JP2004270971A - Method for controlling stratification height of stratified air conditioning and stratified air conditioning system - Google Patents

Method for controlling stratification height of stratified air conditioning and stratified air conditioning system Download PDF

Info

Publication number
JP2004270971A
JP2004270971A JP2003058981A JP2003058981A JP2004270971A JP 2004270971 A JP2004270971 A JP 2004270971A JP 2003058981 A JP2003058981 A JP 2003058981A JP 2003058981 A JP2003058981 A JP 2003058981A JP 2004270971 A JP2004270971 A JP 2004270971A
Authority
JP
Japan
Prior art keywords
air
cooling
heat exchanger
temperature
floor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003058981A
Other languages
Japanese (ja)
Inventor
Keiichi Ishizuka
圭一 石塚
Futoshi Mihashi
太 三橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takasago Thermal Engineering Co Ltd
Original Assignee
Takasago Thermal Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takasago Thermal Engineering Co Ltd filed Critical Takasago Thermal Engineering Co Ltd
Priority to JP2003058981A priority Critical patent/JP2004270971A/en
Publication of JP2004270971A publication Critical patent/JP2004270971A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a stratified air conditioning system capable of performing treatment of heat radiation by thermal load satisfactorily, saving energy, and holding a living space in clean environment always and to provide a method for controlling its stratification height. <P>SOLUTION: This stratified air conditioning system is provided with an air conditioner 1 for feeding air incorporating a heat exchanger 2, an air feeding unit 6 for feeding outside air cooled by the heat exchanger 2 into a lower indoor part having thermal load L from a blow-out port 6a at low speed, and an exhaust port 19 for exhausting air in an upper indoor part to the outside of a room. A cooling unit 9 is provided on a floor surface, and a secondary cooling pipe 10 in which cooling medium after passing through the heat exchanger 2 flows through a flow rate control means 11 is arranged inside the cooling unit 9. Here, the amount of outside air introduced into the room is the same as the amount of indoor air exhausted from the exhaust port 19. In this system, it is possible to control stratification height forming a boundary face of a lower part low temperature air zone and an upper part high temperature air zone by controlling flow rate of cooling medium flowing into the cooling unit 9. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、置換換気システムにおける成層高さを床面温度に応じて制御する成層空調の成層高さの制御方法に関する。また、本発明は、給気用空調機内の熱交換器を通過した後の冷却媒体を床面冷却ユニットに送液させる成層空調システムに関する。
【0002】
【従来の技術】
近年、換気方式として置換換気システム(displacement ventilation system)が北欧より導入された。この方式は、空気の温度差による換気力を利用した自然換気に機械換気を組み合わせたものである。即ち、床レベルから室温より若干低い温度の新鮮空気を供給すると、この空気は室内の発熱体(熱負荷)によって加熱され上昇気流となる。この上昇気流の力を利用して汚染源から発する塵埃やガス等を天井方向に搬送し、天井レベルから排気することによって居住域を清浄な環境に保とうとするものである(非特許文献1)。
同様の空調方式として、図1に示すように、床面近傍に吹出口を有する給気ユニットaから低風速で吹き出された空調空気が、室内の気流をできるだけ乱すことなく熱負荷b周囲に到達し、熱負荷bによって生じる熱プルーム(熱上昇流)によって誘引されて、天井方向に上昇し、天井面に設置した排気口cから排出される成層空調がある。この成層空調においては、通常、床面近傍で低温、天井付近で高温の温度成層が形成される。
以上のような置換換気システムや成層空調は、例えば特許文献1,2に開示されている。
【0003】
【非特許文献1】
「空気調和・衛生工学便覧」3空気調和設備設計篇、第252頁〜第254頁、空気調和・衛生工学会編、2001年11月第13版発行
【特許文献1】
特許第2862149号公報
【特許文献2】
特開2000−310431号公報
【0004】
【発明が解決しようとする課題】
ところで、上述の高温の成層域(熱溜まり)は、床面への熱放射を伴い、床面やその近傍の温度を上昇させる要因となる。床面近傍温度が上昇すると、給気ユニットから室内へ給気された空調空気の温度が上昇し、室内に点在する熱負荷に到達する前に上昇することがあり、熱負荷の処理を満足に行うことができなくなるなどの問題が生じる。その結果、給気風量Q<熱プルーム風量Qとなり、高温の熱溜まりが下部へ下がる、つまり後に算出法を詳述する「成層高さ」Hが低下する(図2)。
また、熱負荷から臭気や塵埃等の汚染物質が発生する場合、成層高さよりも低い部分の室内空気は清浄であるが、成層高さよりも高い部分では混合域となり、汚染物質濃度は排気口濃度とほぼ等しい濃度となる。そして、オフィス等の居住空間では、成層高さの境界面が立位人体の呼吸域高さとほぼ等しい高さであるため、成層高さが低下してくると、汚染された空気を吸い込む可能性がでてくる。従って、上述の成層空調下においては、成層高さの境界面を高くする、つまり上昇させることが課題の1つとなっている。
成層高さの境界面を上昇させるための一手段として、まず給気風量を増大させることが考えられる。例えば、給気風量>熱プルーム風量とすることで、成層高さの境界面を上昇させることができる。しかし、給気風量の増大は室外空気導入量の増加に繋がり、外気処理のためのエネルギー消費量が大きくなる。また、給気風量増大の手段としては、室内給気用空調機の大型化が考えられるが、外気負荷の処理エネルギーの増大に加えて、送風機の搬送動力の増加、給気ダクトや給気ユニットの大型化が問題となる。
【0005】
そこで、本発明の目的は、上述の問題点を解消することにあり、給気用空調機を大型化することなく、熱負荷による熱放射の処理が良好に行えかつ省エネルギーであり、居住空間を常に清浄な環境に保持することが可能な成層空調の成層高さの制御方法及び成層空調システムを提供することにある。
本発明者らは、前述の問題を解決するために鋭意検討を重ねてきたところ、給気用空調機に内蔵される熱交換器と配管接続する床面冷却ユニットを設けて、このユニットに送液する冷却媒体の流量を制御することによって、上記目的を達成したものである。
【0006】
【課題を解決するための手段】
本発明は、室外空気を空気冷却用熱交換器で熱交換して、冷却された空気を室内の下部に0.6m/sec以下の風速で給気し、室内に存在する熱負荷で暖められた室内の上部の空気を導入した室外空気と実質的に同量ほど室外に排出する成層空調の成層高さの制御方法において、上記熱交換器を通過した後の冷却媒体を床面冷却ユニットに送液して床面を冷却すると共に、床面温度とその設定温度とを比較して、床面冷却ユニット内に送液する冷却媒体の単位時間当たりの流量を制御することにより、成層高さを制御することを特徴とする。
また、本発明は、室外空気を熱交換する空気冷却用熱交換器と、該室外空気を導入する給気ダクトと、上記熱交換器で冷却された空気を吹出口から熱負荷を有する室内に0.6m/sec以下の風速で給気する給気ユニットと、室内空気を室外に排出する排気口とを備え、室内空気を室外空気で置換する成層空調システムにおいて、成層高さより下方に上記吹出口が位置し、成層高さより上方に上記排気口が設置されると共に、給気用空調機内の熱交換器を通過した後の冷却媒体が流量制御手段を介して送液される二次冷却管を床面の裏側に配設した床面冷却ユニットを設けていることを特徴とする。
【0007】
ここで、成層高さは、給気風量と熱負荷によって生じる熱プルームの風量が等しくなる床面からの高さとして定義される。成層高さHを求めるには、熱負荷が図3に示す仮想点熱源Sとする発熱体円筒(L)であると仮定した場合、プルーム風量(Q)と給気風量(Q)とは等しいので、発熱体の発熱量(P)と周囲空気温度(T) が分かれば、下記式(1)に従って仮想点熱源Sからの距離(Z)が求められ、更に下記式(2),(3)と発熱体の高さから算出することができる。
式1 Q = K(g/C・ρ・T1/3[P・Z]1/3
式2 Z = 0.8D/2(tan 12.5°)
式3 Z = Z + h − D/3
: プルーム風量[m/s]
K : 定数(Cederwall 0.14,Skaret 0.19)
g : 重力加速度[m/s](9.81)
: 比熱[kJ/kg・K](1.007)
ρ : 密度[kg/m](1.176)
: 周囲空気温度[K]
P : 発熱量[kW]
Z : 仮想点熱源からの距離[m]
D : 発熱体の直径[m]
h : 発熱体の上面からの距離[m]
なお、本発明でいう床面温度とは、厳密な意味での床表面の温度だけでなく、床材の温度も包含される。
【0008】
【作用】
本発明の成層空調の成層高さの制御方法は、従来の成層空調において、床面温度とその設定温度とを比較して、空気冷却用熱交換器を通過した後に床面冷却ユニットに送液される冷却媒体の単位時間当たりの流量を制御するものである。
具体的には、床面温度がその設定温度より高い場合は、流量制御手段により、床面冷却ユニットを送液する冷却媒体の上記流量を増大させて床面温度を低下させる。床面温度が低下すると、熱負荷によって生じる熱プルーム風量(自然対流量)が減少するため、成層高さを上昇させることができる。また、床面温度がその設定温度より低い場合は、流量制御手段により、冷却媒体の上記流量を減少させて床面温度を昇温させる。床面温度が上昇すると、熱プルーム風量が増大するため、成層高さを低下させることができる。
このような本発明の制御方法によれば、床面温度を所定の温度に保持することにより、成層高さを所望の高さに維持することができるので、成層高さより下方の居住空間を常に清浄な空気と置換することが可能である。また、床面を冷却する冷却ユニットは、成層空調特有の上部熱溜まりからの熱放射を処理し、室内に給気される空調空気の温度上昇を防止する作用がある。しかも、床面冷却ユニットは、室内に存在する熱負荷からの熱放射を処理するだけでなく、日射負荷を軽減し、更に室内各壁面からの熱放射も併せて処理する。
【0009】
本発明の制御方法は、床面冷却ユニットへの冷却媒体の上記流量の制御と共に、室内温度をその設定温度と比較して、空気冷却用熱交換器を通過する冷却媒体の単位時間当たりの流量を制御することが好ましい(請求項2)。後者の流量制御は次のようにして実施される。
室内温度がその設定温度より高い場合は、適宜の流量制御手段により、熱交換器を通過する冷却媒体の上記流量を増大させて、給気温度を低下させる。これに伴って室内温度が低下するので、熱負荷によって生じる熱プルーム風量が減少し、成層高さを上昇させることができる。また、室内温度がその設定温度より低い場合は、適宜の流量制御手段により、冷却媒体の上記流量を減少させて室内温度を昇温させる。室内温度が上昇すると、熱プルーム風量が増大するので、成層高さを低下させることができる。このように、床面温度と室内温度とを同時に制御すると、成層高さを所定の高さに安定して維持することができる。
【0010】
本発明は、また、従来の成層空調システムにおいて、給気用空調機内の熱交換器を通過した後の冷却媒体が流量制御手段を介して送液される二次冷却管を床面の裏側に配設した床面冷却ユニットが設けられている。この成層空調システムによれば、流量制御手段で床面冷却ユニットへの冷却媒体の流量の制御することにより、前記成層高さの制御方法の発明と同様の作用を奏する。また、前記制御方法の発明も同様であるが、熱交換器を通過して適度に昇温した冷却媒体により床面が冷却されるため、居住者は床面からの冷放射による不快感を覚えるようなことがない。
本発明の成層空調システムにおいて、流量制御手段として、上記熱交換器と二次冷却管の間の配管に三方弁を介装し、三方弁と二次冷却管の戻り管とを配管接続して冷却媒体をバイパスさせることが好ましい(請求項5)。この成層空調システムでは、例えば床面温度を検知するセンサを設け、前述のように床面温度とその設定温度とを比較して、二次冷却管に送液される冷却媒体の単位時間当たりの流量を増減させることにより、成層高さを制御することができる。
更に、熱交換器と三方弁の間の配管又は熱交換器の上流側配管に二方弁を介装することが好ましい(請求項6)。この成層空調システムにおいては、例えば室内温度を検知するセンサを設け、前述のように室内温度とその設定温度とを比較して、空気冷却用熱交換器を通過する冷却媒体の単位時間当たりの流量を制御することにより、成層高さを安定して制御することができる。
【0011】
【発明の実施の形態】
以下、図面を参照して本発明を詳細に説明する。
図4において、符号1は室外に設置された給気用空調機であり、その内部に空気冷却用熱交換器2、空気加熱器3及び給気ファン4を備えている。熱交換器2としては、コイル式、多管式、熱交換器本体表面にフィンチューブが蛇行状に巻回された熱交換器等が用いられ、熱交換器2内を冷水、ブライン等の冷却媒体が送液される。空気加熱器3は、温水コイル式熱交換器や電気ヒータ等で構成されるが、室外空気が所定の温度より低い時に作動され、省略することも可能である。
給気ファン4によって空調機1に導入された室外空気(例えば、屋外空気)は、給気ダクト5を介して給気ユニット6に送気される。給気ユニット6は、床面に設置されてもあるいは壁面に取り付けられていてもよく、プレナムチャンバとしての機能を有する。給気ユニットの吹出口6aからは、室内の気流を乱さないように、熱交換器2で冷却された空気が低風速で室内の下部、特に床面に沿うように吹き出される。この給気風速は、0.05〜0.6m/secの範囲にあり、通常0.1〜0.3m/secの範囲にある。また、単位時間当たりの給気風量は、空調すべき部屋の大きさに応じて増減される。
なお、空気冷却用熱交換器2は、必ずしも空調機1に内蔵される必要はなく、給気ダクト5内に介装させるかあるいはコイルユニットとして構成し、別途設けたファンにより冷却された空気を送気してもよい。
【0012】
上記空気冷却用熱交換器2の上流側には図示しない冷熱源から流入する冷却媒体、例えば冷水の往き管7が接続しており、その下流側には配管8を介して床面冷却ユニット9が接続している。冷却ユニット9には、熱交換器2を通過した後の冷却媒体が流入する二次冷却管10が床の裏面側に配設されている。冷却ユニット9としては、例えば、二次冷却管10が埋設されたマットを二重床用の床材に埋め込んだものや、床スラブに二次冷却管10を埋め込んだものがある。埋め込み方式に代えて、二次冷却管10で熱交換した室外空気を床面から吹き出す床吹出方式の冷却ユニット9とすることもできる。この場合の吹出風速は、前記給気風速と同程度であり、0.2〜0.5m/sec の範囲にあることが好ましい。また、冷却ユニット9の広さは、床面と同一の大きさとすることが望ましいが、必ずしも同一の大きさとする必要はない。例えば、後述の熱負荷が集中して配置されている場合などは、熱負荷とその周辺の床面にのみ敷設してもよい。
熱交換器2と冷却ユニット9を接続する配管8には、床面温度に応じて冷却ユニット9への冷却媒体の単位時間当たりの流量を制御し、床面を所定の温度に保持する流量制御手段が介装されている。即ち、床面温度は、流量制御手段を制御することにより調整することができ、定常状態に達した後は給気ユニット6からの吹出温度と同等かそれ以下の温度に保持される。
【0013】
流量制御手段としては、通常の流量制御弁、流量調整機能付き三方弁、床面温度を検知して弁の開度が自動調整されるダイヤフラム弁等があり、図3には三方弁の例が図示されている。この三方弁11は、熱交換器2側に接続する弁体A、二次冷却管10側に接続する弁体C及び冷却ユニット9をバイパスするバイパス管13に連通する弁体Bからなる。更に、熱交換器2と三方弁11等の流量制御手段の間の配管8に、あるいは熱交換器2の上流側の往き管7に別の流量制御手段を介装することが好ましい。かかる流量制御手段としては、図4に図示されている流量調整機能付き二方弁14や、上記流量制御弁、室温を検知して弁の開度が自動調整されるダイヤフラム弁等がある。また、これらの弁に代えて、往き管7または上記バイパス管13の下流側の戻り管12にポンプ(図示せず)を介装し、この駆動力を制御してもよい。
