JP4894673B2 - Large-scale purification method of 2-pyrone-4,6-dicarboxylic acid - Google Patents

Large-scale purification method of 2-pyrone-4,6-dicarboxylic acid Download PDF

Info

Publication number
JP4894673B2
JP4894673B2 JP2007206947A JP2007206947A JP4894673B2 JP 4894673 B2 JP4894673 B2 JP 4894673B2 JP 2007206947 A JP2007206947 A JP 2007206947A JP 2007206947 A JP2007206947 A JP 2007206947A JP 4894673 B2 JP4894673 B2 JP 4894673B2
Authority
JP
Japan
Prior art keywords
pyrone
salt
dicarboxylic acid
purification method
pdc
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007206947A
Other languages
Japanese (ja)
Other versions
JP2008079603A (en
Inventor
浩平 間瀬
俊久 下
尚己 大原
義博 片山
淳孝 重原
裕輔 山本
仁俊 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Industries Corp
Original Assignee
Toyota Industries Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Industries Corp filed Critical Toyota Industries Corp
Priority to JP2007206947A priority Critical patent/JP4894673B2/en
Priority to CN200880102123A priority patent/CN101796194A/en
Priority to EP08710822A priority patent/EP2175033A4/en
Priority to PCT/JP2008/051890 priority patent/WO2009019900A1/en
Priority to US12/672,341 priority patent/US20110319640A1/en
Publication of JP2008079603A publication Critical patent/JP2008079603A/en
Application granted granted Critical
Publication of JP4894673B2 publication Critical patent/JP4894673B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、発酵生産によって得られる2-ピロン-4,6-ジカルボン酸の工業的精製法に関する。   The present invention relates to an industrial purification method for 2-pyrone-4,6-dicarboxylic acid obtained by fermentation production.

植物主要成分であるリグニンは、芳香族高分子化合物として植物細胞壁に普遍的に含まれているバイオマス資源である。しかし、リグニンを主成分とする植物由来の芳香族成分は、化学構造が多様な成分で構成されていることや複雑な高分子構造を持つために、有効な利用技術が開発されていない。これまで知られている利用技術としては、当該芳香族成分をアルカリ分解などの化学分解で生成する低分子芳香族分解物から、香料原料であるバニリンを分離製造する技術がある。しかし、現在のところ、化学分解で生成するバニリン以外の多量の低分子芳香族物質の有効な利用方法は知られていない。そのため製紙工程で大量に生成するリグニンは有効利用されるこくなく、重油の代替え品として燃焼されている。   Lignin, a major plant component, is a biomass resource that is universally contained in plant cell walls as an aromatic polymer compound. However, an effective utilization technique has not been developed for aromatic components derived from plants mainly composed of lignin because they are composed of components having various chemical structures and complex polymer structures. As a utilization technique known so far, there is a technique for separating and producing vanillin which is a perfume raw material from a low molecular weight aromatic decomposition product produced by chemical decomposition such as alkali decomposition of the aromatic component. However, at present, there is no known effective method for utilizing a large amount of low-molecular aromatic substances other than vanillin produced by chemical decomposition. For this reason, lignin produced in large quantities in the papermaking process is not effectively used and is burned as a substitute for heavy oil.

一方、本発明者らは、リグニン等の植物芳香族成分が、加水分解や酸化分解、可溶媒分解などの化学的分解法、超臨界水や超臨界有機溶媒による物理化学的分解法などにより、バニリン、シリンガアルデヒド、バニリン酸、シリンガ酸、プロトカテク酸等を含む低分子混合物に変換され、更に、これら5種類の化合物が、機能性プラスチック原料や化学製品の原料となり得る単一の中間物質2-ピロン-4,6-ジカルボン酸に変換されることを見出している。   On the other hand, the inventors of the present invention have used plant aromatic components such as lignin by hydrolysis, oxidative decomposition, solvolysis and other chemical decomposition methods, supercritical water and physicochemical decomposition methods using supercritical organic solvents, etc. A single intermediate that can be converted into a low-molecular-weight mixture containing vanillin, syringaldehyde, vanillic acid, syringacic acid, protocatechuic acid, etc., and these five compounds can be used as raw materials for functional plastic materials and chemical products 2 -Found to be converted to pyrone-4,6-dicarboxylic acid.

また、本発明者らは、2-ピロン-4,6-ジカルボン酸を発酵生産するための多段階反応プロセスを構成する4種類の酵素(ベンズアルデヒドデヒドロゲナーゼ、ディメチラーゼ、プロトカテク酸 4,5-ジオキシゲナーゼ、4-カルボキシ-2-ヒドロキシムコン酸-6-セミアルデヒドデヒドロゲナーゼ)をコードする遺伝子を保有する形質転換細胞を用いて、これら5種類の化合物から2-ピロン-4,6-ジカルボン酸を製造する方法を報告している(例えば、特許文献1参照)。   In addition, the present inventors also have four types of enzymes (benzaldehyde dehydrogenase, dimethylase, protocatechuate 4,5-dioxygenase) that constitute a multistage reaction process for producing 2-pyrone-4,6-dicarboxylic acid by fermentation. 2-pyrone-4,6-dicarboxylic acid is produced from these five compounds using transformed cells carrying a gene encoding 4-carboxy-2-hydroxymuconic acid-6-semialdehyde dehydrogenase) The method is reported (for example, refer patent document 1).

しかしながら、特許文献1では、2-ピロン-4,6-ジカルボン酸の精製法として活性炭処理が記載されているのみで、詳細については明らかにされていない。また、特許文献2は、α-ヒドロキシ-γ-カルボキシムコン酸-ε-セミアルデヒドの存在下に2-ピロン-4,6-ジカルボン酸を製造する方法を開示するが、精製法については全く言及されていない。   However, Patent Document 1 only describes activated carbon treatment as a purification method of 2-pyrone-4,6-dicarboxylic acid, and details are not disclosed. Patent Document 2 discloses a method for producing 2-pyrone-4,6-dicarboxylic acid in the presence of α-hydroxy-γ-carboxymuconic acid-ε-semialdehyde, but does not mention the purification method at all. It has not been.

