JP6305132B2 - Polymer electrolyte fuel cell - Google Patents

Polymer electrolyte fuel cell Download PDF

Info

Publication number
JP6305132B2
JP6305132B2 JP2014052018A JP2014052018A JP6305132B2 JP 6305132 B2 JP6305132 B2 JP 6305132B2 JP 2014052018 A JP2014052018 A JP 2014052018A JP 2014052018 A JP2014052018 A JP 2014052018A JP 6305132 B2 JP6305132 B2 JP 6305132B2
Authority
JP
Japan
Prior art keywords
electrode assembly
cell
gas
membrane electrode
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014052018A
Other languages
Japanese (ja)
Other versions
JP2015176739A (en
Inventor
河合 秀樹
秀樹 河合
山▲崎▼ 修
修 山▲崎▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osaka Gas Co Ltd
Original Assignee
Osaka Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Osaka Gas Co Ltd filed Critical Osaka Gas Co Ltd
Priority to JP2014052018A priority Critical patent/JP6305132B2/en
Publication of JP2015176739A publication Critical patent/JP2015176739A/en
Application granted granted Critical
Publication of JP6305132B2 publication Critical patent/JP6305132B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、固体高分子電解質膜を燃料極及び空気極で挟んで構成される膜電極接合体を有し、当該膜電極接合体へ供給される反応ガスを用いて発電するセルを複数積層して形成されるセルスタックを備える固体高分子形燃料電池に関する。   The present invention comprises a membrane electrode assembly comprising a solid polymer electrolyte membrane sandwiched between a fuel electrode and an air electrode, and a plurality of cells that generate power using a reaction gas supplied to the membrane electrode assembly. The present invention relates to a polymer electrolyte fuel cell including a cell stack formed in the above manner.

固体高分子形燃料電池は、固体高分子電解質膜及びそれを両側から挟む燃料極と空気極とが湿潤することによりプロトン導電性が高められ、それによって発電が可能となる。そのため、燃料極に供給する燃料ガス及び空気極に供給する酸化剤ガスに水蒸気を混合するなど、加湿して運転させている。また、長期耐久性が求められる定置用途では、劣化抑制の観点から電池温度と、燃料ガス及び酸化剤ガスの露点とがほぼ同一の飽和加湿条件での作動が一般的である。この条件では、低負荷運転時には電池温度が低下して結露水が発生し易くなるため、反応に必要なガスの流路の閉塞がその水によって引き起こされ、電池性能の低下や不安定化が生じることとなる。そのため、ガス流路内のガス流速を確保するといった余剰水分排出対策がなされてきた(例えば、特許文献1を参照)。   In the polymer electrolyte fuel cell, proton conductivity is increased by wetting the polymer electrolyte membrane and the fuel electrode and the air electrode sandwiching it from both sides, thereby enabling power generation. Therefore, the fuel gas supplied to the fuel electrode and the oxidant gas supplied to the air electrode are operated with humidification such as mixing water vapor. In stationary applications where long-term durability is required, operation under saturated humidification conditions in which the cell temperature and the dew points of the fuel gas and the oxidant gas are substantially the same are generally used from the viewpoint of suppressing deterioration. Under these conditions, the battery temperature is lowered during condensation and water is likely to be generated during low-load operation, so the water blockage of the gas flow path required for the reaction causes deterioration in battery performance and instability. It will be. For this reason, measures have been taken to discharge excess moisture such as ensuring the gas flow rate in the gas flow path (see, for example, Patent Document 1).

一方、燃料ガス及び酸化剤ガスに対する加湿機能を簡略化もしくは削除することによって、コスト低減を図ることができる。そのため、飽和加湿条件でなくてもセルの劣化が抑制されるような開発が進められてきた(例えば、非特許文献1を参照)。
また、このような低加湿条件においては、発電による生成水を如何にセルの湿潤に効率よく利用できるか、即ち、膜電極接合体の、低加湿条件での使用の適応性能を表す低加湿適応性能(例えば、保水性能、低加湿条件下でのプロトン導電性能、低加湿条件下での耐劣化性能など)が高いかが発電性能を引き出す上で重要であり、セルの構成部材の最適化が進められている(例えば、非特許文献2を参照)。
On the other hand, cost can be reduced by simplifying or eliminating the humidification function for the fuel gas and the oxidant gas. For this reason, development that suppresses cell deterioration even under non-saturated humidification conditions has been advanced (see, for example, Non-Patent Document 1).
In such a low humidification condition, how efficiently the water generated by power generation can be used to wet the cell, that is, the low humidification adaptation that represents the adaptive performance of the membrane electrode assembly used in the low humidification condition. High performance (for example, water retention performance, proton conductivity performance under low humidification conditions, anti-degradation performance under low humidification conditions, etc.) is important for extracting power generation performance, and optimization of cell components is promoted (See, for example, Non-Patent Document 2).

特開2004−247289号公報JP 2004-247289 A

Eiji Endoh, ECS Transactions,16(2),1229,(2008)Eiji Endoh, ECS Transactions, 16 (2), 1229, (2008) 西川,中村,松山,柏,第15回燃料電池シンポジウム講演予稿集,123,(2008)Nishikawa, Nakamura, Matsuyama, Kaoru, Proc. Of 15th Fuel Cell Symposium, 123, (2008)

しかしながら、低加湿条件に合わせた高い低加湿適応性能を有するセルの構成部材、特に固体高分子電解質膜は一般の飽和加湿条件仕様に対して高価であり、普及へ向けた低コスト化にそぐわない。   However, a cell component having high low humidification adaptability adapted to low humidification conditions, particularly a solid polymer electrolyte membrane, is expensive with respect to general saturated humidification condition specifications, and is not suitable for cost reduction for popularization.

また、セルへの反応ガスの流入部の近傍(即ち、上流側)の膜電極接合体は、そこでの発電反応により水は生成されるものの、流入してくる反応ガスによって乾燥し易い。これに対して、セルからの反応ガスの流出部の近傍(即ち、下流側)の膜電極接合体は、発電反応による生成水がその反応ガスの流れによって運ばれてくるため、上流側に比べて水が多く存在することになる。そのため、膜電極接合体が、上述したような乾燥し易い上流側の条件に合わせて高い低加湿適応性能(例えば、水を留め易いという高い保水性能)を有するように構成されていると、下流側では湿潤が過剰になり、滞留する水によって反応に必要なガスの流路閉塞が引き起こされる可能性もある。逆に、膜電極接合体が、上述したような水が多く存在することになる下流側の条件に合わせて低い保水性能(即ち、水が排出され易いという性能)を有するように構成されていると、上流側では湿潤が不足し、膜電極接合体のプロトン導電性が十分に確保できないという問題が発生する。   In addition, the membrane electrode assembly in the vicinity of the inflow portion of the reaction gas to the cell (that is, the upstream side) is easily dried by the inflowing reaction gas, although water is generated by the power generation reaction there. On the other hand, the membrane electrode assembly in the vicinity of the outflow part of the reaction gas from the cell (that is, the downstream side) generates water generated by the power generation reaction and is carried by the flow of the reaction gas. There will be a lot of water. Therefore, when the membrane / electrode assembly is configured to have high low humidification adaptive performance (for example, high water retention capability of easily retaining water) in accordance with the upstream conditions that are easy to dry as described above, On the side, wetting becomes excessive, and the water that remains can cause blockage of the gas flow path required for the reaction. Conversely, the membrane electrode assembly is configured to have low water retention performance (that is, performance that water is easily discharged) in accordance with downstream conditions where a large amount of water is present as described above. As a result, there is a problem in that wetting is insufficient on the upstream side, and the proton conductivity of the membrane electrode assembly cannot be sufficiently secured.

本発明は、上記の課題に鑑みてなされたものであり、その目的は、コストの上昇を抑制しながら、膜電極接合体に求められる性能を充分に発揮させることができる固体高分子形燃料電池を提供する点にある。   The present invention has been made in view of the above problems, and its object is to provide a polymer electrolyte fuel cell capable of sufficiently exhibiting the performance required for a membrane electrode assembly while suppressing an increase in cost. Is to provide

上記目的を達成するための本発明に係る固体高分子形燃料電池の特徴構成は、固体高分子電解質膜を燃料極及び空気極で挟んで構成される膜電極接合体を有し、当該膜電極接合体へ供給される反応ガスを用いて発電するセルを複数積層して形成されるセルスタックを備える固体高分子形燃料電池であって、
前記セルは、前記反応ガスが流入する流入部と、発電で用いられた後の前記反応ガスが流出する流出部と、前記セル内の前記流入部から前記流出部に至る間に前記反応ガスが流れるガス流路とを有し、
前記セル内で前記ガス流路に面する前記膜電極接合体の低加湿適応性能は、前記流入部の近傍の方が前記流出部の近傍よりも高くなるように構成され
前記膜電極接合体は、低加湿適応性能の異なる複数個の膜電極接合体部材を組み合わせて形成されている点にある。この低加湿適応性能は、膜電極接合体の低加湿条件での使用の適応性能を表す特性であり、例えば保水性能、及び、低加湿条件下でのプロトン導電性能、及び、低加湿条件下での耐劣化性能の内の少なくとも一つである。
In order to achieve the above object, the solid polymer fuel cell according to the present invention has a membrane electrode assembly configured by sandwiching a solid polymer electrolyte membrane between a fuel electrode and an air electrode, and the membrane electrode A polymer electrolyte fuel cell comprising a cell stack formed by stacking a plurality of cells that generate power using a reaction gas supplied to a joined body,
The cell includes an inflow portion into which the reaction gas flows, an outflow portion from which the reaction gas flows out after being used in power generation, and the reaction gas between the inflow portion and the outflow portion in the cell. A flowing gas flow path,
The low humidification adaptive performance of the membrane electrode assembly facing the gas flow path in the cell is configured so that the vicinity of the inflow portion is higher than the vicinity of the outflow portion ,
The membrane electrode assembly is formed by combining a plurality of membrane electrode assembly members having different low humidification adaptability . This low-humidification adaptive performance is a characteristic that represents the adaptive performance of the membrane electrode assembly when used under low humidification conditions. For example, the water retention performance, proton conductivity performance under low humidification conditions, and under low humidification conditions. Is at least one of the deterioration resistance performance of

上記特徴構成によれば、セル内でガス流路に面する膜電極接合体の低加湿適応性能は、流入部の近傍の方が流出部の近傍よりも高くなるように構成されている。つまり、反応ガスの流入部の近傍の膜電極接合体は、存在する水が相対的に少ない低加湿条件に合わせて相対的に高い低加湿適応性能(即ち、高い保水性能(水を留め易い性能)、低加湿条件下での高いプロトン導電性能、低加湿条件下での高い耐劣化性能の内の少なくとも一つ)を有するように構成されている。これに対して、反応ガスの流出部の近傍の膜電極接合体は、存在する水が相対的に多い条件下にあるため、上記低加湿適応性能が高くなくても(即ち、保水性能が低くても)、そのプロトン導電性を十分に確保できることを期待できる。また、保水性能が低ければ、反応ガスの流路が水によって閉塞されるといった問題も発生し難くなる。その結果、膜電極接合体の全体にわたって、求められる性能を充分に発揮させることができる。
また、本特徴構成では、膜電極接合体の全体を低加湿条件に合わせた高い低加湿適応性能を有するようには構成しないので、膜電極接合体が非常に高価になることもない。
従って、コストの上昇を抑制しながら、膜電極接合体に求められる性能を充分に発揮させることができる固体高分子形燃料電池を提供できる。
According to the above characteristic configuration, the low humidification adaptive performance of the membrane electrode assembly facing the gas flow path in the cell is configured to be higher in the vicinity of the inflow portion than in the vicinity of the outflow portion. In other words, the membrane electrode assembly in the vicinity of the inflow portion of the reaction gas has a relatively high low humidification adaptability (that is, high water retention performance (performance that can easily retain water) in accordance with low humidification conditions in which relatively little water is present. ), At least one of high proton conductivity performance under low humidification conditions and high deterioration resistance performance under low humidification conditions). On the other hand, the membrane electrode assembly in the vicinity of the outflow part of the reaction gas is in a condition where a relatively large amount of water is present, and therefore the low humidification adaptive performance is not high (that is, the water retention performance is low). Even so, it can be expected that the proton conductivity can be sufficiently secured. Moreover, if the water retention performance is low, the problem that the flow path of the reaction gas is blocked by water is less likely to occur. As a result, the required performance can be sufficiently exerted over the entire membrane electrode assembly.
Further, in this feature configuration, the entire membrane electrode assembly is not configured to have a high low humidification adaptive performance that matches the low humidification condition, so that the membrane electrode assembly does not become very expensive.
Therefore, it is possible to provide a polymer electrolyte fuel cell that can sufficiently exhibit the performance required for the membrane electrode assembly while suppressing an increase in cost.

加えて、低加湿適応性能の異なる複数個の膜電極接合体部材を組み合わせることで、セル内でガス流路に面する膜電極接合体の低加湿適応性能が、反応ガスの流入部の近傍の方が反応ガスの流出部の近傍よりも高くなるような構成を得ることができる。 In addition , by combining a plurality of membrane electrode assembly members with different low humidification adaptability, the low humidification adaptability of the membrane electrode assembly facing the gas flow path in the cell can be improved in the vicinity of the inflow portion of the reaction gas. It is possible to obtain a configuration in which the height is higher than that in the vicinity of the outflow portion of the reaction gas.

本発明に係る固体高分子形燃料電池のの特徴構成は、前記反応ガスは、露点が前記セルの作動温度よりも低い状態で前記流入部に流入するように構成されている点にある。 Another characteristic configuration of the polymer electrolyte fuel cell according to the present invention is that the reaction gas is configured to flow into the inflow portion in a state where a dew point is lower than an operating temperature of the cell.

反応ガスの露点がセルの作動温度以上となる飽和加湿条件で固体高分子形燃料電池を運転させようとすると、即ち、反応ガスに多量の水を含ませようとすると、例えば反応ガスや水の温度を昇温する必要があるなど、多くのエネルギーが必要となる。
ところが本特徴構成によれば、反応ガスを、その露点がセルの作動温度よりも低い状態で流入部に流入させるという低加湿条件で固体高分子形燃料電池が運転される。つまり、反応ガスの加湿に必要なエネルギーを相対的に小さくできる。
また、セル内部に存在する水の量を相対的に少なくすることができるので、反応ガスの流路が水で閉塞されるといった問題の発生を抑制できる。
If the polymer electrolyte fuel cell is operated under saturated humidification conditions where the dew point of the reaction gas is equal to or higher than the cell operating temperature, that is, if the reaction gas contains a large amount of water, for example, the reaction gas or water A lot of energy is needed, such as the need to raise the temperature.
However, according to this characteristic configuration, the polymer electrolyte fuel cell is operated under a low humidification condition in which the reaction gas is allowed to flow into the inflow portion in a state where the dew point is lower than the operating temperature of the cell. That is, the energy required for humidifying the reaction gas can be made relatively small.
Further, since the amount of water present in the cell can be relatively reduced, it is possible to suppress the occurrence of a problem that the flow path of the reaction gas is blocked with water.

本発明に係る固体高分子形燃料電池の更に別の特徴構成は、前記反応ガスは、前記空気極に供給される酸化剤ガスである点にある。   Yet another characteristic configuration of the polymer electrolyte fuel cell according to the present invention is that the reaction gas is an oxidant gas supplied to the air electrode.

酸化剤ガスが供給される空気極では発電反応によって水が生成されるため、燃料極側に比べて、存在する水が相対的に多い条件下にある。そのため、セルへの反応ガスの流入部の近傍の膜電極接合体が、流入してくる反応ガスによって乾燥し易いという問題は燃料極側及び空気極側で共通するが、セルからの反応ガスの流出部の近傍で水が多く存在するという現象は、燃料極側よりも空気極側の方が顕著になる。
本特徴構成では、空気極に供給される酸化剤ガスのガス流路に面する膜電極接合体の低加湿適応性能を、流入部の近傍の方が流出部の近傍よりも高くなるように構成するので、空気極側で顕著になる、セルからの反応ガスの流出部の近傍で水が多く存在するという現象に対して、より良く対処できる。
Since water is generated by the power generation reaction at the air electrode to which the oxidant gas is supplied, there is a relatively large amount of water present compared to the fuel electrode side. Therefore, the problem that the membrane electrode assembly in the vicinity of the inflow portion of the reaction gas to the cell is easily dried by the inflowing reaction gas is common to the fuel electrode side and the air electrode side. The phenomenon that a lot of water is present in the vicinity of the outflow portion is more remarkable on the air electrode side than on the fuel electrode side.
In this feature configuration, the low humidification adaptive performance of the membrane electrode assembly facing the gas flow path of the oxidant gas supplied to the air electrode is configured so that the vicinity of the inflow portion is higher than the vicinity of the outflow portion. Therefore, it is possible to better cope with a phenomenon in which a large amount of water is present in the vicinity of the outflow portion of the reaction gas from the cell, which becomes prominent on the air electrode side.

燃料電池システムの構成を示す図である。It is a figure which shows the structure of a fuel cell system. セルスタックの構成を説明する模式図である。It is a schematic diagram explaining the structure of a cell stack. セルの分解斜視図である。It is a disassembled perspective view of a cell. 膜電極接合体の断面構造を示す図である。It is a figure which shows the cross-section of a membrane electrode assembly. セルの分解斜視図である。It is a disassembled perspective view of a cell.

<第1実施形態>
以下に図面を参照して第1実施形態の固体高分子形燃料電池の構成について説明する。図1は、燃料電池システムの構成を説明する図であり、図2は、セルスタックCSの構成を説明する模式図であり、図3は、セルの分解斜視図である。図示するように、この燃料電池システムは、発電ユニットU1と貯湯ユニットU2とを備える。尚、本願で示す図面では、本発明の理解を容易にするために、各部材の位置関係や大きさなどを本来の位置関係や大きさなどとは異なるように描いている箇所もある。
<First Embodiment>
The configuration of the polymer electrolyte fuel cell according to the first embodiment will be described below with reference to the drawings. FIG. 1 is a diagram illustrating a configuration of a fuel cell system, FIG. 2 is a schematic diagram illustrating a configuration of a cell stack CS, and FIG. 3 is an exploded perspective view of a cell. As shown in the figure, the fuel cell system includes a power generation unit U1 and a hot water storage unit U2. In the drawings shown in the present application, in order to facilitate understanding of the present invention, there are places where the positional relationship and size of each member are drawn differently from the original positional relationship and size.

発電ユニットU1は、熱と電気とを併せて発生する熱電併給装置としての固体高分子形燃料電池を有する。固体高分子形燃料電池は、固体高分子電解質膜10を燃料極11及び空気極12で挟んで構成される膜電極接合体40と、膜電極接合体40の燃料極11側に設けられ、燃料ガス流路13aを通してその燃料極11に燃料ガスを導入する燃料極セパレータ13と、膜電極接合体40の空気極12側に設けられ、酸化剤ガス流路14aを通してその空気極12に酸化剤ガスを導入する空気極セパレータ14とを有するセルCを複数積層して形成されるセルスタックCSとを備える。また、燃料電池システムは、自身の運転を制御する運転制御手段36を備える。   The power generation unit U1 has a polymer electrolyte fuel cell as a combined heat and power generation device that generates heat and electricity together. The polymer electrolyte fuel cell includes a membrane electrode assembly 40 configured by sandwiching a polymer electrolyte membrane 10 between a fuel electrode 11 and an air electrode 12, and a fuel electrode 11 side of the membrane electrode assembly 40. A fuel electrode separator 13 that introduces fuel gas into the fuel electrode 11 through the gas flow path 13a, and the air electrode 12 side of the membrane electrode assembly 40 are provided, and the oxidant gas is supplied to the air electrode 12 through the oxidant gas flow path 14a. And a cell stack CS formed by laminating a plurality of cells C each having an air electrode separator 14 for introducing air. The fuel cell system also includes operation control means 36 for controlling its own operation.

本実施形態では、固体高分子形燃料電池には、燃料ガスとしての水素と、酸化剤ガスとしての空気(酸素)とが供給される。
燃料ガスとしての水素は、発電ユニットU1が備える改質器8が、炭化水素を含む原燃料を改質することで生成される。図1に示した例では、メタン(CH4)を主成分とする原燃料ガス(都市ガス等)が、原燃料ガス供給路6を介して改質器8に供給されて改質され、その結果として得られる水素を主成分とする燃料ガスが、燃料ガス供給路7を介してセルCに供給される。また、セルCには、酸化剤ガスとしての空気も、酸化剤ガス供給路1を介して供給される。
In the present embodiment, hydrogen as a fuel gas and air (oxygen) as an oxidant gas are supplied to the polymer electrolyte fuel cell.
Hydrogen as the fuel gas is generated when the reformer 8 provided in the power generation unit U1 reforms raw fuel containing hydrocarbons. In the example shown in FIG. 1, raw fuel gas (city gas or the like) mainly composed of methane (CH 4 ) is supplied to the reformer 8 through the raw fuel gas supply path 6 and reformed. The resulting fuel gas mainly composed of hydrogen is supplied to the cell C through the fuel gas supply path 7. In addition, air as an oxidant gas is also supplied to the cell C through the oxidant gas supply path 1.

燃料ガス供給路7の途中には燃料極側加湿器4が設けられ、セルCへ供給される燃料ガスの加湿が行われる。また、酸化剤ガス供給路1の途中には空気極側加湿器2が設けられ、セルCへ供給される酸化剤ガスの加湿が行われる。燃料極側加湿器4及び空気極側加湿器2については既存の様々な加湿器を利用できる。燃料極側加湿器4及び空気極側加湿器2の動作は運転制御手段36が制御する。具体的には、運転制御手段36が燃料極側加湿器4及び空気極側加湿器2の加湿部分での温度を制御することで、燃料ガス及び酸化剤ガスの露点を調節する。一例を挙げると、運転制御手段36が燃料極側加湿器4の加湿部分での温度を高くすると、燃料ガスに含まれる水分量を増加させる(即ち、燃料ガスの露点を高くする)ことができる。本実施形態では、運転制御手段36は、反応ガスとしての燃料ガス及び酸化剤ガスを、それらの露点がセルCの作動温度(例えば、70℃)よりも低い状態で後述する流入部13a1,14a1に流入させるように加湿器2,4の動作を制御する。   A fuel electrode side humidifier 4 is provided in the middle of the fuel gas supply path 7 to humidify the fuel gas supplied to the cell C. An air electrode side humidifier 2 is provided in the middle of the oxidant gas supply path 1 to humidify the oxidant gas supplied to the cell C. Various existing humidifiers can be used for the fuel electrode side humidifier 4 and the air electrode side humidifier 2. The operation control means 36 controls the operations of the fuel electrode side humidifier 4 and the air electrode side humidifier 2. Specifically, the operation control means 36 adjusts the dew points of the fuel gas and the oxidant gas by controlling the temperatures at the humidified portions of the fuel electrode side humidifier 4 and the air electrode side humidifier 2. For example, when the operation control means 36 increases the temperature at the humidifying portion of the fuel electrode side humidifier 4, the amount of water contained in the fuel gas can be increased (that is, the dew point of the fuel gas is increased). . In the present embodiment, the operation control means 36 includes inflow portions 13a1 and 14a1 which will be described later with fuel gas and oxidant gas as reaction gases in a state where their dew points are lower than the operating temperature of the cell C (for example, 70 ° C.). The operation of the humidifiers 2 and 4 is controlled so as to flow into.

加えて、燃焼器9には、セルCでの発電反応に用いられた後の燃料ガス(以下、「排燃料ガス」と記載することもある)が排燃料ガス路5を介して供給され、且つ、空気(酸素)が酸化剤ガス供給路1aを介して供給される。そして、燃焼器9で排燃料ガスが燃焼され、その燃焼熱が改質器8に伝達されることで、改質器8での改質反応が促進される。そして、燃焼器9から排出される排ガスと、セルCでの発電反応に用いられた後の空気とは、排ガス路3を介して発電ユニットU1の外部へと排出される。尚、図1では、排燃料ガスと空気とが予め混合された上で燃焼器9に供給される状態(排燃料ガス路5が酸化剤ガス供給路1aに連結された状態)を示しているが、排燃料ガスと空気とを別々に燃焼器9へ供給してもよい。   In addition, the fuel gas after being used for the power generation reaction in the cell C (hereinafter also referred to as “exhaust fuel gas”) is supplied to the combustor 9 via the exhaust fuel gas passage 5. In addition, air (oxygen) is supplied through the oxidant gas supply path 1a. Then, the exhaust fuel gas is combusted in the combustor 9 and the combustion heat is transmitted to the reformer 8, whereby the reforming reaction in the reformer 8 is promoted. Then, the exhaust gas discharged from the combustor 9 and the air after being used for the power generation reaction in the cell C are discharged to the outside of the power generation unit U1 through the exhaust gas path 3. FIG. 1 shows a state in which exhaust fuel gas and air are mixed in advance and then supplied to the combustor 9 (a state in which the exhaust fuel gas passage 5 is connected to the oxidant gas supply passage 1a). However, the exhaust fuel gas and air may be separately supplied to the combustor 9.

セルCでは、燃料極セパレータ13が膜電極接合体40の燃料極11側に設けられ、空気極セパレータ14が膜電極接合体40の空気極12側に設けられる。そして、燃料極セパレータ13に形成される燃料ガス流路13aを通して燃料極11に燃料ガスが導入され、空気極セパレータ14に形成される酸化剤ガス流路14aを通して空気極12に酸化剤ガスが導入される。図1に示した例では、一つのセルCは、一方の面に燃料ガスが流通する燃料ガス流路13aとなる燃料ガス用溝が形成される燃料極セパレータ13と、一方の面に酸化剤ガスが流通する酸化剤ガス流路14aとなる酸化剤ガス用溝が形成され且つ他方の面に冷却水が流通する冷却水用溝が形成される空気極セパレータ14と、膜電極接合体40とを用いて構成される。そして、一つのセルCにおいて、燃料ガス用溝が形成されている燃料極セパレータ13の一方の面を膜電極接合体40の燃料極11に相対させることで燃料ガスを燃料極11に導入し、及び、酸化剤ガス用溝が形成されている空気極セパレータ14の一方の面を膜電極接合体40の空気極12に相対させることで酸化剤ガスを空気極12に導入するように構成される。セルスタックCSにおいて、一方のセルCの冷却水用溝が形成されている空気極セパレータ14の他方の面を、他方のセルCの燃料ガス用溝が形成されていない燃料極セパレータ13の他方の面に相対させるようにして複数のセルCが順に積層される。   In the cell C, the fuel electrode separator 13 is provided on the fuel electrode 11 side of the membrane electrode assembly 40, and the air electrode separator 14 is provided on the air electrode 12 side of the membrane electrode assembly 40. Then, the fuel gas is introduced into the fuel electrode 11 through the fuel gas channel 13 a formed in the fuel electrode separator 13, and the oxidant gas is introduced into the air electrode 12 through the oxidant gas channel 14 a formed in the air electrode separator 14. Is done. In the example shown in FIG. 1, one cell C includes a fuel electrode separator 13 in which a fuel gas groove 13a serving as a fuel gas passage 13a through which fuel gas flows is formed on one surface, and an oxidant on one surface. An air electrode separator 14 in which an oxidant gas groove serving as an oxidant gas flow path 14a through which gas flows is formed and a cooling water groove through which cooling water flows is formed on the other surface; a membrane electrode assembly 40; It is configured using. Then, in one cell C, the fuel gas is introduced into the fuel electrode 11 by making one surface of the fuel electrode separator 13 in which the fuel gas groove is formed relative to the fuel electrode 11 of the membrane electrode assembly 40, The oxidant gas is introduced into the air electrode 12 by making one surface of the air electrode separator 14 in which the groove for the oxidant gas is formed facing the air electrode 12 of the membrane electrode assembly 40. . In the cell stack CS, the other surface of the air electrode separator 14 in which the cooling water groove of one cell C is formed is connected to the other surface of the fuel electrode separator 13 in which the groove for fuel gas of the other cell C is not formed. A plurality of cells C are sequentially stacked so as to face the surface.

セルCは、図2に示すY軸方向に順に積層される。そして、セルスタックCSは、セルCの積層方向に沿った上流側から下流側に向かって延びる(即ち、Y軸方向に沿って延びる)、セルスタックCSへ供給される燃料ガスが流れる燃料ガス供給マニホールド部15と、セルスタックCSへ供給される酸化剤ガスが流れる酸化剤ガス供給マニホールド部17と、セルスタックCSから排出される燃料ガスが流れる燃料ガス排出マニホールド部16と、セルスタックCSから排出される酸化剤ガスが流れる酸化剤ガス排出マニホールド部18とを備える。燃料ガス供給マニホールド部15には燃料ガス供給路7が接続され、それにより燃料ガスがセルスタックCSへ供給される。酸化剤ガス供給マニホールド部17には酸化剤ガス供給路1が接続され、それにより酸化剤ガスがセルスタックCSへ供給される。燃料ガス排出マニホールド部16には排燃料ガス路5が接続され、それにより、セルCでの発電反応に用いられた後の燃料ガス(排燃料ガス)がセルスタックCSから排出される。酸化剤ガス排出マニホールド部18には排ガス路3が接続され、セルCでの発電反応に用いられた後の酸化剤ガスがセルスタックCSから排出される。   The cell C is sequentially stacked in the Y-axis direction shown in FIG. The cell stack CS extends from the upstream side to the downstream side along the stacking direction of the cells C (that is, extends along the Y-axis direction), and the fuel gas supply through which the fuel gas supplied to the cell stack CS flows. Manifold part 15, oxidant gas supply manifold part 17 through which oxidant gas supplied to cell stack CS flows, fuel gas discharge manifold part 16 through which fuel gas discharged from cell stack CS flows, and exhaust from cell stack CS And an oxidant gas discharge manifold portion 18 through which the oxidant gas flows. A fuel gas supply path 7 is connected to the fuel gas supply manifold section 15, whereby fuel gas is supplied to the cell stack CS. The oxidant gas supply passage 1 is connected to the oxidant gas supply manifold section 17 so that the oxidant gas is supplied to the cell stack CS. The exhaust gas passage 5 is connected to the fuel gas discharge manifold section 16, whereby the fuel gas (exhaust fuel gas) after being used for the power generation reaction in the cell C is discharged from the cell stack CS. The exhaust gas passage 3 is connected to the oxidant gas discharge manifold portion 18 so that the oxidant gas after being used for the power generation reaction in the cell C is discharged from the cell stack CS.

各セルCの内部において、燃料ガス流路13aは、燃料ガス供給マニホールド部15と燃料ガス排出マニホールド部16との間を接続し、酸化剤ガス流路14aは、酸化剤ガス供給マニホールド部17と酸化剤ガス排出マニホールド部18との間を接続する。そして、燃料ガス供給マニホールド部15では、燃料ガスが、上流側から下流側へ向かって流れながら燃料ガス流路13aへ流入し、酸化剤ガス供給マニホールド部17では、酸化剤ガスが、上流側から下流側へ向かって流れながら酸化剤ガス流路14aへ流入する。図2に示す例では、図面の簡略化のため、セルCにおいて、燃料ガス流路13aがX軸方向に沿って直線形状に形成され、酸化剤ガス流路14aがZ軸方向に沿って直線形状に形成されているような模式図を描いているが、セルCの内部での燃料ガス流路13aの形状及び酸化剤ガス流路14aの形状は自在に設計できる。例えば、一つのセルCにおいて、燃料ガスが、X−Z平面内で蛇行しながら、全体としてX軸の正の方向に向かって流れるように、燃料ガス流路13aを形成することができる。また、一つのセルCにおいて、酸化剤ガスが、X−Z平面内で蛇行しながら、全体としてZ軸の正の方向に向かって流れるように、酸化剤ガス流路14aを形成することができる。また、図2に示す例では、冷却水についての説明は省略している。   Inside each cell C, the fuel gas flow path 13a connects between the fuel gas supply manifold section 15 and the fuel gas discharge manifold section 16, and the oxidant gas flow path 14a is connected to the oxidant gas supply manifold section 17. The oxidant gas discharge manifold portion 18 is connected. In the fuel gas supply manifold section 15, the fuel gas flows into the fuel gas flow path 13 a while flowing from the upstream side to the downstream side, and in the oxidant gas supply manifold section 17, the oxidant gas flows from the upstream side. It flows into the oxidant gas flow path 14a while flowing toward the downstream side. In the example shown in FIG. 2, in order to simplify the drawing, in the cell C, the fuel gas flow path 13a is formed in a straight line shape along the X-axis direction, and the oxidant gas flow path 14a is straight along the Z-axis direction. Although a schematic diagram is illustrated as being formed in a shape, the shape of the fuel gas flow path 13a and the shape of the oxidant gas flow path 14a inside the cell C can be freely designed. For example, in one cell C, the fuel gas flow path 13a can be formed so that the fuel gas flows in the positive direction of the X axis as a whole while meandering in the XZ plane. Further, in one cell C, the oxidant gas flow path 14a can be formed so that the oxidant gas flows in the positive direction of the Z axis as a whole while meandering in the XZ plane. . Further, in the example shown in FIG. 2, description of the cooling water is omitted.

上述した冷却水はセルCを冷却する役割を担うと共に、セルCから排熱を回収する役割も担っている。本実施形態では、冷却水は、冷却水循環路19を流れている。冷却水循環路19の途中には、上述したセルスタックCS内の冷却水流路20と、冷却水用熱交換器21と、冷却水用ポンプ22とが設けられており、冷却水用ポンプ22によって付勢された冷却水がセルスタックCS(冷却水流路20)と冷却水用熱交換器21とを順に流れながら循環するように構成されている。また、冷却水用熱交換器21には、貯湯ユニットU2が備える貯湯タンク25に貯えられている湯水が排熱回収路23を介して流入する。その結果、冷却水用熱交換器21では、冷却水循環路19を流れる冷却水と排熱回収路23を流れる湯水との間で熱交換が行われる。排熱回収路23での湯水の流量は、排熱回収路23の途中に設けられている排熱回収用ポンプ24の出力を制御することで調節される。冷却水用ポンプ22及び排熱回収用ポンプ24の動作は運転制御手段36が制御する。   The cooling water described above plays a role of cooling the cell C and also plays a role of recovering exhaust heat from the cell C. In the present embodiment, the cooling water flows through the cooling water circulation path 19. In the middle of the cooling water circulation path 19, the cooling water flow path 20 in the cell stack CS, the cooling water heat exchanger 21, and the cooling water pump 22 are provided. The energized cooling water is circulated while flowing through the cell stack CS (cooling water flow path 20) and the cooling water heat exchanger 21 in order. Moreover, the hot water stored in the hot water storage tank 25 provided in the hot water storage unit U <b> 2 flows into the cooling water heat exchanger 21 through the exhaust heat recovery path 23. As a result, in the cooling water heat exchanger 21, heat exchange is performed between the cooling water flowing through the cooling water circulation path 19 and the hot water flowing through the exhaust heat recovery path 23. The flow rate of hot water in the exhaust heat recovery path 23 is adjusted by controlling the output of the exhaust heat recovery pump 24 provided in the middle of the exhaust heat recovery path 23. The operation of the cooling water pump 22 and the exhaust heat recovery pump 24 is controlled by the operation control means 36.

貯湯ユニットU2に設けられる貯湯タンク25では、上部に相対的に高温の湯水が貯えられ、下部に相対的に低温の湯水が貯えられる。具体的には、排熱回収路23は、貯湯タンク25の下部と貯湯タンク25の上部とを接続するように設けられ、その間に上記冷却水用熱交換器21が設けられる。その結果、貯湯タンク25の下部に貯留されている相対的に低温の湯水が、排熱回収路23を通って冷却水用熱交換器21に至って昇温され、その昇温された相対的に高温の湯水が貯湯タンク25の上部に帰還して流入する。   In the hot water storage tank 25 provided in the hot water storage unit U2, hot water at a relatively high temperature is stored in the upper part, and hot water at a relatively low temperature is stored in the lower part. Specifically, the exhaust heat recovery path 23 is provided so as to connect the lower part of the hot water storage tank 25 and the upper part of the hot water storage tank 25, and the cooling water heat exchanger 21 is provided therebetween. As a result, the relatively low temperature hot water stored in the lower part of the hot water storage tank 25 is heated up to the cooling water heat exchanger 21 through the exhaust heat recovery path 23, and the heated temperature is relatively increased. Hot hot water returns to the upper part of the hot water storage tank 25 and flows in.

貯湯タンク25の上部には給湯路27が接続され、台所や風呂などの給湯用途に湯水が供給される。また、貯湯タンク25の下部には給水路26が接続され、貯湯タンク25への湯水の補充が行われる。   A hot water supply passage 27 is connected to the upper part of the hot water storage tank 25 to supply hot water for hot water supply such as a kitchen or a bath. In addition, a water supply path 26 is connected to the lower part of the hot water storage tank 25 so that hot water is replenished to the hot water storage tank 25.

次にセルの構造について説明する。
図3は、一つのセルCの分解斜視図である。図示するように、セルCは、膜電極接合体40が燃料極セパレータ13及び空気極セパレータ14によってその両側から挟まれた構造となっている。膜電極接合体40の周囲にはガスケット(シール部材の一例)41が設けられ、膜電極接合体40とガスケット41とが組み合わされて一枚の部材となって、燃料極セパレータ13及び空気極セパレータ14によってその両側から挟まれている。ガスケット41は中央部に開口部分が設けられた環状に形成され、その開口部分に膜電極接合体40が嵌め込まれている。尚、図3では、冷却水の流路についての説明は省略している。
Next, the cell structure will be described.
FIG. 3 is an exploded perspective view of one cell C. FIG. As shown in the figure, the cell C has a structure in which the membrane electrode assembly 40 is sandwiched between the fuel electrode separator 13 and the air electrode separator 14 from both sides. A gasket (an example of a sealing member) 41 is provided around the membrane electrode assembly 40, and the membrane electrode assembly 40 and the gasket 41 are combined into one member to form the fuel electrode separator 13 and the air electrode separator. 14 between the two sides. The gasket 41 is formed in an annular shape having an opening at the center, and the membrane electrode assembly 40 is fitted into the opening. In addition, in FIG. 3, description about the flow path of a cooling water is abbreviate | omitted.

また、図3に示すように、セルCには燃料ガス供給マニホールド部15と燃料ガス排出マニホールド部16と酸化剤ガス供給マニホールド部17と酸化剤ガス排出マニホールド部18とが形成されている。このうち、燃料ガス供給マニホールド部15と燃料ガス排出マニホールド部16は燃料極セパレータ13に形成される燃料ガス流路13aと接続され、酸化剤ガス供給マニホールド部17と酸化剤ガス排出マニホールド部18とは空気極セパレータ14に形成される酸化剤ガス流路14aと接続される。そして、燃料ガス流路13aを流れる燃料ガスは膜電極接合体40の一方側(燃料極11側)の面から直接接触し、酸化剤ガス流路14aを流れる酸化剤ガスは膜電極接合体40の他方側(空気極12側)の面から直接接触する。このように、セルCは、反応ガス(燃料ガス及び酸化剤ガス)が流入する流入部13a1,14a1と、発電で用いられた後の反応ガス(燃料ガス及び酸化剤ガス)が流出する流出部13a2,14a2と、セルC内の流入部13a1,14a1から流出部13a2,14a2に至る間に反応ガス(燃料ガス及び酸化剤ガス)が流れるガス流路13a,14aとを有する。   As shown in FIG. 3, the fuel gas supply manifold portion 15, the fuel gas discharge manifold portion 16, the oxidant gas supply manifold portion 17, and the oxidant gas discharge manifold portion 18 are formed in the cell C. Among these, the fuel gas supply manifold portion 15 and the fuel gas discharge manifold portion 16 are connected to the fuel gas flow path 13a formed in the fuel electrode separator 13, and the oxidant gas supply manifold portion 17, the oxidant gas discharge manifold portion 18 and the like. Is connected to an oxidant gas flow path 14 a formed in the air electrode separator 14. The fuel gas flowing through the fuel gas channel 13a is in direct contact with the surface on one side (fuel electrode 11 side) of the membrane electrode assembly 40, and the oxidant gas flowing through the oxidant gas channel 14a is contacted with the membrane electrode assembly 40. Directly from the surface on the other side (air electrode 12 side). As described above, the cell C includes the inflow portions 13a1 and 14a1 into which the reaction gas (fuel gas and oxidant gas) flows, and the outflow portion from which the reaction gas (fuel gas and oxidant gas) used in power generation flows out. 13a2 and 14a2 and gas flow paths 13a and 14a through which reaction gases (fuel gas and oxidant gas) flow from the inflow portions 13a1 and 14a1 in the cell C to the outflow portions 13a2 and 14a2.

次に、膜電極接合体40の構造について説明する。図1に示したように、膜電極接合体40は、固体高分子電解質膜10を燃料極11及び空気極12で挟んで構成される。
図4は、膜電極接合体40の断面構造を示す図である。図4に示すように、燃料極11は、固体高分子電解質膜10の側に設けられる燃料極側触媒層11bと、燃料極セパレータ13の側に設けられる燃料極側ガス拡散層11aとで構成される。同様に、空気極12は、固体高分子電解質膜10の側に設けられる空気極側触媒層12bと、空気極セパレータ14の側に設けられる空気極側ガス拡散層12aとで構成される。
Next, the structure of the membrane electrode assembly 40 will be described. As shown in FIG. 1, the membrane electrode assembly 40 is configured by sandwiching a solid polymer electrolyte membrane 10 between a fuel electrode 11 and an air electrode 12.
FIG. 4 is a view showing a cross-sectional structure of the membrane electrode assembly 40. As shown in FIG. 4, the fuel electrode 11 includes a fuel electrode side catalyst layer 11 b provided on the solid polymer electrolyte membrane 10 side and a fuel electrode side gas diffusion layer 11 a provided on the fuel electrode separator 13 side. Is done. Similarly, the air electrode 12 includes an air electrode side catalyst layer 12b provided on the solid polymer electrolyte membrane 10 side and an air electrode side gas diffusion layer 12a provided on the air electrode separator 14 side.

本実施形態では、膜電極接合体40は、図3に記載したような反応ガス(燃料ガス及び酸化剤ガス)の流入部13a1,14a1の側から流出部13a2,14a2の側に向かって順に並ぶ第1領域40aと第2領域40bとを有する。セルC内でガス流路13a,14aに面する膜電極接合体40の低加湿適応性能は、流入部13a1,14a1の近傍にある第1領域40aの方が、流出部13a2,14a2の近傍にある第2領域40bよりも高くなるように構成されている。つまり、膜電極接合体40の第1領域40aの低加湿適応性能は、膜電極接合体40の第2領域40bの低加湿適応性能よりも高い。この低加湿適応性能は、膜電極接合体40の低加湿条件での使用の適応性能を表す特性であり、保水性能、及び、低加湿条件下でのプロトン導電性能、及び、低加湿条件下での耐劣化性能の内の少なくとも一つである。   In the present embodiment, the membrane electrode assembly 40 is arranged in order from the reaction gas (fuel gas and oxidant gas) inflow portions 13a1 and 14a1 to the outflow portions 13a2 and 14a2 as shown in FIG. It has the 1st field 40a and the 2nd field 40b. The low humidification adaptive performance of the membrane electrode assembly 40 facing the gas flow paths 13a and 14a in the cell C is that the first region 40a near the inflow portions 13a1 and 14a1 is closer to the outflow portions 13a2 and 14a2. It is comprised so that it may become higher than a certain 2nd area | region 40b. That is, the low humidification adaptive performance of the first region 40a of the membrane electrode assembly 40 is higher than the low humidification adaptive performance of the second region 40b of the membrane electrode assembly 40. This low-humidification adaptive performance is a characteristic that represents the adaptive performance of the membrane electrode assembly 40 when used under low humidification conditions. Water retention performance, proton conductivity performance under low humidification conditions, and under low humidification conditions. Is at least one of the deterioration resistance performance of

このような膜電極接合体40の低加湿適応性能の違いは、膜電極接合体40を構成する、固体高分子電解質膜10、触媒層11b,12b、ガス拡散層11a,12aのうちの少なくとも何れか一つの特性の違いによって生み出すことができる。燃料極側触媒層11b及び空気極側触媒層12bの低加湿適応性能を高めるためには、水分が流出し難い水管理層などを塗布してその保水性能を高めるという構成を採用することができる。燃料極側ガス拡散層11a及び空気極側ガス拡散層12aの低加湿適応性能を高めるためは、例えばガス拡散層の材料となる多孔質カーボン材のポアサイズを小さくして、或いは、撥水処理(テフロン(登録商標)によるコーティングなど)の度合を低くする(撥水性を低くする)ことでその保水性能を高めるという構成を採用することができる。固体高分子電解質膜10の低加湿適応性能を高めるためには、低湿度でのプロトン導電性が高い原料を用いることで低加湿条件下でのそのプロトン導電性能を高くするという構成を採用することや、低加湿条件下で発生し易い劣化現象を抑制する添加剤を加えることでその低加湿条件下での耐劣化性能を高くするという構成を採用することができる。   The difference in the low humidification adaptability of the membrane electrode assembly 40 is that at least any of the solid polymer electrolyte membrane 10, the catalyst layers 11b and 12b, and the gas diffusion layers 11a and 12a constituting the membrane electrode assembly 40. It can be created by the difference of one characteristic. In order to enhance the low humidification adaptive performance of the fuel electrode side catalyst layer 11b and the air electrode side catalyst layer 12b, a configuration in which a water management layer or the like in which moisture does not easily flow out is applied to increase the water retention performance can be employed. . In order to improve the low humidification adaptability of the fuel electrode side gas diffusion layer 11a and the air electrode side gas diffusion layer 12a, for example, the pore size of the porous carbon material used as the material of the gas diffusion layer is reduced or the water repellent treatment ( It is possible to adopt a configuration in which the water retention performance is increased by reducing the degree of coating (such as coating with Teflon (registered trademark)) (lowering the water repellency). In order to enhance the low humidification adaptability of the solid polymer electrolyte membrane 10, a configuration is adopted in which the proton conductivity performance under low humidification conditions is increased by using a raw material having high proton conductivity at low humidity. In addition, it is possible to adopt a configuration in which the deterioration resistance performance under the low humidification condition is increased by adding an additive that suppresses the deterioration phenomenon that easily occurs under the low humidification condition.

例えば、第1領域40aに対応する部分の固体高分子電解質膜10と、第2領域40bに対応する部分の固体高分子電解質膜10とを、互いに上述したような低加湿適応性能の異なる材料で形成する。これに対して、触媒層11b,12b並びにガス拡散層11a,12aのそれぞれは、膜電極接合体40の全体にわたって低加湿適応性能に違いのない材料で形成する。このように構成することで、第1領域40aに対応する部分と第2領域40bに対応する部分とで低加湿適応性能に差異を設けることができる。   For example, a portion of the solid polymer electrolyte membrane 10 corresponding to the first region 40a and a portion of the solid polymer electrolyte membrane 10 corresponding to the second region 40b are made of materials having different low humidification adaptability as described above. Form. On the other hand, each of the catalyst layers 11b and 12b and the gas diffusion layers 11a and 12a is formed of a material having no difference in low humidification performance over the entire membrane electrode assembly 40. By comprising in this way, a difference can be provided in low humidification adaptive performance by the part corresponding to the 1st area | region 40a, and the part corresponding to the 2nd area | region 40b.

或いは、第1領域40aに対応する部分の触媒層11b,12bと、第2領域40bに対応する部分の触媒層11b,12bとを、互いに上述したような低加湿適応性能の異なる材料で形成する。これに対して、固体高分子電解質膜10並びにガス拡散層11a,12aのそれぞれは、膜電極接合体40の全体にわたって低加湿適応性能に違いのない材料で形成する。このように構成することで、第1領域40aに対応する部分と第2領域40bに対応する部分とで低加湿適応性能に差異を設けることができる。   Alternatively, portions of the catalyst layers 11b and 12b corresponding to the first region 40a and portions of the catalyst layers 11b and 12b corresponding to the second region 40b are formed of materials having different low humidification adaptability as described above. . On the other hand, each of the solid polymer electrolyte membrane 10 and the gas diffusion layers 11a and 12a is formed of a material that does not have a difference in low humidification adaptability throughout the membrane electrode assembly 40. By comprising in this way, a difference can be provided in low humidification adaptive performance by the part corresponding to the 1st area | region 40a, and the part corresponding to the 2nd area | region 40b.

また或いは、第1領域40aに対応する部分のガス拡散層11a,12aと、第2領域40bに対応する部分のガス拡散層11a,12aとを、互いに上述したような低加湿適応性能の異なる材料で形成する。これに対して、固体高分子電解質膜10並びに触媒層11b,12bのそれぞれは、膜電極接合体40の全体にわたって低加湿適応性能に違いのない材料で形成する。このように構成することで、第1領域40aに対応する部分と第2領域40bに対応する部分とで低加湿適応性能に差異を設けることができる。   Alternatively, the portions of the gas diffusion layers 11a and 12a corresponding to the first region 40a and the portions of the gas diffusion layers 11a and 12a corresponding to the second region 40b have different low humidification adaptability as described above. Form with. On the other hand, each of the solid polymer electrolyte membrane 10 and the catalyst layers 11b and 12b is formed of a material that has no difference in low humidification adaptability throughout the membrane electrode assembly 40. By comprising in this way, a difference can be provided in low humidification adaptive performance by the part corresponding to the 1st area | region 40a, and the part corresponding to the 2nd area | region 40b.

以上のように、セルC内で燃料ガス流路13a及び酸化剤ガス流路14aに面する膜電極接合体40の低加湿適応性能は、膜電極接合体40を構成する、固体高分子電解質膜10、触媒層11b,12b、ガス拡散層11a,12aのうちの少なくとも何れか一つの特性を異ならせることで、流入部13a1,14a1の近傍の方が流出部13a2,14a2の近傍よりも高くなるように構成される。つまり、反応ガスの流入部13a1,14a1の近傍の膜電極接合体40は、存在する水が相対的に少ない低加湿条件に合わせて相対的に高い低加湿適応性能(即ち、高い保水性能(水を留め易い性能)、低加湿条件下での高いプロトン導電性能、低加湿条件下での高い耐劣化性能の内の少なくとも一つ)を有するように構成されている。これに対して、反応ガスの流出部13a2,14a2の近傍の膜電極接合体40は、存在する水が相対的に多い条件下にあるため、上記低加湿適応性能が高くなくても(即ち、保水性能が低くても)、そのプロトン導電性を十分に確保できることを期待できる。また、保水性能が低ければ、反応ガスの流路が水によって閉塞されるといった問題も発生し難くなる。
その結果、膜電極接合体40の全体にわたって、求められる性能を充分に発揮させることができる。加えて、膜電極接合体40の全体を低加湿条件に合わせた高い低加湿適応性能を有するようには構成しないので、膜電極接合体40が非常に高価になることもない。
As described above, the low humidification adaptive performance of the membrane electrode assembly 40 facing the fuel gas channel 13a and the oxidant gas channel 14a in the cell C is the solid polymer electrolyte membrane constituting the membrane electrode assembly 40. 10. By making at least one of the characteristics of the catalyst layers 11b and 12b and the gas diffusion layers 11a and 12a different, the vicinity of the inflow portions 13a1 and 14a1 becomes higher than the vicinity of the outflow portions 13a2 and 14a2. Configured as follows. That is, the membrane electrode assembly 40 in the vicinity of the reaction gas inflow portions 13a1 and 14a1 has a relatively high low humidification adaptive performance (that is, high water retention performance (water At least one of high proton conductivity performance under low humidification conditions and high deterioration resistance performance under low humidification conditions). On the other hand, since the membrane electrode assembly 40 in the vicinity of the outflow portions 13a2 and 14a2 of the reaction gas is in a condition where the amount of water present is relatively large, even if the low humidification adaptive performance is not high (that is, Even if the water retention performance is low), it can be expected that the proton conductivity can be sufficiently secured. Moreover, if the water retention performance is low, the problem that the flow path of the reaction gas is blocked by water is less likely to occur.
As a result, the required performance can be sufficiently exhibited throughout the membrane electrode assembly 40. In addition, since the entire membrane electrode assembly 40 is not configured to have a high low humidification adaptive performance that matches the low humidification conditions, the membrane electrode assembly 40 does not become very expensive.

また、反応ガス(燃料ガス及び酸化剤ガス)の露点がセルCの作動温度以上となる飽和加湿条件で固体高分子形燃料電池を運転させようとすると、即ち、燃料極側加湿器4及び空気極側加湿器2を用いて燃料ガス及び酸化剤ガスに多量の水を含ませようとすると、例えば反応ガスや水の温度を昇温する必要があるなど、多くのエネルギーが必要となる。ところが本実施形態では、運転制御手段36は、反応ガスとしての燃料ガス及び酸化剤ガスの露点がセルCの作動温度(例えば、70℃)よりも低い状態で流入部13a1,14a1に流入するように加湿器2,4の動作を制御している。その結果、反応ガスの加湿に必要なエネルギーを相対的に小さくできる。また、セルC内部に存在する水の量を相対的に少なくすることができるので、膜電極接合体40の内部での反応ガスの流路が水で閉塞されるといった問題の発生を抑制できる。   Further, when the polymer electrolyte fuel cell is operated under saturated humidification conditions in which the dew point of the reaction gas (fuel gas and oxidant gas) is equal to or higher than the operating temperature of the cell C, that is, the fuel electrode side humidifier 4 and the air If a large amount of water is included in the fuel gas and the oxidant gas using the pole-side humidifier 2, a large amount of energy is required, for example, the temperature of the reaction gas or water needs to be raised. However, in the present embodiment, the operation control means 36 flows into the inflow portions 13a1 and 14a1 in a state where the dew point of the fuel gas and oxidant gas as the reaction gas is lower than the operating temperature of the cell C (for example, 70 ° C.). The operation of the humidifiers 2 and 4 is controlled. As a result, the energy required for humidifying the reaction gas can be made relatively small. In addition, since the amount of water present inside the cell C can be relatively reduced, it is possible to suppress the occurrence of a problem that the flow path of the reaction gas inside the membrane electrode assembly 40 is blocked with water.

<第2実施形態>
第2実施形態の固体高分子形燃料電池は、膜電極接合体40が複数個に分割されている点で上記実施形態と異なっている。以下に第2実施形態の固体高分子形燃料電池の構成について説明するが、上記実施形態と同様の構成については説明を省略する。
Second Embodiment
The polymer electrolyte fuel cell according to the second embodiment is different from the above embodiment in that the membrane electrode assembly 40 is divided into a plurality of parts. Although the structure of the polymer electrolyte fuel cell of 2nd Embodiment is demonstrated below, description is abbreviate | omitted about the structure similar to the said embodiment.

図5は、セルの分解斜視図である。図示するように、セルCは、膜電極接合体40が燃料極セパレータ13及び空気極セパレータ14によってその両側から挟まれた構造となっている。詳細には、膜電極接合体40の周囲にはガスケット(シール部材の一例)41が設けられ、膜電極接合体40とガスケット41とが一枚の部材となって、燃料極セパレータ13及び空気極セパレータ14によってその両側から挟まれている。ガスケット41は中央部に2つの開口部分が設けられた「8」の字形に形成され、それぞれの開口部分に膜電極接合体40(第1膜電極接合体部材40A,第2膜電極接合体部材40B)が嵌め込まれている。尚、図5では、冷却水の流路についての説明は省略している。   FIG. 5 is an exploded perspective view of the cell. As shown in the figure, the cell C has a structure in which the membrane electrode assembly 40 is sandwiched between the fuel electrode separator 13 and the air electrode separator 14 from both sides. Specifically, a gasket (an example of a sealing member) 41 is provided around the membrane electrode assembly 40, and the membrane electrode assembly 40 and the gasket 41 serve as a single member so that the fuel electrode separator 13 and the air electrode The separator 14 is sandwiched from both sides. The gasket 41 is formed in the shape of “8” having two openings at the center, and the membrane electrode assembly 40 (first membrane electrode assembly member 40A, second membrane electrode assembly member) is formed in each opening portion. 40B) is fitted. In FIG. 5, description of the cooling water flow path is omitted.

本実施形態では、反応ガス(燃料ガス及び酸化剤ガス)の流入部13a1,14a1の側から流出部13a2,14a2の側に向かって第1膜電極接合体部材40Aと第2膜電極接合体部材40Bとが順に並ぶ。つまり、第1膜電極接合体部材40Aの方が反応ガス(燃料ガス及び酸化剤ガス)の流入部13a1,14a1に近い位置にあり、第2膜電極接合体部材40Bの方が反応ガス(燃料ガス及び酸化剤ガス)の流出部13a2,14a2に近い位置にある。そして、セルC内でガス流路13a,14aに面する膜電極接合体40の低加湿適応性能は、流入部13a1,14a1の近傍にある第1膜電極接合体部材40Aの方が、流出部13a2,14a2の近傍にある第2膜電極接合体部材40Bよりも高くなるように構成されている。つまり、膜電極接合体40の第1膜電極接合体部材40Aの低加湿適応性能は、第2膜電極接合体部材40Bの低加湿適応性能よりも高い。   In the present embodiment, the first membrane electrode assembly member 40A and the second membrane electrode assembly member are directed from the inflow portions 13a1, 14a1 side of the reaction gas (fuel gas and oxidant gas) toward the outflow portions 13a2, 14a2. 40B are arranged in order. That is, the first membrane electrode assembly member 40A is closer to the reaction gas (fuel gas and oxidant gas) inflow portions 13a1 and 14a1, and the second membrane electrode assembly member 40B is more reactive gas (fuel). Gas and oxidant gas) near the outflow portions 13a2 and 14a2. The low humidification adaptive performance of the membrane electrode assembly 40 facing the gas flow paths 13a and 14a in the cell C is that the first membrane electrode assembly member 40A in the vicinity of the inflow portions 13a1 and 14a1 is the outflow portion. It is comprised so that it may become higher than the 2nd membrane electrode assembly member 40B in the vicinity of 13a2 and 14a2. That is, the low humidification adaptive performance of the first membrane electrode assembly member 40A of the membrane electrode assembly 40 is higher than the low humidification adaptive performance of the second membrane electrode assembly member 40B.

このような低加湿適応性能の違いは、第1実施形態と同様に、第1膜電極接合体部材40A及び第2膜電極接合体部材40Bのそれぞれを構成する、固体高分子電解質膜10、触媒層11b,12b、ガス拡散層11a,12aのうちの少なくとも何れか一つの特性の違いによって生み出すことができる。つまり、膜電極接合体40は、低加湿適応性能の異なる複数個の膜電極接合体部材40A,40Bを組み合わせて形成され、これにより、セルC内でガス流路13a,14aに面する膜電極接合体40の低加湿適応性能が、反応ガスの流入部13a1,14a1の近傍の方が反応ガスの流出部13a2,14a2の近傍よりも高くなるような構成を得ることができる。   The difference in such low-humidification adaptive performance is similar to the first embodiment in that the solid polymer electrolyte membrane 10 and the catalyst constituting each of the first membrane electrode assembly member 40A and the second membrane electrode assembly member 40B are provided. It can be produced by a difference in characteristics of at least one of the layers 11b and 12b and the gas diffusion layers 11a and 12a. In other words, the membrane electrode assembly 40 is formed by combining a plurality of membrane electrode assembly members 40A and 40B having different low humidification adaptability, whereby the membrane electrode facing the gas flow paths 13a and 14a in the cell C. The low humidification adaptive performance of the joined body 40 can be obtained such that the vicinity of the reaction gas inflow portions 13a1 and 14a1 is higher than the vicinity of the reaction gas outflow portions 13a2 and 14a2.

<別実施形態>
<1>
上記実施形態において、燃料電池システムの構成は適宜変更可能である。
例えば、図1に示した発電ユニットU1に変成器や一酸化炭素除去器などを追加で設けてもよい。即ち、図1に示した例では、改質器8で生成された改質ガス(水素を主成分とするガス)が固体高分子形燃料電池のセルCに供給される例を示したが、変成器を用いてその改質ガス中に含まれる一酸化炭素を二酸化炭素に変成し、更に一酸化炭素除去器を用いてその変成処理を施した後の改質ガスに残存している一酸化炭素を除去した上でセルCに供給するような変更を行ってもよい。
他にも、図1等に示した各ガスの流路の構成、冷却水の流路の構成、湯水の流路の構成なども適宜変更可能である。
<Another embodiment>
<1>
In the above embodiment, the configuration of the fuel cell system can be changed as appropriate.
For example, a transformer, a carbon monoxide remover, or the like may be additionally provided in the power generation unit U1 shown in FIG. That is, in the example shown in FIG. 1, the example in which the reformed gas (gas containing hydrogen as a main component) generated by the reformer 8 is supplied to the cell C of the polymer electrolyte fuel cell is shown. The carbon monoxide contained in the reformed gas is transformed into carbon dioxide using a transformer, and the monoxide remaining in the reformed gas after the transformation treatment is performed using a carbon monoxide remover. You may change so that it may supply to the cell C, after removing carbon.
In addition, the configuration of each gas channel, the configuration of the cooling water channel, the configuration of the hot water channel, and the like shown in FIG.

<2>
上記実施形態において、膜電極接合体40の両面側ではなく、酸化剤ガスが流れる側の膜電極接合体40の低加湿適応性能のみを、上述したように流入部14a1の近傍の方が流出部14a2の近傍よりも高くなるように異ならせることでもよい。酸化剤ガスが供給される空気極12では発電反応によって水が生成されるため、燃料極11側に比べて、存在する水が相対的に多い条件下にある。そのため、セルCへの反応ガスの流入部13a1,14a1の近傍の膜電極接合体40が、流入してくる反応ガスによって乾燥し易いという問題は燃料極11側及び空気極12側で共通するが、セルからの反応ガスの流出部13a2,14a2の近傍で水が多く存在するという現象は、燃料極11側よりも空気極12側の方が顕著になる。このような場合において、空気極12に供給される酸化剤ガスのガス流路14aに面する膜電極接合体40の低加湿適応性能を、流入部14a1の近傍の方が流出部14a2の近傍よりも高くなるように構成すると、空気極12側で顕著になる、セルCからの酸化剤ガスの流出部14a2の近傍で水が多く存在するという現象に対して、より良く対処できる。
<2>
In the above embodiment, only the low humidification adaptive performance of the membrane electrode assembly 40 on the side where the oxidant gas flows, not the both surface sides of the membrane electrode assembly 40, and the vicinity of the inflow portion 14a1 is the outflow portion as described above. It may be different so as to be higher than the vicinity of 14a2. Since water is generated by the power generation reaction at the air electrode 12 to which the oxidant gas is supplied, there is a relatively large amount of water present compared to the fuel electrode 11 side. Therefore, the problem that the membrane electrode assembly 40 in the vicinity of the reaction gas inflow portions 13a1 and 14a1 to the cell C is easily dried by the inflowing reaction gas is common to the fuel electrode 11 side and the air electrode 12 side. The phenomenon that a large amount of water is present in the vicinity of the outflow portions 13a2 and 14a2 of the reaction gas from the cell becomes more remarkable on the air electrode 12 side than on the fuel electrode 11 side. In such a case, the low humidification adaptive performance of the membrane electrode assembly 40 facing the gas flow path 14a of the oxidant gas supplied to the air electrode 12 is shown in the vicinity of the inflow portion 14a1 than in the vicinity of the outflow portion 14a2. If it is configured to be higher, it is possible to better cope with a phenomenon in which a large amount of water exists in the vicinity of the oxidant gas outflow portion 14a2 from the cell C, which becomes conspicuous on the air electrode 12 side.

或いは、燃料ガスが流れる側の膜電極接合体40の低加湿適応性能のみを、上述したように流入部13a1の近傍の方が流出部13a2の近傍よりも高くなるように異ならせてもよい。この場合、流入部13a1の近傍に位置する燃料ガスが流れる側の膜電極接合体40は、存在する水が相対的に少なくても、低加湿適応性能が相対的に高く発揮されることで、求められる性能を充分に発揮することができる。
また、例えば上記低加湿適応性能が保水性能である場合、燃料ガスが流れる側の流出部13a2の近傍の膜電極接合体40の保水性能は、燃料ガスが流れる側の流入部13a1の近傍の膜電極接合体40の保水性能よりも低くなる(即ち、水が排出され易くなる)。加えて、膜電極接合体40を間に挟んで対向する位置にある、燃料ガスの流入部13a1の近傍と酸化剤ガスの流入部14a1の近傍との比較では、燃料ガスが流れる側の流入部13a1の近傍の膜電極接合体40の保水性能は、酸化剤ガスが流れる側の流入部14a1の近傍の膜電極接合体40の保水性能よりも高くなる(即ち、水が排出され難くなる)。その結果、空気極12側で生成された水が、固体高分子電解質膜10を経由して燃料極11側へ拡散する量が抑えられ、その水は、空気極12側に留まるようになる。従って、燃料極11側に比べ供給するガス量が相対的に多い空気極12側の酸化剤ガスの流入部14a1の近傍における膜電極接合体40の乾燥を抑制できる。
Alternatively, only the low humidification adaptive performance of the membrane electrode assembly 40 on the side where the fuel gas flows may be changed so that the vicinity of the inflow portion 13a1 is higher than the vicinity of the outflow portion 13a2 as described above. In this case, the membrane electrode assembly 40 on the side where the fuel gas flows located in the vicinity of the inflow portion 13a1 exhibits a relatively high low humidification adaptive performance even if there is relatively little water, The required performance can be fully exhibited.
For example, when the low humidification adaptive performance is water retention performance, the water retention performance of the membrane electrode assembly 40 in the vicinity of the outflow portion 13a2 on the fuel gas flow side is the membrane in the vicinity of the inflow portion 13a1 on the fuel gas flow side. It becomes lower than the water retention performance of the electrode assembly 40 (that is, water is easily discharged). In addition, in the comparison between the vicinity of the fuel gas inflow portion 13a1 and the vicinity of the oxidant gas inflow portion 14a1 at the positions facing each other with the membrane electrode assembly 40 interposed therebetween, the inflow portion on the side where the fuel gas flows is compared. The water retention performance of the membrane electrode assembly 40 in the vicinity of 13a1 is higher than the water retention performance of the membrane electrode assembly 40 in the vicinity of the inflow portion 14a1 on the side through which the oxidant gas flows (that is, it becomes difficult for water to be discharged). As a result, the amount of water generated on the air electrode 12 side diffusing to the fuel electrode 11 side via the solid polymer electrolyte membrane 10 is suppressed, and the water stays on the air electrode 12 side. Therefore, drying of the membrane electrode assembly 40 in the vicinity of the oxidant gas inflow portion 14a1 on the air electrode 12 side where the amount of gas supplied is relatively large compared to the fuel electrode 11 side can be suppressed.

<3>
第1実施形態で説明した膜電極接合体40の第1領域40aの面積(即ち、「燃料極セパレータ13及び空気極セパレータ14に相対する面積」。以下、同様。)と第2領域40bの面積は互いに同じでなくてもよく、並びに、第2実施形態で説明した第1膜電極接合体部材40Aの面積及び第2膜電極接合体部材40Bの面積は互いに同じでなくてもよい。
また、膜電極接合体40の低加湿適応性能を、第1領域40a及び第2領域40b、或いは、第1膜電極接合体部材40A及び第2膜電極接合体部材40Bというように2つに区分けして異ならせるのではなく、3つ以上に区分けして互いに異ならせてもよい。更に、上述するように、膜電極接合体40の低加湿適応性能を、流入部13a1,14a1の近傍の方が流出部13a2,14a2の近傍よりも高くなるように段階的に変化させて異ならせるのではなく、連続的に変化させて異ならせてもよい。
<3>
The area of the first region 40a of the membrane electrode assembly 40 described in the first embodiment (that is, “the area facing the fuel electrode separator 13 and the air electrode separator 14”, the same applies hereinafter) and the area of the second region 40b. May not be the same as each other, and the area of the first membrane electrode assembly member 40A and the area of the second membrane electrode assembly member 40B described in the second embodiment may not be the same.
Further, the low humidification adaptive performance of the membrane electrode assembly 40 is divided into two, such as the first region 40a and the second region 40b, or the first membrane electrode assembly member 40A and the second membrane electrode assembly member 40B. Instead of making them different, they may be divided into three or more and made different from each other. Furthermore, as described above, the low humidification adaptive performance of the membrane electrode assembly 40 is varied in stages so that the vicinity of the inflow portions 13a1 and 14a1 is higher than the vicinity of the outflow portions 13a2 and 14a2. Instead, it may be changed continuously.

<4>
図3及び図5に例示したセルCでは、膜電極接合体40に対する燃料ガスの流れる向きと酸化剤ガスの流れる向きとが同じ向き(並行流)である場合にしているが、膜電極接合体40に対する燃料ガスの流れる向きと酸化剤ガスの流れる向きとを、逆の向き(対向流)に改変してもよく、或いは、交差(例えば90度の角度での交差など)するように改変してもよい。このような改変を行った場合、セルC内でガス流路としての酸化剤ガス流路14aに面する膜電極接合体40の低加湿適応性能を、流入部14a1の近傍の方が流出部14a2の近傍よりも高くなるように構成することが好ましい。
<4>
In the cell C illustrated in FIGS. 3 and 5, the flow direction of the fuel gas and the flow direction of the oxidant gas with respect to the membrane electrode assembly 40 are the same direction (parallel flow). The flow direction of the fuel gas and the flow direction of the oxidant gas with respect to 40 may be changed to the opposite direction (opposite flow) or may be changed so as to intersect (for example, intersect at an angle of 90 degrees). May be. When such a modification is made, the low humidification adaptive performance of the membrane electrode assembly 40 facing the oxidant gas flow path 14a as the gas flow path in the cell C is shown, and the outflow part 14a2 is closer to the inflow part 14a1. It is preferable to be configured to be higher than the vicinity.

本発明は、コストの上昇を抑制しながら、膜電極接合体に求められる性能を充分に発揮させることができる固体高分子形燃料電池に利用できる。   INDUSTRIAL APPLICABILITY The present invention can be used for a polymer electrolyte fuel cell that can sufficiently exhibit the performance required for a membrane electrode assembly while suppressing an increase in cost.

10 固体高分子電解質膜
11 燃料極
12 空気極
13a 燃料ガス流路
13a1 流入部
13a2 流出部
14a 酸化剤ガス流路
14a1 流入部
14a2 流出部
40 膜電極接合体
40A,40B 膜電極接合体部材
41 ガスケット
C セル
CS セルスタック
DESCRIPTION OF SYMBOLS 10 Solid polymer electrolyte membrane 11 Fuel electrode 12 Air electrode 13a Fuel gas flow path 13a1 Inflow part 13a2 Outflow part 14a Oxidant gas flow path 14a1 Inflow part 14a2 Outflow part 40 Membrane electrode assembly 40A, 40B Membrane electrode assembly member 41 Gasket C cell CS cell stack

Claims (3)

固体高分子電解質膜を燃料極及び空気極で挟んで構成される膜電極接合体を有し、当該膜電極接合体へ供給される反応ガスを用いて発電するセルを複数積層して形成されるセルスタックを備える固体高分子形燃料電池であって、
前記セルは、前記反応ガスが流入する流入部と、発電で用いられた後の前記反応ガスが流出する流出部と、前記セル内の前記流入部から前記流出部に至る間に前記反応ガスが流れるガス流路とを有し、
前記セル内で前記ガス流路に面する前記膜電極接合体の低加湿適応性能は、前記流入部の近傍の方が前記流出部の近傍よりも高くなるように構成され
前記膜電極接合体は、低加湿適応性能の異なる複数個の膜電極接合体部材を組み合わせて形成されている固体高分子形燃料電池。
A membrane electrode assembly having a solid polymer electrolyte membrane sandwiched between a fuel electrode and an air electrode, and a plurality of cells that generate power using a reaction gas supplied to the membrane electrode assembly are stacked. A polymer electrolyte fuel cell comprising a cell stack,
The cell includes an inflow portion into which the reaction gas flows, an outflow portion from which the reaction gas flows out after being used in power generation, and the reaction gas between the inflow portion and the outflow portion in the cell. A flowing gas flow path,
The low humidification adaptive performance of the membrane electrode assembly facing the gas flow path in the cell is configured so that the vicinity of the inflow portion is higher than the vicinity of the outflow portion ,
The membrane electrode assembly is a polymer electrolyte fuel cell formed by combining a plurality of membrane electrode assembly members having different low humidification adaptability .
前記反応ガスは、露点が前記セルの作動温度よりも低い状態で前記流入部に流入するように構成されている請求項1に記載の固体高分子形燃料電池。2. The polymer electrolyte fuel cell according to claim 1, wherein the reaction gas is configured to flow into the inflow portion in a state where a dew point is lower than an operating temperature of the cell. 前記反応ガスは、前記空気極に供給される酸化剤ガスである請求項1又は2に記載の固体高分子形燃料電池。The polymer electrolyte fuel cell according to claim 1 or 2, wherein the reaction gas is an oxidant gas supplied to the air electrode.
JP2014052018A 2014-03-14 2014-03-14 Polymer electrolyte fuel cell Active JP6305132B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014052018A JP6305132B2 (en) 2014-03-14 2014-03-14 Polymer electrolyte fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014052018A JP6305132B2 (en) 2014-03-14 2014-03-14 Polymer electrolyte fuel cell

Publications (2)

Publication Number Publication Date
JP2015176739A JP2015176739A (en) 2015-10-05
JP6305132B2 true JP6305132B2 (en) 2018-04-04

Family

ID=54255759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014052018A Active JP6305132B2 (en) 2014-03-14 2014-03-14 Polymer electrolyte fuel cell

Country Status (1)

Country Link
JP (1) JP6305132B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6519496B2 (en) * 2016-02-16 2019-05-29 トヨタ自動車株式会社 Fuel cell
WO2022145728A1 (en) * 2020-12-31 2022-07-07 코오롱인더스트리 주식회사 Membrane-electrode assembly and manufacturing method therefor

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3424223B2 (en) * 1995-03-29 2003-07-07 マツダ株式会社 Fuel cell stack structure
JP4037698B2 (en) * 2002-06-26 2008-01-23 本田技研工業株式会社 Solid polymer cell assembly
JP2004158369A (en) * 2002-11-08 2004-06-03 Nissan Motor Co Ltd Fuel cell
JP2005251491A (en) * 2004-03-03 2005-09-15 Toyota Motor Corp Fuel cell system
JP5002269B2 (en) * 2007-01-15 2012-08-15 株式会社東芝 Polymer electrolyte fuel cell
JP2014007099A (en) * 2012-06-26 2014-01-16 Toppan Printing Co Ltd Electrode catalyst layer for fuel cell, and method of manufacturing the same

Also Published As

Publication number Publication date
JP2015176739A (en) 2015-10-05

Similar Documents

Publication Publication Date Title
JP6177881B2 (en) Fuel cell
JP4846883B2 (en) POLYMER ELECTROLYTE FUEL CELL, FUEL CELL STACK HAVING THE SAME, FUEL CELL SYSTEM, AND METHOD FOR OPERATING FUEL CELL SYSTEM
TWI686006B (en) Fuel cell membrane humidifier capable of controlling flow direction of fluid
JP6305132B2 (en) Polymer electrolyte fuel cell
JP2007103242A (en) Polymer electrolyte fuel cell
KR102248995B1 (en) Hollow fiber cartridge capable of controlling flow direction of fluid and fuel cell membrane humidifier comprising it
KR101127004B1 (en) Fuel cell stack with internal membrane humidifier
JPWO2010067453A1 (en) Fuel cell
KR102204066B1 (en) Hollow fiber membrane module with hollow fiber membrane of different material and fuel cell membrane humidifier comprising thereof
KR101636613B1 (en) Separator for Fuel Cell and High Temperature Polymer Electrolyte Membrane Fuel Cell Having the Same
JP2008198386A (en) Fuel cell
JP2004158369A (en) Fuel cell
JP2023541079A (en) Fuel cell membrane humidifier and fuel cell system including the same
KR101309155B1 (en) Fuel cell system
JP2006196249A (en) Fuel cell system
JP2004206951A (en) Fuel cell with dehumidification/humidification device
JP7114511B2 (en) Fuel cells and sealing materials for fuel cells
JP2018190496A (en) Fuel cell system
JP2024505665A (en) Fuel cell system with adjustable bypass flow rate
JP2006210151A (en) Fuel cell system
Berning Multiphase simulations and design of validation experiments for proton exchange membrane fuel cells
JP2024503842A (en) Fuel cell system with adjustable bypass flow rate
KR20220127540A (en) Fuel cell membrane humidifier and fuel cell system comprising it
KR20220127539A (en) Fuel cell membrane humidifier and fuel cell system comprising it
KR20220117603A (en) Fuel cell membrane humidifier with adjustable off-gas flow

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170919

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170920

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171117

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180306

R150 Certificate of patent or registration of utility model

Ref document number: 6305132

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150