各流量制御手段として図示の三方弁11及び配管8に設けられた二方弁14を用いた場合の制御方法について説明する。三方弁11は、床表面または床材の温度を検出する床面温度センサ15で検知された温度と所望の床面温度が記憶された設定値とをマイコン等の制御素子16により比較して、弁体Cの開度が調整される。より具体的には、センサ15で測定された床面温度が設定値より高いと弁体Cの開度を大きくし、床面温度の実測値が設定値と同じかそれより低い場合は、弁体Cを閉成するかあるいはその開度を小さくする。また、二方弁14は、室温センサ17で検知された温度と所望の室温が記憶された設定値とをマイコン等の制御素子18により比較して、弁体の開度が調整される。具体的には、センサ17で測定された室温が設定値より高ければ高いほど、二方弁14の弁体の開度を増大させ、室温の実測値が設定値と同じかそれより低い場合は、弁体を閉成するかあるいはその開度を減少させる。ただし、二方弁14の弁体及び三方弁11の弁体Cを閉成すると、短時間のうちに床面温度が設定値より高くなるので、熱交換器2及び冷却ユニット9と前記冷熱源の間を冷却媒体が常に循環するように各弁体を絞った状態で開成させておくことが好ましい。
【0014】
一般に、住宅、オフィス等の居住空間や、アトリウム等の大空間には、居住者の他にも、照明器具、OA機器、電気製品等、各種の発熱源としての熱負荷Lが存在する。熱負荷Lからは、図1に示すように、熱プルームが生じ、通常、居住空間下部に低温域とその上部に高温域の温度成層が形成される。上部成層域(熱溜まり)の暖められた空気は、この温度成層域の例えば天井または壁面に設置される排気口19から排気ダクト20を通って排気ファン21により室外に排出される。
本発明においては、室内及び床面が共に設定温度に達した後は、給気ファン4及び排気ファン21の送風能力を実質的に同一として、前記吹出口6aからの給気風量と排気口19からの排気風量とを常に等しくしている。即ち、本発明の成層空調システムは定風量方式であり、必要に応じて、冷却媒体の温度を調整して、熱交換器2の表面温度、これに伴う給気温度を変更することができる。また、給気ユニット6に導入される空気は、全て室外由来である必要はなく、室内空気の一部を還気させて、これを浄化・冷却して再利用してもよい。
【0015】
前記床面温度センサ15の変形例として、放射温度計を天井面に設置して床面温度を監視することができる。また、床吹出空調の場合、二重床内部に配置される温度センサによる測定値と室温センサ17による温度から、床材の熱抵抗を考慮して、床表面温度を解析的に求めることができる。一方、室温センサ17は、成層高さHの近傍(±15cm)、特に成層高さHの下方に設置することが好ましい。また、室温センサ17に代えて、給気用空調機1または給気ユニット6から吐出される空気の温度を検知する給気温度センサ(22)、あるいは熱溜まりの温度または同温度と等しいとみなされる排出空気の温度を検知する排気温度センサ(23)を用いることもできる。
本発明の成層空調システムは、給気用空調機1内の熱交換器2を通過した後の冷却媒体が流量制御手段を介して流入する二次冷却管10が床面の裏側に配設された床面冷却ユニット9を設けているので、成層空調において特有の上部熱溜まりからの熱放射を処理し、給気ユニット6から供給された空調空気の温度上昇を防止する。また、冷却ユニット9は、上部熱溜まりからの熱放射の処理の他に、室内に存在する熱負荷Lからの熱放射の処理と、日射負荷を軽減し、室内各壁面からの熱放射の処理も併せて行う作用を有する。
【0016】
本発明は、また、上記熱交換器2を通過した後の冷却媒体を床面冷却ユニット9に送液し、床面温度とその設定温度とを比較して冷却ユニット9への冷却媒体の単位時間当たりの流量を制御することにより、前記成層高さHを制御することができる。この成層空調の成層高さの制御方法を図5に基づいて説明する。図5には、床面冷却ユニット9への冷却媒体の流量を制御する流量制御手段として、前述の三方弁11を使用する例が示されている。
この制御方法では、床面設定温度を20℃として、この設定値と床面温度センサ15で検知された温度TSPFを比較し、床面温度が20℃より高いと三方弁11の弁体Cの開度を増大させる。これにより、熱交換器2を通過した後二次冷却管10に流入する冷却媒体の上記流量が増大する。その結果、床面温度が低下する方向に作用し、熱負荷Lによって生じるプルーム風量も減少するので、成層高さHが上昇するようになる。また、センサ15で検知された床面温度TSPF が設定温度20℃より低いと弁体Cの開度を減少させる。その結果、冷却媒体の二次冷却管10への上記流量が減少するので、床面温度が上昇する方向に作用し、成層高さHが低下するようになる。このようにして、床面温度は20℃前後に保たれ、成層高さHもほぼ所定の高さに維持される。
上記流量制御手段として流量制御弁を使用することができる。この場合、床面温度TSPFに応じて流量制御弁の開度を増減すると、二次冷却管10に流入する冷却媒体の単位時間当たりの流量が増減し、上述と同様にして、成層高さHを上下させることができる。また、床面温度を検知して弁の開度が自動調整されるダイヤフラム弁を使用することもできる。
【0017】
本発明においては、上記床面温度の制御と室内温度の制御とを組み合わせて、成層高さを制御することがより好ましい。室内温度を制御するには、熱交換器2への冷却媒体の単位時間当たりの流量を制御することにより行われる。かかる流量制御手段としては、例えば前述の二方弁14を使用する方法が挙げられる。
具体的には、室内設定温度を26℃として、この設定値と室温センサ17で検知された温度TSPRを比較し、室温が26℃より高いと二方弁14の弁体の開度を増大させる。これにより、熱交換器2を通過する冷却媒体の上記流量が増大する。その結果、給気ユニット6から吹き出される給気の温度が低下し、室内温度が低下するので、熱負荷Lによって生じるプルーム風量も減少し、成層高さHが上昇するようになる。また、センサ17で検知された温度TSPRが設定温度26℃より低いと二方弁14の開度を減少する。その結果、熱交換器2を通過する冷却媒体の上記流量が減少するので、室内温度が上昇し、成層高さHが低下するようになる。このように床面温度及び室内温度の双方を制御すると、成層高さHは所定の高さにより一層安定して維持される。
熱交換器2を通過する冷却媒体の流量を制御する上記流量制御手段として、流量制御弁を使用することができる。この場合、室内温度TSPRに応じて流量制御弁の開度を増減すると、熱交換器2を通過する冷却媒体の流量が増減し、上述と同様にして、成層高さHを上下させることができる。また、室温を検知して弁の開度が自動調整されるダイヤフラム弁を使用することもできる。
なお、床面温度を20℃及び室内温度を26℃に設定した場合、一例として、給気用空調機1内の熱交換器2の冷却媒体入口温度は7℃程度であり、室外空気と熱交換した後の冷却媒体出口温度は12℃程度に昇温する。この冷却媒体を二次冷却管10に送液すると、二次冷却管10の冷却媒体出口温度は15〜19℃に昇温する。
【0018】
一般に、成層高さHよりも低い領域では室内空気は清浄であるが、成層高さHよりも高い領域では汚染物質濃度は排気口濃度とほぼ等しい濃度になっている。図6には、床面冷却ユニット9を備えた本発明における成層空調と同ユニットを備えていない従来の置換換気空調の無次元化濃度に対する床面からの高さの関係を示している。図6において、床冷却なしの場合、従来の置換換気空調における室内のある点の上下濃度分布を無次元化濃度で表すと実線のようになる。一方、床冷却ありの本発明の無次元化濃度の上下分布は点線で表される。測定点はグラフ中のプロットによって示された床面からの高さ[m]である。なお、無次元化濃度は下記の式で定義される。
([測定点濃度]−[給気濃度])/([排気濃度]−[給気濃度])
両者の無次元化濃度を比較すると、本発明では、床面からの同一の高さにおけるグラフ中央部の測定点での無次元化濃度が低くなっており、元の成層高さHが上方へ移動している。これは、測定点における清浄度が向上していることを意味する。従って、本発明の制御方法によれば、成層高さHの境界面を容易に上昇させることができるので、成層高さHを立位人体の呼吸域高さより常に高くなるように保持することよって、成層高さHより下方の居住空間を常に清浄な空気と置換することが可能である。
本発明の成層高さの制御方法は、床面冷却ユニット9として、例えばアトリウム等の大空間において通常は床暖房に利用している床材に冷水(井水)を通水させる方式とすることにより、大空間上部の熱溜まりからの熱放射を処理することができる。この冷却方式によれば、アトリウム等の下部空間を良好な環境に保持できるようになる。
【0019】
【実施例】
次に、実施例により本発明を具体的に説明するが、本発明は下記の実施例に限定されるものではない。
図7において、符号Rは4.5m×4.5m×2.6mの 居住空間を示し、その空間内に高さ1.3mの 模擬負荷P1〜P4が図7(B)に示す位置に存在する。居住空間Rの一側面(壁面)中央には、給気ダクト5を介して、給気用空調機(1)内で熱交換された室外空気を室内に給気する直方体形状の給気ユニット6が床面に設置されている。給気ユニット6は壁面側を除く3側面に吹出口6aを有する。吹出口6aからは、風速0.2m/secで上記室外空気が室内下層域に吹き出される。また、非吹出方式の床面冷却ユニット9が床面全体に敷設され、奥側の天井に排気口19が設けられている。排気口19からは給気風量と同量の上部室内空気が室外に排出される。更に、本実施例では、蛇行状の二次冷却管(10)間に床面温度センサ(15)が配置され、給気ユニット6に対向して 床面から高さ1.5mの壁面に室温センサ(17)が配置されている。
各模擬負荷P1〜P4の模擬発熱量は 255.7Wである。給気ユニット6の給気風量は403.0m/hであり、給気温度は 20.4℃である。そして、各センサの検知点における床面温度及び室内温度をそれぞれ20℃及び26℃に設定して、図5に示すフロー図に従って空調運転を行ったところ、成層高さ(H)は1.55mに制御された。また、床表面の温度は20.7℃に保たれ、排気温度は27.9℃であった。なお、図6のグラフ図は、模擬負荷P1〜P4の間から汚染物質が発生していると仮定して、図7(B)に示すガス濃度測定点Mからの高さの無次元化濃度を定性化して求めたものである。図7(A)には、その測定点の高さ方向を濃度分布参照点Dとして示している。
【0020】
【発明の効果】
本発明の成層空調システム及びその成層高さの制御方法は、成層空調において床面に冷却ユニットを設けたものであるから、成層空調特有の上部熱溜まりからの熱放射、周囲壁面からの熱放射及び室内に存在する熱負荷による熱放射を処理して、熱負荷から生じるプルーム風量を減少することによって、成層高さを上昇させることができる。のみならず、上部熱溜まりや熱負荷からの放射熱による床面近傍の温度上昇を抑制し、給気ユニットから給気された空調空気の温度上昇を防止することができる。更に、空気冷却用熱交換器を通過して適度に昇温した冷却媒体が床面冷却ユニット内に送液されるので、床面からの冷放射による不快感を伴うことがない。
また、本発明によれば、床面冷却ユニット内に流入する冷却媒体の流量を調整することにより、成層高さを容易に制御できるので、成層高さより下方の居住空間を常に清浄な空気と置換することができる。
本発明では、給気ユニットのみの従来の置換空調システムにおいて形成される成層高さの境界面と同じ高さに制御した場合、床面冷却ユニットによって床面温度を低下させることで、給気ユニットからの給気風量を減少することができるため、省エネルギーの成層空調となる。例えば、床面冷却ユニットを備えていない従来の置換空調における床面温度を1〜5℃低下させると、給気風量を5〜15%削減することが可能である。しかも、床面を冷却する冷却媒体の温度は、給気ユニットから吹き出される空気温度と同等かそれ以下でよいため、給気用空調機内の熱交換器を通過した後の冷却媒体が使用され、新たに冷熱源を付設する必要がない。
【図面の簡単な説明】
【図1】一般的な成層空調の説明図である。
【図2】給気風量と熱プルーム風量の関係を示す説明図である。
【図3】プルーム風量を算出するための説明図である。
【図4】本発明の実施例を示す成層空調システムの説明図である。
【図5】本発明の成層高さの制御方法の一例を示すフロー図である。
【図6】床面冷却ユニットを備えた本発明の成層空調と同ユニットを備えていない従来の置換換気空調の無次元化濃度に対する床面からの高さの関係を示すグラフ図である。
【図7】(A)は本発明の一実施例を示す模式図であり、(B)はその居住空間に存在する模擬負荷及び給気ユニットの配置図である。
【符号の説明】
1・・・ 給気用空調機、2・・・ 空気冷却用熱交換器、5・・・ 給気ダクト、6・・・ 給気ユニット、6a・・・ 吹出口、8・・・ 配管、9・・・ 床面冷却ユニット、10・・・ 二次冷却管、11・・・ 三方弁(流量制御手段)、12・・・ 戻り管、13・・・ バイパス管、14・・・ 二方弁(流量制御手段)、15・・・ 床面温度センサ、17・・・ 室温センサ、19・・・ 排気口、H・・・ 成層高さ、L・・・ 熱負荷。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a method for controlling the stratification height of stratified air conditioning in which the stratification height in a displacement ventilation system is controlled according to the floor surface temperature. Further, the present invention relates to a stratified air conditioning system for sending a cooling medium after passing through a heat exchanger in an air supply air supply unit to a floor surface cooling unit.
[0002]
[Prior art]
In recent years, a displacement ventilation system has been introduced from Northern Europe as a ventilation system. This system combines mechanical ventilation with natural ventilation using the ventilation power due to the temperature difference of air. That is, when fresh air at a temperature slightly lower than room temperature is supplied from the floor level, this air is heated by a heating element (heat load) in the room and becomes an ascending airflow. Utilizing the power of the rising airflow, dust and gas emitted from the pollution source are conveyed in the ceiling direction and exhausted from the ceiling level to keep the living area in a clean environment (Non-Patent Document 1).
As a similar air-conditioning system, as shown in FIG. 1, air-conditioned air blown out at a low wind speed from an air supply unit a having an air outlet near the floor reaches the heat load b without disturbing the indoor air flow as much as possible. Then, there is stratified air conditioning that is induced by a heat plume (heat rising flow) generated by the heat load b, rises in the ceiling direction, and is discharged from an exhaust port c provided on the ceiling surface. In this stratified air conditioning, a temperature stratification is generally formed at a low temperature near the floor and at a high temperature near the ceiling.
The above-described replacement ventilation system and stratified air conditioning are disclosed in Patent Documents 1 and 2, for example.
[0003]
[Non-patent document 1]
"Handbook of Air Conditioning and Sanitary Engineering", 3 Air Conditioning Equipment Design, pp. 252 to 254, edited by the Society of Air Conditioning and Sanitary Engineers, 13th edition, November 2001
[Patent Document 1]
Japanese Patent No. 2862149
[Patent Document 2]
JP 2000-310431 A
[0004]
[Problems to be solved by the invention]
By the way, the above-described high-temperature stratified area (heat pool) involves heat radiation to the floor surface, which causes a rise in the temperature of the floor surface and the vicinity thereof. When the temperature near the floor rises, the temperature of the conditioned air supplied from the air supply unit to the room increases, and may increase before reaching the heat load scattered in the room, satisfying the heat load treatment. Problems such as being unable to perform the operation. As a result, the supply air volume QS<Heat plume air volume QPThen, the high-temperature heat reservoir goes down, that is, the “stratification height” H, which will be described in detail later, is reduced (FIG. 2).