特開2005−278549号公報JP 2005-278549 A 特開2000−32988号公報JP 2000-32988 A

従って、本発明は、機能性プラスチック原料や化学製品の原料として有用である、発酵生産によって得られる2-ピロン-4,6-ジカルボン酸の工業的精製法を提供することを目的とする。   Therefore, an object of the present invention is to provide an industrial purification method for 2-pyrone-4,6-dicarboxylic acid obtained by fermentation production, which is useful as a raw material for functional plastics and chemical products.

本発明者らは、斯かる現状に鑑み鋭意検討した結果、2-ピロン-4,6-ジカルボン酸を含む微生物発酵液に特定の塩を存在させることにより、対応する2-ピロン-4,6-ジカルボン酸塩を高純度かつ収率よく単離できることを見出し、本発明を完成させた。また、本発明者らは、2-ピロン-4,6-ジカルボン酸塩の形成させることなく、当該微生物発酵液を特定の有機溶媒で抽出することにより、2-ピロン-4,6-ジカルボン酸を高純度かつ収率よく単離できることを見出し、本発明を完成させた。   As a result of intensive studies in view of the present situation, the present inventors have found that a specific salt is present in a microbial fermentation broth containing 2-pyrone-4,6-dicarboxylic acid, thereby corresponding 2-pyrone-4,6. The inventors have found that dicarboxylates can be isolated with high purity and high yield, and have completed the present invention. Further, the present inventors extract 2-micron-4,6-dicarboxylic acid by extracting the microbial fermentation broth with a specific organic solvent without forming 2-pyrone-4,6-dicarboxylate. Was able to be isolated with high purity and high yield, and the present invention was completed.

すなわち、(1)本発明は、微生物により生産された2-ピロン-4,6-ジカルボン酸を含む発酵液に、一価、二価、三価及び四価から選ばれる陽イオンの塩を存在させることを特徴とする、2-ピロン-4,6-ジカルボン酸の精製法を提供する。
(2)本発明は、前記一価の陽イオンの塩が、塩化ナトリウム、塩化カリウム、塩化ルビジウム、塩化銀、臭化ナトリウム、硫酸ナトリウム、リン酸二ナトリウム又はリン酸水素二カリウムである、(1)記載の2-ピロン-4,6-ジカルボン酸の精製法を提供する。
(3)本発明は、前記二価の陽イオンの塩が、塩化マグネシウム、硫酸銅又はヘキサシアノ鉄(II)酸カリウムである、(1)記載の2-ピロン-4,6-ジカルボン酸の精製法を提供する。
(4)本発明は、前記三価の陽イオンの塩が、塩化鉄(III)又はヘキサシアノ鉄(III)酸カリウムである、(1)記載の2-ピロン-4,6-ジカルボン酸の精製法を提供する。
(5)本発明は、前記四価の陽イオンの塩が、スズ(IV)酸カリウムである、(1)記載の2-ピロン-4,6-ジカルボン酸の精製法を提供する。
(6)本発明は、前記塩の存在により析出する2-ピロン-4,6-ジカルボン酸塩を回収し、水に溶解し、次いで、酸性条件下、酢酸エチル、シクロペンタノン又はシクロヘキサノンで抽出する工程を含む、(1)〜(5)のいずれか1記載の精製法を提供する。
(7)本発明は、前記抽出工程の際に過剰量の強酸を添加する、(6)記載の精製法を提供する。
(8)本発明は、前記塩の存在により析出する2-ピロン-4,6-ジカルボン酸塩を回収し、水に溶解し、次いで当該溶液を陽イオン交換樹脂で処理する工程を含む、(1)〜(7)のいずれか1記載の精製法を提供する。
(9)本発明は、前記塩を、前記発酵液中の2-ピロン-4,6-ジカルボン酸に対して、少なくとも2倍モル用いる(1)〜(8)のいずれか1記載の精製法を提供する。
That is, (1) the present invention has a cation salt selected from monovalent, divalent, trivalent and tetravalent in a fermentation broth containing 2-pyrone-4,6-dicarboxylic acid produced by a microorganism. A method for purifying 2-pyrone-4,6-dicarboxylic acid is provided.
(2) In the present invention, the salt of the monovalent cation is sodium chloride, potassium chloride, rubidium chloride, silver chloride, sodium bromide, sodium sulfate, disodium phosphate or dipotassium hydrogen phosphate. 1) A method for purifying 2-pyrone-4,6-dicarboxylic acid according to 1) is provided.
(3) The present invention provides the purification of 2-pyrone-4,6-dicarboxylic acid according to (1), wherein the salt of the divalent cation is magnesium chloride, copper sulfate or potassium hexacyanoferrate (II). Provide law.
(4) The present invention provides the purification of 2-pyrone-4,6-dicarboxylic acid according to (1), wherein the salt of the trivalent cation is iron (III) chloride or potassium hexacyanoferrate (III). Provide law.
(5) The present invention provides the method for purifying 2-pyrone-4,6-dicarboxylic acid according to (1), wherein the salt of the tetravalent cation is potassium tin (IV).
(6) The present invention collects 2-pyrone-4,6-dicarboxylate precipitated in the presence of the salt, dissolves in water, and then extracts with ethyl acetate, cyclopentanone or cyclohexanone under acidic conditions The purification method according to any one of (1) to (5), comprising the step of:
(7) The present invention provides the purification method according to (6), wherein an excessive amount of strong acid is added during the extraction step.
(8) The present invention includes a step of recovering 2-pyrone-4,6-dicarboxylate precipitated in the presence of the salt, dissolving it in water, and then treating the solution with a cation exchange resin. The purification method according to any one of 1) to (7) is provided.
(9) The purification method according to any one of (1) to (8), wherein the salt is used in an amount of at least 2 moles with respect to 2-pyrone-4,6-dicarboxylic acid in the fermentation broth. I will provide a.

