JP6300311B2 - Novel organic charge transfer complex and method for producing the same - Google Patents
Novel organic charge transfer complex and method for producing the same Download PDFInfo
- Publication number
- JP6300311B2 JP6300311B2 JP2014052727A JP2014052727A JP6300311B2 JP 6300311 B2 JP6300311 B2 JP 6300311B2 JP 2014052727 A JP2014052727 A JP 2014052727A JP 2014052727 A JP2014052727 A JP 2014052727A JP 6300311 B2 JP6300311 B2 JP 6300311B2
- Authority
- JP
- Japan
- Prior art keywords
- pdc
- bonded
- charge transfer
- transfer complex
- formula
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000012546 transfer Methods 0.000 title claims description 61
- 238000004519 manufacturing process Methods 0.000 title claims description 24
- 239000013078 crystal Substances 0.000 claims description 99
- VRMXCPVFSJVVCA-UHFFFAOYSA-N 2-oxo-2H-pyran-4,6-dicarboxylic acid Chemical group OC(=O)C=1C=C(C(O)=O)OC(=O)C=1 VRMXCPVFSJVVCA-UHFFFAOYSA-N 0.000 claims description 57
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 29
- 239000003960 organic solvent Substances 0.000 claims description 22
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 21
- 150000001875 compounds Chemical class 0.000 claims description 18
- 239000010409 thin film Substances 0.000 claims description 18
- 239000011669 selenium Substances 0.000 claims description 16
- 125000000217 alkyl group Chemical group 0.000 claims description 15
- 125000003277 amino group Chemical group 0.000 claims description 15
- 125000004429 atom Chemical group 0.000 claims description 15
- 238000009792 diffusion process Methods 0.000 claims description 15
- 125000001424 substituent group Chemical group 0.000 claims description 12
- 239000003115 supporting electrolyte Substances 0.000 claims description 12
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 11
- 238000005868 electrolysis reaction Methods 0.000 claims description 10
- 239000002904 solvent Substances 0.000 claims description 10
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 9
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 9
- 239000007788 liquid Substances 0.000 claims description 9
- 229910052717 sulfur Inorganic materials 0.000 claims description 9
- 239000011593 sulfur Substances 0.000 claims description 9
- 229910052714 tellurium Inorganic materials 0.000 claims description 9
- PORWMNRCUJJQNO-UHFFFAOYSA-N tellurium atom Chemical compound [Te] PORWMNRCUJJQNO-UHFFFAOYSA-N 0.000 claims description 9
- BUGBHKTXTAQXES-UHFFFAOYSA-N Selenium Chemical compound [Se] BUGBHKTXTAQXES-UHFFFAOYSA-N 0.000 claims description 8
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 8
- 229910052711 selenium Inorganic materials 0.000 claims description 8
- 229910001873 dinitrogen Inorganic materials 0.000 claims description 7
- 125000001183 hydrocarbyl group Chemical group 0.000 claims description 7
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 7
- 125000005581 pyrene group Chemical group 0.000 claims description 7
- RMMXTBMQSGEXHJ-UHFFFAOYSA-N Aminophenazone Chemical compound O=C1C(N(C)C)=C(C)N(C)N1C1=CC=CC=C1 RMMXTBMQSGEXHJ-UHFFFAOYSA-N 0.000 claims description 6
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 claims description 6
- 239000012298 atmosphere Substances 0.000 claims description 6
- 150000004985 diamines Chemical class 0.000 claims description 6
- 150000005690 diesters Chemical class 0.000 claims description 6
- 125000005594 diketone group Chemical group 0.000 claims description 6
- 238000002156 mixing Methods 0.000 claims description 3
- 238000000151 deposition Methods 0.000 claims description 2
- 239000000835 fiber Substances 0.000 claims description 2
- 238000001226 reprecipitation Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 description 41
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 33
- 239000000243 solution Substances 0.000 description 19
- 230000015572 biosynthetic process Effects 0.000 description 14
- FHCPAXDKURNIOZ-UHFFFAOYSA-N tetrathiafulvalene Chemical group S1C=CSC1=C1SC=CS1 FHCPAXDKURNIOZ-UHFFFAOYSA-N 0.000 description 12
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 10
- 239000000463 material Substances 0.000 description 10
- 238000001878 scanning electron micrograph Methods 0.000 description 10
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 9
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 9
- 238000006467 substitution reaction Methods 0.000 description 9
- 229920005610 lignin Polymers 0.000 description 8
- 230000005298 paramagnetic effect Effects 0.000 description 8
- 238000004768 lowest unoccupied molecular orbital Methods 0.000 description 7
- 230000003647 oxidation Effects 0.000 description 7
- 238000007254 oxidation reaction Methods 0.000 description 7
- 238000001556 precipitation Methods 0.000 description 7
- 150000003839 salts Chemical class 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- 229910021607 Silver chloride Inorganic materials 0.000 description 6
- 230000005291 magnetic effect Effects 0.000 description 6
- 238000005259 measurement Methods 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 239000004065 semiconductor Substances 0.000 description 6
- HKZLPVFGJNLROG-UHFFFAOYSA-M silver monochloride Chemical compound [Cl-].[Ag+] HKZLPVFGJNLROG-UHFFFAOYSA-M 0.000 description 6
- BMTZEAOGFDXDAD-UHFFFAOYSA-M 4-(4,6-dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholin-4-ium;chloride Chemical compound [Cl-].COC1=NC(OC)=NC([N+]2(C)CCOCC2)=N1 BMTZEAOGFDXDAD-UHFFFAOYSA-M 0.000 description 5
- 239000002028 Biomass Substances 0.000 description 5
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Natural products CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 5
- 229920001940 conductive polymer Polymers 0.000 description 5
- 238000002484 cyclic voltammetry Methods 0.000 description 5
- 239000007772 electrode material Substances 0.000 description 5
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 5
- 239000012046 mixed solvent Substances 0.000 description 5
- 239000012047 saturated solution Substances 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- BGJZJHWIFXDRSR-UHFFFAOYSA-N 2-(1,3-dithiol-2-ylidene)-1,3-dithiole;ethane Chemical compound CC.CC.S1C=CSC1=C1SC=CS1 BGJZJHWIFXDRSR-UHFFFAOYSA-N 0.000 description 4
- LZJCVNLYDXCIBG-UHFFFAOYSA-N 2-(5,6-dihydro-[1,3]dithiolo[4,5-b][1,4]dithiin-2-ylidene)-5,6-dihydro-[1,3]dithiolo[4,5-b][1,4]dithiine Chemical group S1C(SCCS2)=C2SC1=C(S1)SC2=C1SCCS2 LZJCVNLYDXCIBG-UHFFFAOYSA-N 0.000 description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 4
- 239000002216 antistatic agent Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 239000001257 hydrogen Substances 0.000 description 4
- 239000002207 metabolite Substances 0.000 description 4
- 229910052697 platinum Inorganic materials 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 238000001308 synthesis method Methods 0.000 description 4
- XFNJVJPLKCPIBV-UHFFFAOYSA-P trimethylenediaminium Chemical compound [NH3+]CCC[NH3+] XFNJVJPLKCPIBV-UHFFFAOYSA-P 0.000 description 4
- HGOTVGUTJPNVDR-UHFFFAOYSA-N 2-(4,5-dimethyl-1,3-dithiol-2-ylidene)-4,5-dimethyl-1,3-dithiole Chemical compound S1C(C)=C(C)SC1=C1SC(C)=C(C)S1 HGOTVGUTJPNVDR-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- -1 indium tin oxide Chemical class 0.000 description 3
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 239000012299 nitrogen atmosphere Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 239000002861 polymer material Substances 0.000 description 3
- AVMKQNSAQMMZPU-UHFFFAOYSA-N pyrene-1,3,6,8-tetramine Chemical compound C1=C2C(N)=CC(N)=C(C=C3)C2=C2C3=C(N)C=C(N)C2=C1 AVMKQNSAQMMZPU-UHFFFAOYSA-N 0.000 description 3
- 150000003220 pyrenes Chemical class 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 238000005160 1H NMR spectroscopy Methods 0.000 description 2
- LLDJYFLUQDMPQI-UHFFFAOYSA-N 2-[4,5-bis(ethylsulfanyl)-1,3-dithiol-2-ylidene]-4,5-bis(ethylsulfanyl)-1,3-dithiole Chemical compound S1C(SCC)=C(SCC)SC1=C1SC(SCC)=C(SCC)S1 LLDJYFLUQDMPQI-UHFFFAOYSA-N 0.000 description 2
- NUIURNJTPRWVAP-UHFFFAOYSA-N 3,3'-Dimethylbenzidine Chemical compound C1=C(N)C(C)=CC(C=2C=C(C)C(N)=CC=2)=C1 NUIURNJTPRWVAP-UHFFFAOYSA-N 0.000 description 2
- QENGPZGAWFQWCZ-UHFFFAOYSA-N 3-Methylthiophene Chemical compound CC=1C=CSC=1 QENGPZGAWFQWCZ-UHFFFAOYSA-N 0.000 description 2
- 241000894006 Bacteria Species 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- CVQUWLDCFXOXEN-UHFFFAOYSA-N Pyran-4-one Chemical compound O=C1C=COC=C1 CVQUWLDCFXOXEN-UHFFFAOYSA-N 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 235000002597 Solanum melongena Nutrition 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- HFACYLZERDEVSX-UHFFFAOYSA-N benzidine Chemical class C1=CC(N)=CC=C1C1=CC=C(N)C=C1 HFACYLZERDEVSX-UHFFFAOYSA-N 0.000 description 2
- 239000006229 carbon black Substances 0.000 description 2
- 238000004140 cleaning Methods 0.000 description 2
- 230000009918 complex formation Effects 0.000 description 2
- GBRBMTNGQBKBQE-UHFFFAOYSA-L copper;diiodide Chemical compound I[Cu]I GBRBMTNGQBKBQE-UHFFFAOYSA-L 0.000 description 2
- 239000010419 fine particle Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 238000004770 highest occupied molecular orbital Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000007791 liquid phase Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000011368 organic material Substances 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- BUAWIRPPAOOHKD-UHFFFAOYSA-N pyrene-1,2-diamine Chemical compound C1=CC=C2C=CC3=C(N)C(N)=CC4=CC=C1C2=C43 BUAWIRPPAOOHKD-UHFFFAOYSA-N 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- 238000007789 sealing Methods 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 239000004332 silver Substances 0.000 description 2
- CDBYLPFSWZWCQE-UHFFFAOYSA-L sodium carbonate Substances [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- 238000004506 ultrasonic cleaning Methods 0.000 description 2
- YMWLPMGFZYFLRP-UHFFFAOYSA-N 2-(4,5-dimethyl-1,3-diselenol-2-ylidene)-4,5-dimethyl-1,3-diselenole Chemical compound [Se]1C(C)=C(C)[Se]C1=C1[Se]C(C)=C(C)[Se]1 YMWLPMGFZYFLRP-UHFFFAOYSA-N 0.000 description 1
- SGBKGXLBEGFMJB-UHFFFAOYSA-N 2-(5,6-dihydro-4h-cyclopenta[d][1,3]ditellurol-2-ylidene)-5,6-dihydro-4h-cyclopenta[d][1,3]ditellurole Chemical compound C1CCC([Te]2)=C1[Te]C2=C([Te]1)[Te]C2=C1CCC2 SGBKGXLBEGFMJB-UHFFFAOYSA-N 0.000 description 1
- LSZPCLOYNFOXST-UHFFFAOYSA-N 2-(6,7-dihydro-5h-[1,3]dithiolo[4,5-b][1,4]dithiepin-2-ylidene)-6,7-dihydro-5h-[1,3]dithiolo[4,5-b][1,4]dithiepine Chemical compound S1C(SCCCS2)=C2SC1=C(S1)SC2=C1SCCCS2 LSZPCLOYNFOXST-UHFFFAOYSA-N 0.000 description 1