When pollutants such as odors and dusts are generated from the heat load, the indoor air in the part lower than the stratification height is clean, but in the part higher than the stratification height, it becomes a mixed area, and the pollutant concentration is lower than the exhaust port concentration. The density is almost equal to In addition, in a living space such as an office, the stratification height boundary is almost equal to the height of the respiratory range of a standing human body, so if the stratification height decreases, there is a possibility of inhaling contaminated air. Comes out. Therefore, under the above-described stratified air conditioning, one of the issues is to raise, that is, raise, the boundary surface of the stratification height.
As one means for raising the boundary surface of the stratification height, it is conceivable to first increase the supply air volume. For example, by setting the air supply air amount> the heat plume air amount, the boundary surface of the stratification height can be raised. However, an increase in the amount of supply air leads to an increase in the amount of outdoor air introduced, resulting in an increase in energy consumption for outside air processing. As means for increasing the amount of supply air, it is conceivable to increase the size of the indoor air supply air conditioner, but in addition to increasing the processing energy of the outside air load, the transfer power of the blower, the supply air duct and the air supply unit are increased. Becomes a problem.
[0005]
Therefore, an object of the present invention is to solve the above-mentioned problems, and it is possible to satisfactorily treat heat radiation due to a heat load without increasing the size of an air-conditioning air supply unit, save energy, and reduce living space. It is an object of the present invention to provide a method for controlling the stratification height of stratified air conditioning and a stratified air conditioning system that can always maintain a clean environment.
The present inventors have conducted intensive studies in order to solve the above-mentioned problem, and as a result, provided a floor cooling unit connected to a heat exchanger built in the air supply air-conditioner by piping, and sent to this unit. The above object has been achieved by controlling the flow rate of the cooling medium to be liquefied.
[0006]
[Means for Solving the Problems]
According to the present invention, outdoor air is heat-exchanged by an air-cooling heat exchanger, and cooled air is supplied to a lower part of the room at a wind speed of 0.6 m / sec or less, and is heated by a heat load existing in the room. In the method of controlling the stratified height of the stratified air conditioning, which discharges substantially the same amount of outdoor air as the introduced outdoor air outside the room, the cooling medium after passing through the heat exchanger is supplied to the floor cooling unit. The stratification height is controlled by controlling the flow rate of the cooling medium to be supplied into the floor surface cooling unit per unit time by sending the liquid to cool the floor surface, comparing the floor surface temperature with the set temperature, and controlling the flow rate per unit time. Is controlled.
Further, the present invention provides an air cooling heat exchanger for exchanging heat with outdoor air, an air supply duct for introducing the outdoor air, and an air cooled by the heat exchanger into a room having a heat load from an outlet. In a stratified air-conditioning system that includes an air supply unit that supplies air at a wind speed of 0.6 m / sec or less and an exhaust port that discharges indoor air to the outside of the room, the above-described blowing is performed below the stratification height in a stratified air-conditioning system that replaces room air with outdoor air. The outlet is located, the above-mentioned exhaust port is installed above the stratification height, and the secondary cooling pipe through which the cooling medium after passing through the heat exchanger in the air supply air supply is sent through the flow control means , A floor cooling unit provided behind the floor.
[0007]
Here, the stratification height is defined as the height from the floor at which the air volume of the supply plume and the air volume of the heat plume generated by the thermal load become equal. In order to obtain the stratification height H, assuming that the heat load is a heating element cylinder (L) serving as a virtual point heat source S shown in FIG.P) And supply air volume (QS) Is equal to the heating value (P) of the heating element and the ambient air temperature (T0), The distance (Z) from the virtual point heat source S is obtained according to the following equation (1), and can be further calculated from the following equations (2) and (3) and the height of the heating element.
Equation 1 QP  = K (g / CP・ Ρ ・ T0)1/3[P ・ Z]1/3
Equation 2 Z0  = 0.8D / 2 (tan 12.5 °)
Equation 3 Z = Z0  + H-D / 3
QP: Plume air volume [m3/ S]
K: constant (Cederwall 0.14, Scaret 0.19)
g: Gravitational acceleration [m / s2] (9.81)
CP: Specific heat [kJ / kg · K] (1.007)
ρ: Density [kg / m3] (1.176)
T0: Ambient air temperature [K]
P: Heat value [kW]
Z: Distance from virtual point heat source [m]
D: diameter of heating element [m]
h: distance [m] from the top surface of the heating element
The floor surface temperature in the present invention includes not only the temperature of the floor surface in a strict sense, but also the temperature of the floor material.
[0008]
[Action]
The method for controlling the stratification height of the stratified air conditioner according to the present invention is a conventional stratified air conditioner, which compares a floor surface temperature with its set temperature, sends a liquid to a floor surface cooling unit after passing through an air cooling heat exchanger. It controls the flow rate of the cooling medium per unit time.
Specifically, when the floor temperature is higher than the set temperature, the flow rate control means increases the flow rate of the cooling medium that sends the floor cooling unit to lower the floor temperature. When the floor surface temperature decreases, the amount of heat plume air generated by the heat load (natural flow rate) decreases, so that the stratification height can be increased. If the floor temperature is lower than the set temperature, the flow rate control means reduces the flow rate of the cooling medium to increase the floor temperature. When the floor surface temperature increases, the amount of hot plume air increases, so that the stratification height can be reduced.
According to such a control method of the present invention, by maintaining the floor surface temperature at a predetermined temperature, the stratification height can be maintained at a desired height, so that the living space below the stratification height is always maintained. It can be replaced with clean air. Further, the cooling unit that cools the floor surface has a function of processing the heat radiation from the upper heat reservoir peculiar to the stratified air conditioning and preventing the temperature of the conditioned air supplied to the room from rising. In addition, the floor cooling unit not only processes heat radiation from the heat load existing in the room, but also reduces the solar radiation load, and also processes heat radiation from each wall surface of the room.
[0009]
The control method of the present invention controls the flow rate of the cooling medium to the floor cooling unit, compares the room temperature with the set temperature, and compares the flow rate of the cooling medium passing through the air-cooling heat exchanger per unit time. Is preferably controlled (claim 2). The latter flow control is performed as follows.
If the room temperature is higher than the set temperature, the flow rate of the cooling medium passing through the heat exchanger is increased by an appropriate flow rate control means to lower the supply air temperature. As a result, the indoor temperature decreases, so that the amount of heat plume generated by the heat load decreases, and the stratification height can be increased. When the room temperature is lower than the set temperature, the flow rate of the cooling medium is reduced by an appropriate flow control means to increase the room temperature. When the room temperature increases, the amount of hot plume air increases, so that the stratification height can be reduced. As described above, when the floor surface temperature and the room temperature are simultaneously controlled, the stratification height can be stably maintained at a predetermined height.
[0010]
The present invention also provides a conventional stratified air conditioning system, in which a cooling medium after passing through a heat exchanger in a supply air conditioner is fed through a flow control means to a secondary cooling pipe on the back side of the floor surface. A floor cooling unit is provided. According to this stratified air-conditioning system, the flow rate control means controls the flow rate of the cooling medium to the floor cooling unit, so that the same effect as the invention of the method of controlling the stratified height is exerted. The same applies to the invention of the control method, but the occupant feels discomfort due to the cold radiation from the floor surface because the floor surface is cooled by the cooling medium which has been appropriately heated and passed through the heat exchanger. There is no such thing.
In the stratified air conditioning system of the present invention, as a flow control means, a three-way valve is interposed in the pipe between the heat exchanger and the secondary cooling pipe, and the three-way valve and the return pipe of the secondary cooling pipe are connected by pipe connection. It is preferable to bypass the cooling medium (claim 5). In this stratified air conditioning system, for example, a sensor for detecting the floor surface temperature is provided, and the floor surface temperature is compared with the set temperature as described above, and the cooling medium sent to the secondary cooling pipe per unit time is provided. By increasing or decreasing the flow rate, the stratification height can be controlled.
Furthermore, it is preferable that a two-way valve is interposed in a pipe between the heat exchanger and the three-way valve or an upstream pipe of the heat exchanger (claim 6). In this stratified air conditioning system, for example, a sensor for detecting the indoor temperature is provided, and the indoor temperature is compared with the set temperature as described above, and the flow rate of the cooling medium passing through the air-cooling heat exchanger per unit time is provided. , The stratification height can be controlled stably.
[0011]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the present invention will be described in detail with reference to the drawings.
In FIG. 4, reference numeral 1 denotes an air supply air conditioner installed outdoors, which is provided with an air cooling heat exchanger 2, an air heater 3, and an air supply fan 4. As the heat exchanger 2, a coil type, a multi-tube type, a heat exchanger in which a fin tube is wound in a meandering shape on the surface of the heat exchanger body, or the like is used, and the inside of the heat exchanger 2 is cooled with cold water, brine, or the like. The medium is sent. The air heater 3 is constituted by a hot water coil type heat exchanger, an electric heater, or the like, but is activated when the outdoor air is lower than a predetermined temperature, and can be omitted.
Outdoor air (for example, outdoor air) introduced into the air conditioner 1 by the air supply fan 4 is supplied to the air supply unit 6 through the air supply duct 5. The air supply unit 6 may be installed on a floor surface or a wall surface, and has a function as a plenum chamber. From the outlet 6a of the air supply unit, the air cooled by the heat exchanger 2 is blown at a low wind speed along the lower part of the room, particularly along the floor surface, so as not to disturb the airflow in the room. This supply air velocity is in the range of 0.05 to 0.6 m / sec, and usually in the range of 0.1 to 0.3 m / sec. Further, the supply air volume per unit time is increased or decreased according to the size of the room to be air-conditioned.
The air-cooling heat exchanger 2 does not necessarily need to be built into the air conditioner 1, but may be interposed in the air supply duct 5 or configured as a coil unit to supply air cooled by a separately provided fan. You may send air.
[0012]
An upstream pipe of the air-cooling heat exchanger 2 is connected to a cooling medium flowing from a cold heat source (not shown), for example, a cold water outgoing pipe 7, and a downstream side of the floor cooling unit 9 through a pipe 8. Is connected. In the cooling unit 9, a secondary cooling pipe 10 into which the cooling medium after passing through the heat exchanger 2 flows is disposed on the back side of the floor. Examples of the cooling unit 9 include a cooling unit in which a mat in which a secondary cooling pipe 10 is embedded is embedded in a floor material for a double floor, and a cooling unit in which a secondary cooling pipe 10 is embedded in a floor slab. Instead of the embedding method, a cooling unit 9 of a floor blowing method that blows out the outdoor air heat-exchanged in the secondary cooling pipe 10 from the floor surface can be used. In this case, the blowing air velocity is substantially the same as the supply air velocity, and is preferably in the range of 0.2 to 0.5 m / sec. Further, the size of the cooling unit 9 is desirably the same size as the floor surface, but need not necessarily be the same size. For example, when a heat load described later is concentrated, the heat load may be laid only on the heat load and the floor around the heat load.
A pipe 8 connecting the heat exchanger 2 and the cooling unit 9 controls a flow rate of the cooling medium to the cooling unit 9 per unit time according to the floor surface temperature, and controls a flow rate of maintaining the floor surface at a predetermined temperature. Means are interposed. That is, the floor surface temperature can be adjusted by controlling the flow rate control means, and is maintained at a temperature equal to or lower than the blowing temperature from the air supply unit 6 after reaching the steady state.
[0013]
Examples of the flow control means include a normal flow control valve, a three-way valve with a flow control function, a diaphragm valve that detects floor temperature and automatically adjusts the opening of the valve, and FIG. 3 shows an example of the three-way valve. Is illustrated. The three-way valve 11 includes a valve element A connected to the heat exchanger 2, a valve element C connected to the secondary cooling pipe 10, and a valve element B communicating with a bypass pipe 13 that bypasses the cooling unit 9. Further, it is preferable to provide another flow control means in the pipe 8 between the heat exchanger 2 and the flow control means such as the three-way valve 11 or the outflow pipe 7 on the upstream side of the heat exchanger 2. Examples of such flow control means include a two-way valve 14 having a flow control function shown in FIG. 4, a flow control valve, a diaphragm valve which detects room temperature and automatically adjusts the opening of the valve. Instead of these valves, a pump (not shown) may be interposed in the outgoing pipe 7 or the return pipe 12 downstream of the bypass pipe 13 to control the driving force.
A control method when the illustrated three-way valve 11 and the two-way valve 14 provided in the pipe 8 are used as each flow control means will be described. The three-way valve 11 compares the temperature detected by the floor surface temperature sensor 15 that detects the temperature of the floor surface or floor material with a set value in which a desired floor surface temperature is stored by a control element 16 such as a microcomputer. The opening of the valve body C is adjusted. More specifically, when the floor surface temperature measured by the sensor 15 is higher than a set value, the opening degree of the valve body C is increased, and when the measured floor surface temperature is equal to or lower than the set value, the valve is opened. The body C is closed or its opening is reduced. The opening of the two-way valve 14 is adjusted by comparing a temperature detected by the room temperature sensor 17 with a set value in which a desired room temperature is stored by a control element 18 such as a microcomputer. Specifically, as the room temperature measured by the sensor 17 is higher than the set value, the opening degree of the valve body of the two-way valve 14 is increased, and when the measured value of the room temperature is equal to or lower than the set value, The valve body is closed or its opening is reduced. However, when the valve body of the two-way valve 14 and the valve body C of the three-way valve 11 are closed, the floor surface temperature becomes higher than the set value in a short time, so that the heat exchanger 2 and the cooling unit 9 and the cold heat source It is preferable to open each valve body in a state where each valve body is squeezed so that the cooling medium always circulates through the gap.
[0014]
Generally, in a living space such as a house or an office, or in a large space such as an atrium, a heat load L exists as various heat sources such as lighting equipment, OA equipment, and electric products in addition to residents. As shown in FIG. 1, a thermal plume is generated from the thermal load L, and a temperature stratification of a low-temperature region and a high-temperature region is formed on a lower portion of the living space. The warmed air in the upper stratified area (heat reservoir) is exhausted from the room by an exhaust fan 21 through an exhaust duct 20 from an exhaust port 19 installed in, for example, a ceiling or a wall surface of the temperature stratified area.
In the present invention, after both the room and the floor reach the set temperature, the air supply capacity of the air supply fan 4 and the exhaust fan 21 are made substantially the same, and the air supply amount from the air outlet 6a and the air outlet 19 The exhaust air volume from the air is always equalized. That is, the stratified air-conditioning system of the present invention is of a constant air volume type, and the temperature of the cooling medium can be adjusted as necessary to change the surface temperature of the heat exchanger 2 and the accompanying supply air temperature. Further, the air introduced into the air supply unit 6 does not need to be entirely derived from the outside, and a part of the indoor air may be returned, purified, cooled, and reused.
[0015]
As a modified example of the floor surface temperature sensor 15, a radiation thermometer can be installed on the ceiling surface to monitor the floor surface temperature. Further, in the case of floor blowing air conditioning, the floor surface temperature can be analytically determined from the measurement value of the temperature sensor disposed inside the double floor and the temperature of the room temperature sensor 17 in consideration of the thermal resistance of the floor material. . On the other hand, the room temperature sensor 17 is preferably installed near the stratification height H (± 15 cm), particularly below the stratification height H. In addition, instead of the room temperature sensor 17, the air supply temperature sensor (22) for detecting the temperature of the air discharged from the air supply air conditioner 1 or the air supply unit 6, or the temperature of the heat reservoir or the same as the temperature is considered. An exhaust temperature sensor (23) for detecting the temperature of the exhaust air to be discharged can also be used.
In the stratified air conditioning system of the present invention, a secondary cooling pipe 10 into which a cooling medium after passing through a heat exchanger 2 in an air supply air conditioner 1 flows in through a flow rate control means is disposed behind the floor surface. Since the floor cooling unit 9 is provided, the heat radiation from the upper heat reservoir peculiar to the stratified air conditioning is processed, and the temperature of the conditioned air supplied from the air supply unit 6 is prevented from rising. The cooling unit 9 is configured to process heat radiation from the heat load L existing in the room, reduce the solar radiation load, and process heat radiation from each wall surface of the room, in addition to the process of heat radiation from the upper heat reservoir. Has an effect to be performed together.
[0016]
The present invention also provides a cooling medium that has passed through the heat exchanger 2 and is sent to the floor cooling unit 9, and the cooling medium is supplied to the cooling unit 9 by comparing the floor temperature with the set temperature. By controlling the flow rate per hour, the stratification height H can be controlled. A method of controlling the stratification height of the stratification air conditioner will be described with reference to FIG. FIG. 5 shows an example in which the above-described three-way valve 11 is used as a flow control means for controlling the flow rate of the cooling medium to the floor cooling unit 9.
In this control method, the floor temperature is set to 20 ° C., and the set value and the temperature T detected by the floor temperature sensor 15 are set.SPFWhen the floor temperature is higher than 20 ° C., the opening of the valve element C of the three-way valve 11 is increased. Thus, the flow rate of the cooling medium flowing into the secondary cooling pipe 10 after passing through the heat exchanger 2 increases. As a result, the floor surface temperature acts in a lowering direction, and the amount of plume air generated by the thermal load L also decreases, so that the stratification height H increases. Also, the floor surface temperature T detected by the sensor 15SPF          When the temperature is lower than the set temperature of 20 ° C., the opening degree of the valve body C is reduced. As a result, the flow rate of the cooling medium to the secondary cooling pipe 10 decreases, so that it acts in a direction in which the floor surface temperature increases, and the stratification height H decreases. In this manner, the floor surface temperature is maintained at about 20 ° C., and the stratification height H is also maintained at a substantially predetermined height.
A flow control valve can be used as the flow control means. In this case, the floor temperature TSPFWhen the opening degree of the flow control valve is increased or decreased according to the above, the flow rate of the cooling medium flowing into the secondary cooling pipe 10 per unit time increases or decreases, and the stratification height H can be increased or decreased in the same manner as described above. Further, a diaphragm valve in which the opening of the valve is automatically adjusted by detecting the floor surface temperature may be used.
[0017]
In the present invention, it is more preferable to control the stratification height by combining the control of the floor surface temperature and the control of the room temperature. The control of the room temperature is performed by controlling the flow rate of the cooling medium to the heat exchanger 2 per unit time. As such a flow control means, for example, a method using the above-described two-way valve 14 can be mentioned.
Specifically, the indoor set temperature is set to 26 ° C., and the set value and the temperature T detected by the room temperature sensor 17 are set.SPRWhen the room temperature is higher than 26 ° C., the opening of the valve body of the two-way valve 14 is increased. Thereby, the flow rate of the cooling medium passing through the heat exchanger 2 increases. As a result, the temperature of the air supply blown out from the air supply unit 6 decreases, and the indoor temperature decreases. Therefore, the amount of plume air generated by the thermal load L also decreases, and the stratification height H increases. Further, the temperature T detected by the sensor 17SPRIs lower than the set temperature of 26 ° C., the opening of the two-way valve 14 is reduced. As a result, the flow rate of the cooling medium passing through the heat exchanger 2 decreases, so that the room temperature increases and the stratification height H decreases. When both the floor surface temperature and the room temperature are controlled in this way, the stratification height H is more stably maintained at the predetermined height.
A flow control valve can be used as the flow control means for controlling the flow rate of the cooling medium passing through the heat exchanger 2. In this case, the room temperature TSPRWhen the opening degree of the flow control valve is increased or decreased according to the above, the flow rate of the cooling medium passing through the heat exchanger 2 is increased or decreased, and the stratification height H can be increased or decreased in the same manner as described above. Further, a diaphragm valve in which the opening degree of the valve is automatically adjusted by detecting the room temperature may be used.
When the floor temperature is set to 20 ° C. and the indoor temperature is set to 26 ° C., as an example, the cooling medium inlet temperature of the heat exchanger 2 in the air supply air conditioner 1 is about 7 ° C. After the replacement, the outlet temperature of the cooling medium rises to about 12 ° C. When this cooling medium is sent to the secondary cooling pipe 10, the cooling medium outlet temperature of the secondary cooling pipe 10 increases to 15 to 19 ° C.
[0018]
Generally, indoor air is clean in a region lower than the stratification height H, but in a region higher than the stratification height H, the contaminant concentration is approximately equal to the exhaust outlet concentration. FIG. 6 shows the relationship of the height from the floor surface to the dimensionless concentration of the stratified air conditioning according to the present invention including the floor cooling unit 9 and the conventional non-unit ventilation ventilation air conditioning not including the unit. In FIG. 6, when floor cooling is not performed, the vertical concentration distribution of a certain point in the room in the conventional replacement ventilation air conditioning is represented by a non-dimensional concentration concentration, as shown by a solid line. On the other hand, the vertical distribution of the dimensionless concentration according to the present invention with floor cooling is represented by a dotted line. The measurement point is the height [m] from the floor surface indicated by the plot in the graph. The dimensionless density is defined by the following equation.
([Measurement point concentration]-[Air supply concentration]) / ([Exhaust gas concentration]-[Air supply concentration])
Comparing the two-dimensional densities, according to the present invention, the non-dimensional concentration at the measurement point at the center of the graph at the same height from the floor is low, and the original stratification height H rises upward. I'm moving. This means that the cleanliness at the measurement point has been improved. Therefore, according to the control method of the present invention, since the boundary surface of the stratification height H can be easily raised, the stratification height H is maintained so as to be always higher than the height of the respiratory region of the standing human body. The living space below the stratification height H can always be replaced with clean air.
The method for controlling the stratification height according to the present invention employs a method in which cold water (well water) is passed through a floor material normally used for floor heating in a large space such as an atrium as the floor cooling unit 9. Thereby, heat radiation from the heat reservoir in the upper part of the large space can be processed. According to this cooling method, the lower space such as the atrium can be maintained in a favorable environment.
[0019]
【Example】
Next, the present invention will be specifically described with reference to examples, but the present invention is not limited to the following examples.
In FIG. 7, reference symbol R indicates a living space of 4.5 m × 4.5 m × 2.6 m, and simulated loads P 1 to P 4 having a height of 1.3 m exist at the positions shown in FIG. I do. At the center of one side surface (wall surface) of the living space R, a rectangular parallelepiped air supply unit 6 for supplying outdoor air heat-exchanged in the air supply air conditioner (1) to the room through an air supply duct 5. Is installed on the floor. The air supply unit 6 has air outlets 6a on three sides except the wall surface side. From the outlet 6a, the outdoor air is blown into the lower area of the room at a wind speed of 0.2 m / sec. In addition, a floor cooling unit 9 of a non-blowing type is laid on the entire floor surface, and an exhaust port 19 is provided on a ceiling on the back side. From the exhaust port 19, the same amount of upper room air as the amount of supply air is discharged outside the room. Further, in the present embodiment, a floor surface temperature sensor (15) is arranged between the meandering secondary cooling pipes (10), and the room temperature is placed on the wall surface 1.5 m above the floor surface facing the air supply unit 6. A sensor (17) is arranged.
The simulated calorific value of each of the simulated loads P1 to P4 is 255.7 W. The supply air volume of the supply unit 6 is 403.0 m.3/ H, and the supply air temperature is 20.4 ° C. When the floor temperature and the indoor temperature at the detection points of the respective sensors were set to 20 ° C. and 26 ° C., respectively, and the air conditioning operation was performed according to the flowchart shown in FIG. 5, the stratification height (H) was 1.55 m. Was controlled. Further, the temperature of the floor surface was maintained at 20.7 ° C., and the exhaust temperature was 27.9 ° C. In addition, the graph of FIG. 6 assumes that the contaminants are generated between the simulated loads P1 to P4, and the dimensionless concentration of the height from the gas concentration measurement point M shown in FIG. Is qualitatively determined. FIG. 7A shows the height direction of the measurement point as a density distribution reference point D.
[0020]
【The invention's effect】
The stratified air-conditioning system and the stratification height control method of the present invention provide a cooling unit on the floor in stratified air-conditioning, so that heat radiation from the upper heat reservoir specific to stratified air-conditioning and heat radiation from the surrounding wall surface In addition, the heat radiation due to the heat load existing in the room can be treated to reduce the amount of plume air generated from the heat load, thereby increasing the stratification height. In addition, it is possible to suppress a rise in temperature near the floor surface due to radiant heat from the upper heat reservoir or heat load, and prevent a rise in the temperature of the conditioned air supplied from the supply unit. Furthermore, since the cooling medium which has passed through the air-cooling heat exchanger and has been appropriately heated is sent into the floor-surface cooling unit, there is no discomfort due to cold radiation from the floor.
Further, according to the present invention, the stratification height can be easily controlled by adjusting the flow rate of the cooling medium flowing into the floor surface cooling unit, so that the living space below the stratification height is always replaced with clean air. can do.
In the present invention, the air supply unit is controlled by lowering the floor surface temperature by the floor surface cooling unit when the height is controlled to be the same as the boundary surface of the stratification height formed in the conventional replacement air conditioning system including only the air supply unit. Since the amount of air supplied from the air can be reduced, stratified air conditioning that saves energy can be achieved. For example, if the floor temperature in the conventional replacement air-conditioning system without a floor cooling unit is lowered by 1 to 5 ° C., the amount of supplied air can be reduced by 5 to 15%. Moreover, since the temperature of the cooling medium for cooling the floor surface may be equal to or lower than the temperature of the air blown from the air supply unit, the cooling medium after passing through the heat exchanger in the air supply air conditioner is used. There is no need to add a new cold heat source.
[Brief description of the drawings]
FIG. 1 is an explanatory diagram of general stratified air conditioning.
FIG. 2 is an explanatory diagram showing a relationship between a supply air volume and a heat plume air volume.
FIG. 3 is an explanatory diagram for calculating a plume air volume;
FIG. 4 is an explanatory diagram of a stratified air conditioning system showing an embodiment of the present invention.
FIG. 5 is a flowchart showing an example of a method for controlling a stratification height according to the present invention.
FIG. 6 is a graph showing the relationship between the height from the floor and the dimensionless concentration of the stratified air conditioning of the present invention having a floor cooling unit and the conventional replacement ventilation air conditioning not having the unit.
FIG. 7A is a schematic diagram showing an embodiment of the present invention, and FIG. 7B is a layout diagram of a simulated load and an air supply unit existing in the living space.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Air supply air conditioner, 2 ... Air cooling heat exchanger, 5 ... Air supply duct, 6 ... Air supply unit, 6a ... Outlet, 8 ... Piping, 9 floor cooling unit 10 secondary cooling pipe 11 three-way valve (flow control means) 12 return pipe 13 bypass pipe 14 two way Valve (flow control means), 15: Floor temperature sensor, 17: Room temperature sensor, 19: Exhaust port, H: Stratified height, L: Thermal load.

Claims (6)

室外空気を空気冷却用熱交換器で熱交換して、冷却された空気を室内の下部に0.6m/sec以下の風速で給気し、室内に存在する熱負荷で暖められた室内の上部の空気を導入した室外空気と実質的に同量ほど室外に排出する成層空調の成層高さの制御方法において、上記熱交換器を通過した後の冷却媒体を床面冷却ユニットに送液して床面を冷却すると共に、床面温度とその設定温度とを比較して、床面冷却ユニット内に送液する冷却媒体の単位時間当たりの流量を制御することにより、成層高さを制御することを特徴とする成層空調の成層高さの制御方法。The outdoor air is heat-exchanged by the air-cooling heat exchanger, and the cooled air is supplied to the lower part of the room at a wind speed of 0.6 m / sec or less, and the upper part of the room is heated by the heat load existing in the room. In the method of controlling the stratified height of the stratified air conditioner, which discharges substantially the same amount of outdoor air as the outdoor air into which the air has been introduced, the cooling medium that has passed through the heat exchanger is sent to the floor cooling unit. To control the stratification height by cooling the floor surface, comparing the floor surface temperature with the set temperature, and controlling the flow rate of the cooling medium sent into the floor surface cooling unit per unit time. A method for controlling the stratification height of stratified air conditioning. 前記床面冷却ユニットへの冷却媒体の流量の制御と共に、室内温度とその設定温度とを比較して、空気冷却用熱交換器を通過する冷却媒体の単位時間当たりの流量を制御することを特徴とする請求項1記載の成層高さの制御方法。Controlling the flow rate of the cooling medium to the floor cooling unit, comparing the room temperature with the set temperature, and controlling the flow rate of the cooling medium passing through the air cooling heat exchanger per unit time. The method for controlling the stratification height according to claim 1. 前記床面冷却ユニットへの冷却媒体の流量が三方弁を介して制御され、前記熱交換器への冷却媒体の流量が二方弁を介して制御されることを特徴とする請求項2記載の成層高さの制御方法。The flow rate of the cooling medium to the floor cooling unit is controlled via a three-way valve, and the flow rate of the cooling medium to the heat exchanger is controlled via a two-way valve. Control method of stratification height. 室外空気を熱交換する空気冷却用熱交換器と、該室外空気を導入する給気ダクトと、上記熱交換器で冷却された空気を吹出口から熱負荷を有する室内に0.6m/sec以下の風速で給気する給気ユニットと、室内空気を室外に排出する排気口とを備え、室内空気を室外空気で置換する成層空調システムにおいて、成層高さより下方に上記吹出口が位置し、成層高さより上方に上記排気口が設置されると共に、給気用空調機内の熱交換器を通過した後の冷却媒体が流量制御手段を介して送液される二次冷却管を床面の裏側に配設した床面冷却ユニットを設けていることを特徴とする成層空調システム。An air-cooling heat exchanger for exchanging heat with outdoor air, an air supply duct for introducing the outdoor air, and an air cooled by the heat exchanger into a room having a heat load from an outlet through an outlet of 0.6 m / sec or less. In a stratified air conditioning system that includes an air supply unit that supplies air at a wind speed and an exhaust port that discharges indoor air to the outside, wherein the air outlet is located below the stratification height, The above-mentioned exhaust port is installed above the height, and the secondary cooling pipe through which the cooling medium after passing through the heat exchanger in the air supply air conditioner is sent through the flow control means is placed on the back side of the floor surface. A stratified air conditioning system comprising a floor cooling unit disposed therein. 前記流量制御手段は、空気冷却用熱交換器と二次冷却管の間の配管に介装された三方弁からなり、該三方弁と二次冷却管の戻り管とを接続するバイパス管により冷却媒体がバイパスされることを特徴とする請求項4記載の成層空調システム。The flow rate control means comprises a three-way valve interposed in a pipe between the air cooling heat exchanger and the secondary cooling pipe, and is cooled by a bypass pipe connecting the three-way valve and a return pipe of the secondary cooling pipe. The stratified air conditioning system according to claim 4, wherein the medium is bypassed. 前記熱交換器と三方弁の間の配管又は熱交換器の上流側配管に二方弁が介装されていることを特徴とする請求項5記載の成層空調システム。The stratified air conditioning system according to claim 5, wherein a two-way valve is interposed in a pipe between the heat exchanger and the three-way valve or in an upstream pipe of the heat exchanger.
JP2003058981A 2003-03-05 2003-03-05 Method for controlling stratification height of stratified air conditioning and stratified air conditioning system Pending JP2004270971A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003058981A JP2004270971A (en) 2003-03-05 2003-03-05 Method for controlling stratification height of stratified air conditioning and stratified air conditioning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003058981A JP2004270971A (en) 2003-03-05 2003-03-05 Method for controlling stratification height of stratified air conditioning and stratified air conditioning system

Publications (1)

Publication Number Publication Date
JP2004270971A true JP2004270971A (en) 2004-09-30

Family

ID=33121956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003058981A Pending JP2004270971A (en) 2003-03-05 2003-03-05 Method for controlling stratification height of stratified air conditioning and stratified air conditioning system

Country Status (1)

Country Link
JP (1) JP2004270971A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011002108A (en) * 2009-06-16 2011-01-06 Shimizu Corp Local cleaning air conditioning system
JP2011131131A (en) * 2009-12-22 2011-07-07 Shimizu Corp Welding fume dust collection system
CN103277857A (en) * 2013-05-30 2013-09-04 同济大学建筑设计研究院(集团)有限公司 Stratified air-conditioning system serving high and large space of railway station and energy-saving method of stratified air-conditioning system
JP5734524B2 (en) * 2012-08-08 2015-06-17 三菱電機株式会社 Air conditioner
CN106934247A (en) * 2017-03-22 2017-07-07 上海理工大学 Based on the thermally equilibrated large space layering air-Conditioning Load Calculation Method in surface
CN108344126A (en) * 2017-01-25 2018-07-31 三星电子株式会社 Air handling system, the indoor unit of air handling system and the method that controls it
CN110243052A (en) * 2019-06-21 2019-09-17 宁波奥克斯电气股份有限公司 Air conditioner self checking method, device and air conditioner

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011002108A (en) * 2009-06-16 2011-01-06 Shimizu Corp Local cleaning air conditioning system
JP2011131131A (en) * 2009-12-22 2011-07-07 Shimizu Corp Welding fume dust collection system
JP5734524B2 (en) * 2012-08-08 2015-06-17 三菱電機株式会社 Air conditioner
CN103277857A (en) * 2013-05-30 2013-09-04 同济大学建筑设计研究院(集团)有限公司 Stratified air-conditioning system serving high and large space of railway station and energy-saving method of stratified air-conditioning system
CN103277857B (en) * 2013-05-30 2015-08-19 同济大学建筑设计研究院(集团)有限公司 Serve stratified air conditioning system and the power-economizing method thereof of Railway Passenger Stations large space
CN108344126A (en) * 2017-01-25 2018-07-31 三星电子株式会社 Air handling system, the indoor unit of air handling system and the method that controls it
CN106934247A (en) * 2017-03-22 2017-07-07 上海理工大学 Based on the thermally equilibrated large space layering air-Conditioning Load Calculation Method in surface
CN110243052A (en) * 2019-06-21 2019-09-17 宁波奥克斯电气股份有限公司 Air conditioner self checking method, device and air conditioner

Similar Documents

Publication Publication Date Title
JP2008304096A (en) Air conditioning system
WO2008026502A1 (en) Radiation type cooling and heating device
JP5784654B2 (en) Air conditioning system and air conditioning method
JP6306279B2 (en) Temperature stratified air conditioning system
JP2008076015A (en) Building air-conditioning system by geothermal use
JP2016217630A (en) Radiation air-conditioning system
JP2004177052A (en) Floor embedded air-conditioning unit
JPWO2015137443A1 (en) Integrated energy-saving building heating and cooling system with effective air circulation technology
JP2017146038A (en) Radiant air-conditioning system and radiant heating and cooling method
JP3613694B2 (en) Air conditioning method
JP2004270971A (en) Method for controlling stratification height of stratified air conditioning and stratified air conditioning system
US20230408119A1 (en) Air convection system
KR20090022061A (en) Hybrid air-conditioning system and method for air-conditioning using the system
JP6219107B2 (en) Air conditioning method and air conditioning system used in the air conditioning method
JP2013134021A (en) Radiation air conditioning system and method for installing radiation panel
JP3883195B2 (en) Replacement ventilation air conditioning system combined with radiant cooling air conditioning system
JP2018096664A (en) Air conditioning system
KR101236170B1 (en) Integrated control system of radiant floor and air condition
KR20150137374A (en) Radiator having cooling, heating, dehumidifying function using cool and hot water
JP2008281252A (en) Ventilation system
JP2006132823A (en) Indoor air-conditioning system of building
KR100981122B1 (en) Indoor air conditioner
JP2014202369A (en) Circulator
JP3153713U (en) Cold air supply device using eco water heater
JP6708432B2 (en) Radiant cooling/heating system and radiant cooling/heating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060207

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20070517

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080421

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080812