JP6302244B2 - Propulsion shaft damper - Google Patents

Propulsion shaft damper Download PDF

Info

Publication number
JP6302244B2
JP6302244B2 JP2013271154A JP2013271154A JP6302244B2 JP 6302244 B2 JP6302244 B2 JP 6302244B2 JP 2013271154 A JP2013271154 A JP 2013271154A JP 2013271154 A JP2013271154 A JP 2013271154A JP 6302244 B2 JP6302244 B2 JP 6302244B2
Authority
JP
Japan
Prior art keywords
elastic
torque
elastic protrusion
torque transmission
protrusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013271154A
Other languages
Japanese (ja)
Other versions
JP2015124858A (en
Inventor
卓 山田
卓 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nok Corp
Original Assignee
Nok Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nok Corp filed Critical Nok Corp
Priority to JP2013271154A priority Critical patent/JP6302244B2/en
Publication of JP2015124858A publication Critical patent/JP2015124858A/en
Application granted granted Critical
Publication of JP6302244B2 publication Critical patent/JP6302244B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、小型船舶における船外機のプロペラ軸や、自動車のプロペラシャフトあるいは自動二輪車の駆動軸等、推進軸に装着される推進軸用ダンパに関する。   The present invention relates to a propulsion shaft damper mounted on a propulsion shaft such as a propeller shaft of an outboard motor in a small boat, a propeller shaft of an automobile, or a drive shaft of a motorcycle.

例えば小型船舶の船尾部に取り付けられる船外機において、プロペラボスとプロペラ軸の間には、プロペラダンパと呼ばれるブッシュ状のダンパが介装されている。   For example, in an outboard motor attached to the stern part of a small vessel, a bush-like damper called a propeller damper is interposed between the propeller boss and the propeller shaft.

図9に示すように、この種のプロペラダンパ100は、不図示のプロペラ軸にスプライン111により結合されるスリーブ110と、その外周に一体成形されプロペラボスのトルク伝達部材に掛合されるゴム状弾性材料(ゴム材料又はゴム状弾性を有する合成樹脂材料)からなる弾性体120とで構成され、この弾性体120には、軸方向へ延びると共に円周方向肉厚が軸方向一端121aで相対的に大きく他端121bで小さくなる多数の弾性リブ121が円周方向所定間隔で形成されている。   As shown in FIG. 9, this type of propeller damper 100 includes a sleeve 110 coupled to a propeller shaft (not shown) by a spline 111, and a rubber-like elasticity integrally formed on the outer periphery thereof and engaged with a torque transmission member of the propeller boss. The elastic body 120 is made of a material (rubber material or synthetic resin material having rubber-like elasticity). The elastic body 120 extends in the axial direction and has a circumferential thickness relatively at the axial end 121a. A large number of elastic ribs 121 which are largely reduced at the other end 121b are formed at predetermined intervals in the circumferential direction.

そしてこのプロペラダンパ100は、各弾性リブ121が、図10に示すように、プロペラボス側に弾性リブ121と対応する円周方向間隔で設けられたトルク伝達リブ200と接触することによりプロペラ軸からの駆動力をプロペラへ伝達すると共に、弾性リブ121の弾性的な変形によってショック入力などのトルク変動を吸収するようになっている。なお、この種のプロペラダンパの典型的な従来技術としては、下記の特許文献のようなものがある。   As shown in FIG. 10, the propeller damper 100 is configured so that the elastic ribs 121 come into contact with the torque transmission ribs 200 provided on the propeller boss side at circumferential intervals corresponding to the elastic ribs 121, as shown in FIG. 10. Is transmitted to the propeller, and the elastic deformation of the elastic rib 121 absorbs torque fluctuations such as shock input. In addition, as a typical prior art of this type of propeller damper, there are the following patent documents.

特開2008−215445号公報JP 2008-215445 A

この種のプロペラダンパ100では、トルク伝達機能だけでなく、ギアチェンジ時などの衝撃音などのショック低減機能が求められる。そしていずれの機能もフィーリングによるところが大きく、トルクが所定未満ではばね定数を低くすることで衝撃を低減し、トルクが所定以上ではばね定数が高くなるようにすることでトルク伝達力を確保するというように、ばね定数を二段特性にすることが有効である。   This type of propeller damper 100 is required to have not only a torque transmission function but also a shock reduction function such as an impact sound during gear change. Each function is largely based on feeling. When the torque is less than a predetermined value, the spring constant is lowered to reduce the impact, and when the torque is higher than the predetermined value, the spring constant is increased to ensure the torque transmission force. Thus, it is effective to set the spring constant to a two-stage characteristic.

しかしながら従来構造によれば、図10に示すように、弾性リブ121が円周方向肉厚の大きい軸方向一端121a側でのみトルク伝達リブ200と接触した初期トルク入力状態から、トルク増大に伴って圧接領域が軸方向他端121b側へ拡大して行くので、図11に示すように、トルクに対する弾性リブ121とトルク伝達リブ200との円周方向相対変位量(弾性リブ121の変形量)は線形的に変化することになり、すなわちばね定数kがほぼ一定であるため、弾性リブ121の形状やゴム状弾性材料の硬度の調整などで二段特性を実現することは困難であった。   However, according to the conventional structure, as shown in FIG. 10, from the initial torque input state in which the elastic rib 121 is in contact with the torque transmission rib 200 only on the axial end 121a side where the circumferential thickness is large, as the torque increases. Since the pressure contact region expands toward the other end 121b in the axial direction, as shown in FIG. 11, the circumferential relative displacement amount (the deformation amount of the elastic rib 121) of the elastic rib 121 and the torque transmission rib 200 with respect to the torque is Since it changes linearly, that is, the spring constant k is substantially constant, it is difficult to realize the two-stage characteristics by adjusting the shape of the elastic rib 121 and the hardness of the rubber-like elastic material.

本発明は、以上のような点に鑑みてなされたものであって、その技術的課題は、トルクが所定未満ではばね定数を低くすることでショックを緩和し、トルクが所定以上ではばね定数が高くなるようにすることでトルク伝達力を確保するといった、二段特性を実現したプロペラダンパなどの推進軸用ダンパを提供することにある。   The present invention has been made in view of the above points, and its technical problem is to reduce the shock by lowering the spring constant when the torque is lower than a predetermined value, and to reduce the spring constant when the torque is higher than the predetermined value. The object is to provide a propeller damper such as a propeller damper that achieves a two-stage characteristic, such as ensuring a torque transmission force by increasing it.

上述した技術的課題を有効に解決するための手段として、請求項1の発明に係る推進軸用ダンパは、トルク入力側及びトルク出力側のうち一方に取り付けられるスリーブと、その外周にゴム状弾性材料で一体に設けられて互いに軸方向へ分離した第一弾性突起及び第二弾性突起を備え、前記第一弾性突起及び前記第二弾性突起のトルク伝達リブとの対向面が、前記第一弾性突起側で相対的にこれらの第一弾性突起及び第二弾性突起の円周方向肉厚が大きくなるように傾斜しており、前記第一弾性突起及び前記第二弾性突起は、前記トルク入力側及びトルク出力側のうち他方に設けられたトルク伝達リブと円周方向へ接触可能であって、トルク増大過程で前記第一弾性突起が前記第二弾性突起に先行して前記トルク伝達リブと接触されるものである。なお、ゴム状弾性材料とは、ゴム材料又はゴム状弾性を有する合成樹脂材料のことである。 As a means for effectively solving the technical problem described above, the propulsion shaft damper according to the invention of claim 1 includes a sleeve attached to one of the torque input side and the torque output side, and a rubber-like elastic on the outer periphery thereof. A first elastic protrusion and a second elastic protrusion , which are integrally formed of materials and separated from each other in the axial direction, and a surface facing the torque transmission rib of the first elastic protrusion and the second elastic protrusion is the first elastic protrusion. It is inclined as relative circumferential wall thickness of these first elastic projection and second elastic protrusions increases an elastic protrusion side, the first elastic protrusions and the second elastic protrusion, the torque input And the torque transmission rib provided on the other of the torque output side and the torque transmission rib can be contacted in the circumferential direction, and the first elastic projection is preceded by the second elastic projection and the torque transmission rib in a torque increasing process. What is contacted A. The rubber-like elastic material is a rubber material or a synthetic resin material having rubber-like elasticity.

上記構成を備える推進軸用ダンパは、トルク入力側とトルク出力側の間に介在してトルクを伝達するものである。そして通常回転では、第一弾性突起のみがトルク伝達リブと接触することによって円周方向ばね定数が低く抑えられているので、ギアチェンジ時などによるショックを有効に吸収することができる。また、トルク入力側とトルク出力側の間での伝達トルクが所定以上に増大すると、第一弾性突起の変形量の増大によって第二弾性突起も前記トルク伝達リブと接触し、すなわち第一弾性突起及び第二弾性突起の双方によってトルク伝達を行うので、円周方向ばね定数が高くなり、トルク伝達力が増大する。   The propulsion shaft damper having the above-described configuration is interposed between the torque input side and the torque output side and transmits torque. In normal rotation, only the first elastic protrusions are brought into contact with the torque transmission rib, so that the circumferential spring constant is kept low, so that a shock due to a gear change or the like can be absorbed effectively. Further, when the transmission torque between the torque input side and the torque output side increases to a predetermined value or more, the second elastic projection comes into contact with the torque transmission rib due to the increase in the deformation amount of the first elastic projection, that is, the first elastic projection. Since the torque is transmitted by both the second elastic projection and the circumferential elastic constant, the circumferential spring constant is increased, and the torque transmission force is increased.

上記構成によれば、伝達トルクの増大によってトルク伝達リブに対する第一弾性突起又は第二弾性突起の接触領域が、相対的に第一弾性突起又は第二弾性突起の円周方向肉厚が小さくなる側へ拡大して行くので、ばね定数の非線形的上昇が抑えられる。   According to the above configuration, the contact region of the first elastic protrusion or the second elastic protrusion with respect to the torque transmission rib is relatively reduced in the circumferential thickness of the first elastic protrusion or the second elastic protrusion due to an increase in the transmission torque. Since it expands to the side, a non-linear rise in the spring constant can be suppressed.

請求項の発明に係る推進軸用ダンパは、請求項1に記載の構成において、第一弾性突起及び第二弾性突起のトルク伝達リブとの対向面の径方向立ち上がり角度が、第二弾性突起側で相対的に緩やかになるものである。 Promotion shaft damper according to the invention of claim 2 is the structure of claim 1, radially rising angle of the facing surfaces of the torque transmission rib first elastic projection and second elastic projection, second elastic projections It will be relatively gentle on the side.

上記構成によれば、伝達トルクの増大によってトルク伝達リブに対する第一弾性突起又は第二弾性突起の接触領域が、相対的に第一弾性突起又は第二弾性突起のトルク伝達リブとの対向面の径方向立ち上がり角度が緩やかになる側へ拡大して行くので、ばね定数の非線形的上昇が抑えられる。   According to the above configuration, the contact area of the first elastic protrusion or the second elastic protrusion with respect to the torque transmission rib due to the increase of the transmission torque is relatively the surface of the surface facing the torque transmission rib of the first elastic protrusion or the second elastic protrusion. Since the radial rise angle is gradually increased, the non-linear increase in the spring constant can be suppressed.

本発明に係る推進軸用ダンパによれば、トルク入力側とトルク出力側の間での伝達トルクが小さい通常回転では、第一弾性突起のみがトルク伝達リブと接触することによって円周方向ばね定数が低く抑えられているので、ショック入力を有効に吸収することができ、伝達トルクが所定以上に増大した場合は、第一弾性突起及び第二弾性突起の双方がトルク伝達リブと接触することによって円周方向ばね定数が高くなってトルク伝達力が増大するといった、二段特性を実現することができる。   According to the propulsion shaft damper according to the present invention, in the normal rotation where the transmission torque between the torque input side and the torque output side is small, only the first elastic protrusion comes into contact with the torque transmission rib, thereby causing a circumferential spring constant. Therefore, when the transmission torque increases more than a predetermined value, both the first elastic protrusion and the second elastic protrusion come into contact with the torque transmission rib. A two-stage characteristic such that the circumferential spring constant increases and the torque transmission force increases can be realized.

本発明に係る推進軸用ダンパの第一の実施の形態を示す斜視図である。It is a perspective view showing a first embodiment of a propulsion shaft damper according to the present invention. 第一の実施の形態による作用を示す説明図である。It is explanatory drawing which shows the effect | action by 1st embodiment. 第一の実施の形態によるばね特性を示す線図である。It is a diagram which shows the spring characteristic by 1st embodiment. 本発明に係る推進軸用ダンパの第二の実施の形態を示す斜視図である。It is a perspective view which shows 2nd embodiment of the damper for propulsion shafts which concerns on this invention. 第二の実施の形態によるばね特性を示す線図である。It is a diagram which shows the spring characteristic by 2nd embodiment. 本発明に係る推進軸用ダンパの第三の実施の形態を示す斜視図である。It is a perspective view which shows 3rd embodiment of the damper for propulsion shafts which concerns on this invention. 第三の実施の形態による作用を示す説明図である。It is explanatory drawing which shows the effect | action by 3rd embodiment. 第三の実施の形態によるばね特性を示す線図である。It is a diagram which shows the spring characteristic by 3rd embodiment. 従来技術に係る推進軸用ダンパの一例を示す斜視図である。It is a perspective view which shows an example of the damper for propulsion shafts which concerns on a prior art. 従来技術に係る推進軸用ダンパによる作用を示す説明図である。It is explanatory drawing which shows the effect | action by the damper for propulsion shafts which concerns on a prior art. 従来技術に係る推進軸用ダンパによるばね特性を示す線図である。It is a diagram which shows the spring characteristic by the damper for propulsion shafts which concerns on a prior art.

以下、本発明に係る推進軸用ダンパの好ましい実施の形態について、図面を参照しながら説明する。まず図1及び図2は、第一の実施の形態を示すものである。   Hereinafter, preferred embodiments of a propulsion shaft damper according to the present invention will be described with reference to the drawings. First, FIG. 1 and FIG. 2 show a first embodiment.

すなわち第一の実施の形態は、本発明に係る推進軸用ダンパを、例えば小型船舶を推進させる船外機のプロペラ軸とプロペラボスのトルク伝達スリーブとの間に介装されるプロペラダンパ1として適用したものであって、このプロペラダンパ1は、スリーブ10と、その外周に一体に設けられた弾性体20からなる。なお、この実施の形態において、プロペラ軸はトルク入力側に相当し、プロペラボスはトルク出力側に相当するものである。 That is, in the first embodiment, the propulsion shaft damper according to the present invention is, for example, a propeller damper 1 interposed between a propeller shaft of an outboard motor propelling a small vessel and a torque transmission sleeve of propeller boss. The propeller damper 1 is applied to a sleeve 10 and an elastic body 20 provided integrally on the outer periphery thereof. Incidentally, in this embodiment, propeller shaft corresponds to torque input side, the propeller boss is equivalent to torque output side.

スリーブ10は金属等からなる円筒状のものであって、その内周面にはスプライン11が形成されており、このスプライン11において、不図示のプロペラ軸の外周面に形成されたスプラインに嵌合された状態に装着されるものである。   The sleeve 10 has a cylindrical shape made of metal or the like, and a spline 11 is formed on the inner peripheral surface thereof. The spline 11 is fitted to a spline formed on the outer peripheral surface of a propeller shaft (not shown). It is to be mounted in a state that has been made.

弾性体20は、スリーブ10における軸方向中間部の外周に、ゴム状弾性材料で加硫成形と共に一体に加硫接着されたものであって、軸方向中央部を円周方向へ延びる環状溝23によって互いに軸方向へ分離した第一弾性突起21及び第二弾性突起22と、この第一弾性突起21及び第二弾性突起22の内径部から軸方向両側へ延在されてスリーブ10の外周面を覆うように加硫接着された筒状膜部24とを備える。   The elastic body 20 is formed by integrally vulcanizing and bonding together with a rubber-like elastic material on the outer periphery of the intermediate portion in the axial direction of the sleeve 10, and an annular groove 23 extending in the circumferential direction at the central portion in the axial direction. The first elastic projection 21 and the second elastic projection 22 separated from each other by the axial direction, and the outer peripheral surface of the sleeve 10 extending from the inner diameter portion of the first elastic projection 21 and the second elastic projection 22 to both sides in the axial direction. And a tubular membrane portion 24 vulcanized and bonded so as to cover.

詳しくは、第一弾性突起21は円周方向等間隔で設けられており、円周方向へ隣接する第一弾性突起21,21の間は、それぞれ軸方向へ延びる第一係合溝25となっている。また、第二弾性突起22は円周方向等間隔でかつ第一弾性突起21と対応する円周方向位置に設けられており、円周方向へ隣接する第二弾性突起22,22の間は、それぞれ軸方向へ延びる第二係合溝26となっている。また、第一弾性突起21と第二弾性突起22の間の環状溝23は、第一弾性突起21,21の間の第一係合溝25及び第二弾性突起22,22の間の第二係合溝26よりも深く形成されている。   Specifically, the first elastic protrusions 21 are provided at equal intervals in the circumferential direction, and a first engagement groove 25 extending in the axial direction is formed between the first elastic protrusions 21 and 21 adjacent in the circumferential direction. ing. Further, the second elastic protrusions 22 are provided at circumferential positions at equal intervals in the circumferential direction and corresponding to the first elastic protrusions 21, and between the second elastic protrusions 22, 22 adjacent in the circumferential direction, The second engaging grooves 26 extend in the axial direction. The annular groove 23 between the first elastic protrusion 21 and the second elastic protrusion 22 is a second engagement groove 25 between the first elastic protrusions 21, 21 and a second groove between the second elastic protrusions 22, 22. It is formed deeper than the engaging groove 26.

図2に示すように、第一弾性突起21の円周方向両側の側面(第一係合溝25の内側面と言い換えることもできる)21aは、第二弾性突起22側へ向けて第一弾性突起21の円周方向肉厚t1が減少するように、すなわち第一係合溝25の溝幅が第二係合溝26側へ向けて広くなるように、軸方向に対して傾斜しており、第二弾性突起22の円周方向両側の側面(第二係合溝26の内側面と言い換えることもできる)22aも同様に、第一弾性突起21と反対側へ向けて第二弾性突起22の円周方向肉厚t2が減少するように、すなわち第二係合溝26の溝幅が第一係合溝25と反対側へ向けて広くなるように、軸方向に対して傾斜している。また、側面21a,22aは、その延長面が互いに同一となるように形成されている。   As shown in FIG. 2, side surfaces on both sides in the circumferential direction of the first elastic protrusions 21 (which can also be referred to as inner surfaces of the first engagement grooves 25) 21a are first elastic toward the second elastic protrusions 22 side. It is inclined with respect to the axial direction so that the circumferential thickness t1 of the protrusion 21 decreases, that is, the groove width of the first engagement groove 25 increases toward the second engagement groove 26 side. Similarly, the side surfaces 22a on both sides in the circumferential direction of the second elastic protrusions 22 (also referred to as inner surfaces of the second engagement grooves 26) 22a are similarly directed to the second elastic protrusions 22 toward the side opposite to the first elastic protrusions 21. Is inclined with respect to the axial direction so that the circumferential thickness t2 thereof decreases, that is, the groove width of the second engagement groove 26 becomes wider toward the opposite side of the first engagement groove 25. . Further, the side surfaces 21a and 22a are formed so that their extended surfaces are the same.

図1に示すように、第一弾性突起21の径方向高さは、第二弾性突起22の径方向高さよりも僅かに高く、第一弾性突起21の外周面と第二弾性突起22の外周面は、その延長面が互いに同一の円錐面となるように形成されている。   As shown in FIG. 1, the radial height of the first elastic protrusion 21 is slightly higher than the radial height of the second elastic protrusion 22, and the outer peripheral surface of the first elastic protrusion 21 and the outer periphery of the second elastic protrusion 22. The surfaces are formed such that their extended surfaces are the same conical surface.

図2に示すように、互いに軸方向に隣り合う第一係合溝25と第二係合溝26には、その双方に跨って、プロペラボスのトルク伝達スリーブに設けられたトルク伝達リブ2が遊嵌されるようになっており、すなわち第一弾性突起21の側面21a及び第二弾性突起22の側面22aは、このトルク伝達リブ2と円周方向へ接触可能となっている。なお、側面21a,22aは、トルク伝達リブとの対向面に相当するものである。 As shown in FIG. 2, the first engagement groove 25 and the second engagement groove 26 that are adjacent to each other in the axial direction have a torque transmission rib 2 provided on the torque transmission sleeve of the propeller boss across both of them. In other words, the side surface 21a of the first elastic protrusion 21 and the side surface 22a of the second elastic protrusion 22 can contact the torque transmission rib 2 in the circumferential direction. Incidentally, the side surface 21a, 22a is equivalent to a surface facing the torque transmission rib.

トルク伝達リブ2は、軸方向に延びると共にその円周方向幅が全長にわたって同等に形成されており、かつ弾性体20の第一係合溝25及び第二係合溝26と対応する円周方向間隔で形成されている。したがって、トルク変動によってプロペラ軸とプロペラボスが円周方向相対変位する過程で、円周方向肉厚の大きい第一弾性突起21の側面21aが第二弾性突起22に先行してトルク伝達リブ2と接触し、かつ第一弾性突起21の側面21aは、円周方向肉厚t1が大きい端部21b寄りの部分がその反対側の端部21c寄りの部分に先行してトルク伝達リブ2と接触し、トルクが所定値以上に増大した場合は、第二弾性突起22の側面22aも、円周方向肉厚t2が大きい端部22b寄りの部分がその反対側の端部22c寄りの部分に先行してトルク伝達リブ2と接触するようになっている。   The torque transmission rib 2 extends in the axial direction and has a circumferential width that is equally formed over the entire length, and corresponds to the first engagement groove 25 and the second engagement groove 26 of the elastic body 20. It is formed at intervals. Therefore, in the process in which the propeller shaft and the propeller boss are displaced relative to each other in the circumferential direction due to torque fluctuation, the side surface 21a of the first elastic protrusion 21 having a large thickness in the circumferential direction precedes the second elastic protrusion 22 and the torque transmission rib 2. The side surface 21a of the first elastic protrusion 21 is in contact with the torque transmission rib 2 in a portion near the end 21b having a large circumferential thickness t1 preceding the portion near the end 21c on the opposite side. When the torque increases to a predetermined value or more, the side surface 22a of the second elastic protrusion 22 also has a portion near the end 22b having a large circumferential thickness t2 preceding a portion near the opposite end 22c. Thus, the torque transmission rib 2 is brought into contact.

以上のように構成されたプロペラダンパ1は、スリーブ10が、その内周面に形成されたスプライン11において、船外機のプロペラ軸のスプラインと嵌合した状態に装着されると共に、弾性体20がプロペラボス側のスリーブの内周面に挿入されることによって、プロペラ軸とプロペラボスを弾性的に結合するものである。   The propeller damper 1 configured as described above is mounted in a state in which the sleeve 10 is fitted to the spline of the propeller shaft of the outboard motor in the spline 11 formed on the inner peripheral surface thereof, and the elastic body 20. Is inserted into the inner peripheral surface of the propeller boss sleeve to elastically couple the propeller shaft and the propeller boss.

このため、船外機のエンジンを駆動させると、プロペラ軸の駆動トルクは、プロペラダンパ1を介してプロペラボスへ伝達される。その際に、ニュートラルから前進(又は後進)にシフトチェンジした時の衝撃(シフトショック)や、プロペラボスの外周の回転翼からの振動は、弾性体20によって有効に吸収される。   For this reason, when the engine of the outboard motor is driven, the driving torque of the propeller shaft is transmitted to the propeller boss through the propeller damper 1. At that time, the elastic body 20 effectively absorbs the impact (shift shock) when the shift is changed from neutral to forward (or reverse) and the vibration from the outer peripheral rotor blades of the propeller boss.

詳しくは、通常回転時には、弾性体20における第一弾性突起21の一方の側面21aは、円周方向肉厚t1が大きい端部21b寄りの部分が先行してトルク伝達リブ2と接触しており、第一弾性突起21の側面21aが軸方向に対して(トルク伝達リブ2に対して)傾斜していることによって、トルクの増大に伴い、トルク伝達リブ2に対する第一弾性突起21の側面21aの接触領域が、相対的に円周方向肉厚t1が小さくなる側へ拡大して行く。このため、トルクの増大に伴って変形を受ける部分の体積増大が抑制され、図3に示すように、ばね定数k1の非線形的上昇が抑えられ、低ばね状態に保持される。   Specifically, during normal rotation, one side surface 21a of the first elastic protrusion 21 of the elastic body 20 is in contact with the torque transmission rib 2 with a portion near the end portion 21b having a large circumferential thickness t1 leading. Since the side surface 21a of the first elastic protrusion 21 is inclined with respect to the axial direction (relative to the torque transmission rib 2), the side surface 21a of the first elastic protrusion 21 with respect to the torque transmission rib 2 is increased as the torque increases. Is gradually expanded toward the side where the circumferential thickness t1 becomes smaller. For this reason, the volume increase of the part which receives a deformation | transformation with the increase in torque is suppressed, and as shown in FIG. 3, the nonlinear rise of the spring constant k1 is suppressed and it is hold | maintained at a low spring state.

しかも、弾性体20の軸方向長さや径方向肉厚、第一弾性突起21及び第二弾性突起22の側面21a,22aの傾斜角度などが、例えば従来技術として先に説明した図9のプロペラダンパ100の弾性体120の軸方向長さや径方向肉厚、弾性突起121の側面の傾斜角度などと同様である場合、第一弾性突起21の軸方向長さは図9の弾性突起121よりも短いため、第一弾性突起21によるばね定数k1は、図9の弾性突起121によるばね定数kよりも低くなる。したがって緩衝性が向上し、ギアチェンジ時などのシフトショックやそれによる衝撃音を有効に緩和することができる。   In addition, the axial length and radial thickness of the elastic body 20, the inclination angles of the side surfaces 21a and 22a of the first elastic protrusion 21 and the second elastic protrusion 22, etc., for example, the propeller damper of FIG. When the length of 100 elastic bodies 120 in the axial direction, the radial thickness, the inclination angle of the side surface of the elastic protrusion 121 are the same, the axial length of the first elastic protrusion 21 is shorter than the elastic protrusion 121 of FIG. Therefore, the spring constant k1 by the first elastic protrusion 21 is lower than the spring constant k by the elastic protrusion 121 in FIG. As a result, the shock-absorbing property is improved, and the shift shock at the time of gear change and the impact sound caused by the shock can be effectively reduced.

また、トルクの増大によって第一弾性突起21の側面21aの軸方向全域がトルク伝達リブ2と接触した後も、さらにトルクが増大した場合は、このトルクが所定以上になった時点で第二弾性突起22の側面22aもトルク伝達リブ2と接触し、第一弾性突起21及び第二弾性突起22の双方によってトルク伝達を行うので、図3に示すように、ばね定数k2が高くなり、トルク伝達力が増大する。また、第二弾性突起22の側面22aも軸方向に対して(トルク伝達リブ2に対して)傾斜しているため、まず円周方向肉厚t2が大きい端部22b寄りの部分が先行してトルク伝達リブ2と接触し、トルクの増大に伴って接触領域が、相対的に円周方向肉厚t2が小さくなる側へ拡大して行くので、ばね定数k2を線形的に急激に立ち上げることができる。   If the torque further increases after the entire axial direction of the side surface 21a of the first elastic protrusion 21 comes into contact with the torque transmission rib 2 due to the increase in torque, the second elasticity is reached when this torque becomes a predetermined value or more. Since the side surface 22a of the protrusion 22 is also in contact with the torque transmission rib 2 and torque is transmitted by both the first elastic protrusion 21 and the second elastic protrusion 22, the spring constant k2 is increased as shown in FIG. Power increases. Further, since the side surface 22a of the second elastic protrusion 22 is also inclined with respect to the axial direction (relative to the torque transmission rib 2), a portion near the end portion 22b having a large circumferential thickness t2 is preceded first. Contact with the torque transmission rib 2, and the contact area expands toward the side where the circumferential thickness t2 becomes relatively smaller as the torque increases, so that the spring constant k2 is increased linearly and rapidly. Can do.

したがってこのプロペラダンパ1によれば、トルクが小さい通常回転では、第一弾性突起21のみがトルク伝達リブ2と接触することによってばね定数k1が低いものとなっているので、シフトショック等を有効に緩和することができ、トルクが所定以上に増大した場合は、第一弾性突起21及び第二弾性突起22の双方がトルク伝達リブ2と接触することによって高ばね定数k2へ遷移するので、十分なトルク伝達力が確保されるといった、二段特性を実現することができる。   Therefore, according to the propeller damper 1, in the normal rotation with a small torque, only the first elastic projection 21 comes into contact with the torque transmission rib 2 so that the spring constant k1 is low. When the torque increases more than a predetermined value, both the first elastic protrusion 21 and the second elastic protrusion 22 are brought into contact with the torque transmission rib 2 to make a transition to the high spring constant k2. Two-stage characteristics such as ensuring torque transmission force can be realized.

次に図4は、本発明に係る推進軸用ダンパを船外機のプロペラダンパ1として適用した第二の実施の形態を示すものである。   Next, FIG. 4 shows a second embodiment in which the propulsion shaft damper according to the present invention is applied as a propeller damper 1 of an outboard motor.

この第二の実施の形態において、先に説明した第一の実施の形態と異なるところは、環状溝23が弾性体20の軸方向中央部よりも第二弾性突起22側に偏在しており、すなわち第一弾性突起21のほうが第二弾性突起22より長いものとした点にある。   In the second embodiment, the difference from the first embodiment described above is that the annular groove 23 is unevenly distributed on the second elastic protrusion 22 side from the axial center portion of the elastic body 20, That is, the first elastic protrusion 21 is longer than the second elastic protrusion 22.

上記構成によれば、弾性体20の軸方向長さや径方向肉厚、第一弾性突起21及び第二弾性突起22の側面21a,22aの傾斜角度など、環状溝23の軸方向位置以外は第一の実施の形態と同様の仕様である場合、図5に示すように、第一弾性突起21によるばね定数k1’から、第一弾性突起21及び第二弾性突起22の双方の接触によるばね定数k2’への遷移点P’が、第一の実施の形態におけるばね定数k1からk2への遷移点Pよりも高いトルク値へ移動することになる。   According to the above configuration, the axial length and the radial thickness of the elastic body 20, the inclination angles of the side surfaces 21 a and 22 a of the first elastic protrusion 21 and the second elastic protrusion 22, etc. When the specification is the same as that of the embodiment, as shown in FIG. 5, the spring constant k 1 ′ by the first elastic protrusion 21 is changed to the spring constant by the contact of both the first elastic protrusion 21 and the second elastic protrusion 22. The transition point P ′ to k2 ′ moves to a higher torque value than the transition point P from the spring constant k1 to k2 in the first embodiment.

また、第一弾性突起21の軸方向長さが第一の実施の形態よりも長くなるため、ばね定数k1’は、第一の実施の形態におけるばね定数k1より高くなるのに対し、その一方で第二弾性突起22の軸方向長さは第一の実施の形態よりも短くなるため、ばね定数k2’によるトルク伝達力の上昇幅は、第一の実施の形態におけるばね定数k2より小さくすることができる。   Further, since the axial length of the first elastic protrusion 21 is longer than that in the first embodiment, the spring constant k1 ′ is higher than the spring constant k1 in the first embodiment, whereas Since the axial length of the second elastic protrusion 22 is shorter than that of the first embodiment, the increase in torque transmission force due to the spring constant k2 ′ is made smaller than the spring constant k2 of the first embodiment. be able to.

すなわち本発明によれば、弾性体20における環状溝23による第一弾性突起21と第二弾性突起22の互いの分離位置を変更することで、ばね特性を要求に応じて適切にチューニングすることができる。   That is, according to the present invention, the spring characteristics can be appropriately tuned as required by changing the separation position of the first elastic protrusion 21 and the second elastic protrusion 22 by the annular groove 23 in the elastic body 20. it can.

次に図6及び図7は、本発明に係る推進軸用ダンパを船外機のプロペラダンパ1として適用した第三の実施の形態を示すものである。   Next, FIGS. 6 and 7 show a third embodiment in which the propulsion shaft damper according to the present invention is applied as a propeller damper 1 of an outboard motor.

この第三の実施の形態によるプロペラダンパ1において、先に説明した第一の実施の形態と異なるところは、弾性体20における第一弾性突起21の円周方向両側の側面(第一係合溝25の内側面と言い換えることもできる)21a、及び第二弾性突起22の円周方向両側面22aの円周方向両側の側面(第一係合溝26の内側面と言い換えることもできる)22aの形状にある。   In the propeller damper 1 according to the third embodiment, the difference from the first embodiment described above is that the side surfaces (first engagement grooves) of the elastic body 20 on both sides in the circumferential direction of the first elastic protrusion 21. 25a (which can also be referred to as the inner side surface of 25), and the side surfaces on both sides in the circumferential direction of the circumferential side surfaces 22a of the second elastic protrusions 22 (also referred to as the inner side surface of the first engaging groove 26) 22a. In shape.

詳しくは、軸方向に対する第一弾性突起21及び第二弾性突起22の側面21a,22aの傾斜角度は、第一の実施の形態における第一弾性突起21及び第二弾性突起22の側面21a,22aの傾斜角度よりも大きく、第一係合溝25と第二係合溝26の溝底からの前記側面21a,22aの立ち上がり角度は、第一弾性突起21の端部21bから第二弾性突起22の端部22cへ向けて漸次緩やかになるように形成されている。なお、この形態でも、第一弾性突起21の円周方向両側の側面21aと、第二弾性突起22の円周方向両側の側面22aは、その延長面が互いに同一となるように形成されている。   Specifically, the inclination angles of the side surfaces 21a and 22a of the first elastic protrusion 21 and the second elastic protrusion 22 with respect to the axial direction are the side surfaces 21a and 22a of the first elastic protrusion 21 and the second elastic protrusion 22 in the first embodiment. The rising angle of the side surfaces 21a, 22a from the bottoms of the first engagement groove 25 and the second engagement groove 26 is larger than the inclination angle of the second elastic protrusion 22 from the end 21b of the first elastic protrusion 21. It is formed so as to become gradually gentle toward the end 22c. Even in this embodiment, the side surfaces 21a on both sides in the circumferential direction of the first elastic projection 21 and the side surfaces 22a on both sides in the circumferential direction of the second elastic projection 22 are formed so that their extension surfaces are the same. .

上記構成によれば、第一の実施の形態と同様、弾性体20における第一弾性突起21の一方の側面21aのうち、円周方向肉厚t1が大きい端部21b近傍がトルク伝達リブ2と接触している通常回転状態において、トルクの増大に伴い、トルク伝達リブ2に対する第一弾性突起21の側面21aの接触領域は、相対的に円周方向肉厚t1が小さくなる側へ拡大して行く。このため、トルクの増大に伴って変形を受ける部分の体積増大が抑制されるので、図8に示すように、第一弾性突起21によるばね定数k1”の非線形的上昇が抑えられ、低ばね状態に保持される。   According to the above configuration, in the same manner as in the first embodiment, among the one side surface 21a of the first elastic protrusion 21 in the elastic body 20, the vicinity of the end portion 21b having the large circumferential thickness t1 is the torque transmission rib 2. In the normal rotation state in contact, as the torque increases, the contact area of the side surface 21a of the first elastic protrusion 21 with respect to the torque transmission rib 2 expands to the side where the circumferential thickness t1 becomes relatively small. go. For this reason, since the volume increase of the part which receives a deformation | transformation with the increase in a torque is suppressed, as shown in FIG. 8, the nonlinear rise of the spring constant k1 "by the 1st elastic protrusion 21 is suppressed, and a low spring state Retained.

しかも、第一弾性突起21の側面21aの傾斜角度が大きく、かつ第一係合溝25の溝底からの前記側面21aの立ち上がり角度が、第二弾性突起22側へ向けて漸次緩やかになるため、トルクの増大に伴って変形を受ける部分の体積増大が抑制され、したがって、図8に示すように、第一弾性突起21による円周方向ばね定数k1”は、第一の実施の形態の第一弾性突起21による円周方向ばね定数k1よりも、さらなる低ばね状態に保持される。このため、ギアチェンジ時などのシフトショックやそれによる衝撃音を一層緩和することができる。   In addition, the inclination angle of the side surface 21a of the first elastic protrusion 21 is large, and the rising angle of the side surface 21a from the groove bottom of the first engagement groove 25 gradually decreases toward the second elastic protrusion 22 side. , The increase in the volume of the portion that undergoes deformation as the torque increases is suppressed. Therefore, as shown in FIG. 8, the circumferential spring constant k1 ″ by the first elastic protrusion 21 is the same as that of the first embodiment. It is held in a lower spring state than the circumferential spring constant k1 by the one elastic protrusion 21. Therefore, a shift shock at the time of a gear change or the like and an impact sound caused thereby can be further alleviated.

また、トルクの増大によって第一弾性突起21の側面21aの軸方向全域がトルク伝達リブ2と圧接した後も、さらにトルクが増大した場合は、このトルクが所定以上になった時点で第二弾性突起22の側面22aもトルク伝達リブ2と接触する。このため、第一弾性突起21及び第二弾性突起22の双方によってトルク伝達を行うので、図8にk2”で示すように、円周方向ばね定数が高くなり、トルク伝達力が増大する。   Further, when the torque further increases after the entire axial direction of the side surface 21a of the first elastic protrusion 21 is brought into pressure contact with the torque transmission rib 2 due to the increase in torque, the second elasticity is reached when the torque becomes a predetermined value or more. The side surface 22 a of the protrusion 22 is also in contact with the torque transmission rib 2. For this reason, torque transmission is performed by both the first elastic protrusion 21 and the second elastic protrusion 22, so that the circumferential spring constant is increased and the torque transmission force is increased as indicated by k 2 ″ in FIG.

そしてこの場合も、第二弾性突起22の側面22aの傾斜角度が大きく、しかも第二係合溝26の溝底からの前記側面22aの立ち上がり角度が漸次緩やかになるため、まず円周方向肉厚t2が大きい端部22b近傍から、相対的に円周方向肉厚t2が小さくなる側へ接触領域が拡大していく過程で、トルク伝達リブ2によって変形を受ける部分の体積増大が抑制される。したがって、図8に示すように、第二弾性突起22による円周方向ばね定数k2”の立ち上がりは、第一の実施の形態の円周方向ばね定数k2に比較して緩やかなものとすることができる。   In this case as well, since the inclination angle of the side surface 22a of the second elastic protrusion 22 is large and the rising angle of the side surface 22a from the groove bottom of the second engagement groove 26 becomes gradually gentle, first, the circumferential thickness is increased. In the process of expanding the contact region from the vicinity of the end 22b where t2 is large toward the side where the circumferential thickness t2 is relatively small, an increase in volume of the portion subjected to deformation by the torque transmission rib 2 is suppressed. Therefore, as shown in FIG. 8, the rise of the circumferential spring constant k2 ″ by the second elastic protrusion 22 may be more gradual than the circumferential spring constant k2 of the first embodiment. it can.

すなわち本発明によれば、弾性体20における第一弾性突起21及び第二弾性突起22の側面21a,22aの軸方向に対する傾斜角度や立ち上がり角度を変更することで、ばね特性を要求に応じて適切にチューニングすることができる。   That is, according to the present invention, the spring characteristics can be appropriately set according to demand by changing the inclination angle and the rising angle of the side surfaces 21a and 22a of the first elastic protrusion 21 and the second elastic protrusion 22 in the elastic body 20 with respect to the axial direction. Can be tuned to.

なお、上述した各実施の形態は、トルクが内周のプロペラ軸からスリーブ10へ入力され、弾性体20を介してトルク伝達リブ2へ伝達されるものとして説明したが、その逆の場合、すなわちトルクがトルク伝達リブ2から弾性体20へ入力され、スリーブ10からその内周の軸へ伝達される場合であっても、本発明は同様に実施することができる。また本発明は、小型船舶用プロペラダンパ以外の推進軸用ダンパについても適用することができる。   In the above-described embodiments, the torque is described as being input from the inner peripheral propeller shaft to the sleeve 10 and transmitted to the torque transmission rib 2 via the elastic body 20, but in the opposite case, that is, Even when torque is input from the torque transmission rib 2 to the elastic body 20 and transmitted from the sleeve 10 to the inner peripheral shaft, the present invention can be similarly implemented. The present invention can also be applied to a propulsion shaft damper other than a propeller damper for a small vessel.

また、図示の例では、スリーブ10の内周面には相手軸との回り止め手段としてスプライン11が形成されているが、キー溝とキーによるものなど、他の回り止め手段も適用可能である。   In the illustrated example, the spline 11 is formed on the inner peripheral surface of the sleeve 10 as a means for preventing rotation with the mating shaft. However, other means for preventing rotation such as a key groove and a key are also applicable. .

また、第一弾性突起21と第二弾性突起22の外周面は、その延長面が互いに同一の円筒面となるように形成されたものであっても良い。   Moreover, the outer peripheral surface of the 1st elastic protrusion 21 and the 2nd elastic protrusion 22 may be formed so that the extension surface may become the mutually same cylindrical surface.

1 プロペラダンパ(推進軸用ダンパ)
2 トルク伝達リブ
10 スリーブ
20 弾性体
21 第一弾性突起
21a 側面(トルク伝達リブとの対向面)
22 第二弾性突起
22a 側面(トルク伝達リブとの対向面)
23 環状溝
25 第一係合溝
26 第二係合溝
1 Propeller damper (propulsion shaft damper)
2 Torque transmission rib 10 Sleeve 20 Elastic body 21 First elastic protrusion 21a Side surface (opposite surface to torque transmission rib)
22 2nd elastic protrusion 22a Side surface (opposite surface with a torque transmission rib)
23 annular groove 25 first engagement groove 26 second engagement groove

Claims (2)

トルク入力側及びトルク出力側のうち一方に取り付けられるスリーブと、その外周にゴム状弾性材料で一体に設けられて互いに軸方向へ分離した第一弾性突起及び第二弾性突起を備え、前記第一弾性突起及び前記第二弾性突起のトルク伝達リブとの対向面が、前記第一弾性突起側で相対的にこれらの第一弾性突起及び第二弾性突起の円周方向肉厚が大きくなるように傾斜しており、前記第一弾性突起及び前記第二弾性突起は、前記トルク入力側及びトルク出力側のうち他方に設けられたトルク伝達リブと円周方向へ接触可能であって、トルク増大過程で前記第一弾性突起が前記第二弾性突起に先行して前記トルク伝達リブと接触されることを特徴とする推進軸用ダンパ。 Comprising a sleeve attached to one of the torque input side and the torque output side, and a first elastic projection and second elastic protrusions separated axially from each other is provided integrally with a rubber-like elastic material on the outer periphery thereof, said first The circumferential surface thickness of the first elastic protrusion and the second elastic protrusion is relatively increased on the surface of the first elastic protrusion and the second elastic protrusion facing the torque transmission rib. It is inclined, the first elastic protrusions and the second elastic protrusions, a contactable to said torque input and torque transmission rib provided on the other of the torque output side and circumferential directions, the torque increase The propulsion shaft damper, wherein the first elastic protrusion is brought into contact with the torque transmission rib prior to the second elastic protrusion in the process. 第一弾性突起及び第二弾性突起のトルク伝達リブとの対向面の径方向立ち上がり角度が、第二弾性突起側で相対的に緩やかになることを特徴とする請求項1に記載の推進軸用ダンパ。 2. The propulsion shaft according to claim 1, wherein a radial rising angle of a surface of the first elastic protrusion and the second elastic protrusion facing the torque transmission rib is relatively gentle on the second elastic protrusion side. damper.
JP2013271154A 2013-12-27 2013-12-27 Propulsion shaft damper Active JP6302244B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013271154A JP6302244B2 (en) 2013-12-27 2013-12-27 Propulsion shaft damper

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013271154A JP6302244B2 (en) 2013-12-27 2013-12-27 Propulsion shaft damper

Publications (2)

Publication Number Publication Date
JP2015124858A JP2015124858A (en) 2015-07-06
JP6302244B2 true JP6302244B2 (en) 2018-03-28

Family

ID=53535693

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013271154A Active JP6302244B2 (en) 2013-12-27 2013-12-27 Propulsion shaft damper

Country Status (1)

Country Link
JP (1) JP6302244B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH068841U (en) * 1992-07-13 1994-02-04 株式会社フコク Rotation transmission shock absorber
JP2008215445A (en) * 2007-03-02 2008-09-18 Synztec Co Ltd Double tube damper
JP2011178228A (en) * 2010-02-26 2011-09-15 Yamaha Motor Co Ltd Propeller for marine vessel propulsion device and marine vessel propulsion device including the same

Also Published As

Publication number Publication date
JP2015124858A (en) 2015-07-06

Similar Documents

Publication Publication Date Title
JP5728457B2 (en) Flexible shaft coupling and manufacturing method thereof
US9638308B2 (en) Pulley structure
CN104847866A (en) Gear
US20060172808A1 (en) Marine elastic coupling
JP2010007772A (en) Spring seat
JP6439257B2 (en) Power transmission coupling
JP2005106158A (en) Torsion damper
JP6302244B2 (en) Propulsion shaft damper
JP2009542997A (en) Torque transmission device
WO2013069411A1 (en) Dust cover for ball joint
JP2008261424A (en) Telescopic shaft
JP2004156674A (en) Dynamic damper for hollow rotary shaft
WO2014034941A1 (en) Torsional vibration reduction device
JP2007182981A (en) Marine elastic coupling
JP2003247597A (en) Dynamic damper and propeller shaft
KR102101652B1 (en) Two Stage Coupling Structure of Moter Driven Steering Device
CN105673774A (en) Pendulum damping device for motor vehicle torque transmission device
JP2015124857A (en) Damper for propeller shaft
JP5696833B2 (en) Anti-vibration bush for rotating shaft
JP7011382B2 (en) Rubber coupling
JP2017219055A (en) Gear Damper
JP5256958B2 (en) Electric power steering device
JP6463905B2 (en) Clutch damper structure
JP5553105B2 (en) Electric power steering device
KR101281619B1 (en) Car power-transmission cable engagement apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170803

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180131

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180302

R150 Certificate of patent or registration of utility model

Ref document number: 6302244

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250