- YAHVGMRXXZDSOK-UHFFFAOYSA-N 5-([1,3]dithiolo[4,5-d][1,3]dithiol-5-ylidene)-[1,3]dithiolo[4,5-d][1,3]dithiole Chemical compound S1CSC(S2)=C1SC2=C(S1)SC2=C1SCS2 YAHVGMRXXZDSOK-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical class N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 238000004057 DFT-B3LYP calculation Methods 0.000 description 1
- 238000003775 Density Functional Theory Methods 0.000 description 1
- 229910001111 Fine metal Inorganic materials 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229920001609 Poly(3,4-ethylenedioxythiophene) Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 238000002441 X-ray diffraction Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000003282 alkyl amino group Chemical group 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000005290 antiferromagnetic effect Effects 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 150000001805 chlorine compounds Chemical class 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000011365 complex material Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000004663 dialkyl amino group Chemical group 0.000 description 1
- NOTIQUSPUUHHEH-UXOVVSIBSA-N dromostanolone propionate Chemical compound C([C@@H]1CC2)C(=O)[C@H](C)C[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H](OC(=O)CC)[C@@]2(C)CC1 NOTIQUSPUUHHEH-UXOVVSIBSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 238000006056 electrooxidation reaction Methods 0.000 description 1
- 238000000855 fermentation Methods 0.000 description 1
- 230000004151 fermentation Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 125000000524 functional group Chemical group 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 239000008204 material by function Substances 0.000 description 1
- 229910001507 metal halide Inorganic materials 0.000 description 1
- 150000005309 metal halides Chemical class 0.000 description 1
- 239000002923 metal particle Substances 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 125000000250 methylamino group Chemical group [H]N(*)C([H])([H])[H] 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000004219 molecular orbital method Methods 0.000 description 1
- 239000004570 mortar (masonry) Substances 0.000 description 1
- 239000002159 nanocrystal Substances 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000000879 optical micrograph Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 125000004430 oxygen atom Chemical group O* 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920000172 poly(styrenesulfonic acid) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- WOFKFNZIJZWWPZ-UHFFFAOYSA-N pyrene-1,3-diamine Chemical compound C1=C2C(N)=CC(N)=C(C=C3)C2=C2C3=CC=CC2=C1 WOFKFNZIJZWWPZ-UHFFFAOYSA-N 0.000 description 1
- BLYOXQBERINFDU-UHFFFAOYSA-N pyrene-1,8-diamine Chemical compound C1=C2C(N)=CC=C(C=C3)C2=C2C3=CC=C(N)C2=C1 BLYOXQBERINFDU-UHFFFAOYSA-N 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 125000004954 trialkylamino group Chemical group 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 238000001771 vacuum deposition Methods 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D339/00—Heterocyclic compounds containing rings having two sulfur atoms as the only ring hetero atoms
- C07D339/02—Five-membered rings
- C07D339/06—Five-membered rings having the hetero atoms in positions 1 and 3, e.g. cyclic dithiocarbonates
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D309/00—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings
- C07D309/34—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
- C07D309/36—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with oxygen atoms directly attached to ring carbon atoms
- C07D309/38—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only ring hetero atom, not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with oxygen atoms directly attached to ring carbon atoms one oxygen atom in position 2 or 4, e.g. pyrones
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D345/00—Heterocyclic compounds containing rings having selenium or tellurium atoms as the only ring hetero atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D495/00—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms
- C07D495/02—Heterocyclic compounds containing in the condensed system at least one hetero ring having sulfur atoms as the only ring hetero atoms in which the condensed system contains two hetero rings
- C07D495/04—Ortho-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B57/00—Other synthetic dyes of known constitution
- C09B57/001—Pyrene dyes
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Heterocyclic Compounds Containing Sulfur Atoms (AREA)
- Pyrane Compounds (AREA)
- Electrodes Of Semiconductors (AREA)
Description
本発明は、新規有機電荷移動錯体及びその製造方法に関するものである。さらに詳しくは、従来、有効活用されてこなかった木質バイオマス由来の物質を電子受容性分子として活用することで、化石資源由来の導電性高分子材料と代替可能な新規の有機電荷移動錯体とその製造方法に関するものである。 The present invention relates to a novel organic charge transfer complex and a method for producing the same. More specifically, a novel organic charge transfer complex that can be substituted for a fossil resource-derived conductive polymer material by using a material derived from woody biomass that has not been effectively used as an electron-accepting molecule, and its production It is about the method.
樹木構成成分のリグニンは、地球上で最も多量に存在する芳香族系バイオマスであるが、一部が熱生産のための燃料や香料等として利用されるに留まっており、その大部分が廃棄されているのが現状である。このため、リグニンを付加価値の高い有機材料等に変換することで有用な用途を確立することができれば、循環型社会の形成に大きく貢献し得るものと期待される。 Tree component lignin is the most abundant aromatic biomass on earth, but some of it is used only as fuel and fragrance for heat production, and most of it is discarded. This is the current situation. For this reason, if a useful application can be established by converting lignin into an organic material with high added value, it is expected that it will greatly contribute to the formation of a recycling society.
近年、細菌を用いたリグニンの中間代謝物である次式で表わされる2−ピロン−4,6−ジカルボン酸(2-pyrone-4,6-dicarboxylic acid;PDC)の生産技術が開発された(非特許文献1、2)。 In recent years, a technology for producing 2-pyrone-4,6-dicarboxylic acid (PDC) represented by the following formula, which is an intermediate metabolite of lignin using bacteria, has been developed ( Non-patent documents 1, 2).
PDCは、分極性の強い3つのカルボニル基、環内エーテル酸素を有し、擬芳香族二塩基酸の構造を有している。このことから、新しい物理化学的特性を備えた機能性有機材料への応用が期待されており、現在PDCの利用技術の研究開発が行われている。 PDC has three highly polarizable carbonyl groups, an intracyclic ether oxygen, and a pseudoaromatic dibasic acid structure. For this reason, application to functional organic materials with new physicochemical properties is expected, and research and development of PDC utilization technology is currently underway.
これまでにPDCについては、Naと錯体を形成すること(特許文献1)や、PDCを基本骨格としたポリアミド(特許文献2、3)、ポリウレタン(特許文献4)、ポリエステル(特許文献5)等の合成が報告されている。 So far, for PDC, complex formation with Na (Patent Document 1), polyamide with PDC as a basic skeleton (Patent Documents 2 and 3), polyurethane (Patent Document 4), polyester (Patent Document 5), etc. The synthesis of has been reported.
しかしながら、PDCの利用についての技術的進展はあまり進んでいない。 However, there has not been much technical progress on the use of PDC.
本発明は、以上のとおりの背景から、従来、有効活用されてこなかった木質バイオマス由来物質のPDCを電子受容性分子として活用するとの観点から、化石資源由来の導電性高分子材料と代替可能な新規の有機電荷移動錯体とその製造方法を提供することを課題としている。 In view of the background as described above, the present invention can be replaced with a fossil resource-derived conductive polymer material from the viewpoint of utilizing a PDC of a woody biomass-derived material that has not been effectively used as an electron-accepting molecule. It is an object to provide a novel organic charge transfer complex and a method for producing the same.
本発明者らは、上記従来技術に鑑みて、木質バイオマス由来物質を電子受容性分子とした新しい有機電荷移動錯体素材とその製造方法を開発するために鋭意検討を進めた。その過程において、リグニンの中間代謝産物であるPDCが、優れた電子受容性分子であるとともに優れた錯体形成能を有することを見出した。 In view of the above prior art, the present inventors have intensively studied to develop a new organic charge transfer complex material using a woody biomass-derived substance as an electron-accepting molecule and a method for producing the same. In the process, it was found that PDC, which is an intermediate metabolite of lignin, is an excellent electron accepting molecule and has an excellent complex forming ability.
本発明は、このような新しい知見に基づいて完成されたものである。 The present invention has been completed based on such new findings.
すなわち、本発明の有機電荷移動錯体は、電子受容性分子と電子供与性分子とからなる有機電荷移動錯体であって、電子受容性分子が、2−ピロン−4,6−ジカルボン酸(2-pyrone-4,6-dicarboxylic acid;PDC)またはPDC誘導体であり、 電子供与性分子が、下記一般式(1)で表される化合物、 That is, the organic charge transfer complex of the present invention is an organic charge transfer complex composed of an electron accepting molecule and an electron donating molecule, and the electron accepting molecule is 2-pyrone-4,6-dicarboxylic acid (2- pyrone-4,6-dicarboxylic acid (PDC) or a PDC derivative, wherein the electron-donating molecule is represented by the following general formula (1):
(式中、Aは、硫黄(S)又はセレン(Se)、テルル(Te)原子のうちのいずれかを示し、B、C、D、Eは、水素原子、炭化水素基、もしくはBとC、DとEは、炭素鎖が結合して環を形成していてもよく、この炭素鎖による環には、異種原子を介して結合しているものが含まれることを示す。)
または、下記一般式(2)で表されるアミノピレン、
(In the formula, A represents any of sulfur (S), selenium (Se), and tellurium (Te) atoms, and B, C, D, and E represent a hydrogen atom, a hydrocarbon group, or B and C. , D and E may indicate that the carbon chain may be bonded to form a ring, and that the ring formed by the carbon chain includes those bonded through different atoms.)
Or aminopyrene represented by the following general formula (2),
(アミノ基(NR1R2)nは、ピレン環の任意の位置に結合してよく、(NR1R2)nの式中、nは2〜4の整数を示し、R1およびR2 は、同一または別異の水素原子またはアルキル基もしくは相互に結合した炭素鎖を示す。)
または、下記一般式(3)で表される化合物、
(Amino group (NR 1 R 2 ) n may be bonded to any position of the pyrene ring, and in the formula of (NR 1 R 2 ) n , n represents an integer of 2 to 4, R 1 and R 2 Represents the same or different hydrogen atoms or alkyl groups or mutually bonded carbon chains.)
Or a compound represented by the following general formula (3),
(アミノ基(NR3R4)nおよび(NR5R6)mは、ベンゼン環の任意の位置に
結合してよく、(NR3R4)nおよび(NR5R6)mの式中、n、mは1〜3の整数を示し、R3〜R10 は、同一または別異の水素原子またはアルキル基もしくは相互に結合した炭素鎖を示す。)であることを特徴としている。
(Amino group (NR 3 R 4 ) n and (NR 5 R 6 ) m may be bonded to any position of the benzene ring, and in the formula of (NR 3 R 4 ) n and (NR 5 R 6 ) m , N and m each represent an integer of 1 to 3 , and R 3 to R 10 represent the same or different hydrogen atoms, alkyl groups or mutually bonded carbon chains.
この有機電荷移動錯体は繊維状結晶であり、繊維の直径が10nm〜50μmであることが好ましい。 The organic charge transfer complex is a fibrous crystal, and the fiber diameter is preferably 10 nm to 50 μm.
本発明の薄膜は、前記有機電荷移動錯体結晶を含むことを特徴としている。 The thin film of the present invention includes the organic charge transfer complex crystal.
本発明の電極は、前記有機電荷移動錯体結晶を含む薄膜を用いることを特徴としている。 The electrode of the present invention is characterized by using a thin film containing the organic charge transfer complex crystal.
本発明の拡散法による有機電荷移動錯体結晶の製造方法は、PDCまたはPDC誘導体を有機溶媒に溶解したPDC溶液と、電子供与性分子を有機溶媒に溶解した電子供与性分子溶液とを結晶成長容器中に滴下し、静置することを特徴としている。 The method for producing an organic charge transfer complex crystal by the diffusion method of the present invention comprises a crystal growth vessel comprising a PDC solution in which PDC or a PDC derivative is dissolved in an organic solvent, and an electron donating molecule solution in which an electron donating molecule is dissolved in an organic solvent. It is characterized by dripping inside and standing still.
本発明の液−液界面結晶析出法による有機電荷移動錯体結晶の製造方法は、PDCまたはPDC誘導体を有機溶媒に溶解したPDC溶液と、電子供与性分子を有機溶媒に溶解した電子供与性分子溶液とを混合し、貧溶媒の入った容器中に滴下し、静置することを特徴としている。 The method for producing an organic charge transfer complex crystal by the liquid-liquid interface crystal precipitation method of the present invention includes a PDC solution in which PDC or a PDC derivative is dissolved in an organic solvent, and an electron donating molecule solution in which an electron donating molecule is dissolved in an organic solvent. And is dropped into a container containing a poor solvent and allowed to stand.
本発明の再沈法による有機電荷移動錯体結晶の製造方法は、PDCまたはPDC誘導体を有機溶媒に溶解したPDC溶液と、電子供与性分子を有機溶媒に溶解した電子供与性分子溶液とを混合し、貧溶媒の入った容器中に注入することを特徴としている。 In the method for producing an organic charge transfer complex crystal by the reprecipitation method of the present invention, a PDC solution in which PDC or a PDC derivative is dissolved in an organic solvent and an electron donating molecule solution in which an electron donating molecule is dissolved in an organic solvent are mixed. Injecting into a container containing a poor solvent.
本発明の電解法による有機電荷移動錯体結晶の製造方法は、PDCまたはPDC誘導体を含む支持電解質と電子供与性分子とを有機溶媒に溶解して得られる溶液を電解セル中に添加し、電解することを特徴としている。 In the method for producing an organic charge transfer complex crystal according to the electrolysis method of the present invention, a solution obtained by dissolving a supporting electrolyte containing PDC or a PDC derivative and an electron donating molecule in an organic solvent is added to an electrolytic cell and electrolyzed. It is characterized by that.
この電解法による有機電荷移動錯体結晶の製造方法では、前記電解セルを窒素ガス雰囲気中で封止した後、電極に0.5〜1.0μAの定電流を1〜60日間流すことが好ましい。 In the method for producing an organic charge transfer complex crystal by this electrolysis method, it is preferable to flow a constant current of 0.5 to 1.0 μA to the electrode for 1 to 60 days after sealing the electrolytic cell in a nitrogen gas atmosphere.
この電解法による有機電荷移動錯体結晶の製造方法では、PDCまたはPDC誘導体を含む支持電解質と電子供与性分子とを有機溶媒に溶解して得られる溶液を電解セル中に添加し、前記電解セルを窒素ガス雰囲気中で封止した後、電極に100〜200μAの定電流を2〜10時間流すことが好ましい。 In this method for producing an organic charge transfer complex crystal by an electrolytic method, a solution obtained by dissolving a supporting electrolyte containing PDC or a PDC derivative and an electron donating molecule in an organic solvent is added to the electrolytic cell, After sealing in a nitrogen gas atmosphere, it is preferable to flow a constant current of 100 to 200 μA to the electrode for 2 to 10 hours.
前記のとおりの本発明によれば、従来、有効活用されてこなかった木質バイオマス由来物質のPDCを電子受容性分子として活用することで、化石資源由来の導電性高分子材料と代替可能な新規の有機電荷移動錯体を製造することが可能となる。これにより、現在利活用が進んでいない再生可能資源であるリグニンに高い付加価値を与えることが可能となる。
本発明の有機電荷移動錯体は、電極材料、電磁遮蔽材料、帯電防止材料等の機能性材料として極めて有用である高分子半導体結晶を形成することが可能となる。
According to the present invention as described above, by utilizing the PDC of a woody biomass-derived material that has not been effectively used as an electron-accepting molecule, it is possible to replace the conductive polymer material derived from fossil resources. An organic charge transfer complex can be produced. This makes it possible to give high added value to lignin, which is a renewable resource that is not currently being used.
The organic charge transfer complex of the present invention can form polymer semiconductor crystals that are extremely useful as functional materials such as electrode materials, electromagnetic shielding materials, and antistatic materials.
この高分子半導体結晶は、極めて安定で、液相中で簡単に作成することが可能であり、この結晶をフィルム状にした際の光透過性も高いことから、フレキシブルな透明電極材料としての応用が期待できる。 This polymer semiconductor crystal is extremely stable and can be easily prepared in the liquid phase, and since it has a high light transmittance when formed into a film, it can be used as a flexible transparent electrode material. Can be expected.
また、この高分子半導体結晶は、透明性の導電フィルム材料として、フレキシブル透明電極等の各種用途に活用することが可能である。 Moreover, this polymer semiconductor crystal can be utilized for various uses, such as a flexible transparent electrode, as a transparent conductive film material.
さらに、本発明では、酸化インジウムスズ(ITO)を電極として用いた電解法により、BEDT−TTF−PDC錯体薄膜をITO基板上に直接成長させることが可能である。このため、無機系透明電極の特性改善、表面改質技術等への応用の可能性が考えられる。 Furthermore, in the present invention, a BEDT-TTF-PDC complex thin film can be directly grown on an ITO substrate by an electrolytic method using indium tin oxide (ITO) as an electrode. For this reason, the possibility of the application to the characteristic improvement of an inorganic type transparent electrode, surface modification technology, etc. is considered.
次に、本発明についてさらに詳しく説明する。 Next, the present invention will be described in more detail.
本発明の有機電荷移動錯体は、電子受容性分子と電子供与性分子とからなる。電子受容性分子は、2−ピロン−4,6−ジカルボン酸(2-pyrone-4,6-dicarboxylic acid;PDC)またはPDC誘導体である。 The organic charge transfer complex of the present invention comprises an electron accepting molecule and an electron donating molecule. The electron accepting molecule is 2-pyrone-4,6-dicarboxylic acid (PDC) or a PDC derivative.
本発明の有機電荷移動錯体の第1実施形態では、電子供与性分子が、一般式(1)で表わされる化合物である。 In the first embodiment of the organic charge transfer complex of the present invention, the electron donating molecule is a compound represented by the general formula (1).
前記一般式(1)において、Aは、硫黄(S)又はセレン(Se)、テルル(Te)原子を示し、B、C、D、Eは、水素原子、炭化水素基、もしくはBとC、DとEは、炭素鎖が結合して環を形成していてもよいことを示している。また、発明の作用効果を考慮して、BとC、DとEにおける炭素鎖の環には、異種原子、例えば硫黄(S)、セレン(Se)、テルル(Te)、酸素(O)原子等を介して環を形成してもよいし、あるいは各種の官能基、例えば、水酸基、メトキシ基、その他アルコキシ基、アミノ基、メチルアミノ基、アルキルアミノ基、ジアルキルアミノ基、トリアルキルアミノ基、メチル基、その他アルキル基等を適宜に結合していてもよい。 In the general formula (1), A represents sulfur (S), selenium (Se), or tellurium (Te) atom, and B, C, D, and E represent a hydrogen atom, a hydrocarbon group, or B and C, D and E indicate that the carbon chain may be bonded to form a ring. In consideration of the effects of the invention, the ring of the carbon chain in B and C, D and E includes a hetero atom such as sulfur (S), selenium (Se), tellurium (Te), oxygen (O) atom. Or a variety of functional groups such as hydroxyl groups, methoxy groups, other alkoxy groups, amino groups, methylamino groups, alkylamino groups, dialkylamino groups, trialkylamino groups, A methyl group and other alkyl groups may be appropriately bonded.
前記一般式(1)で表わされる電子供与性分子は、例えば、以下のものが例示される。 Examples of the electron donating molecule represented by the general formula (1) include the following.
さらに、前記一般式(1)で表わされる電子供与性分子には、例えば、BPDT−TTF、TET−TTF、炭素鎖の環に酸素原子を含むBEDO−TTF、TTF骨格の二重結合が還元されたDHTTFやMDHT、TTF骨格の硫黄(S)原子をテルル(Te)に置換したHMTTeF、その他BEDT-TSF(BETS)などが含まれる。 Furthermore, in the electron donating molecule represented by the general formula (1), for example, BPDT-TTF, TET-TTF, BEDO-TTF containing an oxygen atom in a carbon chain ring, and a double bond of a TTF skeleton are reduced. DHTTF, MDHT, HMTTeF in which a sulfur (S) atom of the TTF skeleton is substituted with tellurium (Te), and other BEDT-TSF (BETS).
これら電子供与性分子については、公知の方法をはじめとして各種の方法による合成等により提供可能とされる。例えば、前記TMTTFの場合として例示すると次の反応式に従って合成される。 These electron donating molecules can be provided by synthesis by various methods including known methods. For example, in the case of TMTTF, it is synthesized according to the following reaction formula.
本発明の有機電荷移動錯体の第2実施形態では、電子供与性分子が、一般式(2)で表わされる化合物である。 In the second embodiment of the organic charge transfer complex of the present invention, the electron donating molecule is a compound represented by the general formula (2).
一般式(2)において、アミノ基(NR1R2)nは、ピレン環の任意の位置に結合してよく、(NR1R2)nの式中、nは2〜4の整数を示し、R1およびR2 は、同一または別異の水素原子またはアルキル基もしくは相互に結合した炭素鎖を示している。 In the general formula (2), the amino group (NR 1 R 2 ) n may be bonded to any position of the pyrene ring, and in the formula of (NR 1 R 2 ) n , n represents an integer of 2 to 4. , R 1 and R 2 represent the same or different hydrogen atoms or alkyl groups or mutually bonded carbon chains.
具体的には、一般式(2)表される化合物としては、例えば、1,3,6,8‐テトラアミノピレン(TAP)、1,3−ジアミノピレン(1,3−DAP)、1,6−ジアミノピレン(1,6−DAP)、1,8−ジアミノピレン(1,8−DAP)などを例示することができる。 Specifically, examples of the compound represented by the general formula (2) include 1,3,6,8-tetraaminopyrene (TAP), 1,3-diaminopyrene (1,3-DAP), 1, Examples include 6-diaminopyrene (1,6-DAP), 1,8-diaminopyrene (1,8-DAP), and the like.
この一般式(2)で表わされる電子供与性分子については、公知の合成法で合成されたものを利用することができる。 As the electron donating molecule represented by the general formula (2), those synthesized by a known synthesis method can be used.
本発明の有機電荷移動錯体の第3実施形態では、電子供与性分子が、一般式(3)で表わされる化合物である。 In the third embodiment of the organic charge transfer complex of the present invention, the electron donating molecule is a compound represented by the general formula (3).
一般式(3)において、アミノ基(NR3R4)nおよび(NR5R6)mは、ベンゼン環の任意の位置に結合してよく、(NR3R4)nおよび(NR5R6)mの式中、n、mは1〜3の整数を示し、R3〜R10 は、同一または別異の水素原子またはアルキル基もしくは相互に結合した炭素鎖を示している。 In the general formula (3), the amino groups (NR 3 R 4 ) n and (NR 5 R 6 ) m may be bonded to any position of the benzene ring, and (NR 3 R 4 ) n and (NR 5 R 6 ) In the formula of m , n and m each represent an integer of 1 to 3 , and R 3 to R 10 represent the same or different hydrogen atoms or alkyl groups or mutually bonded carbon chains.
具体的には、一般式(2)表される化合物としては、例えば、3,3,’5,5’-テトラメチルベンジジン(3,3,’5,5’-TMB)や3,3’-ジメチルベンジジン(3,3,’-DMB)などを例示することができる。この一般式(3)で表わされる電子供与性分子についても、公知の合成法で合成されたものを利用することができる。 Specifically, examples of the compound represented by the general formula (2) include 3,3, '5,5'-tetramethylbenzidine (3,3,' 5,5'-TMB) and 3,3 '. -Dimethylbenzidine (3,3, '-DMB) and the like can be exemplified. As the electron donating molecule represented by the general formula (3), those synthesized by a known synthesis method can be used.
PDCまたはPDC誘導体を電子受容性分子とする本発明の有機電荷移動錯体では、電子供与性分子は、高電導性の観点から、TTF系の拡張共役型電子供与性分子であるBEDT−TTFとの錯体が特に優れている。 In the organic charge transfer complex of the present invention using a PDC or PDC derivative as an electron-accepting molecule, the electron-donating molecule is bonded to BEDT-TTF, which is a TTF-based extended conjugated electron-donating molecule, from the viewpoint of high conductivity. The complex is particularly excellent.
本発明の有機電荷移動錯体は、リグニンより細菌を用いた中間代謝産物としてのPDCまたはPDC誘導体と前記のような電子供与性分子との錯体形成によって製造される。 The organic charge transfer complex of the present invention is produced from lignin by complex formation between PDC or a PDC derivative as an intermediate metabolite using bacteria and the above electron donating molecule.
もちろんPDCについては合成法によって得られたものであってもよい。また、PDC誘導体は、公知の方法で合成されたものであってよく、PDCのカルボキシル基をモノエステル、ジエステル、モノアミド、ジアミド、モノニトリル、ジニトリル、モノアミン、ジアミン、モノケトン、ジケトン、モノ酸塩化物、ジ酸塩化物などの置換体が含まれる。 Of course, the PDC may be obtained by a synthesis method. The PDC derivative may be synthesized by a known method, and the carboxyl group of PDC is monoester, diester, monoamide, diamide, mononitrile, dinitrile, monoamine, diamine, monoketone, diketone, monoacid chloride. , Substitutions such as diacid chlorides are included.
錯体形成のための方法としては様々であってよいが、本発明においては、拡散法、液−液界面結晶析出法、電解法が好適なものとして提供される。 There are various methods for forming the complex, but in the present invention, a diffusion method, a liquid-liquid interface crystal deposition method, and an electrolysis method are preferably provided.
いずれの方法においても、PDC(またはPDC誘導体)及び電子供与性分子を溶解する有機溶媒としては、例えば、アセトニトリル、アニソール等を例示することができる。 In any method, examples of the organic solvent that dissolves the PDC (or PDC derivative) and the electron donating molecule include acetonitrile and anisole.
PDC(またはPDC誘導体)及び電子供与性分子の飽和溶液を用いて拡散法によって結晶形成を行う場合には、長さ0.2〜2mm、断面0.04mm×0.01mm〜0.0025mm×0.001mmの黒色針状結晶や、直径数μmの繊維状結晶を得ることができる。なお、ここで言う平均長さ及び平均直径は、得られた結晶の撮影画像をコンピュータに取り込み、画像解析ソフトウェアによって算出した値である。 When crystal formation is performed by a diffusion method using a saturated solution of PDC (or PDC derivative) and an electron donating molecule, the length is 0.2 to 2 mm, and the cross section is 0.04 mm × 0.01 mm to 0.0025 mm × 0. A black needle-like crystal having a diameter of 0.001 mm or a fibrous crystal having a diameter of several μm can be obtained. Note that the average length and average diameter referred to here are values obtained by taking a captured image of the obtained crystal into a computer and calculating by image analysis software.
電子供与性分子とPDC(またはPDC誘導体)のモル比を1:50とし、アセトニトリルを有機溶媒として用いた場合、PDC溶液の濃度を50〜83.3mmol/L、電子供与性分子の溶液の濃度を1.5〜2.5mmol/Lの範囲とすることによって、繊維状結晶のみの選択的成長及び結晶形態制御が可能となり、平均直径10nm〜50μm程度の範囲で繊維状結晶の直径制御が可能である。 When the molar ratio of the electron donating molecule to PDC (or PDC derivative) is 1:50 and acetonitrile is used as the organic solvent, the concentration of the PDC solution is 50 to 83.3 mmol / L, and the concentration of the electron donating molecule solution is By making the range of 1.5 to 2.5 mmol / L, it becomes possible to selectively grow and control the crystal morphology of only the fibrous crystal, and to control the diameter of the fibrous crystal in the range of an average diameter of about 10 nm to 50 μm. It is.
PDC(またはPDC誘導体)と電子供与性分子からなる有機電荷移動錯体の結晶形成を行う際の容器としては、例えば、蓋付のサンプル管、H型結晶成長管等を例示することができる。 Examples of the container for crystal formation of an organic charge transfer complex composed of PDC (or a PDC derivative) and an electron donating molecule include a sample tube with a lid, an H-type crystal growth tube, and the like.
PDC(またはPDC誘導体)と電子供与性分子からなる有機電荷移動錯体の結晶形成を、液−液界面結晶析出法で行う場合には、PDC溶液と電子供与性分子の溶液との混合溶液を滴下する貧溶媒は、例えば、トルエン等が例示される。 When crystal formation of an organic charge transfer complex comprising PDC (or a PDC derivative) and an electron donating molecule is performed by a liquid-liquid interface crystal precipitation method, a mixed solution of a PDC solution and an electron donating molecule solution is dropped. An example of the poor solvent is toluene.
PDC(またはPDC誘導体)及び電子供与性分子の飽和溶液を用いて液−液界面結晶析出法による結晶形成を行うと、平均直径20〜40nmの繊維状結晶を得ることができる。 When crystal formation is performed by a liquid-liquid interface crystal precipitation method using a saturated solution of PDC (or PDC derivative) and an electron donating molecule, fibrous crystals having an average diameter of 20 to 40 nm can be obtained.
なお、ここで言う平均直径は、得られた結晶のSEM写真から画像解析ソフトウェアによって算出した値である。 The average diameter here is a value calculated by image analysis software from the SEM photograph of the obtained crystal.
このように、本発明の有機電荷移動錯体の製造方法によれば、結晶形成条件を最適化することにより直径20nm〜8.5μm程度の高いアスペクト比を有する電気伝導性電荷移動錯体繊維状結晶を生成することができる。 Thus, according to the method for producing an organic charge transfer complex of the present invention, an electrically conductive charge transfer complex fibrous crystal having a high aspect ratio of about 20 nm to 8.5 μm in diameter can be obtained by optimizing crystal formation conditions. Can be generated.
PDC(またはPDC誘導体)及び電子供与性分子を用いて電解法による結晶形成を行う場合、電子供与性分子の支持電解質として、PDC塩を合成する。PDC塩としては、例えば、モノプロトン化PDC−テトラブチルアンモニア塩(Bu4N(PDC))を例示することができる。 When crystal formation by an electrolytic method is performed using PDC (or a PDC derivative) and an electron donating molecule, a PDC salt is synthesized as a supporting electrolyte for the electron donating molecule. Examples of the PDC salt include monoprotonated PDC-tetrabutyl ammonia salt (Bu 4 N (PDC)).
これら支持電解質については、公知の方法をはじめとして各種の方法により提供可能とされる。例えば、前記Bu4N(PDC)の場合として例示すると
電子供与性分子+Bu4N(PDC)→(電子供与性分子)xPDC
の電解反応を生じ、電解セルの陽極に有機電荷移動錯体の結晶が形成される。
These supporting electrolytes can be provided by various methods including known methods. For example, as an example of the case of Bu4N (PDC), electron donating molecule + Bu4N (PDC) → (electron donating molecule) x PDC
Thus, an organic charge transfer complex crystal is formed at the anode of the electrolytic cell.
また、PDC塩と電子供与性分子とを溶解する有機溶媒としては、例えば、アセトニトリル、アニソール、ジメチルスルホキシド、ジクロロメタン、エタノール等を例示することができる。また、上記有機溶媒は1種又は2種以上の混合溶媒を用いてもよい。 Examples of the organic solvent that dissolves the PDC salt and the electron-donating molecule include acetonitrile, anisole, dimethyl sulfoxide, dichloromethane, ethanol, and the like. Moreover, the said organic solvent may use 1 type, or 2 or more types of mixed solvents.
上記の有機溶媒を用いて調製したPDC塩溶液の濃度は、CH2Cl2/CH3CH2OH(97.5:2.5%V/V)の混合溶媒を用いた場合、BEDT−TTF0.0035mmolおよびBu4N(PDC)0.350mmolで良質の単結晶試料を得ることが出来る。 The concentration of the PDC salt solution prepared using the above organic solvent is BEDT-TTF0 when a mixed solvent of CH 2 Cl 2 / CH 3 CH 2 OH (97.5: 2.5% V / V) is used. A good quality single crystal sample can be obtained with .0035 mmol and Bu 4 N (PDC) 0.350 mmol.
電解法に用いる電極としては、例えば、陽極にアルミニウム、金、銀、ニッケル、パラジウム、白金等の金属、酸化インジウムスズ等の金属酸化物、ヨウ化銅等のハロゲン化金属、カーボンブラック、あるいは、ポリ(3−メチルチオフェン)、ポリピロール、ポリアニリン等の導電性高分子等を例示することができる。 As an electrode used in the electrolytic method, for example, the anode is a metal such as aluminum, gold, silver, nickel, palladium, platinum, a metal oxide such as indium tin oxide, a metal halide such as copper iodide, carbon black, or Examples thereof include conductive polymers such as poly (3-methylthiophene), polypyrrole, and polyaniline.
また、陽極の形成は通常、スパッタリング法、真空蒸着法などにより行われることが多い。また、銀等の金属微粒子、ヨウ化銅などの微粒子、カーボンブラック、導電性の金属酸化物微粒子、導電性高分子微粉末等の場合には、適当なバインダー樹脂溶液に分散し、基板上に塗布することにより陽極を形成することもできる。 Also, the anode is usually formed by sputtering, vacuum deposition, or the like. In addition, in the case of fine metal particles such as silver, fine particles such as copper iodide, carbon black, conductive metal oxide fine particles, conductive polymer fine powder, etc., it is dispersed in a suitable binder resin solution, An anode can also be formed by coating.
基板は、電極の支持体となるものであり、石英やガラスの板、金属板や金属箔、プラスチックフィルムやソート等が用いられる。特に、ガラス板や、ポリエステル、ポリメタクリレート、ポリカーボネート、ポリスルホンなどの透明な合成樹脂の板が好ましい。
または、Pt等の棒状の電極を用いることもできる。
The substrate serves as a support for the electrode, and a quartz or glass plate, a metal plate or a metal foil, a plastic film, a sort, or the like is used. In particular, a glass plate or a transparent synthetic resin plate such as polyester, polymethacrylate, polycarbonate, or polysulfone is preferable.
Alternatively, a rod-like electrode such as Pt can be used.
本発明では、0.1〜5.0μA、好ましくは0.5〜1.0μAの範囲内の定電流を電解セルに流すことによって、電解法による結晶形成を行うことができる。 In the present invention, crystal formation by an electrolytic method can be performed by passing a constant current in the range of 0.1 to 5.0 μA, preferably 0.5 to 1.0 μA, through the electrolytic cell.
また、通電時間は数日から2ヵ月間程度である。 The energization time is about several days to two months.
PDC塩及び電子供与性分子の溶液を用いて電解法による結晶形成を行うと、平均直径20〜40nmの繊維状結晶を得ることができる。 When a crystal is formed by an electrolytic method using a solution of a PDC salt and an electron donating molecule, a fibrous crystal having an average diameter of 20 to 40 nm can be obtained.
なお、ここで言う平均直径は、得られた結晶のSEM写真から画像解析ソフトウェアによって算出した値である。 The average diameter here is a value calculated by image analysis software from the SEM photograph of the obtained crystal.
本発明の有機電荷移動錯体の結晶によれば、電極材料、電磁遮蔽材料、帯電防止材料等の機能性材料として極めて有用である高分子半導体結晶を形成することが可能となる。この高分子半導体結晶は、極めて安定で、液相中で簡単に作成することが可能であり、この結晶をフィルム状にした薄膜も光透過性も高いことから、フレキシブルな透明電極材料としての応用が期待できる。 According to the organic charge transfer complex crystal of the present invention, it is possible to form a polymer semiconductor crystal that is extremely useful as a functional material such as an electrode material, an electromagnetic shielding material, or an antistatic material. This polymer semiconductor crystal is extremely stable and can be easily prepared in the liquid phase. Since this film is a film-like thin film and has high optical transparency, it can be used as a flexible transparent electrode material. Can be expected.
また、この高分子半導体結晶は、透明性の導電フィルム材料として、フレキシブル透明電極等の各種用途に活用することが可能である。 Moreover, this polymer semiconductor crystal can be utilized for various uses, such as a flexible transparent electrode, as a transparent conductive film material.
さらに、本発明では、酸化インジウムスズ(ITO)を電極として用いた電解法により、BEDT−TTF−PDC錯体薄膜をITO基板上に直接成長させることが可能である。このため、無機系透明電極の特性改善、表面改質技術等への応用の可能性が考えられる。 Furthermore, in the present invention, a BEDT-TTF-PDC complex thin film can be directly grown on an ITO substrate by an electrolytic method using indium tin oxide (ITO) as an electrode. For this reason, the possibility of the application to the characteristic improvement of an inorganic type transparent electrode, surface modification technology, etc. is considered.
また、例えば、本発明の有機電荷移動錯体の結晶と、ポリ(3,4-エチレンジオキシチオフェン)-ポリ(スチレンスルホン酸)(PEDOT−PSS)などの帯電(静電気)防止材料と組み合わせて使用することができる。これにより、PEDOT−PSSの導電性や溶解性などを改良することができ、タッチパネルや有機薄膜太陽電池用の透明電極材料などの性能をより高めることができる。 In addition, for example, the organic charge transfer complex crystal of the present invention is used in combination with an antistatic material such as poly (3,4-ethylenedioxythiophene) -poly (styrenesulfonic acid) (PEDOT-PSS). can do. Thereby, the electroconductivity, solubility, etc. of PEDOT-PSS can be improved and performances, such as a transparent electrode material for touch panels and organic thin-film solar cells, can be improved more.
さらに、例えば、ゴムに本発明の有機電荷移動錯体の結晶を配合して、帯電防止材料を形成することもできる。 Furthermore, for example, the organic charge transfer complex crystal of the present invention can be blended with rubber to form an antistatic material.
以下、実施例により本発明をさらに詳しく説明するが、本発明はこれらの実施例に何ら限定されるものではない。 EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to these Examples at all.
<実施例1>PDCの電子受容性分子としての評価
植物由来のリグニンを組換え微生物発酵によって分解し、リグニンの中間代謝産物であるPDCを得た。得られたPDCを用いて、サイクリックボルタモグラフ測定を行った。
<Example 1> Evaluation of PDC as an electron-accepting molecule Plant-derived lignin was decomposed by recombinant microorganism fermentation to obtain PDC which is an intermediate metabolite of lignin. Cyclic voltammographic measurement was performed using the obtained PDC.
図1は、PDCのサイクリックボルタモグラムを、図2は、PDCのHOMOおよびLUMOのエネルギー準位図を示している。PDCが電子受容性分子であることが確認される。 FIG. 1 shows a cyclic voltammogram of PDC, and FIG. 2 shows an energy level diagram of HOMO and LUMO of PDC. It is confirmed that PDC is an electron accepting molecule.
<実施例2>拡散法によるTTF誘導体−PDC繊維状結晶の作製
PDC、TTFおよびSDM−TTFを、それぞれアセトニトリル(和光純薬工業、純度99.5%v/v)に溶かし、飽和溶液(PDC:0.069mol/L、TTF:0.011mol/L、SDM−TTF:0.0086mol/L)を調整した。次に、H型結晶成長管の片側からPDC/アセトニトリル飽和溶液を、もう一方の側からTTFまたはSDM−TTF/アセトニトリル飽和溶液を滴下し、H型結晶成長管内を窒素ガスで置換し、摺合平栓で封止した。その後、H型結晶成長管を室温、暗所で約1ヶ月間静置することにより結晶成長を行った。その結果、黒色針状結晶および繊維状結晶(直径数μm程度)が析出した。図3に拡散法によるTTF−PDC結晶のSEM像を示した(撮影機種HITACHI S−4500、撮影条件加速電圧20kV)。
<Example 2> Preparation of TTF derivative-PDC fibrous crystal by diffusion method PDC, TTF and SDM-TTF were dissolved in acetonitrile (Wako Pure Chemical Industries, Ltd., purity 99.5% v / v), respectively, and a saturated solution (PDC) : 0.069 mol / L, TTF: 0.011 mol / L, SDM-TTF: 0.0086 mol / L). Next, PDC / acetonitrile saturated solution is dropped from one side of the H-type crystal growth tube, and TTF or SDM-TTF / acetonitrile saturated solution is dropped from the other side, and the inside of the H-type crystal growth tube is replaced with nitrogen gas. Sealed with a stopper. Thereafter, crystal growth was performed by allowing the H-type crystal growth tube to stand at room temperature in a dark place for about one month. As a result, black needle crystals and fibrous crystals (diameter of about several μm) were precipitated. FIG. 3 shows an SEM image of the TTF-PDC crystal by the diffusion method (photographing model HITACHI S-4500, photographing condition acceleration voltage 20 kV).
<実施例3>溶液からの結晶析出法によるTTF誘導体−PDC繊維状結晶の作製
PDC/アセトニトリル溶液およびTTF、SDM−TTF、TMTTF/アセトニトリル溶液の濃度調整により、繊維状結晶のみの選択的成長および結晶形態制御を行った。TMTTF−PDC結晶に関しては、液−液界面結晶析出法により、繊維状結晶の作成を行った。TMTTF/アセトニトリル溶液およびPDC/アセトニトリル溶液の混合溶液を、混合してから約24時間後に、貧溶媒であるトルエンの入った容器中に静かに滴下し、室温、暗所で数日間静置を行うことで、直径20〜40nm程度の繊維状ナノ結晶が析出した。図4に液−液界面結晶析出法の模式図とTMTTF−PDC結晶のSEM像を示した。
Example 3 Preparation of TTF Derivative-PDC Fibrous Crystal by Crystal Precipitation Method from Solution By selectively adjusting the concentrations of PDC / acetonitrile solution and TTF, SDM-TTF, TMTTF / acetonitrile solution, Crystal form control was performed. Regarding the TMTTF-PDC crystal, a fibrous crystal was prepared by a liquid-liquid interface crystal precipitation method. About 24 hours after mixing, the mixed solution of TMTTF / acetonitrile solution and PDC / acetonitrile solution is gently dropped into a container containing toluene, which is a poor solvent, and allowed to stand at room temperature in the dark for several days. As a result, fibrous nanocrystals having a diameter of about 20 to 40 nm were precipitated. FIG. 4 shows a schematic diagram of the liquid-liquid interface crystal precipitation method and an SEM image of the TMTTF-PDC crystal.
<実施例4>電解法による電子供与性分子−PDC電荷移動錯体結晶の作製
モノプロトン化PDC−テトラブチルアンモニウム塩(Bu4N(PDC))を合成し、電子供与性分子の電解酸化用支持電解質として使用することにより、電解法による電荷移動錯体(塩)の合成を行った。電子供与性分子TTF、BEDT−TTF、BMDT−TTF、TET−TTF、TMTSFを支持電解質であるBu4N(PDC)と有機溶媒に溶かし、電解セル中に入れ、セルを窒素ガス雰囲気中で封止した。図5に電解法の装置を示した。電極に0.5〜1.0μA程度の一定電流を数日から2か月間程度流すことにより、陽極の白金電極上に、上記ドナー−PDC電荷移動錯体結晶が析出した。特に、BEDT−TTF−PDC錯体においては、ジクロロメタン/エタノール (97.5:2.5%v/v)を溶媒として用いた時に、良質の結晶を得ることができた。1,2−ジアミノピレン(DAP)−PDC錯体については、アセトニトリルを溶媒として同様の電解法により、直径数10nmの繊維状結晶の高密度の束状の結晶を作製することができた。得られた高密度の束状の繊維状結晶のSEM像を図6に示した。
<Example 4> Preparation of electron donating molecule-PDC charge transfer complex crystal by electrolytic method Monoprotonated PDC-tetrabutylammonium salt (Bu4N (PDC)) was synthesized and used as a supporting electrolyte for electrooxidation of electron donating molecule. By using it, the charge transfer complex (salt) was synthesized by the electrolytic method. Electron donating molecules TTF, BEDT-TTF, BMDT-TTF, TET-TTF, and TMTSF were dissolved in supporting electrolyte Bu4N (PDC) and an organic solvent, placed in an electrolytic cell, and the cell was sealed in a nitrogen gas atmosphere. . FIG. 5 shows an electrolysis apparatus. The donor-PDC charge transfer complex crystal was deposited on the platinum electrode of the anode by applying a constant current of about 0.5 to 1.0 μA to the electrode for several days to 2 months. Particularly, in the BEDT-TTF-PDC complex, when dichloromethane / ethanol (97.5: 2.5% v / v) was used as a solvent, good quality crystals could be obtained. For the 1,2-diaminopyrene (DAP) -PDC complex, high-density bundle crystals of fibrous crystals having a diameter of several tens of nanometers could be produced by the same electrolytic method using acetonitrile as a solvent. The SEM image of the obtained high-density bundle-like fibrous crystal is shown in FIG.
<実施例5>電解法によるドナー−PDC電荷移動錯体薄膜の作製
市販のITO基板(Sigma−Aldrich社製)に界面活性剤による超音波洗浄、超純水による超音波洗浄および流水洗浄後、窒素ブローで乾燥させ、最後に紫外線オゾン洗浄を行った後、例示化合物(5)を含有する有機電荷移動錯体結晶からなる薄膜を電解法により形成した。例示化合物(5)BEDT−TTFを支持電解質であるBu4N(PDC)とともにジクロロメタン/エタノール(97.5:2.5%v/v)に溶かし、陽極にITO基板をもちいた電解セル中に添加した。電解セルを窒素ガス雰囲気中で封止した後、電極に100μA〜200μA程度の一定電流を4時間程度流すことにより、ITO基板表面上に板状およびリボン状のBEDT−TTF−PDC薄膜が形成された。この時、得られた薄膜の厚さは、数nmであった。薄膜形成の装置図(a)、及び得られた薄膜の光学顕微鏡像(b)、SEM像(c)を図7に示す。図中のサンプルAは、電極に100μAの一定電流を流した際に形成された薄膜を示す。また、サンプルBは、電極に200μAの一定電流を流した際に形成された薄膜を示す。
<実施例6>
<有機電荷移動錯体結晶の構造及び機能性評価>
拡散法及び電解法により作製した単結晶試料について、X線回折法による結晶構造解析を行った(Rigaku社製 RAXIS−RAPIDおよび4176F07CCD−3)。
<Example 5> Preparation of donor-PDC charge transfer complex thin film by electrolytic method After commercially available ITO substrate (manufactured by Sigma-Aldrich), ultrasonic cleaning with surfactant, ultrasonic cleaning with ultrapure water and cleaning with running water, nitrogen After drying by blow and finally performing ultraviolet ozone cleaning, a thin film made of an organic charge transfer complex crystal containing the exemplified compound (5) was formed by an electrolytic method. Exemplified compound (5) BEDT-TTF was dissolved in dichloromethane / ethanol (97.5: 2.5% v / v) together with supporting electrolyte Bu4N (PDC), and added to an electrolytic cell using an ITO substrate as an anode. . After the electrolytic cell is sealed in a nitrogen gas atmosphere, a plate-like and ribbon-like BEDT-TTF-PDC thin film is formed on the surface of the ITO substrate by applying a constant current of about 100 μA to 200 μA to the electrode for about 4 hours. It was. At this time, the thickness of the obtained thin film was several nm. FIG. 7 shows an apparatus diagram (a) for forming a thin film, and an optical microscope image (b) and an SEM image (c) of the obtained thin film. Sample A in the figure shows a thin film formed when a constant current of 100 μA is passed through the electrode. Sample B shows a thin film formed when a constant current of 200 μA was passed through the electrode.
<Example 6>
<Structure and functionality evaluation of organic charge transfer complex crystals>
The single crystal sample produced by the diffusion method and the electrolytic method was subjected to crystal structure analysis by X-ray diffraction method (RAXIS-RAPID and 4176F07CCD-3 manufactured by Rigaku).
また、得られた有機電荷移動錯体の粉末試料について磁化率パラメータを算出した。結果を表1に示した。ここで、χ0は温度に依存しないパウリ磁化率の成分、Cはキュリー定数、θはワイス温度である。 Moreover, the magnetic susceptibility parameter was computed about the powder sample of the obtained organic charge transfer complex. The results are shown in Table 1. Here, χ 0 is a Pauli magnetic susceptibility component that does not depend on temperature, C is a Curie constant, and θ is a Weiss temperature.
その結果、χ0の値がTTF−PDC、SDM−TTF−PDC、TMTTF−PDCの順に大きくなっており、TTF誘導体の電気伝導率は上記の順に高いことが明らかになった。 As a result, the value of χ 0 was increased in the order of TTF-PDC, SDM-TTF-PDC, and TMTTF-PDC, and it was revealed that the electrical conductivity of the TTF derivative was higher in the above order.
また、ワイス温度θは負の値となっていることから、TMTTF−PDCにおいては、低温で反強磁性的相互作用が存在していることが明らかになった。 Further, since the Weiss temperature θ is a negative value, it has been clarified that an antiferromagnetic interaction exists at a low temperature in the TMTTF-PDC.
その結果、拡散法及び電解法により作製したTTF−PDC錯体結晶は、いずれも、PDC分子間で形成される3次元的な水素結合ネットワークにより、高電導性が期待される分離積層型の安定した結晶構造を持ち、TTFおよびPDCの1次元的カラム構造を有する。上記1次元的カラム構造を図8に示した。 As a result, the TTF-PDC complex crystals produced by the diffusion method and the electrolysis method are both stable and stable in a separated layer type in which high conductivity is expected due to the three-dimensional hydrogen bond network formed between PDC molecules. It has a crystal structure and a one-dimensional column structure of TTF and PDC. The one-dimensional column structure is shown in FIG.
さらに電解法により作製したBEDT−TTF−PDC錯体結晶においても、結晶中でBEDT−TTF分子は水素結合ネットワークにより形成されたPDCシートによって分離された1次元的な積層構造をとることを明らかにした。上記1次元的カラム構造を図9に示した。 Furthermore, in the BEDT-TTF-PDC complex crystal produced by the electrolytic method, it was clarified that BEDT-TTF molecules in the crystal have a one-dimensional laminated structure separated by a PDC sheet formed by a hydrogen bond network. . The one-dimensional column structure is shown in FIG.
<実施例7>PDC誘導体の作製
PDCの4,6位の−COOH基を、−COOCH3基、−COOC2H5基に置換した2種の置換体を作製した。
Example 7 Production of PDC Derivatives Two types of substitution products were produced by substituting the —COOH group at the 4th and 6th positions of PDC with —COOCH 3 group and —COOC 2 H 5 group.
(1)COOCH3基置換体の合成
以下の材料を使用した。
(1) Synthesis of COOCH 3- group substitution product The following materials were used.
PDC(23mg、0.13mmol)
DMT−MM:4-(4,6-Dimethoxy-1,3,5-triazin-2-yl)-4-methylmorpholinium Chloride n-Hydrate(95mg 0.34mmol)
CH3OH(20mL)
C5H5N2(26mL)
具体的には、200 mL ナスフラスコにPDC を 23.3 mg (0.13 mmol) 入れ, メタノール20 mL を加えて溶解させた後, ピリジンを 26.3 mL (0.33 mmol) 加えた。10 min. 攪拌後, DMT-MM を94.5 mg (0.34 mmol) 加え, 室温で18 hrs 反応を行い、2-ピロンの4,6位COOCH3基置換体を得た。また、このCOOCH3基置換体については、1H-NMRでそのピークを確認した。
PDC (23 mg, 0.13 mmol)
DMT-MM: 4- (4,6-Dimethoxy-1,3,5-triazin-2-yl) -4-methylmorpholinium Chloride n-Hydrate (95mg 0.34mmol)
CH 3 OH (20 mL)
C 5 H 5 N 2 (26 mL)
Specifically, 23.3 mg (0.13 mmol) of PDC was placed in a 200 mL eggplant flask, 20 mL of methanol was added and dissolved, and then 26.3 mL (0.33 mmol) of pyridine was added. After stirring for 10 min., 94.5 mg (0.34 mmol) of DMT-MM was added and reacted at room temperature for 18 hrs to obtain a 4-pyrone 4,6-position COOCH 3- group substitution product. Moreover, about this COOCH 3 group substitution product, the peak was confirmed by 1H-NMR.
(2)COOC2H5基置換体の合成
以下の材料を使用した。
(2) Synthesis of COOC 2 H 5 group substitution product The following materials were used.
PDC(26mg、0.14mmol)
DMT−MM(90mg 0.33mmol)
C2H5OH(20mL)
C5H5N2(26mL)
具体的には、200 mL ナスフラスコにPDC を 26.0 mg (0.14 mmol) 入れ, エタノール20 mL を加えて溶解させた後, ピリジンを 26.0 mL (0.32 mmol) 加えた。10 min. 攪拌後、DMT-MM を90.4 mg (0.33 mmol) 加え, 室温で 18 hrs 反応を行い、2-ピロンの4,6位COOC2H5基置換体を得た。また、このCOOC2H5基置換体については、1H-NMRでそのピークを確認した。
PDC (26 mg, 0.14 mmol)
DMT-MM (90mg 0.33mmol)
C 2 H 5 OH (20 mL)
C 5 H 5 N 2 (26 mL)
Specifically, 26.0 mg (0.14 mmol) of PDC was placed in a 200 mL eggplant flask, 20 mL of ethanol was added and dissolved, and then 26.0 mL (0.32 mmol) of pyridine was added. After stirring for 10 min, 90.4 mg (0.33 mmol) of DMT-MM was added and reacted at room temperature for 18 hrs to obtain a 4-pyrone 4,6-position COOC 2 H 5 group substitution product. As for the COOC 2 H 5 group substituents confirmed its peak in IH-NMR.
<実施例8>PDC誘導体のエネルギー準位の計算
PDCと実施例7で合成した2種の置換体(COOCH3基置換体、COOC2H5基置換体)およびCN基置換体(PDCの4,6位の−COOH基をCN基に置換したもの)について、分子軌道法でエネルギー準位を計算した。計算には Gaussian 09W ver. 0.9 を使用した。モデル分子をGaussView ver. 5.0 で設計し、DFT計算を用いて構造最適化および振動数計算を行った。汎関数はB3LYP, 基底関数には 6-311G(d)を用いた。
<Example 8> Calculation of energy level of PDC derivative The PDC and the two types of substituents synthesized in Example 7 (COOCH 3 group substituents, COOC 2 H 5 group substituents) and CN group substituents (PDC 4) , 6-position -COOH group was replaced with CN group), the energy level was calculated by molecular orbital method. Gaussian 09W ver. 0.9 was used for the calculation. The model molecule was designed with GaussView ver. 5.0, and the structure optimization and frequency calculation were performed using DFT calculation. The functional was B3LYP and the basis function was 6-311G (d).
その結果、PDCの最低非占有分子軌道 ( LUMO ) のエネルギーは -3.26 eV, COOCH3基置換体の LUMO エネルギーは -3.04 eV, COOC2H5基置換体の LUMO エネルギーは -2.98 eV, CN基置換体の LUMO エネルギーは -3.90 eVとなり、CN基置換体が最も電子親和力が大きくなり、高いアクセプター性を有していることが確認された。 As a result, the lowest unoccupied molecular orbital (LUMO) energy of the PDC is -3.26 eV, the LUMO energy of the COOCH 3 group substituent is -3.04 eV, and the LUMO energy of the COOC 2 H 5 group substituent is -2.98 eV, CN group The LUMO energy of the substitution product was -3.90 eV, and it was confirmed that the CN group substitution product had the highest electron affinity and high acceptor properties.
<実施例9>電子供与性分子としてのピレン誘導体
(1)ピレン誘導体
1,3-DAP、1,6-DAP、1,8-DAPは、市販のものを使用した(東京化成工業株式会社製)。また、以下の条件で、1,3,6,8−テトラアミノピレン(TAP)を合成した。1,3,6,8−テトラアミノピレン(TAP)は、1H-NMRでそのピークを確認した。
<Example 9> Pyrene derivatives as electron donating molecules (1) Pyrene derivatives 1,3-DAP, 1,6-DAP and 1,8-DAP were commercially available (manufactured by Tokyo Chemical Industry Co., Ltd.). ). Moreover, 1,3,6,8-tetraaminopyrene (TAP) was synthesized under the following conditions. The peak of 1,3,6,8-tetraaminopyrene (TAP) was confirmed by 1H-NMR.
(2)電子供与性
1,3-DAP、1,6-DAP、1,8-DAPおよびTAPについて、酸化電位をサイクリックボルタンメトリー測定を行い、電子供与性の評価を行った。(ALS/「H」CH Instruments社製, Electrochemical Analyser Model600C、支持電解質としてテトラフルオロ硼酸テトラブシルアンモニウムを使用した。)その結果、1,3-DAPの第一酸化電位は0.3875 V(vs.Ag/AgCl)、1,6-DAPの第一酸化電位は0.3753 V(vs.Ag/AgCl), 1,8-DAPの第一酸化電位は0.3790V(vs.Ag/AgCl)であり、1,6-DAPが最も強い電子供与性を有していることが確認された。
(2) Electron donating properties The 1,3-DAP, 1,6-DAP, 1,8-DAP and TAP were subjected to cyclic voltammetry measurement of the oxidation potential, and the electron donating property was evaluated. (ALS / "H" manufactured by CH Instruments, Electrochemical Analyzer Model 600C, tetrabusylammonium tetrafluoroborate was used as the supporting electrolyte.) As a result, the primary oxidation potential of 1,3-DAP was 0.3875 V (vs. Ag / AgCl), 1,6-DAP has a first oxidation potential of 0.3753 V (vs. Ag / AgCl), 1,8-DAP has a first oxidation potential of 0.3790 V (vs. Ag / AgCl), It was confirmed that 6-DAP has the strongest electron donating property.
(3)SEM観察
PDC とピレン誘導体との電荷移動錯体の合成は H 管を用いた拡散法により行った。溶媒としてCH3OC6H5 とCH3CNを9:1(重量比)で混合したものを用いた。具体的な合成条件を表2に示す。
(3) SEM observation
The charge transfer complex of PDC and pyrene derivative was synthesized by diffusion method using H tube. As a solvent, a mixture of CH 3 OC 6 H 5 and CH 3 CN at 9: 1 (weight ratio) was used. Specific synthesis conditions are shown in Table 2.
この1,3-DAP‐PDC、1,6-DAP‐PDC、1,8-DAP‐PDCおよびTAP‐PDCについてSEMで観察した結果を図10に示す。TAP-PDC錯体および1,3-DAP-PDC錯体のSEM像には粒子状の錯体結晶が、1,6-DAP-PDC錯体のSEM像には繊維状の錯体結晶が確認された。 FIG. 10 shows the results of observation of the 1,3-DAP-PDC, 1,6-DAP-PDC, 1,8-DAP-PDC, and TAP-PDC by SEM. Particulate complex crystals were observed in the SEM images of the TAP-PDC complex and 1,3-DAP-PDC complex, and fibrous complex crystals were confirmed in the SEM image of the 1,6-DAP-PDC complex.
(4)磁化率(ESR測定)
1,3-DAP‐PDC、1,6-DAP‐PDC、1,8-DAP‐PDCおよびTAP‐PDCについて、ESR((Bruker社製 E-500) 9.4GHz帯(X-band))を用いてスピン常磁性磁化率を検討した。
(4) Magnetic susceptibility (ESR measurement)
For 1,3-DAP-PDC, 1,6-DAP-PDC, 1,8-DAP-PDC and TAP-PDC, use ESR ((Bruker E-500) 9.4 GHz band (X-band)) The spin paramagnetic susceptibility was investigated.
結果を表3に示す。X0は、パウリ常磁性磁化率(emu/mol)、Cはキュリー定数(emu/mol・K)、θは、常磁性キュリー温度(K)を示している。 The results are shown in Table 3. X 0 is a Pauli paramagnetic susceptibility (emu / mol), C is a Curie constant (emu / mol · K), and θ is a paramagnetic Curie temperature (K).
表3に示したように、いずれの試料においてもX0の値は10-6 emu/molかそれ以下であった。 As shown in Table 3, the value of X 0 was 10 −6 emu / mol or less in any sample.
<実施例10>電子供与性分子としてのベンジジン誘導体
(1)ベンジジン誘導体
3,3,’5,5’-テトラメチルベンジジン(TMB)および3,3’-ジメチルベンジジン(DMB)は、電解法で得たものを使用した。
<Example 10> Benzidine derivatives as electron donating molecules (1) Benzidine derivatives 3,3, '5,5'-tetramethylbenzidine (TMB) and 3,3'-dimethylbenzidine (DMB) What was obtained was used.
具体的には、TMBもしくはDMBおよびPDCのTBA塩(TBA(PDC))を表4に示す条件でAnisoleとCH3CN混合溶媒に溶かし、窒素雰囲気下で、白金電極を入れた状態で封管し、暗所にて1.0 μAの電流を3日間流すことにより錯体の作成を行った。 Specifically, TMB salt of TMB or DMB and PDC (TBA (PDC)) was dissolved in Anisole and CH 3 CN mixed solvent under the conditions shown in Table 4, and sealed with a platinum electrode in a nitrogen atmosphere. Then, a complex was prepared by passing a current of 1.0 μA for 3 days in the dark.
(2)電子供与性(CV測定)
TMBおよびDMBについて、酸化電位をサイクリックボルタンメトリー測定を行い、電子供与性を検討した。(ALS/「H」CH Instruments社製, Electrochemical Analyser Model600C)、支持電解質としてテトラフルオロ硼酸テトラブシルアンモニウムを使用した。)
その結果、TMBの第一酸化電位は、0.547 V(vs.Ag/AgCl)であり、DMBの第一酸化電位は、0.604 V(vs.Ag/AgCl)であり、TMBの方が強い電子供与性を有していることが確認された。
(2) Electron donating property (CV measurement)
For TMB and DMB, the oxidation potential was measured by cyclic voltammetry, and the electron donating property was examined. (ALS / “H” manufactured by CH Instruments, Electrochemical Analyzer Model 600C), tetrabucil ammonium tetrafluoroborate was used as the supporting electrolyte. )
As a result, the first oxidation potential of TMB is 0.547 V (vs. Ag / AgCl), the first oxidation potential of DMB is 0.604 V (vs. Ag / AgCl), and TMB has a stronger electron donation. It was confirmed that it has sex.
(3)磁化率(ESR測定)
電解法によって作成したTMB-PDCおよびDMB-PDCをSEM観察したところ、板状の結晶が確認された。
(3) Magnetic susceptibility (ESR measurement)
SEM observation of TMB-PDC and DMB-PDC prepared by the electrolytic method confirmed plate-like crystals.
このTMB-PDCおよびDMB-PDCについて、ESR((Bruker社製 E-500) 9.4GHz帯(X-band))を用いてスピン常磁性磁化率を検討した。 About this TMB-PDC and DMB-PDC, spin paramagnetic susceptibility was examined using ESR ((Bruker E-500) 9.4 GHz band (X-band)).
結果を表5に示す。X0は、パウリ常磁性磁化率(emu/mol)、Cはキュリー定数(emu/mol・K)、θは、常磁性キュリー温度(K)を示している。 The results are shown in Table 5. X 0 is a Pauli paramagnetic susceptibility (emu / mol), C is a Curie constant (emu / mol · K), and θ is a paramagnetic Curie temperature (K).
表5に示したように、TMB-PDCはDMB-PDCよりもパウリ常磁性磁化率が高く、いずれの試料においても10-6 emu/molのオーダーであることが確認された。 As shown in Table 5, it was confirmed that TMB-PDC has a higher Pauli paramagnetic susceptibility than DMB-PDC and is in the order of 10 −6 emu / mol in any sample.
(4)電解法と拡散法の比較
電解法で作製したTMBと拡散法で作製したTMBについて、PDCとの錯体を作成し、磁化率(ESR測定)を比較した。
(4) Comparison of electrolysis method and diffusion method For TMB produced by the electrolysis method and TMB produced by the diffusion method, complexes with PDC were prepared and the magnetic susceptibility (ESR measurement) was compared.
拡散法においては、AnisoleとCH3CNの混合溶媒(体積比3:1)にTMBおよびPDCを溶かし、H管に窒素雰囲気下で封管後、暗所にて静置することにより錯体の作成を行った。電解法においては、TMBおよびPDCのTBA塩(TBA(PDC))を表6に示す条件でAnisoleとCH3CN混合溶媒に溶かし、窒素雰囲気下で、白金電極を入れた状態で封管し、暗所にて1.0 μAの電流を3日間流すことにより錯体の作成を行った。 In the diffusion method, TMB and PDC are dissolved in a mixed solvent of Anisole and CH 3 CN (volume ratio 3: 1), sealed in an H tube under a nitrogen atmosphere, and then left in a dark place to form a complex. Went. In the electrolytic method, TBA salts of TMB and PDC (TBA (PDC)) were dissolved in a mixed solvent of Anisole and CH 3 CN under the conditions shown in Table 6, and sealed with a platinum electrode in a nitrogen atmosphere, The complex was prepared by passing a current of 1.0 μA for 3 days in the dark.
得られた錯体の磁化率の測定は上記(3)に準じて行った。 The measurement of the magnetic susceptibility of the obtained complex was performed according to the above (3).
結果を表7に示す。 The results are shown in Table 7.
表7に示したように、電解法TMB-PDCは、拡散法TMB-PDCよりもパウリ常磁性磁化率が高く、有機電荷移動錯体としての有用性により優れていることが確認された。 As shown in Table 7, it was confirmed that the electrolytic method TMB-PDC has a higher Pauli paramagnetic susceptibility than the diffusion method TMB-PDC, and is superior in usefulness as an organic charge transfer complex.
<実施例11>電気抵抗の評価
実施例9と同様の方法によって作製した1,3-DAP‐PDC、1,6-DAP‐PDC、1,8-DAP‐PDCと、実施例10と同様の方法によって作製したTMB-PDC、DMB-PDCについて、めのう乳鉢による粉砕により粉末状にし、この粉末をプレス加工することによりペレット状に成形した。
<Example 11> Evaluation of electrical resistance 1,3-DAP-PDC, 1,6-DAP-PDC, 1,8-DAP-PDC produced by the same method as in Example 9 and the same as in Example 10 The TMB-PDC and DMB-PDC produced by the method were pulverized with an agate mortar and formed into a pellet by pressing.
この1,3-DAP‐PDC、1,6-DAP‐PDC、1,8-DAP‐PDC、TMB-PDCおよびDMB-PDCのペレット状試料について、2端子法により電気抵抗率(室温)を測定した(使用機器:Keithley社製2001 MultimeterおよびAdvantest社製R8340A Ultra High resistance Meter)。 Measure the electrical resistivity (room temperature) of this 1,3-DAP-PDC, 1,6-DAP-PDC, 1,8-DAP-PDC, TMB-PDC and DMB-PDC pellets by the two-terminal method (Equipment used: Keithley 2001 Multimeter and Advantest R8340A Ultra High resistance Meter).
その結果、1,3-DAP‐PDCは3.8×105Ωmであり、1,6-DAP‐PDCは1.9×103Ωmであり、1,8-DAP‐PDCは3.4×105Ωmであり、TMB-PDCは400Ωmであり、DMB-PDCは19.5Ωmであった。 As a result, 1,3-DAP-PDC is 3.8 × 10 5 Ωm, 1,6-DAP-PDC is 1.9 × 10 3 Ωm, and 1,8-DAP-PDC is 3.4 × 10 5 Ωm. , TMB-PDC was 400 Ωm, and DMB-PDC was 19.5 Ωm.
以上の結果から、これらの錯体は電気伝導性を有することが確認された。 From the above results, it was confirmed that these complexes have electrical conductivity.
Claims (10)
電子受容性分子が、2−ピロン−4,6−ジカルボン酸(2-pyrone-4,6-dicarboxylic acid;PDC)またはPDC誘導体であり、
PDC誘導体は、PDCのカルボキシル基をモノエステル、ジエステル、モノアミド、ジアミド、モノニトリル、ジニトリル、モノアミン、ジアミン、モノケトン、ジケトン、モノ酸塩化物、ジ酸塩化物に置換した置換体のうちの1種または2種以上であり、
電子供与性分子が、下記一般式(1)で表される化合物、
または、下記一般式(2)で表されるアミノピレン、
または、下記一般式(3)で表される化合物、
であることを特徴とする有機電荷移動錯体。 An organic charge transfer complex comprising an electron accepting molecule and an electron donating molecule,
The electron accepting molecule is 2-pyrone-4,6-dicarboxylic acid (PDC) or a PDC derivative;
The PDC derivative is one of the substituents in which the carboxyl group of PDC is replaced with a monoester, diester, monoamide, diamide, mononitrile, dinitrile, monoamine, diamine, monoketone, diketone, monoacid chloride, or diacid chloride. Or two or more,
A compound represented by the following general formula (1):
Or aminopyrene represented by the following general formula (2),
Or a compound represented by the following general formula (3),
An organic charge transfer complex characterized in that
PDC誘導体は、PDCのカルボキシル基をモノエステル、ジエステル、モノアミド、ジアミド、モノニトリル、ジニトリル、モノアミン、ジアミン、モノケトン、ジケトン、モノ酸塩化物、ジ酸塩化物に置換した置換体のうちの1種または2種以上であり、
電子供与性分子が、下記一般式(1)で表される化合物、
または、下記一般式(2)で表されるアミノピレン、
または、下記一般式(3)で表される化合物、
であることを特徴とする有機電荷移動錯体結晶の製造方法。 A PDC solution in which 2-pyrone-4,6-dicarboxylic acid (PDC) or a PDC derivative is dissolved in an organic solvent, and an electron donating property in which an electron-donating molecule is dissolved in the organic solvent was added dropwise a molecular solution in the crystal growth vessel, a manufacturing method of an organic charge transfer complex crystal by diffusion method you stand,
The PDC derivative is one of the substituents in which the carboxyl group of PDC is replaced with a monoester, diester, monoamide, diamide, mononitrile, dinitrile, monoamine, diamine, monoketone, diketone, monoacid chloride, or diacid chloride. Or two or more,
A compound represented by the following general formula (1):
Or aminopyrene represented by the following general formula (2),
Or a compound represented by the following general formula (3),
A method for producing an organic charge transfer complex crystal, characterized in that
PDC誘導体は、PDCのカルボキシル基をモノエステル、ジエステル、モノアミド、ジアミド、モノニトリル、ジニトリル、モノアミン、ジアミン、モノケトン、ジケトン、モノ酸塩化物、ジ酸塩化物に置換した置換体のうちの1種または2種以上であり、
電子供与性分子が、下記一般式(1)で表される化合物、
または、下記一般式(2)で表されるアミノピレン、
または、下記一般式(3)で表される化合物、
であることを特徴とする有機電荷移動錯体結晶の製造方法。 A PDC solution in which 2-pyrone-4,6-dicarboxylic acid (PDC) or a PDC derivative is dissolved in an organic solvent, and an electron donating property in which an electron-donating molecule is dissolved in the organic solvent mixing a molecular solution was added dropwise into a vessel containing the poor solvent, the liquid you standing - a method for producing an organic charge transfer complex crystal by liquid interface crystal deposition method,
The PDC derivative is one of the substituents in which the carboxyl group of PDC is replaced with a monoester, diester, monoamide, diamide, mononitrile, dinitrile, monoamine, diamine, monoketone, diketone, monoacid chloride, or diacid chloride. Or two or more,
A compound represented by the following general formula (1):
Or aminopyrene represented by the following general formula (2),
Or a compound represented by the following general formula (3),
A method for producing an organic charge transfer complex crystal, characterized in that
PDC誘導体は、PDCのカルボキシル基をモノエステル、ジエステル、モノアミド、ジアミド、モノニトリル、ジニトリル、モノアミン、ジアミン、モノケトン、ジケトン、モノ酸塩化物、ジ酸塩化物に置換した置換体のうちの1種または2種以上であり、
電子供与性分子が、下記一般式(1)で表される化合物、
または、下記一般式(2)で表されるアミノピレン、
または、下記一般式(3)で表される化合物、
であることを特徴とする有機電荷移動錯体結晶の製造方法。 A PDC solution in which 2-pyrone-4,6-dicarboxylic acid (PDC) or a PDC derivative is dissolved in an organic solvent, and an electron donating property in which an electron-donating molecule is dissolved in the organic solvent mixing a molecular solution, a manufacturing method of an organic charge transfer complex crystal by reprecipitation you injected into a vessel containing the poor solvent,
The PDC derivative is one of the substituents in which the carboxyl group of PDC is replaced with a monoester, diester, monoamide, diamide, mononitrile, dinitrile, monoamine, diamine, monoketone, diketone, monoacid chloride, or diacid chloride. Or two or more,
A compound represented by the following general formula (1):
Or aminopyrene represented by the following general formula (2),
Or a compound represented by the following general formula (3),
A method for producing an organic charge transfer complex crystal, characterized in that
PDC誘導体は、PDCのカルボキシル基をモノエステル、ジエステル、モノアミド、ジアミド、モノニトリル、ジニトリル、モノアミン、ジアミン、モノケトン、ジケトン、モノ酸塩化物、ジ酸塩化物に置換した置換体のうちの1種または2種以上であり、
電子供与性分子が、下記一般式(1)で表される化合物、
または、下記一般式(2)で表されるアミノピレン、
または、下記一般式(3)で表される化合物、
であることを特徴とする有機電荷移動錯体結晶の製造方法。 A solution obtained by dissolving a supporting electrolyte containing 2-pyrone-4,6-dicarboxylic acid (PDC) or a PDC derivative and an electron-donating molecule in an organic solvent is an electrolytic cell. It was added to a manufacturing method of an organic charge transfer complex crystal according to that conductive solution to electrolysis,
The PDC derivative is one of the substituents in which the carboxyl group of PDC is replaced with a monoester, diester, monoamide, diamide, mononitrile, dinitrile, monoamine, diamine, monoketone, diketone, monoacid chloride, or diacid chloride. Or two or more,
A compound represented by the following general formula (1):
Or aminopyrene represented by the following general formula (2),
Or a compound represented by the following general formula (3),
A method for producing an organic charge transfer complex crystal, characterized in that
A solution obtained by dissolving a supporting electrolyte containing PDC or a PDC derivative and an electron-donating molecule in an organic solvent was added to the electrolytic cell, and the electrolytic cell was sealed in a nitrogen gas atmosphere, manufacturing method of organic charge-transfer complex crystal thin film according to claim 8, wherein flowing a constant current of 200 .mu.A 2 to 10 hours.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014052727A JP6300311B2 (en) | 2013-03-14 | 2014-03-14 | Novel organic charge transfer complex and method for producing the same |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013051277 | 2013-03-14 | ||
JP2013051277 | 2013-03-14 | ||
JP2014052727A JP6300311B2 (en) | 2013-03-14 | 2014-03-14 | Novel organic charge transfer complex and method for producing the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2014198716A JP2014198716A (en) | 2014-10-23 |
JP6300311B2 true JP6300311B2 (en) | 2018-03-28 |
Family
ID=51536976
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014052727A Active JP6300311B2 (en) | 2013-03-14 | 2014-03-14 | Novel organic charge transfer complex and method for producing the same |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6300311B2 (en) |
WO (1) | WO2014142329A1 (en) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0625150B2 (en) * | 1985-08-05 | 1994-04-06 | 利夫 向井 | Novel compound, charge transfer complex of the compound with an electron donor, and anion or anion radical salt of the compound |
JPS62222669A (en) * | 1986-03-25 | 1987-09-30 | Toshiba Corp | Organic thin-film element |
JP3104396B2 (en) * | 1992-05-18 | 2000-10-30 | 住友化学工業株式会社 | Resin composition for detecting electron-accepting substance and molded product thereof |
JPH1016402A (en) * | 1996-06-28 | 1998-01-20 | Fuji Photo Film Co Ltd | Heat-sensitive recording material |
JP4894673B2 (en) * | 2006-09-01 | 2012-03-14 | 株式会社豊田自動織機 | Large-scale purification method of 2-pyrone-4,6-dicarboxylic acid |
JP2011257568A (en) * | 2010-06-08 | 2011-12-22 | Sharp Corp | Toner, two-component developer and manufacturing method of toner |
JP5603701B2 (en) * | 2010-08-02 | 2014-10-08 | 株式会社J−ケミカル | Antibacterial composition and use thereof |
-
2014
- 2014-03-14 JP JP2014052727A patent/JP6300311B2/en active Active
- 2014-03-14 WO PCT/JP2014/057006 patent/WO2014142329A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
JP2014198716A (en) | 2014-10-23 |
WO2014142329A1 (en) | 2014-09-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gorduk et al. | Electrochemical fabrication and supercapacitor performances of metallo phthalocyanine/functionalized-multiwalled carbon nanotube/polyaniline modified hybrid electrode materials | |
AL-Refai et al. | Polythiophene and its derivatives–Based nanocomposites in electrochemical sensing: A mini review | |
Gorduk et al. | One‐step electrochemical preparation of ternary phthalocyanine/acid‐activated multiwalled carbon nanotube/polypyrrole‐based electrodes and their supercapacitor applications | |
Chen et al. | Room‐temperature synthesis of Cu2− xE (E= S, se) nanotubes with hierarchical architecture as high‐performance counter electrodes of quantum‐dot‐sensitized solar cells | |
Li et al. | Facile fabrication of uniform core− shell structured carbon nanotube− polyaniline nanocomposites | |
Valter et al. | Synthesis of multiwalled carbon nanotubes and poly (o-anisidine) nanocomposite material: fabrication and characterization of its Langmuir− Schaefer films | |
Das et al. | Progress and development in structural and optoelectronic tunability of supramolecular nonbonded fullerene assemblies | |
Yao et al. | Self-organized hole transport layers based on polythiophene diblock copolymers for inverted organic solar cells with high efficiency | |
Akiyama | Development of fullerene thin-film assemblies and fullerene-diamine adducts towards practical nanocarbon-based electronic materials | |
Man et al. | Use of a ruthenium-containing conjugated polymer as a photosensitizer in photovoltaic devices fabricated by a layer-by-layer deposition process | |
Zhang et al. | Wavy Two-Dimensional Conjugated Metal–Organic Framework with Metallic Charge Transport | |
Ko et al. | New fullerene-based polymers and their electrical memory characteristics | |
Sadegh et al. | A facile and green synthesis of superparamagnetic Fe3O4@ PANI nanocomposite with a core–shell structure to increase of triplet state population and efficiency of the solar cells | |
Mateos et al. | Comprehensive study of poly (2, 3, 5, 6-tetrafluoroaniline): from electrosynthesis to heterojunctions and ammonia sensing | |
Singh et al. | Delocalization of π electrons and trapping action of ZnO nanoparticles in PPY matrix for hybrid solar cell application | |
Hupfer et al. | Supramolecular reorientation during deposition onto metal surfaces of quasi-two-dimensional langmuir monolayers composed of bifunctional amphiphilic, twisted perylenes | |
US10121971B2 (en) | Cellulose-polymer composites for solar cells | |
JP6300311B2 (en) | Novel organic charge transfer complex and method for producing the same | |
Uceta et al. | P-Type Functionalized Carbon Nanohorns and Nanotubes in Perovskite Solar Cells | |
Yang et al. | Preparation, Characterization, and Photoelectrochemistry of Langmuir− Blodgett Films of the Endohedral Metallofullerene Dy@ C82 Mixed with Metallophthalocyanines | |
Liu et al. | Perovskite Solar Cells Based on Polymerized Chlorophyll Films as Environmentally Friendly Hole‐Transporting Layers | |
Chal et al. | Effect of molecular packing on modulation of electronic properties of organic donor–acceptor hybrid gels | |
Ganesan et al. | Low-cost tetra ethylene glycol derivatives in polymer blend electrolytes for dye-sensitized solar cells with high photovoltaic conversion efficiencies | |
Yang et al. | Synthesis and optical property of P3HT/carbon microsphere composite film | |
Hu et al. | Synthesis and characterization of PEDOT derivative with carboxyl group and its chemo sensing application as enhanced optical materials |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AA64 | Notification of invalidation of claim of internal priority (with term) |
Free format text: JAPANESE INTERMEDIATE CODE: A241764 Effective date: 20140401 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20140410 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20170215 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170315 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170522 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171031 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20171102 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171225 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180130 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180222 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6300311 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |