する方向と直交する断面において、ループダクト5を構成する上下面並びに左右側面に近い箇所では内面の摩擦抵抗により低速となる傾向を示し、ループダクト5内面直近でほぼ風速が0になり、ループダクト5の内部の中心部までは風速が増加する傾向を示すため、差込長さSは、0[cm]より長くループダクト5の内部高さの1/2(中心線までの距離)以下の範囲であれば良い。   Incidentally, the wind speed distribution in the loop duct 5 shows a tendency that the cross section perpendicular to the direction in which the air travels tends to become low speed due to the frictional resistance of the inner surface at locations close to the upper and lower surfaces and the left and right side surfaces constituting the loop duct 5. Since the wind speed is almost zero immediately near the inner surface of the loop duct 5 and the wind speed tends to increase up to the central part inside the loop duct 5, the insertion length S is longer than 0 [cm] and the inside of the loop duct 5 is increased. It may be in the range of 1/2 or less of the height (distance to the center line).

そして、実験装置として製作した断面が幅70[cm]、高さ40[cm]の矩形形状で全長が略70[m]のループダクト5において、内径がφ60[mm]で前記設定ピッチPを2000[mm]とした空気吹出ノズル7の差込長さSを、10[cm]にした場合と0[cm]にした場合とで、各空気吹出ノズル7毎の吹出量を計測する実験を行ったところ、差込長さSが0[cm]の場合は各吹出口7bからの吹出量にバラつきが見られるのに対し、差込長さSが10[cm]の場合は吹出量にバラつきはほとんど見られず略一定値となることが確認されている。尚、前記空調機3からの送風量を9800[m3/h]にした場合、各空気吹出ノズル7からの吹出量はおよそ200[m3/h]となり、前記空調機3からの送風量を4900[m3/h]にした場合、各空気吹出ノズル7からの吹出量はおよそ100[m3/h]となった。又、空気吹出ノズル7の円筒状部材7aの内径をφ60〜150[mm]とし、円筒状部材7aでの通過風速を2〜7[m/s]としているので、前記空気吹出ノズル7下端の高さを床面から2.3[m]以上の位置とすれば、居住者が座位で位置する1.1〜1.2[m]の高さ位置では、風速を0.5[m/s]未満とすることができる。 Then, in the loop duct 5 having a rectangular cross section with a width of 70 [cm] and a height of 40 [cm] and an overall length of about 70 [m] manufactured as an experimental apparatus, the inner diameter is φ60 [mm] and the set pitch P is set. An experiment for measuring the amount of air blown for each air blowing nozzle 7 when the insertion length S of the air blowing nozzle 7 of 2000 [mm] is 10 [cm] and when it is 0 [cm]. As a result, when the insertion length S is 0 [cm], the blowout amount from each outlet 7b varies, whereas when the insertion length S is 10 [cm], the blowout amount is increased. It has been confirmed that the variation is almost constant with almost no variation. When the air flow rate from the air conditioner 3 is 9800 [m 3 / h], the air flow rate from each air blowing nozzle 7 is approximately 200 [m 3 / h], and the air flow rate from the air conditioner 3 Was 4900 [m 3 / h], the amount of air blown from each air blowing nozzle 7 was approximately 100 [m 3 / h]. Moreover, since the internal diameter of the cylindrical member 7a of the air blowing nozzle 7 is set to φ60 to 150 [mm] and the passing air speed at the cylindrical member 7a is set to 2 to 7 [m / s], the lower end of the air blowing nozzle 7 is set. If the height is 2.3 [m] or more from the floor, the wind speed is 0.5 [m / m] at the height of 1.1 to 1.2 [m] where the occupant is seated. s].

図5は本発明の温度成層型空調システムの実施例における夏期冷房時の気流と風速分布を示す実験データ図であって、前記ループダクト5の設定高さレベルHをH=5[m]とし、前記空気吹出ノズル7からの吹出量がおよそ200[m3/h]である場合、前記ループダクト5の下面から1000[mm]程度下がった位置(床面から4[m]の高さ位置)での風速は、およそ2.73[m/s]であるが、空気吹出ノズル7の真下であっても、床面から1.5[m]の高さ位置での風速は、およそ0.29[m/s]となり、床面から0.5[m]の高さ位置での風速は、およそ0.26[m/s]となり、気流が肌に触れて不快と感じる、いわゆるドラフト感がほとんどなく、しかも、風速がおよそ0.08[m/s]程度のゆっくりとした気流が床面に沿って形成されることにより、温度成層が形成される。この結果、夏期冷房時の室内温度分布は、図7に示すようになり、下層の作業エリアのみが冷房され、上層の人がいないエリアは冷房されないため、大きな省エネルギー効果が得られる。尚、図5のデータはH=5[m]のものであるが、H=2.5〜6[m]の範囲であれば、夏期冷房時の気流と風速分布は、上述と同じような傾向を示すものとなる。 FIG. 5 is an experimental data diagram showing airflow and wind speed distribution during summer cooling in an embodiment of the temperature stratified air conditioning system of the present invention, where the set height level H of the loop duct 5 is H = 5 [m]. When the air blowing amount from the air blowing nozzle 7 is approximately 200 [m 3 / h], the position is lowered by about 1000 [mm] from the lower surface of the loop duct 5 (height position of 4 [m] from the floor surface). ) Is approximately 2.73 [m / s], but the wind speed at a height of 1.5 [m] from the floor is approximately 0 even under the air blowing nozzle 7. .29 [m / s], and the wind speed at a height of 0.5 [m] from the floor surface is about 0.26 [m / s], so that the airflow touches the skin and feels uncomfortable. There is almost no feeling and the wind speed is about 0.08 [m / s] slowly The air flow by being formed along the floor surface, the temperature stratification is formed. As a result, the indoor temperature distribution during the cooling in summer is as shown in FIG. 7, and only the lower work area is cooled, and the area without the upper person is not cooled, so that a large energy saving effect is obtained. The data in FIG. 5 is for H = 5 [m]. However, if H = 2.5 to 6 [m], the airflow and wind speed distribution during the summer cooling are the same as described above. It shows a tendency.

図6は本発明の温度成層型空調システムの実施例における冬期暖房時の気流と風速分布を示す実験データ図であって、前述と同様、前記ループダクト5の設定高さレベルHをH=5[m]とし、前記空気吹出ノズル7からの吹出量がおよそ200[m3/h]である場合、前記ループダクト5の下面から1000[mm]程度下がった位置(床面から4[m]の高さ位置)での風速は、およそ3.11[m/s]であるが、空気吹出ノズル7の真下であっても、床面から1.5[m]の高さ位置での風速は、およそ0.24[m/s]となり、床面から0.5[m]の高さ位置での風速は、およそ0.27[m/s]となり、前記ドラフト感がほとんどなく、しかも、冬期、建物1の外壁から侵入しようとする冷気を、建物1内の壁面に沿ったカーテン状の暖房気流によって遮断することが可能となる。この結果、図15に示されるように、給気ユニット2から建物1内へ暖房用空気を吹き出した際に、該暖房用空気が吹き出された直後から上昇するようなことが避けられ、足元に冷気溜りが生じにくくなって、本実施例における冬期暖房時の室内温度分布は、図8に示すようになり、足元まで快適な暖房が実現される。尚、図6のデータはH=5[m]のものであるが、H=2.5〜6[m]の範囲であれば、冬期暖房時の気流と風速分布は、上述と同じような傾向を示すものとなる。 FIG. 6 is an experimental data diagram showing the airflow and wind speed distribution during winter heating in the embodiment of the temperature stratified air conditioning system of the present invention, and the set height level H of the loop duct 5 is set to H = 5 as described above. [M], and when the air blowing amount from the air blowing nozzle 7 is approximately 200 [m 3 / h], the position is lowered by about 1000 [mm] from the lower surface of the loop duct 5 (4 [m] from the floor surface). The wind speed at a height position of 1.5 [m / s] is approximately 3.11 [m / s], but the wind speed at a height position of 1.5 [m] from the floor is even just below the air blowing nozzle 7. Is approximately 0.24 [m / s], and the wind speed at a height of 0.5 [m] from the floor surface is approximately 0.27 [m / s], and there is almost no draft feeling. In the winter, cool air that tries to invade from the outer wall of the building 1 along the wall in the building 1 It can be cut off by the curtain of heated air flow. As a result, as shown in FIG. 15, when heating air is blown out from the air supply unit 2 into the building 1, the heating air is prevented from rising immediately after being blown out. The cold air accumulation is less likely to occur, and the indoor temperature distribution during the winter heating in the present embodiment is as shown in FIG. 8, and comfortable heating to the feet is realized. The data in FIG. 6 is for H = 5 [m]. However, if H is in the range of 2.5 to 6 [m], the airflow and the wind speed distribution during winter heating are the same as described above. It shows a tendency.

又、特許文献1に記載の温風暖房機は、重油やガス等の燃料を燃焼させて空気を加熱し、温風の温度を吹き出し直後で40[℃]以上130[℃]以下にするようになっているが、本実施例の加熱は、45〜55[℃]の温水を熱媒とする温水コイルを用いて、暖房時における空気吹出ノズルからの温風の吹き出し温度は40[℃]未満でも暖房気流が成立することから、前記空調機としての要求は、熱媒となる温水を加熱してその温度を55[℃]まで上昇させて温水コイルへ導入すれば良いので、空調機と別体の加熱源としては、一般的なヒートポンプ熱源の利用が可能となる。更に本実施例では、燃料の燃焼を必要としないので、1次エネルギー換算のエネルギー消費を大きく削減できる。   Moreover, the warm air heater described in Patent Document 1 burns fuel such as heavy oil and gas to heat the air, and the temperature of the warm air is set to 40 [° C.] or more and 130 [° C.] or less immediately after blowing. However, the heating of the present embodiment uses a hot water coil using hot water of 45 to 55 [° C.] as a heat medium, and the temperature of hot air blown from the air blowing nozzle during heating is 40 [° C.]. Since the heating airflow is established even if the temperature is less than the temperature, the requirement for the air conditioner is to heat the hot water serving as a heat medium and raise its temperature to 55 [° C.] and introduce it into the hot water coil. As a separate heating source, a general heat pump heat source can be used. Furthermore, in this embodiment, since fuel combustion is not required, the energy consumption in terms of primary energy can be greatly reduced.

一方、図12〜図15に示される如く、建物1内の床面レベルに給気ユニット2を複数配備すると共に(図13参照)、該給気ユニット2の上方に、前記建物1内の空気を前記空調機3に吸い込むための還気口4を設けるようにした従来の空調システムにおいて、仮に、図9(c)に示されるように、排気口や還気口4を吹出口と同等の高さ(例えば、3[m]前後)に設けると、垂直温度の勾配が急となって、ISO7730の規定を満たさない場合があり、室内は良好な環境とならないことから、前記排気口や還気口4は天井近くの高さ(図9(b)に示されるように、例えば、6[m]程度)に配設せざるを得ない。そして、このように還気口4を天井近くに設置すると、室内の上部熱気を吸い込むこととなり、空調機3の消費エネルギーが大きくなるという不具合を有していたわけである。しかし、本実施例では、夏期冷房時、高さ2.5〜6[m]の位置に設置されたループダクト5下面の空気吹出ノズル7の吹出口7bから冷風を下降流として供給する方式であって、空気吹出ノズル7の吹出口7bから供給された冷風は、2[m]ほど下降すると、積極的に室内に混合拡散しようとするため、ループダクト5直下からの冷房が可能となる。即ち、冷房区域はループダクト5高さに依存するため、機械的に空気を空調機3へ吸い込む還気口4をループダクト5高さまで下げたとしても、図9(a)に示すように、室内温度は、ループダクト5が配設される3[m]の高さまでは略一定となり、良質な垂直温度勾配が得られる。これにより、本実施例では還気口4から上部の熱気層を吸い込むことがないため、空調機3の消費エネルギーを従来と比較して大幅に抑えることが可能となる。   On the other hand, as shown in FIGS. 12 to 15, a plurality of air supply units 2 are arranged at the floor level in the building 1 (see FIG. 13), and the air in the building 1 is above the air supply unit 2. In the conventional air conditioning system in which a return air port 4 for sucking air into the air conditioner 3 is provided, as shown in FIG. 9C, the exhaust port and the return air port 4 are equivalent to the air outlet. If it is installed at a height (for example, around 3 [m]), the gradient of the vertical temperature will become steep and may not meet the requirements of ISO7730. The air vent 4 must be disposed at a height near the ceiling (for example, about 6 [m] as shown in FIG. 9B). And if the return air port 4 is installed near the ceiling in this way, the indoor upper air is sucked in, and the energy consumption of the air conditioner 3 is increased. However, in the present embodiment, during cooling in summer, cold air is supplied as a downward flow from the outlet 7b of the air outlet nozzle 7 on the lower surface of the loop duct 5 installed at a height of 2.5 to 6 [m]. Thus, when the cool air supplied from the air outlet 7b of the air blowing nozzle 7 descends by about 2 [m], it actively mixes and diffuses into the room, so that cooling from directly below the loop duct 5 is possible. That is, since the cooling area depends on the height of the loop duct 5, even if the return air inlet 4 that mechanically sucks air into the air conditioner 3 is lowered to the height of the loop duct 5, as shown in FIG. The room temperature is substantially constant at a height of 3 [m] where the loop duct 5 is disposed, and a good vertical temperature gradient is obtained. Thereby, in the present embodiment, since the upper hot air layer is not sucked from the return air port 4, the energy consumption of the air conditioner 3 can be greatly suppressed as compared with the conventional case.

前記建物1の天井位置には、天井排気口10及び該天井排気口10から建物1内部の空気を外部へ排気する排気ファン11を備え、夏期冷房時に排気ファン11を所定の間隔(例えば、12分/1時間の運転)で間欠運転するよう構成してあるので、前記設定高さレベルHより上方に形成される温度勾配を有する温度成層の最高温の空気をゆっくり排気することが可能となり、例えば天井部の最高温度から2[℃]低い温度層までの高温空気である熱溜まりを所定の温度に維持し、且つ前記設定高さレベルHより下方の冷房区域の温度成層を乱さないようにすることが可能となる。   The ceiling position of the building 1 is provided with a ceiling exhaust port 10 and an exhaust fan 11 that exhausts the air inside the building 1 to the outside from the ceiling exhaust port 10, and the exhaust fan 11 is separated at a predetermined interval (for example, 12 It is possible to slowly exhaust the highest temperature air in the temperature stratification having a temperature gradient formed above the set height level H. For example, a heat reservoir, which is high-temperature air from the maximum temperature of the ceiling to a temperature layer 2 [° C.] lower, is maintained at a predetermined temperature, and temperature stratification in the cooling area below the set height level H is not disturbed. It becomes possible to do.

又、図10は本実施例において、前記還気口4の高さをループダクト5と同じ高さとして、3[m]と6[m]で変化させ、もう一つはループダクト5の高さを3[m]とし還気口4の高さを1[m]とした場合に、床上+1500[mm]の高さでの温度を基準とする各高さでの温度差がどの程度異なるかを示す実験データ線図であって、この図10からも明らかなように、還気口4の高さを3[m]と6[m]で変化させても、床上+1500[mm]の高さでの温度を基準とする各高さでの温度差は略等しくなることが確認され、更に、ループダクト5の高さを3[m]のまま還気口4の高さを1[m]に低下させても、床上+1500[mm]の高さでの温度を基準とする各高さでの温度差は略等しくなることが確認されている。   FIG. 10 shows that in this embodiment, the height of the return air port 4 is the same as that of the loop duct 5 and is changed at 3 [m] and 6 [m], and the other is the height of the loop duct 5. When the height is 3 [m] and the height of the return port 4 is 1 [m], how much the temperature difference at each height is different from the temperature at the height of +1500 [mm] on the floor FIG. 10 is an experimental data diagram showing that, even if the height of the return port 4 is changed between 3 [m] and 6 [m], as shown in FIG. It is confirmed that the temperature difference at each height with respect to the temperature at the height is substantially equal, and further, the height of the return air port 4 is set to 1 [with the height of the loop duct 5 being 3 [m]. m], it has been confirmed that the temperature difference at each height with respect to the temperature at the height of +1500 [mm] on the floor is substantially equal.

更に又、図11は本実施例において、前記還気口4の高さをループダクト5と同じ高さとして、3[m]と6[m]で変化させ、もう一つはループダクト5の高さを3[m]とし還気口4の高さを1[m]とした場合に、夏期冷房負荷が従来と比べどの程度削減されるかを示す実験データグラフであって、全館空調となる従来タイプのものでは空調機3の処理全熱量がおよそ66[kW]となるのに対し、還気口4の高さを6[m]にすると、空調機3の処理全熱量はおよそ47[kW]となり、従来に比べおよそ29%の削減効果が得られ、還気口4の高さを3[m]にすると、空調機3の処理全熱量はおよそ40[kW]となり、前記還気口4の高さを6[m]にした場合より更に9%削減されて従来に比べおよそ38%の削減効果が得られることが確認され、更に、ループダクト5の高さを3[m]とし還気口4の高さを1[m]とすると冷房区域をより体積縮小できることから、従来に比べておよそ40%の削減効果があることが確認されている。   Furthermore, FIG. 11 shows that in this embodiment, the height of the return air port 4 is set to the same height as that of the loop duct 5 and is changed between 3 [m] and 6 [m]. It is an experimental data graph showing how much the summer cooling load is reduced compared to the conventional case when the height is 3 [m] and the height of the return vent 4 is 1 [m]. In the conventional type, the total amount of heat processed by the air conditioner 3 is about 66 [kW], whereas when the height of the return port 4 is 6 [m], the total amount of heat processed by the air conditioner 3 is about 47. [KW], a reduction effect of about 29% compared to the conventional case is obtained. When the height of the return air port 4 is set to 3 [m], the total amount of heat processed by the air conditioner 3 is about 40 [kW], and the return It is reduced by 9% compared to the case where the height of the mouth 4 is set to 6 [m], and a reduction effect of about 38% is obtained compared to the conventional case. Furthermore, if the height of the loop duct 5 is 3 [m] and the height of the return air port 4 is 1 [m], the cooling area can be further reduced in volume, so that it is approximately 40% of the conventional case. It has been confirmed that there is a reduction effect.

しかも、本実施例では、図12及び図13に示される従来の空調システムのように、給気ユニット2を建物1の床面レベルにその周方向へ所要間隔をあけて複数配備しなくて済み、ループダクト5を床面から2.5〜6[m]の範囲に配設すれば良く、建物1内部の温度や湿度のムラが生じにくくなると共に、前記給気ユニット2によってフロアスペースの一部が利用できなくなってしまう心配もなく、空間の有効活用が可能となり、非常に好ましい。   In addition, in this embodiment, as in the conventional air conditioning system shown in FIGS. 12 and 13, it is not necessary to provide a plurality of air supply units 2 at the floor level of the building 1 with a required interval in the circumferential direction. The loop duct 5 may be disposed in a range of 2.5 to 6 [m] from the floor surface, and unevenness in temperature and humidity inside the building 1 is less likely to occur, and the air supply unit 2 provides a floor space. It is possible to use the space effectively without worrying that the part cannot be used, which is very preferable.

こうして、夏期冷房時には高さ方向に小さい体積の低温空気層を有する温度成層を形成することで充分な省エネルギー化を図り、且つ冬期暖房時には空調機3を夏期と同じ風量で運転しながらコールドドラフトを抑制して足元の冷気溜りの発生を抑えつつ、建物1内部の高さ方向に小さい体積領域を温度や湿度のムラなく均一に暖房空調することができ、更に、フロアスペースを最大限効率的に利用できる   In this way, sufficient energy saving is achieved by forming a temperature stratification having a low-temperature air layer with a small volume in the height direction during cooling in summer, and during the heating in winter, the cold draft is operated while operating the air conditioner 3 with the same air volume as in summer. While suppressing the occurrence of cold accumulation at the feet, it is possible to uniformly heat and air-condition a small volume area in the height direction inside the building 1 without unevenness of temperature and humidity, and to maximize floor space efficiently Available

尚、本発明の温度成層型空調システムは、上述の実施例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The temperature stratified air conditioning system of the present invention is not limited to the above-described embodiments, and various modifications can be made without departing from the scope of the present invention.

1 建物
3 空調機
4 還気口
5 ループダクト
7 空気吹出ノズル
7a 円筒状部材
7b 吹出口
8 固定部材
9 孔
10 天井排気口
11 排気ファン
H 設定高さレベル
P 設定ピッチ
S 差込長さ
DESCRIPTION OF SYMBOLS 1 Building 3 Air conditioner 4 Return air port 5 Loop duct 7 Air blower nozzle 7a Cylindrical member 7b Air outlet 8 Fixed member 9 Hole 10 Ceiling exhaust port 11 Exhaust fan H Set height level P Set pitch S Insert length

Claims (4)

天井の高い大空間を内部に有する建物の外部から熱負荷が伝わる領域であるペリメータゾーンにおける設定高さレベルに全体として閉ループを形成するよう配設されるループダクトと、
空気を冷却する冷却コイル及び空気を加熱する温水コイルが内蔵され前記ループダクトへ冷暖房用空気を送り込むための空調機と、
前記ループダクトの下面にその長手方向へ設定ピッチで挿入配置される円筒状部材を有し、該円筒状部材の前記ループダクトの中心軸と平行な上端開口のループダクト内方への差込長さを調節自在に設け、前記空調機によって前記ループダクトへ送り込まれた冷暖房用空気を前記円筒状部材の下端から下降流として吹き出す空気吹出ノズルと、
前記大空間内の前記ループダクトと同一高さレベル又は低いレベルに配設される還気口と
を備えたことを特徴とする温度成層型空調システム。
A loop duct arranged to form a closed loop as a whole at a set height level in the perimeter zone, which is a region where heat load is transmitted from the outside of the building having a large space with a high ceiling inside;
A cooling coil for cooling the air and a hot water coil for heating the air, and an air conditioner for sending air for heating and cooling into the loop duct;
A cylindrical member inserted and arranged at a set pitch in the longitudinal direction on the lower surface of the loop duct, and the insertion length of the cylindrical member into the loop duct at the upper end opening parallel to the central axis of the loop duct An air blowing nozzle that blows out air for cooling and heating sent to the loop duct by the air conditioner as a downward flow from the lower end of the cylindrical member;
Temperature stratified air conditioning system which is characterized in that a return air opening is disposed in the loop duct and flush level or low level of the large space.
前記設定高さレベルが床面から2.5〜6[m]の範囲である請求項1記載の温度成層型空調システム。   The temperature-stratified air conditioning system according to claim 1, wherein the set height level is in a range of 2.5 to 6 [m] from the floor surface. 前記建物の天井位置に天井排気口及び該天井排気口から建物内部の空気を外部へ排気する排気ファンを備え、夏期冷房時に排気ファンを所定の間隔で間欠運転するよう構成した請求項1又は2記載の温度成層型空調システム。   3. A ceiling exhaust port and an exhaust fan for exhausting air inside the building from the ceiling exhaust port to the outside at the ceiling position of the building, wherein the exhaust fan is intermittently operated at predetermined intervals during cooling in summer. The temperature stratified air conditioning system described. 前記空気吹出ノズルの円筒状部材外周面に雄ネジを切り、内周面に前記雄ネジと螺合する雌ネジが切られた固定部材を前記ループダクトの下面に穿設された孔に固着し、該固定部材に対し前記円筒状部材をねじ込むよう構成した請求項1〜3のいずれか一項に記載の温度成層型空調システム。   A male screw is cut on the outer peripheral surface of the cylindrical member of the air blowing nozzle, and a fixing member with a female screw threaded on the inner peripheral surface is fixed to a hole formed in the lower surface of the loop duct. The temperature stratification type air conditioning system according to any one of claims 1 to 3, wherein the cylindrical member is screwed into the fixing member.
JP2012137577A 2012-06-19 2012-06-19 Temperature stratified air conditioning system Active JP6306279B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012137577A JP6306279B2 (en) 2012-06-19 2012-06-19 Temperature stratified air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012137577A JP6306279B2 (en) 2012-06-19 2012-06-19 Temperature stratified air conditioning system

Publications (2)

Publication Number Publication Date
JP2014001892A JP2014001892A (en) 2014-01-09
JP6306279B2 true JP6306279B2 (en) 2018-04-04

Family

ID=50035234

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012137577A Active JP6306279B2 (en) 2012-06-19 2012-06-19 Temperature stratified air conditioning system

Country Status (1)

Country Link
JP (1) JP6306279B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015194303A (en) * 2014-03-31 2015-11-05 三機工業株式会社 Thermal stratification type air conditioning system
JP6262313B1 (en) * 2016-10-31 2018-01-17 新菱冷熱工業株式会社 Air conditioning system for large spaces
JP2019070495A (en) * 2017-10-11 2019-05-09 紀興 佐藤 Discharge pipe unit
WO2020179132A1 (en) * 2019-03-07 2020-09-10 三協エアテック株式会社 Air conditioning duct
JP7169250B2 (en) * 2019-06-06 2022-11-10 清水建設株式会社 Displacement ventilation air conditioning system
CN112556102B (en) * 2020-12-08 2022-05-13 香港中文大学(深圳) Distributed consensus control method and device for constant temperature control load
CN113974952B (en) * 2021-11-22 2023-06-30 河南省直第三人民医院 A quick cooling device for severe branch of academic or vocational study

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2767342B2 (en) * 1991-05-21 1998-06-18 清記 須山 Indoor ventilation system
JP2010121808A (en) * 2008-11-18 2010-06-03 Ihi Compressor & Machinery Co Ltd Method of heating large space and heating device for the same
JP5528720B2 (en) * 2009-04-22 2014-06-25 大成建設株式会社 Air outlet device
JP2011185474A (en) * 2010-03-05 2011-09-22 Tokyo Electric Power Co Inc:The Air conditioning device and constant-temperature air conditioning system

Also Published As

Publication number Publication date
JP2014001892A (en) 2014-01-09

Similar Documents

Publication Publication Date Title
JP6306279B2 (en) Temperature stratified air conditioning system
JP6512658B2 (en) Radiant air conditioning system
NL2006421C2 (en) Displacement ventilation system and inlet part for such a system.
JP2008256269A (en) Air conditioning system and air conditioning method
WO2015137443A1 (en) Energy-saving building heating and cooling system integrated using effective air circulation technology
US20230408119A1 (en) Air convection system
JP2010261645A (en) Displacement ventilation system and displacement ventilation method
JP6493997B2 (en) Air conditioner
JP6219107B2 (en) Air conditioning method and air conditioning system used in the air conditioning method
JP7093067B2 (en) Air conditioning system and house
JP2000055414A (en) Air conditioning system and air conditioning method
JP2010223538A (en) Heating and cooling system
JP2017161165A (en) Airflow control system and booth including the same
JP6414891B2 (en) Desk with air conditioner
JP6156426B2 (en) Humidification air conditioning system
JP2007024476A (en) Replacement ventilation air-conditioning system
JP3491246B2 (en) Air volume adjustment device for floor air-conditioning equipment
JP2004270971A (en) Method for controlling stratification height of stratified air conditioning and stratified air conditioning system
KR20100090147A (en) Heater that provides comportable heating
JP2005249344A (en) Air circulation device
JP2019200000A (en) Air conditioning system
JP2019056506A (en) Air conditioning system
EP2417401B1 (en) Air supply device
JP2008107053A (en) Circulation type air conditioning method
Kilpeläinen et al. Experimental comparison of three indoor thermal environment control methods: diffuse ceiling ventilation, chilled beam system and chilled ceiling combined with mixing ventilation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20141222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150914

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150929

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20151127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160510

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160708

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20161101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170201

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20170209

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20170331

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180308

R150 Certificate of patent or registration of utility model

Ref document number: 6306279

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250