(10)本発明は、微生物により生産された2-ピロン-4,6-ジカルボン酸を含む発酵液から、2-ピロン-4,6-ジカルボン酸塩を形成させることなく、2-ピロン-4,6-ジカルボン酸を抽出することを特徴とする、2-ピロン-4,6-ジカルボン酸の精製法を提供する。
(11)本発明は、酢酸エチル、シクロペンタノン又はシクロヘキサノンで抽出する、(10)記載の精製法を提供する。
(12)本発明は、酢酸エチルで抽出する、(10)又は(11)記載の精製法を提供する。
(13)本発明は、前記抽出工程の際に過剰量の強酸を添加する、(10)〜(12)のいずれか1記載の精製法を提供する。
(14)本発明は、前記強酸を、前記発酵液に対して、少なくとも3重量%用いる、(13)記載の精製法を提供する。
(10) The present invention provides 2-pyrone-4 without forming 2-pyrone-4,6-dicarboxylate from a fermentation broth containing 2-pyrone-4,6-dicarboxylic acid produced by a microorganism. The present invention provides a method for purifying 2-pyrone-4,6-dicarboxylic acid, characterized by extracting 2,6-dicarboxylic acid.
(11) The present invention provides the purification method according to (10), wherein extraction is performed with ethyl acetate, cyclopentanone, or cyclohexanone.
(12) The present invention provides the purification method according to (10) or (11), which is extracted with ethyl acetate.
(13) The present invention provides the purification method according to any one of (10) to (12), wherein an excessive amount of strong acid is added during the extraction step.
(14) The present invention provides the purification method according to (13), wherein the strong acid is used at least 3% by weight based on the fermentation broth.

本発明によれば、2-ピロン-4,6-ジカルボン酸を含む微生物発酵液から、2-ピロン-4,6-ジカルボン酸を高純度で収率良く、かつ安価に大量精製することができる。   According to the present invention, it is possible to purify 2-pyrone-4,6-dicarboxylic acid in a large amount at a high purity, in a high yield and at low cost from a microbial fermentation broth containing 2-pyrone-4,6-dicarboxylic acid. .

本発明のPDCの精製法は、微生物により生産された2-ピロン-4,6-ジカルボン酸(以下、「PDC」と称する)を含む発酵液に一価〜四価の陽イオンの塩を存在させてPDCを塩として、又は当該発酵液においてPDC塩の形成を妨げて、PDCを遊離体として得ることを特徴とする。   In the method for purifying PDC of the present invention, a monovalent to tetravalent cation salt is present in a fermentation broth containing 2-pyrone-4,6-dicarboxylic acid (hereinafter referred to as “PDC”) produced by a microorganism. It is characterized in that PDC is used as a salt or PDC salt is obtained in the fermentation broth by preventing PDC salt formation.

微生物により生産されたPDCを含む発酵液は、PDCを単一化合物として得ることを目的として、バニリン、シリンガアルデヒド、バニリン酸、シリンガ酸、プロトカテク酸等の植物由来の低分子化合物又はこれらの混合物の存在下に、PDCを多段階又は一段階で発酵生産するための好適な酵素をコードする遺伝子を含む形質転換細胞を培養して得られたものであれば特に制限されない。このような発酵液としては、例えば特開2005-278549号公報に記載の方法によって得られるものが挙げられる。同公報に記載の方法では、通常、その発酵液1L中にPDCが10〜20 g産生される。下記のPDCの精製前に、当該発酵液から、遠心分離、活性炭吸着等により菌体を除去しておくことが好ましい。活性炭吸着は、当該発酵液に活性炭を添加し、混合・攪拌してから活性炭を濾過等により除去するか、又は当該発酵液を活性炭充填層中に通すことにより行うのが好ましい。   Fermentation liquid containing PDC produced by microorganisms is a plant-derived low molecular weight compound such as vanillin, syringaldehyde, vanillic acid, syringic acid, protocatechuic acid or a mixture thereof for the purpose of obtaining PDC as a single compound. In the presence of, there is no particular limitation as long as it is obtained by culturing a transformed cell containing a gene encoding a suitable enzyme for fermentative production of PDC in multiple stages or in one stage. Examples of such a fermentation broth include those obtained by the method described in JP-A-2005-278549. In the method described in the publication, 10 to 20 g of PDC is usually produced in 1 L of the fermentation broth. Prior to the purification of the following PDC, it is preferable to remove cells from the fermentation broth by centrifugation, activated carbon adsorption, or the like. The activated carbon adsorption is preferably performed by adding activated carbon to the fermentation broth, mixing and stirring, and then removing the activated carbon by filtration or passing the fermentation broth through an activated carbon packed bed.

<PDC塩を形成させる方法>
PDCを含む微生物発酵液に、一価〜四価の陽イオンの塩を存在させて、PDCの対応する塩を析出させる。
一価の陽イオンとしては、例えば、ナトリウム、カリウム、ルビジウム、銀、リチウム、セシウム等の金属イオン;アンモニムイオン;ヘキサメチレンジアミン、エチレンジアミン、ジエタノールアミン、トリエタノールアミン等のアルキルアンモニムイオンなどが挙げられ、これらの中で、ナトリウムイオン、カリウムイオン、ルビジウムイオン又は銀イオンが好ましい。
一価の陽イオンの塩としては、当該陽イオンの塩酸塩、硝酸塩、硫酸塩、リン酸塩等の無機酸塩;酢酸、シュウ酸、クエン酸、酒石酸、フマル酸、マレイン酸、リンゴ酸、シアン酸、チオシアン酸等の有機酸塩などが挙げられる。具体的には、塩化カリウム、塩化ルビジウム、塩化銀、臭化ナトリウム、硫酸ナトリウム、リン酸二ナトリウム、又はリン酸水素二カリウムが挙げられ、塩化ナトリウム、塩化カリウム、塩化ルビジウム、塩化銀又は臭化ナトリウムが好ましい。
<Method of forming PDC salt>
A monovalent to tetravalent cation salt is present in a microbial fermentation broth containing PDC to precipitate the corresponding salt of PDC.
Examples of monovalent cations include metal ions such as sodium, potassium, rubidium, silver, lithium, and cesium; ammonium ions; alkylammonium ions such as hexamethylenediamine, ethylenediamine, diethanolamine, and triethanolamine. Among these, sodium ion, potassium ion, rubidium ion or silver ion is preferable.
Monovalent cation salts include inorganic acid salts such as hydrochlorides, nitrates, sulfates and phosphates of the cations; acetic acid, oxalic acid, citric acid, tartaric acid, fumaric acid, maleic acid, malic acid, Examples thereof include organic acid salts such as cyanic acid and thiocyanic acid. Specific examples include potassium chloride, rubidium chloride, silver chloride, sodium bromide, sodium sulfate, disodium phosphate, or dipotassium hydrogen phosphate. Sodium chloride, potassium chloride, rubidium chloride, silver chloride or bromide Sodium is preferred.

二価の陽イオンとしては、例えば、マグネシウム、カルシウム、鉄(II)、銅(II)、亜鉛、バリウム、コバルト、ニッケル、マンガン、クロム(II)等の金属イオンが挙げられる。二価の陽イオンの塩は、上記と同様である。二価の陽イオンの塩としては、具体的には、塩化マグネシウム、硫酸銅又はヘキサシアノ鉄(II)酸カリウムが挙げられる。
三価の陽イオンとしては、例えば、鉄(III)、アルミニウム、ガリウム等のイオンが挙げられ、三価の陽イオンの塩の具体例は、塩化鉄(III)又はヘキサシアノ鉄(III)酸カリウムである。
四価の陽イオンとしては、スズ(IV)等のイオンが挙げられ、四価の陽イオンの塩の具体例は、スズ(IV)酸カリウムである。
これらの一価〜四価の陽イオンの塩は、二種以上を混合して用いてもよい。
Examples of the divalent cation include metal ions such as magnesium, calcium, iron (II), copper (II), zinc, barium, cobalt, nickel, manganese, and chromium (II). The divalent cation salt is the same as described above. Specific examples of the divalent cation salt include magnesium chloride, copper sulfate, and potassium hexacyanoferrate (II).
Examples of the trivalent cation include iron (III), aluminum, gallium and the like, and specific examples of the salt of the trivalent cation include iron (III) chloride or potassium hexacyanoferrate (III). It is.
Tetravalent cations include ions such as tin (IV), and a specific example of a tetravalent cation salt is potassium tin (IV).
These monovalent to tetravalent cation salts may be used in combination of two or more.

上記の一価〜四価の陽イオンの他に、バナジルイオン(VO2+)、チタン酸(TiO2)イオン、シアンイオン、チオシアンイオン、チオカルボニルを含むイオン性化合物などを使用することもできる。 In addition to the above monovalent to tetravalent cations, ionic compounds including vanadyl ion (VO 2+ ), titanate (TiO 2 ) ion, cyan ion, thiocyan ion, and thiocarbonyl can also be used. .

PDCはその2及び4位にカルボン酸基を有するが、これらのカルボン酸基が上記塩との接触により単なるPDCのカルボン酸塩を形成するのではなく、図1に示すように、PDC 2分子間で水素結合を形成し、2つのカルボニル基が金属イオン(図1では、ナトリウムイオン)の周りに配位した八面体6配位構造をとる複塩を形成する。この様にカルボニル基を中心として形成される様々な複塩構造は、様々な文献(例えば、Acta. Cryst. (1992) C48, 460-465)に報告されている。図2には、PDCと一価の陽イオンとで形成される複塩の水溶解度を示す。図2から明らかなように、PDCと一価の陽イオンとで形成される複塩の中で、特に、PDCのナトリウム塩、カリウム塩、ルビジウム塩又は銀塩は、遊離のPDC、微生物培養培地成分、様々な植物から抽出した水溶性成分に比べて、水溶解度が非常に低いことが判明した(遊離のPDCの水溶解度:182 mM)。従って、特に、PDCの、ナトリウム塩、カリウム塩、ルビジウム塩又は銀塩は、PDCを培地成分や植物抽出水溶性成分の多くと容易に分離して塩析させることができ、PDCの単離に好適であることが判明した。   PDC has carboxylic acid groups at the 2 and 4 positions, but these carboxylic acid groups do not form mere PDC carboxylates upon contact with the above salts, but as shown in FIG. A hydrogen bond is formed between them to form a double salt having an octahedral 6-coordinate structure in which two carbonyl groups are coordinated around a metal ion (a sodium ion in FIG. 1). Various double salt structures formed around the carbonyl group are reported in various documents (for example, Acta. Cryst. (1992) C48, 460-465). FIG. 2 shows the aqueous solubility of a double salt formed by PDC and a monovalent cation. As apparent from FIG. 2, among the double salts formed with PDC and monovalent cations, in particular, the sodium salt, potassium salt, rubidium salt or silver salt of PDC is free PDC, microbial culture medium. It was found that the solubility in water was very low compared to the components, water-soluble components extracted from various plants (water solubility of free PDC: 182 mM). Therefore, in particular, the sodium salt, potassium salt, rubidium salt or silver salt of PDC can easily separate PDC from many medium components and plant-extracted water-soluble components for salting out. It has been found suitable.

上記塩は微生物発酵液中に存在するPDCに対して、大過剰量使用することが好ましく、例えば少なくとも2倍モル、特に2倍モル〜10倍モル使用することが好ましい。塩析効果を高めるために、一価〜四価の陽イオンの塩を存在させた発酵液を冷却するか又は濃縮してもよい。冷却する場合には、当該発酵液を0〜4℃程度に12〜24時間静置する。塩析されたPDC塩は、濾過により回収することができる。   The salt is preferably used in a large excess amount with respect to PDC present in the microbial fermentation broth, for example, preferably at least 2-fold mol, particularly 2-fold to 10-fold mol. In order to enhance the salting-out effect, the fermentation broth in which a monovalent to tetravalent cation salt is present may be cooled or concentrated. When cooling, the fermentation broth is allowed to stand at about 0 to 4 ° C. for 12 to 24 hours. The salted out PDC salt can be recovered by filtration.

上記のPDC塩は、以下の2種の異なった精製工程を更に実施することにより、更に純度の高い遊離のPDCとして得ることができる。   The above PDC salt can be obtained as free PDC with higher purity by further carrying out the following two different purification steps.

(1)上記のPDC塩を水、例えば純水に溶解し、酸性条件下(pH 1〜2程度)、有機溶媒で抽出し、PDC塩を遊離のPDCとして抽出することができる。抽出溶媒としては、例えば酢酸エチル、シクロヘキサノン、シクロペンタノン、ヘキサン、ヘプタン、トルエン、ベンゼン、ジエチルエーテル、テトラヒドロフラン、クロロホルム及びジクロロメタンが挙げられ、酢酸エチル、シクロヘキサノン又はシクロペンタノンが好ましく、沸点の低さから、特に酢酸エチルが好ましい。酸性条件とするには過剰量、好ましくは水層の3%以上、より好ましくは水層の3%〜7%の強酸水溶液を使用すればよい。強酸としては、塩酸、硫酸、リン酸、硝酸等が挙げられ、特に塩酸が好ましい。必要により得られた有機層を強酸水溶液で数回処理してもよい。得られたPDCは、必要に応じて再結晶を繰り返すことにより、更に純度を高めることができる。   (1) The PDC salt can be dissolved in water, for example, pure water, and extracted with an organic solvent under acidic conditions (about pH 1-2), and the PDC salt can be extracted as free PDC. Examples of the extraction solvent include ethyl acetate, cyclohexanone, cyclopentanone, hexane, heptane, toluene, benzene, diethyl ether, tetrahydrofuran, chloroform and dichloromethane. Ethyl acetate, cyclohexanone or cyclopentanone is preferable, and the boiling point is low. Therefore, ethyl acetate is particularly preferable. In order to make the acidic condition, an excessive amount of an aqueous strong acid solution, preferably 3% or more of the aqueous layer, more preferably 3% to 7% of the aqueous layer may be used. Examples of strong acids include hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid, and hydrochloric acid is particularly preferable. If necessary, the obtained organic layer may be treated with a strong acid aqueous solution several times. The purity of the obtained PDC can be further increased by repeating recrystallization as necessary.

(2)上記のPDC塩を水、例えば純水に溶解し、この溶液をH型陽イオン交換樹脂で処理することによっても、遊離のPDCを得ることができる。H型陽イオン交換樹脂としては、例えば、ゲル形ポリスチレン・スルホン酸形イオン交換樹脂である、イオン交換容量2.0 meq/ml程度のアンバーライト(Amberlite)(登録商標)IR120B、ダイヤイオン(DIAION)(登録商標)SK1B等が使用できる。   (2) Free PDC can also be obtained by dissolving the above PDC salt in water, for example, pure water, and treating this solution with an H-type cation exchange resin. As the H-type cation exchange resin, for example, Amberlite (registered trademark) IR120B having a ion exchange capacity of about 2.0 meq / ml, which is a gel type polystyrene / sulfonic acid type ion exchange resin, DIAION (DIAION) ( (Registered trademark) SK1B etc. can be used.

得られたPDCの溶媒濃縮物又はイオン交換樹脂の流出物の濃縮物から、再結晶によりPDCを結晶として得ることができる。必要に応じて再結晶を繰り返すことにより、更に結晶の純度を高めることができる。PDC塩を形成させる本精製法は、大容量の微生物発酵液の抽出操作を必要とせず、塩析により簡便にPDCを塩として精製でき、同時に、PDC塩よりも水溶解度の高い有機分子等を容易に除去することができる。   From the obtained solvent concentrate of PDC or the concentrate of the effluent of the ion exchange resin, PDC can be obtained as crystals by recrystallization. By repeating recrystallization as necessary, the purity of the crystal can be further increased. This purification method to form PDC salt does not require extraction of large-capacity microbial fermentation broth, and PDC can be easily purified as a salt by salting out.At the same time, organic molecules with higher water solubility than PDC salt can be obtained. It can be easily removed.

<PDC塩を形成させない方法>
PDCを含む微生物発酵液を、酸性条件下、有機溶媒で抽出することにより、PDCを遊離のPDCとして単離することができる。本発明で使用される有機溶媒は、例えば酢酸エチル、シクロヘキサノン、シクロペンタノン、ヘキサン、ヘプタン、トルエン、ベンゼン、ジエチルエーテル、テトラヒドロフラン、クロロホルム及びジクロロメタンが挙げられ、酢酸エチル、シクロペンタノン又はシクロヘキサノンが好ましく、沸点の低さから、酢酸エチルが特に好ましい。上記の有機溶媒による抽出の前に、PDC塩の抽出を防止するため、当該発酵液を強酸性にし、かつ抽出後の有機溶媒を強酸水溶液で洗浄することが好ましい。強酸としては、塩酸、硫酸、リン酸、硝酸等が使用でき、塩酸が特に好ましい。有機溶媒による抽出の前後で使用する強酸は併せて、微生物発酵液に対して、3〜7%であることが好ましく、特に3%〜5%であることが好ましい。
<Method not to form PDC salt>
By extracting a microbial fermentation broth containing PDC with an organic solvent under acidic conditions, PDC can be isolated as free PDC. Examples of the organic solvent used in the present invention include ethyl acetate, cyclohexanone, cyclopentanone, hexane, heptane, toluene, benzene, diethyl ether, tetrahydrofuran, chloroform and dichloromethane, and ethyl acetate, cyclopentanone or cyclohexanone is preferred. Of these, ethyl acetate is particularly preferred because of its low boiling point. In order to prevent extraction of the PDC salt before extraction with the organic solvent, it is preferable to make the fermentation solution strongly acidic and wash the organic solvent after extraction with a strong acid aqueous solution. As the strong acid, hydrochloric acid, sulfuric acid, phosphoric acid, nitric acid and the like can be used, and hydrochloric acid is particularly preferable. The strong acid used before and after extraction with the organic solvent is preferably 3 to 7%, particularly preferably 3% to 5%, based on the microbial fermentation broth.

上記発酵液中のタンパク質を除去するため、上記の抽出工程の前に、当該発酵液に、アセトン;メタノール、エタノール等のアルコール類などの比較的低沸点の極性溶媒を更に存在させてもよい。アルコール類を存在させる場合には、酸の添加は、アルコールの除去後が好ましい。   In order to remove the protein in the fermentation broth, a polar solvent having a relatively low boiling point such as acetone; alcohols such as methanol and ethanol may be further present in the fermentation broth before the extraction step. When alcohols are present, the acid is preferably added after the alcohol is removed.

常法により上記有機層を減圧濃縮し、濃縮乾固物を純水中で再結晶することによりPDCを結晶として得ることができる。このPDC結晶は、再結晶を繰り返すことにより、更に純度を高めることができる。   PDC can be obtained as a crystal by concentrating the organic layer under reduced pressure by a conventional method and recrystallizing the concentrated dried product in pure water. This PDC crystal can be further improved in purity by repeating recrystallization.

PDC塩の形成を含まない本精製法によれば、1回の抽出操作により、高いPDC純度(99.5%〜99.9%)でPDCが完全な遊離体として得られる。本精製法によって得られるPDCは、その塩を含まないために様々な溶媒に溶解しやすく、ポリマーや化学製品の合成材料等として広い用途が期待できる。   According to this purification method which does not involve the formation of PDC salt, PDC is obtained as a complete educt with high PDC purity (99.5% to 99.9%) by one extraction operation. PDC obtained by this purification method does not contain its salt, so it can be easily dissolved in various solvents, and can be expected to be widely used as a synthetic material for polymers and chemical products.

次に実施例を挙げて本発明を詳細に説明するが、本発明はこれら実施例に何ら限定されるものではない。   EXAMPLES Next, although an Example is given and this invention is demonstrated in detail, this invention is not limited to these Examples at all.

(材料)
PDCを含む微生物発酵液は、特開2005-278549号公報に記載の方法により取得した。
(material)
A microbial fermentation broth containing PDC was obtained by the method described in JP-A-2005-278549.

実施例1 PDCナトリウム塩を形成させる精製法
PDCを含む微生物培養液1.5 Lを遠心分離(4000 rpm、1時間、4℃)し、菌体を除去した。得られた上清に塩化ナトリウム15 gを添加し、4℃で12時間放置し、PDCナトリウム塩を析出させ、濾過により回収し、粗PDCナトリウム塩を得た(22 g)。
次いで、この粗PDCナトリウム塩10 gを純水600 mlに溶解し、3N HClによりpH 1.5に調整し、酢酸エチル(100 ml x 3回)で抽出した。酢酸エチル層をpH 1.0の塩酸水100 mLで洗浄し、減圧濃縮し、4℃で結晶化を行った。結晶を濾集し純水に溶解し再結晶を行い、60℃で減圧乾燥し、5.7 gのPDCを得た(回収率70%)。純度は、HPLCにより決定したところ、98.5%であった。
HPLC分析条件:装置:Waters;流量:0.2 ml/分;inj.:50 μl;カラム:4.6φ×250 mm(センシュウ科学社製:ODS-1251-SS);移動相:水:アセトニトリル:酢酸=74:25:1;検出波長:294 nm。
Example 1 Purification Method to Form PDC Sodium Salt
The microorganism culture solution containing PDC (1.5 L) was centrifuged (4000 rpm, 1 hour, 4 ° C.) to remove the cells. To the obtained supernatant, 15 g of sodium chloride was added and left at 4 ° C. for 12 hours to precipitate a PDC sodium salt, which was collected by filtration to obtain a crude PDC sodium salt (22 g).
Next, 10 g of this crude PDC sodium salt was dissolved in 600 ml of pure water, adjusted to pH 1.5 with 3N HCl, and extracted with ethyl acetate (100 ml × 3 times). The ethyl acetate layer was washed with 100 mL of pH 1.0 hydrochloric acid, concentrated under reduced pressure, and crystallized at 4 ° C. The crystals were collected by filtration, dissolved in pure water, recrystallized and dried under reduced pressure at 60 ° C. to obtain 5.7 g of PDC (recovery rate 70%). The purity was 98.5% as determined by HPLC.
HPLC analysis conditions: apparatus: Waters; flow rate: 0.2 ml / min; inj .: 50 μl; column: 4.6φ × 250 mm (manufactured by Senshu Kagaku Co., Ltd .: ODS-1251-SS); mobile phase: water: acetonitrile: acetic acid = 74: 25: 1; Detection wavelength: 294 nm.

実施例2〜11
純水25 mlに、PDC(遊離体) 0.25g(1.4 mmol)を加え、PDC水溶液(0.054 mol/L)を得た。次いで、このPDC水溶液に、下記表1に挙げた金属塩を、表1に記載の量で添加した。金属塩の種類によっては、添加後、直ちに析出するもの、加熱後冷却して析出するもの、水を濃縮後に析出するものがあった。析出物(又は沈殿物)を濾過後、60℃で一晩乾燥し、析出物の重量より、報告されている塩化ナトリウムによる析出物の組成(Na2PDC2H2O)を基準に、PDC析出率(回収率)を算出した。結果を表1に示す。
Examples 2-11
To 25 ml of pure water, 0.25 g (1.4 mmol) of PDC (free form) was added to obtain a PDC aqueous solution (0.054 mol / L). Next, the metal salts listed in Table 1 below were added to the PDC aqueous solution in the amounts shown in Table 1. Depending on the type of metal salt, some precipitated immediately after addition, some precipitated after heating, and some precipitated after concentration of water. The precipitate (or precipitate) is filtered, dried at 60 ° C overnight, and the weight of the precipitate determines the PDC based on the reported composition of sodium chloride (Na 2 PDC 2 H 2 O). The precipitation rate (recovery rate) was calculated. The results are shown in Table 1.

Figure 0004894673
Figure 0004894673

実施例12 PDCナトリウム塩を形成させる精製法
実施例1と同様にして得た粗PDCナトリウム塩10 gを純水600 mLに溶解し、これを、イオン交換容量2.2 meq/mlのH型陽イオン交換樹脂(アンバーライト)100 gから作製したカラム(40 mmφ)に通した。純水で洗浄し、pH 1の塩酸で展開して流出分画を採取し、減圧濃縮し、4℃で結晶化を行った。結晶を濾集し純水に溶解し再結晶を行い、60℃で減圧乾燥し、7.2 gのPDCを得た(回収率88%、純度98.5%)。
Example 12 Purification Method for Forming PDC Sodium Salt 10 g of crude PDC sodium salt obtained in the same manner as in Example 1 was dissolved in 600 mL of pure water, and this was converted into an H-type cation having an ion exchange capacity of 2.2 meq / ml. It was passed through a column (40 mmφ) made from 100 g of exchange resin (Amberlite). The extract was washed with pure water, developed with hydrochloric acid having a pH of 1, and an effluent fraction was collected, concentrated under reduced pressure, and crystallized at 4 ° C. The crystals were collected by filtration, dissolved in pure water, recrystallized and dried under reduced pressure at 60 ° C. to obtain 7.2 g of PDC (recovery rate 88%, purity 98.5%).

実施例13 PDCナトリウム塩を形成させない方法
PDC原液(微生物培養後の濾液)1.5 Lにアセトン1.5 L及び濃塩酸45 mlを加えて攪拌・混合した。ここに、活性炭(037-02115、和光純薬工業株式会社)20 gを加えて15分間攪拌した後、#131濾紙上にセライト(08003-02、セライト503、関東化学株式会社)を敷き詰め、吸引濾過を行い、活性炭を除去した。この濾液からアセトンを減圧溜去し、溶液量を1.5 Lまで濃縮した。濃縮液に濃塩酸18 mlを加え、酢酸エチル230 ml x 3回+150 ml x 2回の抽出を行った。酢酸エチル抽出液に無水硫酸マグネシウム36 gを加えて乾燥、吸引濾過し、減圧乾固した。得られた固体を3時間ほど減圧乾燥(55℃)した後、60℃にて15 mlの蒸留水に溶解し、濃塩酸2 mlを加えて冷蔵庫で放置して再結晶させた。固体を濾過して集め、減圧乾燥(55℃)し、約13.2 gのPDC(回収率68%、純度98.5%)を得た。
また、PDC原液の量をスケールアップ(PDC原液50 L)しても、同様の回収率が得られた。
Example 13 Method of not forming PDC sodium salt
1.5 L of acetone and 45 ml of concentrated hydrochloric acid were added to 1.5 L of PDC stock solution (filtrate after microbial culture) and stirred and mixed. After adding 20 g of activated carbon (037-02115, Wako Pure Chemical Industries, Ltd.) and stirring for 15 minutes, Celite (08003-02, Celite 503, Kanto Chemical Co., Inc.) was spread on # 131 filter paper and suctioned. Filtration was performed to remove activated carbon. Acetone was distilled off from the filtrate under reduced pressure, and the amount of the solution was concentrated to 1.5 L. Concentrated hydrochloric acid (18 ml) was added to the concentrated solution, and extraction was performed with ethyl acetate (230 ml x 3 times + 150 ml x 2 times). 36 g of anhydrous magnesium sulfate was added to the ethyl acetate extract, dried, suction filtered and evaporated to dryness. The obtained solid was dried under reduced pressure (55 ° C.) for about 3 hours, dissolved in 15 ml of distilled water at 60 ° C., added with 2 ml of concentrated hydrochloric acid, and left in a refrigerator for recrystallization. The solid was collected by filtration and dried under reduced pressure (55 ° C.) to obtain about 13.2 g of PDC (recovery: 68%, purity: 98.5%).
Moreover, even when the amount of the PDC stock solution was scaled up (PDC stock solution 50 L), a similar recovery rate was obtained.

図1は、PDC-Na+複塩の構造を示す図である。FIG. 1 is a diagram showing the structure of PDC-Na + double salt. 図2は、様々なPDC塩の水溶解度を示す図である。FIG. 2 is a diagram showing the water solubility of various PDC salts.

Claims (12)

微生物により生産された2-ピロン-4,6-ジカルボン酸を含む発酵液に、一価、二価、三価及び四価から選ばれる陽イオンの塩を存在させることを特徴とする、2-ピロン-4,6-ジカルボン酸の精製法であって、前記塩の存在により析出する2-ピロン-4,6-ジカルボン酸塩を回収し、水に溶解し、次いで、酸性条件下、酢酸エチル、シクロペンタノン又はシクロヘキサノンで抽出する工程を含む、精製法A cation salt selected from monovalent, divalent, trivalent and tetravalent is present in a fermentation broth containing 2-pyrone-4,6-dicarboxylic acid produced by a microorganism. A method for purifying pyrone-4,6-dicarboxylic acid , wherein 2-pyrone-4,6-dicarboxylate precipitated in the presence of the salt is recovered, dissolved in water, and then ethyl acetate under acidic conditions. , A purification method comprising a step of extracting with cyclopentanone or cyclohexanone . 前記一価の陽イオンの塩が、塩化ナトリウム、塩化カリウム、塩化ルビジウム、塩化銀、臭化ナトリウム、硫酸ナトリウム、リン酸二ナトリウム又はリン酸水素二カリウムである、請求項1記載の2-ピロン-4,6-ジカルボン酸の精製法。   The 2-pyrone according to claim 1, wherein the salt of the monovalent cation is sodium chloride, potassium chloride, rubidium chloride, silver chloride, sodium bromide, sodium sulfate, disodium phosphate or dipotassium hydrogen phosphate. -4,6-dicarboxylic acid purification method. 前記二価の陽イオンの塩が、塩化マグネシウム、硫酸銅又はヘキサシアノ鉄(II)酸カリウムである、請求項1記載の2-ピロン-4,6-ジカルボン酸の精製法。   The method for purifying 2-pyrone-4,6-dicarboxylic acid according to claim 1, wherein the salt of the divalent cation is magnesium chloride, copper sulfate or potassium hexacyanoferrate (II). 前記三価の陽イオンの塩が、塩化鉄(III)又はヘキサシアノ鉄(III)酸カリウムである、請求項1記載の2-ピロン-4,6-ジカルボン酸の精製法。   The method for purifying 2-pyrone-4,6-dicarboxylic acid according to claim 1, wherein the salt of the trivalent cation is iron (III) chloride or potassium hexacyanoferrate (III). 前記四価の陽イオンの塩が、スズ(IV)酸カリウムである、請求項1記載の2-ピロン-4,6-ジカルボン酸の精製法。   The method for purifying 2-pyrone-4,6-dicarboxylic acid according to claim 1, wherein the salt of the tetravalent cation is potassium tin (IV). 前記抽出工程の際に過剰量の強酸を添加する、請求項1〜5のいずれか1項記載の精製法。 The purification method according to any one of claims 1 to 5, wherein an excessive amount of strong acid is added during the extraction step. 前記塩の存在により析出する2-ピロン-4,6-ジカルボン酸塩を回収し、水に溶解し、次いで当該溶液を陽イオン交換樹脂で処理する工程を含む、請求項1〜のいずれか1項記載の精製法。 Recovered pyrone-4,6-dicarboxylate deposited by the presence of the salt was dissolved in water and then comprising the step of treating the solution with a cation exchange resin, claim 1-6 2. The purification method according to item 1. 前記塩を、前記発酵液中の2-ピロン-4,6-ジカルボン酸に対して、少なくとも2倍モル用いる、請求項1〜のいずれか1項記載の精製法。 The purification method according to any one of claims 1 to 7 , wherein the salt is used in an amount of at least 2 mol per mol of 2-pyrone-4,6-dicarboxylic acid in the fermentation broth. 微生物により生産された2-ピロン-4,6-ジカルボン酸を含む発酵液から、2-ピロン-4,6-ジカルボン酸塩を形成させることなく、2-ピロン-4,6-ジカルボン酸を酢酸エチル、シクロペンタノン又はシクロヘキサノンで抽出することを特徴とする、2-ピロン-4,6-ジカルボン酸の精製法。 2-pyrone-4,6-dicarboxylic acid is converted to acetic acid from the fermentation broth containing 2-pyrone-4,6-dicarboxylic acid produced by microorganisms without forming 2-pyrone-4,6-dicarboxylate. A method for purifying 2-pyrone-4,6-dicarboxylic acid, characterized by extracting with ethyl, cyclopentanone or cyclohexanone . 酢酸エチルで抽出する、請求項項記載の精製法。 The purification method according to claim 9 , wherein the extraction is performed with ethyl acetate. 前記抽出工程の際に過剰量の強酸を添加する、請求項9又は10記載の精製法。 The purification method according to claim 9 or 10 , wherein an excessive amount of strong acid is added during the extraction step. 前記強酸を、前記発酵液に対して、少なくとも3重量%用いる、請求項11記載の精製法。 The purification method according to claim 11 , wherein the strong acid is used in an amount of at least 3% by weight based on the fermentation broth.
JP2007206947A 2006-09-01 2007-08-08 Large-scale purification method of 2-pyrone-4,6-dicarboxylic acid Expired - Fee Related JP4894673B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007206947A JP4894673B2 (en) 2006-09-01 2007-08-08 Large-scale purification method of 2-pyrone-4,6-dicarboxylic acid
CN200880102123A CN101796194A (en) 2007-08-08 2008-01-30 Large-scale purification method for 2-pyrone-4,6-dicarboxylic acid
EP08710822A EP2175033A4 (en) 2007-08-08 2008-01-30 Large-scale purification method for 2-pyrone-4,6-dicarboxylic acid
PCT/JP2008/051890 WO2009019900A1 (en) 2007-08-08 2008-01-30 Large-scale purification method for 2-pyrone-4,6-dicarboxylic acid
US12/672,341 US20110319640A1 (en) 2007-08-08 2008-01-30 Large-scale purification of 2-pyrone-4,6-dicarboxylic acid

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2006237660 2006-09-01
JP2006237660 2006-09-01
JP2007206947A JP4894673B2 (en) 2006-09-01 2007-08-08 Large-scale purification method of 2-pyrone-4,6-dicarboxylic acid

Publications (2)

Publication Number Publication Date
JP2008079603A JP2008079603A (en) 2008-04-10
JP4894673B2 true JP4894673B2 (en) 2012-03-14

Family

ID=39351079

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007206947A Expired - Fee Related JP4894673B2 (en) 2006-09-01 2007-08-08 Large-scale purification method of 2-pyrone-4,6-dicarboxylic acid

Country Status (1)

Country Link
JP (1) JP4894673B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009151146A1 (en) * 2008-06-12 2009-12-17 株式会社豊田自動織機 Antibacterial agent and bactericide
JP6300056B2 (en) * 2013-03-05 2018-03-28 国立研究開発法人森林研究・整備機構 Radiocesium treatment method
WO2014142329A1 (en) * 2013-03-14 2014-09-18 学校法人法政大学 Novel organic charge transfer complex and manufacturing method therefor
KR102267703B1 (en) * 2019-09-03 2021-06-21 한국화학연구원 Purification of 2-pyrone-4,6-dicarboxylic acid
JP7392928B2 (en) 2020-03-13 2023-12-06 国立研究開発法人森林研究・整備機構 Method for producing 2-pyrone-4,6-dicarboxylic acid

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3850557B2 (en) * 1998-07-17 2006-11-29 株式会社コスモ総合研究所 Novel gene and transformed cell carrying the gene
JP4658244B2 (en) * 2004-03-30 2011-03-23 義博 片山 Gene for producing 2-pyrone-4,6-dicarboxylic acid by fermentation, plasmid containing said gene, transformant containing said plasmid, and method for producing 2-pyrone-4,6-dicarboxylic acid

Also Published As

Publication number Publication date
JP2008079603A (en) 2008-04-10

Similar Documents

Publication Publication Date Title
Joglekar et al. Comparative assessment of downstream processing options for lactic acid
KR101543485B1 (en) Method for purifying an alcohol from a fermentation broth
US8957249B2 (en) Process for removing, isolating and purifying dicarboxylic acids
US6284904B1 (en) Purification of organic acids using anion exchange chromatography
JP4894673B2 (en) Large-scale purification method of 2-pyrone-4,6-dicarboxylic acid
WO2012051774A1 (en) Process for salting out and extracting organic acid from fermentation broth
WO2009019900A1 (en) Large-scale purification method for 2-pyrone-4,6-dicarboxylic acid
KR101294336B1 (en) Methods for Purifying Lactic Acid
CN101891591A (en) Method for separating and extracting 1,3-propylene glycol from fermentation liquor
JP5052234B2 (en) Method for producing succinic acid
CN107250093B (en) Method for producing succinic acid from fermentation broth using nanofiltration purification of recovered mother liquor
US20020153261A1 (en) Method for producing basic amino acid solution
CN103861650A (en) Method for recovering cobalt manganese catalyst from terephthalic acid reaction mother solution
CA3024780C (en) Method for separating biomass from solid fermentation product
JP4933743B2 (en) Method for producing mandelic acids
CN100509757C (en) Purification method of *N-L-arginine
CA1274250A (en) Purification and recovery of phenylalanine with calcium salts
JPH0739385A (en) Production of l-3,4-dihydroxyphenylalanine
CN102816048A (en) Method for extracting and separating 1,3-propanediol from fermentation liquid
KR20180014056A (en) Separation of organic acids from mixtures containing ammonium salts of organic acids
CN103668312B (en) A kind of maleic acid cis-trans isomerization prepares the electrochemical process of fumaric acid
CN101081810A (en) Purification method of propenoic acid produced by biology catalysis
JP2005194211A (en) Method for purifying long-chain dibasic acid
JP4484027B2 (en) Optically active 2-alkyl-D-cysteine amide or a salt thereof, and a process for producing these compounds.
KR102419608B1 (en) Method for preparation of high concentration 3-hydroxypropionic acid aqueous solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110927

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111129

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111212

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150106

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees