JP6302593B1 - Exhaust gas analyzer - Google Patents

Exhaust gas analyzer Download PDF

Info

Publication number
JP6302593B1
JP6302593B1 JP2017217213A JP2017217213A JP6302593B1 JP 6302593 B1 JP6302593 B1 JP 6302593B1 JP 2017217213 A JP2017217213 A JP 2017217213A JP 2017217213 A JP2017217213 A JP 2017217213A JP 6302593 B1 JP6302593 B1 JP 6302593B1
Authority
JP
Japan
Prior art keywords
concentration
pipe
gas introduction
unit
alternative gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017217213A
Other languages
Japanese (ja)
Other versions
JP2019086492A (en
Inventor
啓史 松尾
啓史 松尾
明豊 高宮
明豊 高宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Best Instruments Co Ltd
Original Assignee
Best Instruments Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Best Instruments Co Ltd filed Critical Best Instruments Co Ltd
Priority to JP2017217213A priority Critical patent/JP6302593B1/en
Application granted granted Critical
Publication of JP6302593B1 publication Critical patent/JP6302593B1/en
Publication of JP2019086492A publication Critical patent/JP2019086492A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Of Engines (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

【課題】車両の運転中にエンジンが一時停止状態から再始動した直後でも、排ガス成分濃度の測定が正確に行える排ガス分析装置を提供する。【解決手段】排気管2と、排気管と濃度検出部3を接続するサンプリング管4と、サンプリング管に設けられて常時濃度検出部にガスを供給するポンプ5と、サンプリング管に接続された代替ガス導入管6と、代替ガス導入管に接続され、既知の代替ガスが充填された代替ガス容器7と、サンプリング管と代替ガス導入管の分岐部4aに配置された流路切換弁8と、エンジン1の作動の有無に応じて流路切替手段を制御する流路切替制御部9を備える。エンジンの作動時は、サンプリング管における分岐部の上流側と分岐部の下流側とが接続されて濃度検出部が排気管に接続され、エンジンの一時停止時は、代替ガス導入管とサンプリング管における分岐部の下流側とが接続されて濃度検出部が代替ガス導入管に接続される。【選択図】図1An exhaust gas analyzer capable of accurately measuring the exhaust gas component concentration even immediately after an engine is restarted from a temporarily stopped state during operation of a vehicle. SOLUTION: An exhaust pipe 2, a sampling pipe 4 connecting the exhaust pipe and the concentration detector 3, a pump 5 provided in the sampling pipe and supplying gas to the concentration detector at all times, and an alternative connected to the sampling pipe A gas introduction pipe 6, an alternative gas container 7 connected to the alternative gas introduction pipe and filled with a known alternative gas, a flow path switching valve 8 disposed at a branching portion 4a of the sampling pipe and the alternative gas introduction pipe, A flow path switching control unit 9 that controls the flow path switching means according to the presence or absence of the operation of the engine 1 is provided. When the engine is operating, the upstream side of the branching part in the sampling pipe is connected to the downstream side of the branching part, and the concentration detection part is connected to the exhaust pipe. The concentration detection unit is connected to the alternative gas introduction pipe by being connected to the downstream side of the branching unit. [Selection] Figure 1

Description

本発明は、エンジンから排出される排ガスの成分濃度を測定する排ガス分析装置に関するものである。   The present invention relates to an exhaust gas analyzer that measures the component concentration of exhaust gas discharged from an engine.

近年、ハイブリッド車(HEV)やアイドリング・ストップ車等の運転中にエンジンが一時停止する車両が普及しており、このような車両の運転中の排ガス成分濃度測定に対応した排ガス分析装置が開発されている。   In recent years, vehicles in which an engine is temporarily stopped during operation of a hybrid vehicle (HEV), an idling stop vehicle, and the like have become widespread, and an exhaust gas analyzer corresponding to measurement of exhaust gas component concentration during operation of such a vehicle has been developed. ing.

例えば、特許文献1に記載の排ガス分析装置は、内部をエンジンからの排ガスが流れる排ガス流路と、排ガス流路に分岐接続された排ガス導入管と、排ガス導入管に接続された分析機器と、排ガス導入管に分岐接続された大気導入管と、排ガス導入管における大気導入管の分岐部に設けられた流路切替機構とを備えている。   For example, an exhaust gas analyzer described in Patent Document 1 includes an exhaust gas passage through which exhaust gas from an engine flows, an exhaust gas introduction pipe that is branched and connected to the exhaust gas passage, an analysis instrument that is connected to the exhaust gas introduction pipe, An atmosphere introduction pipe branched and connected to the exhaust gas introduction pipe and a flow path switching mechanism provided at a branch portion of the atmosphere introduction pipe in the exhaust gas introduction pipe are provided.

そして、分析機器がエンジンの運転中は動作して常時ガスを吸引するとともに、流路切替機構によって、エンジンが作動状態のとき、排ガス導入管における分岐部の上流側の部分と分岐部の下流側の部分が接続される一方、エンジンが一時停止状態のときは、大気導入管と排ガス導入管における分岐部の下流側の部分が接続される。   The analytical instrument operates during the operation of the engine and constantly sucks the gas, and when the engine is in an operating state by the flow path switching mechanism, the upstream side portion of the branch portion in the exhaust gas introduction pipe and the downstream side of the branch portion On the other hand, when the engine is in a temporarily stopped state, the downstream portion of the branch portion in the atmospheric introduction pipe and the exhaust gas introduction pipe is connected.

そして、この構成によれば、エンジンの一時停止中に分析機器のポンプを動作させた状態でも、エンジンや大気側から排ガス流路への不意のガス流、触媒の温度変化、排気ポートの圧力低下等の発生を回避することができる。   According to this configuration, even when the pump of the analytical instrument is operated while the engine is temporarily stopped, the unexpected gas flow from the engine or the atmosphere side to the exhaust gas flow path, the temperature change of the catalyst, the pressure drop of the exhaust port Etc. can be avoided.

しかしながら、大気中には分析計の測定対象成分(排ガス規制物質を含む)が含まれているため、上記の排ガス分析装置では、エンジンが一時停止状態から再始動せしめられて、分析機器のサンプリングラインが大気導入管側から排ガス導入管側に切り替えられた直後は、排ガスの成分濃度を正確に測定することができないという欠点があった。   However, since the measurement target components of the analyzer (including exhaust emission control substances) are contained in the atmosphere, in the exhaust gas analysis apparatus described above, the engine is restarted from a temporarily stopped state, and the sampling line of the analytical instrument Immediately after switching from the atmosphere introduction pipe side to the exhaust gas introduction pipe side, there was a drawback that the component concentration of the exhaust gas could not be measured accurately.

特開2015−79006号公報Japanese Patent Laying-Open No. 2015-79006

したがって、本発明の課題は、車両の運転中にエンジンが一時停止状態から再始動した直後でも、排ガス成分濃度の測定が正確に行える排ガス分析装置を提供することにある。   Accordingly, an object of the present invention is to provide an exhaust gas analyzer that can accurately measure the exhaust gas component concentration even immediately after the engine is restarted from a temporarily stopped state during operation of the vehicle.

上記課題を解決するため、本発明によれば、内部をエンジンの排ガスが流れる排気管と、排ガスの成分濃度を検出する濃度検出部と、前記排気管に分岐接続され、当該排気管を前記濃度検出部に接続するサンプリング管と、前記サンプリング管または前記濃度検出部の排気系に設けられ、常時前記濃度検出部にガス供給を行うポンプと、前記サンプリング管における前記ポンプの上流側に分岐接続された代替ガス導入管と、前記代替ガス導入管に接続され、既知の代替ガスとしてのゼロガスが充填された代替ガス容器と、前記サンプリング管における前記代替ガス導入管の分岐部、または前記サンプリング管における前記分岐部の上流側および前記代替ガス導入管に設けられた流路切替手段と、前記エンジンの作動の有無をモニタリングし、当該作動の有無に応じて前記流路切替手段を制御する流路切替制御部と、前記代替ガス容器または前記代替ガス導入管に設けられた圧力制御器と、前記代替ガス導入管における前記圧力制御器の下流側に分岐接続されたオーバーフロー管と、を備え、前記エンジンの作動時は、前記サンプリング管における前記分岐部の上流側と前記分岐部の下流側とが接続されると同時に、前記代替ガス導入管が閉じられることによって、前記濃度検出部が前記排気管に接続される一方、前記エンジンの一時停止時は、前記代替ガス導入管と前記サンプリング管における前記分岐部の下流側とが接続されると同時に、前記サンプリング管における前記分岐部の上流側が閉じられることによって、前記濃度検出部が前記代替ガス導入管に接続されるようになっており、さらに、前記エンジンの一時停止時に、前記濃度検出部による検出データを用いて前記濃度検出部のゼロ点補正を行う校正部を備え、前記校正部が、移動平均取得時間、補正開始時間および濃度閾値が予め格納されたパラメータ値格納部と、前記濃度検出部の前記排気管から前記代替ガス導入管への接続の切り替え後の経過時間を計測する時間計測部と、前記濃度検出部の前記排気管から前記代替ガス導入管への接続の切り替え後、前記濃度検出部によって検出された濃度瞬間値を順次格納する検出データ格納部と、前記移動平均取得時間に基づき、前記検出データ格納部に格納された前記濃度瞬間値を用いて濃度移動平均値を順次算出する移動平均値算出部と、前記移動平均値算出部によって前記濃度移動平均値が算出されるたびに、前記時間計測部による計測値から前記移動平均取得時間を減算した値を前記補正開始時間と比較し、前記減算した値が前記補正開始時間を超えたときに、補正開始信号を出力する補正タイミング検出部と、前記補正タイミング検出部から前記補正開始信号が出力されたとき、前記移動平均値算出部によって算出された前記濃度移動平均値を前記濃度閾値と比較し、前記濃度移動平均値が前記濃度閾値を超える場合に前記濃度検出部のゼロ点補正を行うゼロ点補正部と、を有していることを特徴とする排ガス分析装置が提供される。 In order to solve the above problems, according to the present invention, an exhaust pipe through which exhaust gas of an engine flows, a concentration detection unit for detecting a component concentration of exhaust gas, and a branch connection to the exhaust pipe, the exhaust pipe is connected to the concentration A sampling pipe connected to the detection unit, a pump provided in the exhaust system of the sampling pipe or the concentration detection unit, which supplies gas to the concentration detection unit at all times, and a branch connection upstream of the pump in the sampling pipe An alternative gas introduction pipe, an alternative gas container connected to the alternative gas introduction pipe and filled with zero gas as a known alternative gas , a branch of the alternative gas introduction pipe in the sampling pipe, or in the sampling pipe Monitoring the presence or absence of operation of the engine, the flow path switching means provided on the upstream side of the branching section and the alternative gas introduction pipe, A flow path switching control unit for controlling the flow path switching means according to the presence or absence of the operation, a pressure controller provided in the alternative gas container or the alternative gas introduction pipe, and the pressure control in the alternative gas introduction pipe An overflow pipe branch connected to the downstream side of the vessel, and when the engine is operating, the upstream side of the branch part and the downstream side of the branch part in the sampling pipe are connected simultaneously with the replacement When the gas introduction pipe is closed, the concentration detection unit is connected to the exhaust pipe, and when the engine is temporarily stopped, the alternative gas introduction pipe is connected to the downstream side of the branch part in the sampling pipe. at the same time is, by the upstream side of the branch portion of the sampling tube is closed, so the density detecting unit is connected to the alternate gas inlet tube And a calibration unit that performs zero point correction of the concentration detection unit using data detected by the concentration detection unit when the engine is temporarily stopped, and the calibration unit includes a moving average acquisition time, a correction start time, and A parameter value storage unit in which a concentration threshold value is stored in advance, a time measurement unit that measures an elapsed time after switching the connection of the concentration detection unit from the exhaust pipe to the alternative gas introduction pipe, and the concentration detection unit After switching the connection from the exhaust pipe to the alternative gas introduction pipe, the detection data storage section that sequentially stores the instantaneous concentration value detected by the concentration detection section, and the detection data storage section based on the moving average acquisition time A moving average value calculation unit that sequentially calculates a concentration moving average value using the stored instantaneous concentration value, and each time the concentration moving average value is calculated by the moving average value calculation unit A correction timing for comparing a value obtained by subtracting the moving average acquisition time from a measurement value obtained by the time measurement unit with the correction start time, and outputting a correction start signal when the subtracted value exceeds the correction start time. When the correction start signal is output from the detection unit and the correction timing detection unit, the concentration moving average value calculated by the moving average value calculation unit is compared with the concentration threshold value, and the concentration moving average value is There is provided an exhaust gas analyzer characterized by having a zero point correction unit that performs zero point correction of the concentration detection unit when the concentration threshold is exceeded .

本発明によれば、エンジンの作動の有無に応じて濃度検出部の接続を排気管側と代替ガス導入管側に切り替え、エンジンの作動時は濃度検出部にエンジンからの排ガスを供給する一方、エンジンの一時停止時には濃度検出部に既知の代替ガスとしてのゼロガスを供給するようにした。 According to the present invention, the connection of the concentration detection unit is switched between the exhaust pipe side and the alternative gas introduction pipe side according to the presence or absence of the operation of the engine, and when the engine is operated, exhaust gas from the engine is supplied to the concentration detection unit, Zero gas as a known alternative gas is supplied to the concentration detection unit when the engine is temporarily stopped.

そのため、エンジンの一時停止時は、濃度検出部には既知の代替ガスとしてのゼロガスが供給され、濃度検出部がゼロガスの成分濃度の検出を行う一方、排気管内にはエンジン停止直後の排ガスが滞留したままであり、大気が排気管内に吸入されて排ガスの組成や温度に影響を及ぼすことはない。また、ゼロガスは濃度検出部の検出対象の成分ガスを含まないので、ゼロガスについて濃度検出部で得られる濃度検出値はゼロであることが予めわかっており、それによって、エンジンの一時停止時に濃度検出部のゼロ点補正を行うことができる。 For this reason, when the engine is temporarily stopped , zero gas as a known alternative gas is supplied to the concentration detection unit, and the concentration detection unit detects the component concentration of the zero gas , while exhaust gas immediately after the engine stops stays in the exhaust pipe. The air is not sucked into the exhaust pipe and does not affect the composition and temperature of the exhaust gas. In addition, since zero gas does not contain the component gas to be detected by the concentration detection unit, it is known in advance that the concentration detection value obtained by the concentration detection unit for zero gas is zero, thereby detecting the concentration when the engine is temporarily stopped. Can be corrected.

そして、エンジンが一時停止状態から再始動すると、濃度検出部が代替ガス導入管側から排気管側に切り替えられて濃度検出部に排ガスが供給され、濃度検出部による排ガスの成分濃度の検出が開始されるが、このとき、濃度検出部による排ガスの検出データはゼロガスの検出データから明確に区別し得る。
それによって、エンジンが一時停止状態から再始動した直後でも、排ガス成分濃度の測定が正確に行える。
When the engine is restarted from the paused state, the concentration detection unit is switched from the alternative gas introduction pipe side to the exhaust pipe side, and exhaust gas is supplied to the concentration detection unit, and detection of the exhaust gas component concentration by the concentration detection unit starts. However, at this time, the detection data of the exhaust gas by the concentration detector can be clearly distinguished from the detection data of zero gas .
As a result, the exhaust gas component concentration can be measured accurately even immediately after the engine is restarted from the paused state.

本発明の1実施例による排ガス分析装置の概略構成を示すブロック図である。1 is a block diagram showing a schematic configuration of an exhaust gas analyzer according to one embodiment of the present invention. (A)は本発明の別の実施例による排ガス分析装置の概略構成を示すブロック図であり、(B)は(A)の校正部の構成を示すブロック図である。(A) is a block diagram which shows schematic structure of the exhaust gas analyzer by another Example of this invention, (B) is a block diagram which shows the structure of the calibration part of (A). 濃度検出部の接続の排気管側から代替ガス導入管側への切り替え後に濃度検出部で得られる濃度瞬間値の時間変化の一例を示すグラフである。It is a graph which shows an example of the time change of the concentration instantaneous value obtained in a concentration detection part after switching from the exhaust pipe side of the connection of a concentration detection part to the alternative gas introduction pipe side.

以下、添付図面を参照しつつ、本発明の構成を好ましい実施例に基づいて説明する。
図1は、本発明の1実施例による排ガス分析装置の概略構成を示すブロック図である。
図1を参照して、1はエンジンであり、2はエンジン1の排ガスが流れる排気管であり、3は排ガスの成分濃度を検出する濃度検出部である。
Hereinafter, the configuration of the present invention will be described based on preferred embodiments with reference to the accompanying drawings.
FIG. 1 is a block diagram showing a schematic configuration of an exhaust gas analyzer according to one embodiment of the present invention.
Referring to FIG. 1, 1 is an engine, 2 is an exhaust pipe through which exhaust gas from the engine 1 flows, and 3 is a concentration detection unit that detects a component concentration of exhaust gas.

排気管2にはサンプリング管4が分岐接続され、サンプリング管4は排気管2を濃度検出部3に接続している。サンプリング管4には、常時濃度検出部3にガス供給を行うポンプ5が設けられている。   A sampling pipe 4 is branched and connected to the exhaust pipe 2, and the sampling pipe 4 connects the exhaust pipe 2 to the concentration detector 3. The sampling tube 4 is provided with a pump 5 that supplies gas to the concentration detector 3 at all times.

また、サンプリング管4におけるポンプ5の上流側に代替ガス導入管6が分岐接続され、代替ガス導入管6には、代替ガス容器7が接続されている。この実施例では、代替ガス容器7と代替ガス導入管6の接続は、代替ガス容器7(の出口)に圧力制御器10を取り付け、圧力制御器10に代替ガス導入管6を接続することによってなされている。   An alternative gas introduction pipe 6 is branched and connected to the upstream side of the pump 5 in the sampling pipe 4, and an alternative gas container 7 is connected to the alternative gas introduction pipe 6. In this embodiment, the alternative gas container 7 and the alternative gas introduction pipe 6 are connected by attaching the pressure controller 10 to the outlet of the alternative gas container 7 and connecting the alternative gas introduction pipe 6 to the pressure controller 10. Has been made.

代替ガス容器7には既知の代替ガスが充填されている。
既知の代替ガスとしては、濃度検出部3の検出対象である成分ガス(濃度既知)のみからなるガス、または、濃度検出部3の検出対象である成分ガス(濃度既知)の少なくとも1種類と濃度検出部3の検出対象でない成分ガス(濃度不定でもよい)の少なくとも1種類が混合されたガス、または、濃度検出部の検出対象でない成分ガス(濃度不定でもよい)のみからなるガスが挙げられる。
The alternative gas container 7 is filled with a known alternative gas.
As a known alternative gas, a gas consisting only of a component gas (concentration known) that is a detection target of the concentration detection unit 3, or at least one type and concentration of a component gas (concentration known) that is a detection target of the concentration detection unit 3 Examples thereof include a gas in which at least one kind of component gas that is not a detection target of the detection unit 3 (which may have an indefinite concentration) is mixed, or a gas that includes only a component gas that is not a detection target of the concentration detection unit (which may have an indefinite concentration).

また、サンプリング管4における代替ガス導入管6の分岐部4aに、流路切替弁8が設けられている。この実施例では、流路切替弁8は、三方電磁弁からなっている。   Further, a flow path switching valve 8 is provided at the branching portion 4 a of the alternative gas introduction pipe 6 in the sampling pipe 4. In this embodiment, the flow path switching valve 8 is a three-way electromagnetic valve.

さらに、エンジン1の作動の有無をモニタリングし、エンジン1の作動の有無に応じて流路切替弁8を制御する流路切替制御部9が設けられている。
流路切替制御部9によるエンジン1の作動の有無のモニタリングは、例えば、エンジン1の点火信号を監視することや、エンジン1の回転数を検出するセンサからの出力信号を監視することや、排気管2を流れる排ガス流量を検出するセンサからの出力信号を監視することや、エンジン1の吸気流量を検出するセンサからの出力信号を監視することや、エンジン停止信号や燃料供給停止信号を監視すること等によってなされる。
Furthermore, a flow path switching control unit 9 that monitors the presence or absence of the operation of the engine 1 and controls the flow path switching valve 8 according to the presence or absence of the operation of the engine 1 is provided.
The monitoring of the presence or absence of the operation of the engine 1 by the flow path switching control unit 9 is, for example, monitoring an ignition signal of the engine 1, monitoring an output signal from a sensor that detects the rotation speed of the engine 1, The output signal from the sensor that detects the exhaust gas flow rate flowing through the pipe 2 is monitored, the output signal from the sensor that detects the intake flow rate of the engine 1 is monitored, and the engine stop signal and the fuel supply stop signal are monitored. It is made by things.

また、代替ガス導入管6における圧力制御器10の下流側にオーバーフロー管11が分岐接続されている。   An overflow pipe 11 is branched and connected to the alternative gas introduction pipe 6 on the downstream side of the pressure controller 10.

そして、流路切替制御部9は、エンジン1が作動状態にあると判定したとき、サンプリング管4における分岐部4aの上流側と分岐部4aの下流側とを接続すると同時に、代替ガス導入管6を閉じることによって、濃度検出部3を排気管2に接続し、エンジン1が一時停止状態にあると判定したときは、代替ガス導入管6とサンプリング管4における分岐部4aの下流側とを接続すると同時に、サンプリング管4における分岐部4aの上流側を閉じることによって、濃度検出部3を代替ガス導入管6に接続する。   When the flow path switching control unit 9 determines that the engine 1 is in an operating state, the flow path switching control unit 9 connects the upstream side of the branching portion 4a and the downstream side of the branching portion 4a in the sampling pipe 4 and at the same time, the alternative gas introduction pipe 6 When the engine 1 is determined to be in a temporarily stopped state, the alternative gas introduction pipe 6 and the downstream side of the branch part 4a in the sampling pipe 4 are connected. At the same time, the concentration detection unit 3 is connected to the alternative gas introduction pipe 6 by closing the upstream side of the branch part 4 a in the sampling pipe 4.

こうして、本発明の排ガス分析装置によれば、エンジン1の作動の有無に応じて濃度検出部3の接続を排気管2側と代替ガス導入管6側に切り替え、エンジン1の作動時は濃度検出部3にエンジン1からの排ガスを供給する一方、エンジン1の一時停止時には濃度検出部3に既知の代替ガスを供給するようにしている。   In this way, according to the exhaust gas analyzer of the present invention, the connection of the concentration detector 3 is switched between the exhaust pipe 2 side and the alternative gas introduction pipe 6 side according to whether the engine 1 is operating or not. While the exhaust gas from the engine 1 is supplied to the unit 3, a known alternative gas is supplied to the concentration detection unit 3 when the engine 1 is temporarily stopped.

そのため、エンジン1の一時停止時は、濃度検出部3に代替ガスが供給されて濃度検出部3が代替ガスの成分濃度の検出を行う一方、排気管2内にはエンジン1の停止直後の排ガスが滞留したままとなり、大気が排気管2内に吸入されて排ガスの組成や温度に影響を及ぼすことはない。   Therefore, when the engine 1 is temporarily stopped, the alternative gas is supplied to the concentration detection unit 3 and the concentration detection unit 3 detects the component concentration of the alternative gas, while the exhaust pipe 2 has exhaust gas immediately after the engine 1 is stopped. Will remain, and the atmosphere will not be sucked into the exhaust pipe 2 to affect the composition and temperature of the exhaust gas.

また、既知のガスに含まれる濃度検出部3の検出対象の成分ガスは濃度が既知であるから、当該成分ガスについて濃度検出部3で得られる検出データは予めわかっており、既知のガスに含まれる濃度検出部3の検出対象でない成分ガスは、濃度検出部3によって検出されることがない。   Further, since the component gas to be detected by the concentration detector 3 contained in the known gas has a known concentration, the detection data obtained by the concentration detector 3 for the component gas is known in advance and is included in the known gas. The component gas that is not detected by the concentration detector 3 is not detected by the concentration detector 3.

そして、エンジン1が一時停止状態から再始動すると、濃度検出部3のガス供給路が代替ガス導入管6から排気管2側に切り替えられて濃度検出部3に排ガスが供給され、濃度検出部3による排ガスの成分濃度の検出がなされるが、このとき、濃度検出部3による排ガスの検出データは代替ガスの検出データから明確に区別され得る。
それによって、エンジン1が一時停止状態から再始動した直後でも、排ガス成分濃度の測定が正確に行える。
When the engine 1 is restarted from the temporarily stopped state, the gas supply path of the concentration detection unit 3 is switched from the alternative gas introduction pipe 6 to the exhaust pipe 2 side, and exhaust gas is supplied to the concentration detection unit 3. In this case, the exhaust gas detection data by the concentration detector 3 can be clearly distinguished from the alternative gas detection data.
As a result, the exhaust gas component concentration can be accurately measured even immediately after the engine 1 is restarted from the temporarily stopped state.

図2には、本発明の別の実施例の構成を示した。
この実施例は、図1の実施例と、濃度検出部3のゼロ点補正を行う校正部を備えた点が異なるだけである。よって、図2中、図1に示したものと同じ構成要素には同一番号を付し、以下ではそれらの詳細な説明を省略する。
FIG. 2 shows the configuration of another embodiment of the present invention.
This embodiment is different from the embodiment of FIG. 1 only in that a calibration unit for correcting the zero point of the density detection unit 3 is provided. Therefore, in FIG. 2, the same components as those shown in FIG. 1 are denoted by the same reference numerals, and detailed description thereof will be omitted below.

図2(A)を参照して、この実施例では、既知の代替ガスがゼロガスからなり、排ガス分析装置は、さらに、エンジン1の一時停止中に、濃度検出部3による検出データを用いて濃度検出部3のゼロ点補正を行う校正部12を備えている。   Referring to FIG. 2A, in this embodiment, the known alternative gas is made of zero gas, and the exhaust gas analyzer further uses the detection data from the concentration detector 3 while the engine 1 is temporarily stopped. A calibration unit 12 that performs zero point correction of the detection unit 3 is provided.

校正部12は、図2(B)に示すように、移動平均取得時間、補正開始時間および濃度閾値が予め格納されたパラメータ値格納部13を有している。
ここで、移動平均取得時間、補正開始時間および濃度閾値はそれぞれ次のように規定される。
・移動平均取得時間:濃度検出部3の排気管2から代替ガス導入管6への接続の切り替え後、濃度検出部3で得られる濃度瞬間値の移動平均をとる時間間隔。平均時間としては、例えば、5〜10秒が設定される。
・補正開始時間:濃度検出部3の排気管2から代替ガス導入管6への接続の切り替え後、ゼロ点補正を開始するまでの時間(管路の切り替え後、十分なガス置換が行われるまでの時間が考慮される)。例えば、1〜2分が設定される。
・濃度閾値:校正の要否を判定するための参照濃度値。濃度ゼロの点を挟んでプラス・マイナス2つの値が設定される。
As shown in FIG. 2B, the calibration unit 12 has a parameter value storage unit 13 in which a moving average acquisition time, a correction start time, and a density threshold value are stored in advance.
Here, the moving average acquisition time, the correction start time, and the density threshold are each defined as follows.
Moving average acquisition time: A time interval for taking a moving average of instantaneous concentration values obtained by the concentration detector 3 after switching the connection from the exhaust pipe 2 to the alternative gas introduction pipe 6 of the concentration detector 3. For example, 5 to 10 seconds is set as the average time.
Correction start time: Time until the zero point correction is started after switching the connection from the exhaust pipe 2 to the alternative gas introduction pipe 6 of the concentration detector 3 (until sufficient gas replacement is performed after switching the pipe line) Time is considered). For example, 1 to 2 minutes is set.
Density threshold: a reference concentration value for determining whether calibration is necessary. Two values, plus and minus, are set across the zero density point.

校正部12は、また、濃度検出部3の排気管2から代替ガス導入管6への接続の切り替え後の経過時間を計測する時間計測部14と、濃度検出部3の排気管2から代替ガス導入管6への接続の切り替え後、濃度検出部3によって検出された濃度瞬間値を順次格納する検出データ格納部15と、移動平均取得時間に基づき、検出データ格納部15に格納された濃度瞬間値を用いて濃度移動平均値を順次算出する移動平均値算出部16を有している。   The calibration unit 12 also includes a time measurement unit 14 that measures an elapsed time after switching the connection from the exhaust pipe 2 to the alternative gas introduction pipe 6 of the concentration detection unit 3, and an alternative gas from the exhaust pipe 2 of the concentration detection unit 3. After switching the connection to the introduction pipe 6, the detection data storage unit 15 that sequentially stores the instantaneous concentration values detected by the concentration detection unit 3, and the instantaneous concentration stored in the detection data storage unit 15 based on the moving average acquisition time A moving average value calculation unit 16 that sequentially calculates density moving average values using the values is provided.

校正部12は、さらに、移動平均値算出部16によって濃度移動平均値が算出されるたびに、時間計測部14による計測値から移動平均取得時間を減算した値を補正開始時間と比較し、当該減算値が補正開始時間を超えたときに、補正開始信号を出力する補正タイミング検出部17と、補正タイミング検出部17から補正開始信号が出力されたとき、移動平均値算出部16によって算出された濃度移動平均値を濃度閾値と比較し、濃度移動平均値が濃度閾値を超える場合に濃度検出部3のゼロ点補正を行うゼロ点補正部18を有している。 The calibration unit 12 further compares the value obtained by subtracting the moving average acquisition time from the measurement value obtained by the time measurement unit 14 with the correction start time each time the concentration moving average value is calculated by the moving average value calculation unit 16. when the subtracted value exceeds the correction start time, the correction timing detection unit 17 for outputting a correction start signal, when the correction start signal from the correction timing detection unit 17 is outputted, calculated by the moving average calculation section 16 The density moving average value is compared with the density threshold value, and when the density moving average value exceeds the density threshold value, the zero point correcting unit 18 that performs the zero point correction of the density detecting unit 3 is provided.

次に、校正部12の動作を具体的に説明する。
図3(A)〜(C)は、濃度検出部3の接続の排気管2側から代替ガス導入管6側への切り替え後に濃度検出部3で得られた濃度瞬間値の時間変化の一例を示すグラフである。なお、図3(A)〜(C)のグラフ中、縦軸は濃度瞬間値(%FS)を表し、横軸は経過時間(秒)を表している。
Next, the operation of the calibration unit 12 will be specifically described.
FIGS. 3A to 3C are examples of temporal changes in the concentration instantaneous value obtained by the concentration detection unit 3 after switching from the exhaust pipe 2 side of the connection of the concentration detection unit 3 to the alternative gas introduction pipe 6 side. It is a graph to show. In the graphs of FIGS. 3A to 3C, the vertical axis represents the instantaneous concentration value (% FS), and the horizontal axis represents the elapsed time (seconds).

図3(A)を参照して、濃度検出部3が排気管2から代替ガス導入管6に接続を切り替えられると(点P)、代替ガス導入管6から濃度検出部3へのゼロガスの供給が開始されて、濃度検出部3内のガス置換(排ガス→ゼロガス)が進行し、それによって、濃度検出部3で得られる濃度瞬間値が急激に低下する。 Referring to FIG. 3A, when the concentration detection unit 3 is switched from the exhaust pipe 2 to the alternative gas introduction pipe 6 (point P 1 ), zero gas from the alternative gas introduction pipe 6 to the concentration detection unit 3 is changed. Supply is started, and gas replacement (exhaust gas → zero gas) in the concentration detection unit 3 proceeds, whereby the instantaneous concentration value obtained by the concentration detection unit 3 rapidly decreases.

また、濃度検出部3が排気管2から代替ガス導入管6に接続を切り替えられた後、移動平均取得時間毎に、検出データ格納部15に格納された濃度瞬間値に基づき、検出データ移動平均値算出部16によって濃度移動平均値が算出される。
また、濃度移動平均値が算出されるたびに、補正タイミング検出部17において、時間計測部14による計測値から移動平均取得時間を減算した値が補正開始時間と比較される。
In addition, after the concentration detection unit 3 is switched from the exhaust pipe 2 to the alternative gas introduction pipe 6, the detection data moving average is calculated based on the concentration instantaneous value stored in the detection data storage unit 15 for each moving average acquisition time. A density moving average value is calculated by the value calculation unit 16.
Each time the concentration moving average value is calculated, the correction timing detection unit 17 compares the value obtained by subtracting the moving average acquisition time from the measurement value obtained by the time measurement unit 14 with the correction start time.

そして、図3(B)に示すように、上記減算した値が補正開始時間を超えたとき(点P)、補正タイミング検出部17から補正開始信号が出力される。
補正開始信号が出力されると、ゼロ点補正部18において、その時点で移動平均値算出部16によって算出されている濃度移動平均値が濃度閾値(±δ)と比較され、濃度移動平均値が濃度閾値(±δ)を越えていると判定された場合には、ゼロ点補正部18によって濃度検出部3のゼロ点補正がなされる(図3(C)の点P)。
Then, as shown in FIG. 3B, when the subtracted value exceeds the correction start time (point P 2 ), a correction start signal is output from the correction timing detection unit 17.
When the correction start signal is output, the zero point correction unit 18 compares the density moving average value calculated by the moving average value calculation unit 16 at that time with the density threshold (± δ), and the density moving average value is calculated. If it is determined that the density threshold (± δ) is exceeded, the zero point correction unit 18 performs zero point correction of the density detection unit 3 (point P 3 in FIG. 3C).

この実施例によれば、図1の実施例で得られる効果に加えて、エンジン1の一時停止中に、濃度検出部3のゼロ点補正を自動的に行えるという効果が得られる。   According to this embodiment, in addition to the effect obtained in the embodiment of FIG. 1, the effect that the zero point correction of the concentration detector 3 can be automatically performed while the engine 1 is temporarily stopped is obtained.

以上、本発明の好ましい実施例について説明したが、本発明の構成は上記実施例には限定されず、当業者は、本願の特許請求の範囲に記載した構成の範囲内で種々の変形例を案出し得る。   The preferred embodiments of the present invention have been described above. However, the configuration of the present invention is not limited to the above-described embodiments, and those skilled in the art will recognize various modifications within the scope of the configurations described in the claims of the present application. You can devise.

例えば、上記実施例では、流路切替手段として、サンプリング管における代替ガス導入管の分岐部に流路切替弁が配置されたが、この構成の代わりに、流路切替手段として、サンプリング管における分岐部の上流側および代替ガス導入管にそれぞれ第1および第2の流路切替弁を配置し、エンジンが作動状態のとき、第1の流路切替弁を開くと同時に、第2の流路切替弁を閉じ、エンジンが一時停止状態のときは、第1の流路切替弁を閉じると同時に、第2の流路切替弁を開く構成としてもよい。   For example, in the embodiment described above, the flow path switching valve is arranged at the branch portion of the alternative gas introduction pipe in the sampling pipe as the flow path switching means, but instead of this configuration, the branch in the sampling pipe is used as the flow path switching means. The first and second flow path switching valves are arranged on the upstream side of the unit and the alternative gas introduction pipe, respectively, and when the engine is in operation, the first flow path switching valve is opened and the second flow path switching is performed at the same time. When the valve is closed and the engine is in a temporarily stopped state, the second flow path switching valve may be opened at the same time as the first flow path switching valve is closed.

また、例えば、上記実施例では、圧力制御器を代替ガス容器に設けたが、圧力制御器を代替ガス導入管に設けてもよい。また、上記実施例では、濃度検出部にガス供給を行うポンプをサンプリング管(濃度検出部の上流側)に設けたが、ポンプを濃度検出部の排気系(濃度検出部の下流側)に設けることもできる。   Further, for example, in the above embodiment, the pressure controller is provided in the alternative gas container, but the pressure controller may be provided in the alternative gas introduction pipe. In the above embodiment, the pump for supplying gas to the concentration detection unit is provided on the sampling pipe (upstream side of the concentration detection unit), but the pump is provided on the exhaust system of the concentration detection unit (downstream side of the concentration detection unit). You can also.

1 エンジン
2 排気管
3 濃度検出部
4 サンプリング管
4a 分岐部
5 ポンプ
6 代替ガス導入管
7 代替ガス容器
8 流路切替弁
9 流路切替制御部
10 圧力制御器
11 オーバーフロー管
12 校正部
13 パラメータ値格納部
14 時間計測部
15 検出データ格納部
16 移動平均値算出部
17 補正タイミング検出部
18 ゼロ点補正部
DESCRIPTION OF SYMBOLS 1 Engine 2 Exhaust pipe 3 Concentration detection part 4 Sampling pipe 4a Branch part 5 Pump 6 Alternative gas introduction pipe 7 Alternative gas container 8 Flow path switching valve 9 Flow path switching control part 10 Pressure controller 11 Overflow pipe 12 Calibration part 13 Parameter value Storage unit 14 Time measurement unit 15 Detection data storage unit 16 Moving average value calculation unit 17 Correction timing detection unit 18 Zero point correction unit

Claims (1)

内部をエンジンの排ガスが流れる排気管と、
排ガスの成分濃度を検出する濃度検出部と、
前記排気管に分岐接続され、当該排気管を前記濃度検出部に接続するサンプリング管と、
前記サンプリング管または前記濃度検出部の排気系に設けられ、常時前記濃度検出部にガス供給を行うポンプと、
前記サンプリング管における前記ポンプの上流側に分岐接続された代替ガス導入管と、
前記代替ガス導入管に接続され、既知の代替ガスとしてのゼロガスが充填された代替ガス容器と、
前記サンプリング管における前記代替ガス導入管の分岐部、または前記サンプリング管における前記分岐部の上流側および前記代替ガス導入管に設けられた流路切替手段と、
前記エンジンの作動の有無をモニタリングし、当該作動の有無に応じて前記流路切替手段を制御する流路切替制御部と、
前記代替ガス容器または前記代替ガス導入管に設けられた圧力制御器と、
前記代替ガス導入管における前記圧力制御器の下流側に分岐接続されたオーバーフロー管と、を備え、
前記エンジンの作動時は、前記サンプリング管における前記分岐部の上流側と前記分岐部の下流側とが接続されると同時に、前記代替ガス導入管が閉じられることによって、前記濃度検出部が前記排気管に接続される一方、前記エンジンの一時停止時は、前記代替ガス導入管と前記サンプリング管における前記分岐部の下流側とが接続されると同時に、前記サンプリング管における前記分岐部の上流側が閉じられることによって、前記濃度検出部が前記代替ガス導入管に接続されるようになっており、さらに、
前記エンジンの一時停止時に、前記濃度検出部による検出データを用いて前記濃度検出部のゼロ点補正を行う校正部を備え、
前記校正部が、
移動平均取得時間、補正開始時間および濃度閾値が予め格納されたパラメータ値格納部と、
前記濃度検出部の前記排気管から前記代替ガス導入管への接続の切り替え後の経過時間を計測する時間計測部と、
前記濃度検出部の前記排気管から前記代替ガス導入管への接続の切り替え後、前記濃度検出部によって検出された濃度瞬間値を順次格納する検出データ格納部と、
前記移動平均取得時間に基づき、前記検出データ格納部に格納された前記濃度瞬間値を用いて濃度移動平均値を順次算出する移動平均値算出部と、
前記移動平均値算出部によって前記濃度移動平均値が算出されるたびに、前記時間計測部による計測値から前記移動平均取得時間を減算した値を前記補正開始時間と比較し、前記減算した値が前記補正開始時間を超えたときに、補正開始信号を出力する補正タイミング検出部と、
前記補正タイミング検出部から前記補正開始信号が出力されたとき、前記移動平均値算出部によって算出された前記濃度移動平均値を前記濃度閾値と比較し、前記濃度移動平均値が前記濃度閾値を超える場合に前記濃度検出部のゼロ点補正を行うゼロ点補正部と、を有していることを特徴とする排ガス分析装置。
An exhaust pipe through which the exhaust gas of the engine flows,
A concentration detector for detecting the concentration of exhaust gas components;
A sampling pipe that is branched and connected to the exhaust pipe, and connects the exhaust pipe to the concentration detection unit;
A pump that is provided in an exhaust system of the sampling pipe or the concentration detector , and constantly supplies gas to the concentration detector;
An alternative gas introduction pipe branched and connected to the upstream side of the pump in the sampling pipe;
An alternative gas container connected to the alternative gas introduction pipe and filled with zero gas as a known alternative gas;
A branch section of the alternative gas introduction pipe in the sampling pipe, or a flow path switching means provided on the upstream side of the branch section and the alternative gas introduction pipe in the sampling pipe;
A flow path switching control unit that monitors the presence or absence of the operation of the engine and controls the flow path switching means according to the presence or absence of the operation;
A pressure controller provided in the alternative gas container or the alternative gas introduction pipe;
An overflow pipe branched and connected to the downstream side of the pressure controller in the alternative gas introduction pipe,
When the engine is in operation, the upstream side of the branching portion and the downstream side of the branching portion in the sampling pipe are connected, and at the same time, the alternative gas introduction pipe is closed, so that the concentration detection section is While the engine is temporarily stopped, the alternative gas introduction pipe is connected to the downstream side of the branch part of the sampling pipe, and at the same time, the upstream side of the branch part of the sampling pipe is closed. The concentration detector is connected to the alternative gas introduction pipe, and
A calibration unit that performs zero point correction of the concentration detection unit using data detected by the concentration detection unit when the engine is temporarily stopped,
The calibration unit is
A parameter value storage unit in which the moving average acquisition time, the correction start time, and the concentration threshold value are stored in advance;
A time measuring unit for measuring an elapsed time after switching the connection from the exhaust pipe to the alternative gas introduction pipe of the concentration detection unit;
A detection data storage unit that sequentially stores instantaneous concentration values detected by the concentration detection unit after switching the connection of the concentration detection unit from the exhaust pipe to the alternative gas introduction pipe;
Based on the moving average acquisition time, a moving average value calculation unit that sequentially calculates a concentration moving average value using the instantaneous concentration value stored in the detection data storage unit;
Each time the moving average value calculation unit calculates the concentration moving average value, the value obtained by subtracting the moving average acquisition time from the measurement value obtained by the time measurement unit is compared with the correction start time, and the subtracted value is A correction timing detection unit that outputs a correction start signal when the correction start time is exceeded;
When the correction start signal is output from the correction timing detection unit, the density moving average value calculated by the moving average value calculation unit is compared with the density threshold value, and the density moving average value exceeds the density threshold value. And a zero point correction unit that performs zero point correction of the concentration detection unit .
JP2017217213A 2017-11-10 2017-11-10 Exhaust gas analyzer Active JP6302593B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017217213A JP6302593B1 (en) 2017-11-10 2017-11-10 Exhaust gas analyzer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017217213A JP6302593B1 (en) 2017-11-10 2017-11-10 Exhaust gas analyzer

Publications (2)

Publication Number Publication Date
JP6302593B1 true JP6302593B1 (en) 2018-03-28
JP2019086492A JP2019086492A (en) 2019-06-06

Family

ID=61756659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017217213A Active JP6302593B1 (en) 2017-11-10 2017-11-10 Exhaust gas analyzer

Country Status (1)

Country Link
JP (1) JP6302593B1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108593856A (en) * 2018-06-21 2018-09-28 天津索克汽车试验有限公司 A kind of exhaust gas post-treatment device gas concentration measurement point switching device
JP2020173143A (en) * 2019-04-09 2020-10-22 株式会社チノー Constant potential electrolytic gas sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022163074A1 (en) * 2021-01-27 2022-08-04 株式会社堀場製作所 Vehicle-mounted exhaust gas analysis device and exhaust gas analysis method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5563330A (en) * 1992-04-21 1996-10-08 Siemens Aktiengesellschaft Method and device for measuring the concentration of a detector gas in a measuring gas containing an interfering gas
JPH0961361A (en) * 1995-08-28 1997-03-07 Mitsubishi Heavy Ind Ltd Continuous ammonia concentration measuring device
JPH11241977A (en) * 1998-02-25 1999-09-07 Shimadzu Corp Fluid concentration measuring device
JP2001013045A (en) * 1999-06-29 2001-01-19 Dkk Corp Gas preparation apparatus for calibration and gas analyzer
JP2010054443A (en) * 2008-08-29 2010-03-11 Horiba Ltd Stack-gas measuring apparatus and stack-gas measuring method
JP2010139281A (en) * 2008-12-09 2010-06-24 Toyota Motor Corp Instrument for measuring exhaust gas
JP2015079006A (en) * 2014-12-18 2015-04-23 株式会社堀場製作所 Exhaust gas analysis system and exhaust gas analysis method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5563330A (en) * 1992-04-21 1996-10-08 Siemens Aktiengesellschaft Method and device for measuring the concentration of a detector gas in a measuring gas containing an interfering gas
JPH0961361A (en) * 1995-08-28 1997-03-07 Mitsubishi Heavy Ind Ltd Continuous ammonia concentration measuring device
JPH11241977A (en) * 1998-02-25 1999-09-07 Shimadzu Corp Fluid concentration measuring device
JP2001013045A (en) * 1999-06-29 2001-01-19 Dkk Corp Gas preparation apparatus for calibration and gas analyzer
JP2010054443A (en) * 2008-08-29 2010-03-11 Horiba Ltd Stack-gas measuring apparatus and stack-gas measuring method
JP2010139281A (en) * 2008-12-09 2010-06-24 Toyota Motor Corp Instrument for measuring exhaust gas
JP2015079006A (en) * 2014-12-18 2015-04-23 株式会社堀場製作所 Exhaust gas analysis system and exhaust gas analysis method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108593856A (en) * 2018-06-21 2018-09-28 天津索克汽车试验有限公司 A kind of exhaust gas post-treatment device gas concentration measurement point switching device
JP2020173143A (en) * 2019-04-09 2020-10-22 株式会社チノー Constant potential electrolytic gas sensor
JP7260376B2 (en) 2019-04-09 2023-04-18 株式会社チノー Constant potential electrolytic gas sensor

Also Published As

Publication number Publication date
JP2019086492A (en) 2019-06-06

Similar Documents

Publication Publication Date Title
JP6302593B1 (en) Exhaust gas analyzer
US7930116B2 (en) Procedure for diagnosing a metering valve of an exhaust gas treatment device and device for implementing the procedure
US9074512B2 (en) Exhaust gas analyzing system and exhaust gas analyzing method
US10012179B2 (en) Evaporated fuel treatment devices
US8132449B2 (en) Procedure for diagnosing an exhaust gas treatment device and device for implementing the procedure
JP3516599B2 (en) Leak diagnosis device for evaporative fuel treatment equipment
US8075179B2 (en) Procedure for a reasonability check of a temperature sensor
FR2728941A1 (en) SELF-DIAGNOSTIC APPARATUS IN THE AIR-FUEL RATIO CONTROL SYSTEM OF AN INTERNAL COMBUSTION ENGINE
JP4735465B2 (en) Exhaust gas recirculation device for internal combustion engine
US20220112855A1 (en) Leakage Detector for Fuel Vapor Treatment Device
KR100667993B1 (en) Method for monitoring a secondary air system associated with the exhaust system of a vehicle
US9938876B2 (en) Abnormality diagnosis device for exhaust gas purification apparatus in internal combustion engine
US7818999B2 (en) Procedure to measure the oxygen storage capability of an emission control system
JP2019117169A (en) Exhaust gas sampling device, exhaust gas analysis system, exhaust gas sampling method, and program for exhaust gas sampling
JP2009031113A (en) Liquid chromatograph mass spectrometer
JP2007154822A (en) Exhaust emission control device of internal combustion engine
JP2017067717A (en) Gas sensor control device, reference point learning method and reference point diagnosing method
EP4024046B1 (en) Instrument for elemental analysis
US11988622B2 (en) Water quality analyzer that monitors pressure and temperature to abnormality
KR20170039497A (en) System and Method for checking error of Fuel Tank Pressure Sensor
JP6051198B2 (en) Exhaust gas analysis system and exhaust gas analysis method
JP4300350B2 (en) Exhaust gas measuring device and exhaust gas measuring method
EP2784279B1 (en) Exhaust purification device for internal combustion engine
US20140223993A1 (en) Adsorbent gas analysis device and adsorbent gas analysis method
JP2004036464A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171110

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20171110

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20171218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180214

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180302

R150 Certificate of patent or registration of utility model

Ref document number: 6302593

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250