JP6296017B2 - Gravity breakwater - Google Patents

Gravity breakwater Download PDF

Info

Publication number
JP6296017B2
JP6296017B2 JP2015153019A JP2015153019A JP6296017B2 JP 6296017 B2 JP6296017 B2 JP 6296017B2 JP 2015153019 A JP2015153019 A JP 2015153019A JP 2015153019 A JP2015153019 A JP 2015153019A JP 6296017 B2 JP6296017 B2 JP 6296017B2
Authority
JP
Japan
Prior art keywords
layer
stone
reinforced soil
rubble mound
breakwater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015153019A
Other languages
Japanese (ja)
Other versions
JP2017031678A (en
Inventor
本田 秀樹
秀樹 本田
進吾 粟津
進吾 粟津
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2015153019A priority Critical patent/JP6296017B2/en
Publication of JP2017031678A publication Critical patent/JP2017031678A/en
Application granted granted Critical
Publication of JP6296017B2 publication Critical patent/JP6296017B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/11Hard structures, e.g. dams, dykes or breakwaters

Description

本発明は、ケーソン式混成堤などのような重力式防波堤に関するものである。   The present invention relates to a gravity type breakwater such as a caisson type mixed levee.

従来、ケーソンなどで構成される堤体の背面側に補強用支持部(滑動抵抗体)を設置する重力式防波堤において、補強用支持部を石材で構成したものが提案されており、波力に対する滑動抵抗力の増大効果が解析・実験により示されている(非特許文献1,2)。また、石材の代わりにセメントによる固化処理土を設置したもの(非特許文献3)、鋼管などの支持構造体を地盤に鉛直に埋め込んだ構造のもの(特許文献1)なども提案されており、それぞれ補強効果が検証されている。   Conventionally, a gravitational breakwater in which a reinforcing support (sliding resistor) is installed on the back side of a dam body made of caisson has been proposed in which the reinforcing support is made of stone. The effect of increasing the sliding resistance has been shown by analysis and experiment (Non-Patent Documents 1 and 2). In addition, a structure in which solidified soil with cement is installed instead of stone (Non-Patent Document 3), a structure in which a support structure such as a steel pipe is vertically embedded in the ground (Patent Document 1), and the like have been proposed. Reinforcing effect has been verified.

特開2014−101663号公報JP 2014-101663 A

国土交通省港湾局監修、港湾の施設の技術上の基準・同解説、下巻、社団法人日本港湾協会、平成19年、p.838Supervised by the Ministry of Land, Infrastructure, Transport and Tourism Port Authority, Technical Standards and Explanations of Port Facilities, Volume 2, Japan Port Association, 2007, p.838 菊池喜昭、外2名、「ケーソンの安定性に及ぼす裏込めの効果」、港湾技術研究所報告、運輸省港湾技術研究所、1998年6月、第37巻、第2号、p.29−58Yoshiaki Kikuchi and two others, "Effect of backfilling on the stability of caisson", Report of Port Technology Research Institute, Port Technology Research Institute, Ministry of Transport, June 1998, Vol. 37, No. 2, p.29- 58 新舎博、外2名、「固化処理土を裏込めに利用したケーソン式混成堤の水平抵抗力に関する遠心模型実験」、土木工学会論文集C(地圏工学)、2015年、Vol.71、No.2,p.69−80Shinsha Hiroshi, 2 others, "Centrifuge model experiment on horizontal resistance of caisson type hybrid dike using solidified soil as backfill", Civil Engineering Society Proceedings C (Geosphere Engineering), 2015, Vol.71 , No.2, p.69-80

しかし、以上のような従来技術のうち、補強用支持部を石材で構成した重力式防波堤は、石材の質量・内部摩擦角が決まっているため、得られる滑動抵抗力は補強用支持部の設置高さによって上限が決まってしまう。また、津波などのように、防波堤天端を越える流れが作用した際に補強用支持部の表層部に設置した被覆ブロックが剥がれてしまった場合、石材が流されやすい(洗掘が起こりやすい)という問題がある。   However, among the conventional technologies described above, the gravitational breakwater with the support part made of stone made of stone has a fixed mass and internal friction angle, so the resulting sliding resistance is determined by the installation of the support part for reinforcement. The upper limit is determined by the height. Also, if the covering block installed on the surface of the reinforcing support part peels off when a flow over the top of the breakwater acts, such as a tsunami, stone is likely to be washed away (scouring is likely to occur) There is a problem.

また、補強用支持部を固化処理土で構成した重力式防波堤は、固化処理土が水を通しにくいため、台風時の波浪や津波などが作用した時に、堤体の基礎である捨石マウンド内を流れる水流が補強用支持部で遮られてしまい、堤体に作用する揚圧力(堤体底面に上向きに作用する力)が増大して、堤体の安定性が低下してしまう。
また、鋼管などの支持構造体を地盤に鉛直に埋め込んだ構造の重力式防波堤の場合も、捨石マウンド内を流れる水流が支持構造体で遮られるため、堤体に作用する揚圧力が増大する問題があり、さらに、石材を設置する場合と比較して材料コストが高くなる問題もある。
In addition, gravity type breakwaters that consist of a solid support soil for the reinforcement support part are difficult to pass through the water, so when waves or tsunamis occur during a typhoon, the gravel breaker mound, which is the foundation of the levee body, is inside. The flowing water flow is blocked by the reinforcing support, and the lifting pressure (force acting upward on the bottom surface of the dam body) acting on the levee body increases and the stability of the levee body decreases.
In addition, in the case of a gravity breakwater with a structure in which a support structure such as a steel pipe is vertically embedded in the ground, the water flow that flows in the rubble mound is blocked by the support structure, which increases the lifting pressure acting on the dam body. In addition, there is a problem that the material cost is higher than the case of installing stone.

したがって本発明の目的は、以上のような従来技術の課題を解決し、津波などの大きなエネルギーをもつ波に対する滑動抵抗が高く、且つ堤体に作用する揚圧力が抑えられることで堤体の安定性が高く、しかも低コストに造成することができる重力式防波堤を提供することにある。   Therefore, the object of the present invention is to solve the problems of the prior art as described above, to have high sliding resistance against waves with large energy such as tsunami, and to suppress the lifting pressure acting on the levee body, thereby stabilizing the dam body. The object of the present invention is to provide a gravity type breakwater that is highly reliable and can be constructed at low cost.

上記課題を解決するための本発明の要旨は以下のとおりである。
[1]水底に構築された捨石マウンド(1)と、該捨石マウンド(1)上に設置された堤体(2)と、該堤体(2)の背面側に設けられる補強用支持部(3)を備えた重力式防波堤であって、補強用支持部(3)は、水中における単位体積質量が10kN/m以上で且つ28日養生後の粘着力が10kN/m以上の補強土で構成され、堤体(2)の背面と捨石マウンド(1)に接するようにして設けられる補強土層(4)と、該補強土層(4)の背面と捨石マウンド(1)に接するようにして設けられる石材層(5)を備えることを特徴とする重力式防波堤。
The gist of the present invention for solving the above problems is as follows.
[1] A rubble mound (1) constructed on the bottom of the water, a dam body (2) installed on the rubble mound (1), and a reinforcing support provided on the back side of the dam body (2) ( 3) Gravity type breakwater provided with a reinforcing support (3) having a unit volume mass in water of 10 kN / m 3 or more and an adhesive strength after curing for 28 days of 10 kN / m 2 or more. A reinforced soil layer (4) provided so as to be in contact with the back surface of the dam body (2) and the rubble mound (1), and a back surface of the reinforced soil layer (4) and the rubble mound (1). Gravity type breakwater characterized by comprising a stone layer (5) provided as described above.

[2]上記[1]の重力式防波堤において、補強土層(4)を構成する補強土は、浚渫土又は/及び土砂に水和反応を生じさせる改質材を混合したものであることを特徴とする重力式防波堤。
[3]上記[1]又は[2]の重力式防波堤において、捨石マウンド(1)上での補強土層(4)の高さは、堤体(2)の高さの1/3以上であることを特徴とする重力式防波堤。
[4]上記[1]〜[3]のいずれかの重力式防波堤において、捨石マウンド(1)の天端面に接する補強土層(4)の下端幅が2m以上であることを特徴とする重力式防波堤。
[5]上記[1]〜[4]のいずれかの重力式防波堤において、補強用支持部(3)の上面が被覆ブロック(6)で被覆されることを特徴とする重力式防波堤。
[2] In the gravity breakwater of [1] above, the reinforced soil constituting the reinforced soil layer (4) is a mixture of modifiers that cause a hydration reaction in dredged soil and / or earth and sand. Gravity type breakwater.
[3] In the gravity breakwater of [1] or [2] above, the height of the reinforced soil layer (4) on the rubble mound (1) is 1/3 or more of the height of the dam body (2) A gravity-type breakwater characterized by being.
[4] Gravity characterized in that in the gravity type breakwater of any one of [1] to [3], the bottom width of the reinforced soil layer (4) in contact with the top end surface of the rubble mound (1) is 2 m or more. Formula breakwater.
[5] The gravitational breakwater according to any one of [1] to [4], wherein the upper surface of the reinforcing support (3) is covered with a covering block (6).

[6]上記[1]〜[5]のいずれかの重力式防波堤の造成方法であって、水底の地盤に構築された捨石マウンド(1)の上に堤体(2)を設置した後、堤体(2)の背面側において、堤体(2)から離れた位置に石材を積み上げて石材層(5)を形成し、次いで、石材層(5)と堤体(2)との間に補強土を投入・敷設して補強土層(4)を形成することにより、補強土層(4)と石材層(5)を備えた補強用支持部(3)を構築することを特徴とする重力式防波堤の造成方法。 [6] A method for constructing a gravity breakwater according to any one of the above [1] to [5], wherein the levee body (2) is installed on the rubble mound (1) constructed on the ground of the bottom of the water, On the back side of the levee body (2), stones are stacked at a position away from the dam body (2) to form a stone layer (5), and then between the stone layer (5) and the dam body (2) The reinforcing support (3) including the reinforcing soil layer (4) and the stone layer (5) is constructed by charging and laying the reinforcing soil to form the reinforcing soil layer (4). How to create a gravity breakwater.

本発明の重力式防波堤は、捨石マウンド(1)内を流れる水流がそのまま石材層(5)を通過して防波堤の背面側に流れることができるため、台風時の波浪や津波などが作用した時でも堤体(2)に大きな揚圧力が作用することが抑えられ、堤体(2)の高い安定性が得られる。しかも、補強用支持部(3)が、石材層(5)と、水中単位体積質量が石材と同等以上で且つ所定値以上の粘着力(強度)を有する補強土からなる補強土層(4)の複合構造であるため、補強用支持部が石材のみからなる場合に較べて、高い滑動抵抗力を得ることができる。このため、津波などの大きな外力が作用した場合でも、防波堤の安定性を確保することができる。また、通常、補強用支持部(3)の外側は被覆ブロックで被覆されるが、津波などが防波堤天端を越流して被覆ブロックが流出した場合でも、補強土層(4)が強度を有しているため、洗掘が生じにくい。また、補強用支持部(3)を石材と補強土だけで構築できるため、低コストに造成することができる。さらに、補強土層(4)を構成する補強土に港湾工事で大量に発生する浚渫土を利用することができるので、浚渫土の有効利用も図ることができる。   In the gravity breakwater of the present invention, the water flow flowing in the rubble mound (1) can pass through the stone layer (5) as it is and flows to the rear side of the breakwater. However, it is possible to suppress a large lifting pressure from acting on the dam body (2) and to obtain high stability of the dam body (2). Moreover, the reinforcing support portion (3) includes a stone layer (5), and a reinforced soil layer (4) made of reinforced soil having an underwater unit volume mass equal to or greater than that of the stone and having an adhesive force (strength) equal to or greater than a predetermined value. Because of this composite structure, a higher sliding resistance can be obtained as compared with the case where the reinforcing support portion is made of only stone. For this reason, even when a large external force such as a tsunami acts, the stability of the breakwater can be ensured. Normally, the outside of the reinforcing support (3) is covered with a covering block. However, even if a tsunami overflows the breakwater top and the covering block flows out, the reinforcing soil layer (4) has strength. Therefore, scouring is difficult to occur. Moreover, since the support part (3) for reinforcement can be constructed only with stones and reinforced soil, it can be constructed at low cost. Furthermore, since dredged soil generated in large quantities in port construction can be used as the reinforcing soil constituting the reinforced soil layer (4), the dredged soil can be effectively used.

本発明の重力式防波堤の一実施形態を模式的に示す縦断面図The longitudinal cross-sectional view which shows typically one Embodiment of the gravity type breakwater of this invention 従来の重力式防波堤の一例を模式的に示す縦断面図A longitudinal sectional view schematically showing an example of a conventional gravity breakwater 本発明の実施例の重力式防波堤を模式的に示す縦断面図The longitudinal cross-sectional view which shows typically the gravity type breakwater of the Example of this invention

図1は、本発明の重力式防波堤の一実施形態を模式的に示す縦断面図である。
本実施形態の重力式防波堤は、水底(地盤7)に構築された捨石マウンド1と、この捨石マウンド1上に設置された堤体2(堤本体)と、この堤体2の背面側(波をうける側を前面側とした場合、その反対側)に設けられる補強用支持部3を備えている。
重力式防波堤の設置場所が港湾の場合には、堤体2の前面側が港外側、背面側が港内側となる。捨石マウンド1は防波堤の設置場所の全長にわたり構築され、その上にケーソンなどの重量構造物を複数並べて堤体2が構成される。
FIG. 1 is a longitudinal sectional view schematically showing an embodiment of a gravity breakwater according to the present invention.
The gravitational breakwater of the present embodiment includes a rubble mound 1 constructed on the bottom of the water (ground 7), a dam body 2 (dam body) installed on the rubble mound 1, and a back side (wave) of the dam body 2 When the receiving side is the front side, a reinforcing support portion 3 provided on the opposite side) is provided.
When the installation place of the gravity breakwater is a harbor, the front side of the bank 2 is the outside of the port and the back side is the inside of the port. The rubble mound 1 is constructed over the entire length of the breakwater installation site, and a plurality of heavy structures such as caissons are arranged on the dam body 2.

補強用支持部3は、堤体2を背面側で支えて滑動抵抗力を付与するものであり、堤体2の背面と捨石マウンド1に接するようにして設けられる補強土層4と、この補強土層4の背面と捨石マウンド1に接するようにして設けられる石材層5で構成されている。ここで、石材層5は割石などの石材を積み上げることで形成され、補強土層4は補強土を積み上げる(敷設する)ことで形成される。
補強土層4は、その前面が堤体2の背面と接するとともに、下端部41が捨石マウンド1の天端面の一部と接するようにして設けられている。後述するように補強用支持部3を構築するに当たっては、先に堤体2と離れた位置に石材層5を形成し、次いで、この石材層5と堤体2との間に補強土層4を形成するため、補強土層4の背面42は、石材層5の前面側の法面52に接する下向き傾斜面になる。
The reinforcing support portion 3 supports the dam body 2 on the back surface side and imparts sliding resistance, and includes a reinforced soil layer 4 provided so as to be in contact with the back surface of the dam body 2 and the rubble mound 1, and this reinforcement. It is composed of a stone layer 5 provided so as to be in contact with the back surface of the soil layer 4 and the rubble mound 1. Here, the stone layer 5 is formed by stacking stone materials such as spar, and the reinforcing soil layer 4 is formed by stacking (laying) reinforcing soil.
The reinforcing soil layer 4 is provided such that the front surface thereof is in contact with the back surface of the bank 2 and the lower end portion 41 is in contact with a part of the top end surface of the rubble mound 1. In constructing the reinforcing support portion 3 as will be described later, a stone layer 5 is first formed at a position away from the dam body 2, and then a reinforced soil layer 4 is formed between the stone layer 5 and the dam body 2. Therefore, the back surface 42 of the reinforced soil layer 4 becomes a downward inclined surface in contact with the slope 52 on the front surface side of the stone layer 5.

この補強土層4は、水中における単位体積質量が10kN/m以上で且つ28日養生後の粘着力が10kN/m以上の補強土で構成される。なお、補強土の粘着力は、養生28日後の試料(供試体)に対して、土の一軸圧縮試験(JIS A1216:2009)で求められる一軸圧縮強さの1/2で算定される。
この補強土の条件は、以下のようにして求められたものである。
滑動抵抗体(本発明では補強用支持部3)の抵抗力は、その質量と抵抗体の強度(ここでは粘着力)によって決まる。そのため、補強土の質量については石材と同等かそれ以上のものが望ましい。このため水中における補強土の単位体積質量は10kN/m以上とする。また、補強土の水中単位体積質量が大きいほど補強用支持部3の滑動抵抗力も高まるので、この観点からは補強土の水中単位体積質量はより大きいこと(例えば、13kN/m以上)が好ましいが、補強土の製造における改質材の混合割合(粒状体の場合は7割程度が上限となる)などの制約から17kN/m程度が実質的な上限となる。
The reinforced soil layer 4 is composed of reinforced soil having a unit volume mass in water of 10 kN / m 3 or more and an adhesive strength after curing for 28 days of 10 kN / m 2 or more. The adhesive strength of the reinforced soil is calculated by ½ of the uniaxial compressive strength obtained in the uniaxial compression test of soil (JIS A1216: 2009) for the sample (test specimen) after 28 days of curing.
The condition of the reinforced soil is obtained as follows.
The resistance force of the sliding resistor (reinforcing support portion 3 in the present invention) is determined by its mass and the strength of the resistor (here, adhesive force). Therefore, the mass of the reinforcing soil is preferably equal to or higher than that of stone. For this reason, the unit volume mass of the reinforced soil in water shall be 10 kN / m < 3 > or more. Further, since the sliding resistance of the reinforcing support 3 increases as the unit volume mass of the reinforcing soil in water increases, it is preferable from this viewpoint that the unit volume mass of the reinforcing soil in water is larger (for example, 13 kN / m 3 or more). However, about 17 kN / m 3 is a practical upper limit due to restrictions such as the mixing ratio of modifiers in the production of reinforced soil (about 70% is the upper limit for granular materials).

また、補強土の強度条件については、以下の滑動抵抗力算定式に基づいて決定した。

Figure 0006296017
The strength condition of the reinforced soil was determined based on the following sliding resistance calculation formula.
Figure 0006296017

標準的なサイズである前面側の高さ19m、背面側の高さ17mの堤体2に、波高10mの津波波力が作用した場合を想定する。堤体2の背面側に補強用支持部3を設けない場合、設計の基準である滑動安全率1.2以上を満たすためには、滑動抵抗力が988.75kN/m不足する。本発明の重力式防波堤において、補強用支持部3の設置高さを12.5m、補強土層4の天端幅を21.0m、石材層5の天端幅を2mとした場合、補強土の水中単位体積質量を10kN/m、粘着力を10kN/m(一軸圧縮強さ20kN/m)とし、石材の水中単位体積質量を10kN/m、内部摩擦角を40度とすると、滑動抵抗力は以下のようになり、上述した必要条件を満たすことになる。

Figure 0006296017
A case is assumed where a tsunami wave force having a wave height of 10 m is applied to the dam body 2 having a standard size of 19 m on the front side and 17 m on the back side. When the reinforcing support 3 is not provided on the back side of the levee body 2, the sliding resistance is insufficient by 988.85 kN / m in order to satisfy the sliding safety factor of 1.2 or more which is a design standard. In the gravity breakwater of the present invention, when the installation height of the reinforcing support 3 is 12.5 m, the top edge width of the reinforcing earth layer 4 is 21.0 m, and the top edge width of the stone layer 5 is 2 m, the reinforcing earth The underwater unit volume mass is 10 kN / m 3 , the adhesive strength is 10 kN / m 2 (uniaxial compressive strength 20 kN / m 2 ), the stone unit volume mass in water is 10 kN / m 3 , and the internal friction angle is 40 degrees. The sliding resistance is as follows and satisfies the above-mentioned requirements.
Figure 0006296017

また、補強土の一軸圧縮強さが20kN/m未満になると、補強土層4がその上に設置される被覆ブロックを支えることができなくなる恐れが生じるため、強度は20kN/m以上とする必要がある。
以上の理由から補強土の28日養生後の粘着力を10kN/m以上とする。また、この補強土の粘着力が大きいほど補強用支持部3の滑動抵抗力も高まるので、この観点からは補強土の粘着力はより大きいこと(例えば、好ましくは30kN/m以上、より好ましくは50kN/m以上)が好ましいが、通常、補強土層4の高さは堤体2の高さの1/3以上とすることから、100kN/m程度を実質的な上限とすればよい。
Further, if the uniaxial compressive strength of the reinforced soil is less than 20 kN / m 2 , the reinforced soil layer 4 may not be able to support the covering block placed thereon, so the strength is 20 kN / m 2 or more. There is a need to.
For the above reasons, the adhesive strength of the reinforced soil after curing for 28 days is set to 10 kN / m 2 or more. In addition, since the sliding resistance of the reinforcing support 3 increases as the adhesive strength of the reinforcing soil increases, the adhesive strength of the reinforcing soil is higher from this viewpoint (for example, preferably 30 kN / m 2 or more, more preferably 50 kN / m 2 or more) is preferable, but usually the height of the reinforced soil layer 4 is set to 1/3 or more of the height of the levee body 2, so that about 100 kN / m 2 may be a practical upper limit. .

補強土層4を構成する補強土には、上記のような水中単位体積質量と粘着力を満足するものであれば、どのような材料でも利用可能であるが、水和反応により強度を発現する補強土として、浚渫土又は/及び土砂に水和反応を生じさせる改質材(水硬性を有する固化材)を混合した混合土が挙げられ、本発明ではこの混合土を補強土として好適に使用できる。
浚渫土は、事前に乾燥処理(例えば、天日乾燥など)や脱水処理(薬剤を添加して凝集させた後に脱水・減容化する方法)を施したものであってもよい。土砂は建設残土などでもよい。改質材としては、水和反応を生じさせるものであれば特に種類を問わないが、例えば、セメント、石灰、製鋼スラグなどの鉄鋼スラグ、コンクリート廃材などが挙げられ、これらの1種以上を用いることができる。
これら改質材の種類と混合量を選択することで、補強土の一軸圧縮強さを調整することができる。
Any material can be used as the reinforced soil constituting the reinforced soil layer 4 as long as it satisfies the unit volume mass in water and the adhesive strength as described above, but it develops strength by a hydration reaction. Examples of the reinforced soil include mixed soil obtained by mixing dredged soil and / or a modifying material (hydraulic solidifying material) that causes a hydration reaction. In the present invention, this mixed soil is preferably used as the reinforced soil. it can.
The clay may be subjected to a drying process (for example, sun drying) or a dehydration process (a method of dehydrating and reducing the volume after adding a chemical to agglomerate). The earth and sand may be construction residual soil. The modifying material is not particularly limited as long as it causes a hydration reaction, and examples thereof include steel slag such as cement, lime, and steelmaking slag, and concrete waste, and one or more of these are used. be able to.
The uniaxial compressive strength of the reinforced soil can be adjusted by selecting the type and amount of the modifier.

改質材として用いる鉄鋼スラグとしては、高炉で発生する高炉徐冷スラグ(但し、この高炉徐冷スラグは水中で硫化物が溶出しないようにするため、十分にエージング処理したものが好ましい)、溶銑予備処理、転炉脱炭精錬、鋳造、電気炉精錬などの工程で発生する製鋼スラグ(脱燐スラグ・脱硫スラグ・脱珪スラグなどの溶銑予備処理スラグ、脱炭スラグ、鋳造スラグ、電気炉スラグなど)、鉱石還元スラグなどが挙げられ、これらの2種以上を用いてもよい。また、これらのスラグ中でも特に製鋼スラグが好ましく、そのなかでも特に脱炭スラグ(転炉スラグ)、脱燐スラグが好適である。また、十分な効果を得るためには、スラグは粉粒状のものを用いることが好ましい。   Steel slag used as a modifier is blast furnace slow-cooled slag generated in a blast furnace (however, this blast furnace slow-cooled slag is preferably sufficiently aged to prevent elution of sulfide in water), hot metal Steelmaking slag generated in processes such as pretreatment, converter decarburization refining, casting, electric furnace refining, etc. Etc.), ore reduction slag, etc., and two or more of these may be used. Among these slags, steel slag is particularly preferable, and among these, decarburization slag (converter slag) and dephosphorization slag are particularly suitable. In order to obtain a sufficient effect, it is preferable to use a slag having a granular shape.

石材層5を構成する石材としては、一般に天然石材(割石)が用いられるが、例えば、コンクリートブロック、鉄鋼スラグを主原料とする炭酸固化体ブロック、鉄鋼製造スラグを主原料とする水和硬化体ブロック(例えば、鉄鋼スラグ水和固化体)などの人工石材を用いてもよく、天然石材を含めたこれらの材料の1種以上を用いることができる。
石材層5を構成する石材の大きさは任意であるが、通常10〜200kg程度のものが用いられる。
As the stone material constituting the stone layer 5, natural stone material (sparing stone) is generally used. For example, a concrete block, a carbonate solid block using steel slag as a main raw material, and a hydrated hardened body using steel production slag as a main raw material. Artificial stone materials such as blocks (for example, steel slag hydrated solid bodies) may be used, and one or more of these materials including natural stone materials can be used.
Although the magnitude | size of the stone material which comprises the stone material layer 5 is arbitrary, the thing of about 10-200 kg is used normally.

補強土層4及び石材層5の設置形態は、上述した点以外に特別な条件はないが、以下のような設置形態が特に好ましい。
補強土層4については、図1に示すように、補強土層4の下端部41(下端面)が、堤体2の背面側の捨石マウンド部分10の天端面の一部と接するように設けること、すなわち補強土層4は捨石マウンド部分10の天端面に対して面で接することが好ましい。津波などの波力による補強用支持部3の破壊は、堤体2の下端縁と捨石マウンド1の天端面とが接する点pを起点として生じるため、補強土層4が捨石マウンド部分10に対して面で接していないと(例えば、補強土層4が捨石マウンド部分10に接しておらず、或いは点で接していると)、補強土層4が破壊に対する抵抗にならず、波力により補強用支持部3が破壊されやすくなる。この観点から、補強土層4の下端部41の幅w(下端幅)は2m以上とすることが好ましい。
The installation form of the reinforced soil layer 4 and the stone layer 5 is not particularly limited except for the points described above, but the following installation form is particularly preferable.
As shown in FIG. 1, the reinforced soil layer 4 is provided so that the lower end portion 41 (lower end surface) of the reinforced soil layer 4 is in contact with a part of the top end surface of the rubble mound portion 10 on the back side of the dam body 2. That is, it is preferable that the reinforced soil layer 4 is in contact with the top end face of the rubble mound portion 10 on the surface. The breakage of the reinforcing support portion 3 due to wave force such as a tsunami occurs at a point p where the lower edge of the dam body 2 and the top end surface of the rubble mound 1 are in contact, so that the reinforced soil layer 4 is against the rubble mound portion 10. If the surface is not in contact with the surface (for example, if the reinforced soil layer 4 is not in contact with the rubble mound portion 10 or is in contact with a point), the reinforced soil layer 4 is not resistant to breakage and is reinforced by wave force. The supporting part 3 is easily broken. From this viewpoint, the width w 1 (lower end width) of the lower end portion 41 of the reinforced soil layer 4 is preferably 2 m or more.

また、捨石マウンド1上での補強土層4の高さh(天端部40の高さ)は、滑動抵抗体としての機能面から、堤体2の高さH(捨石マウンド1から最も高い堤体部分の高さ)の1/3以上であることが好ましい。
補強土層4の天端部40の幅w(天端幅)は、補強土層4による補強効果を確保する一方で、補強土層4の断面が大きくなって造成コストが増大するのを抑えるという観点から、10〜20m程度とすることが好ましい。
Further, the height h of the reinforced soil layer 4 on the rubble mound 1 (the height of the top end portion 40) is the highest from the functional surface as a sliding resistance body, the height H of the dam body 2 (from the rubble mound 1). It is preferable that it is 1/3 or more of the height of the levee body.
The width w 2 (top edge width) of the top end portion 40 of the reinforced soil layer 4 ensures the reinforcing effect by the reinforced soil layer 4, while the cross section of the reinforced soil layer 4 becomes large and the creation cost increases. From the viewpoint of suppression, it is preferably about 10 to 20 m.

石材層5については、石材層下面が、捨石マウンド部分10の天端面の一部及び側端面と、捨石マウンド1後方の水底部分8に接するように設けることが好ましい。これにより、捨石マウンド1内を流れる水流が、特に円滑に石材層5内に流れることができる。
石材層5の天端部50の幅w(天端幅)は、石材層5の安定性を確保する一方で、石材層5の断面が大きくなって造成コストが増大するのを抑えるという観点から、2〜5m程度とすることが好ましい。
The stone layer 5 is preferably provided so that the lower surface of the stone layer is in contact with a part of the top end face and the side end face of the rubble mound portion 10 and the bottom portion 8 behind the rubble mound 1. Thereby, the water flow flowing through the rubble mound 1 can flow into the stone layer 5 particularly smoothly.
The width w 3 (top edge width) of the top 50 of the stone layer 5 ensures the stability of the stone layer 5 while suppressing an increase in the creation cost due to a large cross section of the stone layer 5. Therefore, it is preferable to be about 2 to 5 m.

石材層5の背面側及び前面側の法面51,52の勾配は、1:1.2〜1:1.5程度が好ましい。法面51,52の勾配が1:1.2よりも大きいと、石材の内部摩擦角によっては石材が崩れる恐れがある。一方、法面51,52の勾配が1:1.5よりも小さいと、石材層5の断面が大きくなるため造成コストが増加してしまう。   The slope of the slopes 51 and 52 on the back side and the front side of the stone layer 5 is preferably about 1: 1.2 to 1: 1.5. If the slopes of the slopes 51 and 52 are greater than 1: 1.2, the stone material may collapse depending on the internal friction angle of the stone material. On the other hand, if the slopes of the slopes 51 and 52 are smaller than 1: 1.5, the cross section of the stone layer 5 becomes large, so that the creation cost increases.

また、図示しないが、補強用支持部3(補強土層4、石材層5)を構成する補強土や石材の流出を防止するため、通常、補強用支持部3の上面は被覆ブロック6(図3参照)で被覆されるとともに、堤体2の前面側の捨石マウンド部分の上面も被覆ブロックや根固ブロックで被覆される(図3参照)。
なお、堤体2やこれを支持する捨石マウンド1の大きさは、設置する海域の水深や想定される波高などによっても異なるので一概には言えないが、一般には、堤体2は幅(前面−背面間の幅)が約10〜20m、高さが約15〜25m、捨石マウンド1は幅(前面−背面間の幅)が約40〜60m、厚さが3〜10m程度である場合が多い。
Although not shown, the upper surface of the reinforcing support 3 is usually covered with a covering block 6 (see FIG. 5) in order to prevent outflow of the reinforcing soil and the stone constituting the reinforcing support 3 (the reinforcing soil layer 4 and the stone layer 5). 3) and the upper surface of the rubble mound portion on the front side of the dam body 2 is also covered with a covering block or a root block (see FIG. 3).
It should be noted that the size of the levee body 2 and the rubble mound 1 that supports it differs depending on the water depth of the sea area where it is installed and the assumed wave height, etc. -The width between the back surfaces is about 10-20 m, the height is about 15-25 m, and the rubble mound 1 has a width (width between the front surface and the back surface) of about 40-60 m and a thickness of about 3-10 m. Many.

比較のために、補強用支持部が石材(割石)のみからなる従来の重力式防波堤を図2(縦断面図)に示す。
本発明の重力式防波堤は、捨石マウンド1内を流れる水流がそのまま石材層5を通って防波堤の背面側に流れることができるため、台風時の波浪や津波などが作用した時でも堤体2に大きな揚圧力が作用することが抑えられ、堤体2の高い安定性が得られる。しかも、補強用支持部3が、石材層5と、上述したような水中単位体積質量が石材と同等以上で且つ所定値以上の粘着力(強度)を有する補強土からなる補強土層4の複合構造であることにより、図2に示すような石材のみからなる補強用支持部に較べて、高い滑動抵抗力を得ることができる。すなわち、水中単位体積質量が石材と同等以上で且つ粘着力10kN/m以上の補強土からなる補強土層4は、石材のみからなる補強層に較べて滑動抵抗力が高く、したがって、補強用支持部3が、補強土層4と石材層5との複合構造であることにより、高い滑動抵抗力を得ることができる。また、通常、補強用支持部3の外側は被覆ブロック6で被覆されるが、津波などが防波堤天端を越流して被覆ブロック6が流出した場合でも、補強土層4が強度を有しているため、洗掘が生じにくい利点もある。
For comparison, FIG. 2 (longitudinal sectional view) shows a conventional gravity breakwater in which the reinforcing support portion is made of only stone (sparing stone).
In the gravity breakwater of the present invention, the water flow flowing in the rubble mound 1 can flow directly through the stone layer 5 to the back side of the breakwater, so that even when a typhoon wave or tsunami acts on the dam body 2 The action of a large lifting pressure is suppressed, and the high stability of the levee body 2 is obtained. In addition, the reinforcing support 3 is a composite of the stone layer 5 and the reinforcing soil layer 4 made of the reinforcing soil having the above-described unit volume mass in water equal to or greater than that of the stone and having an adhesive force (strength) equal to or greater than a predetermined value. Due to the structure, it is possible to obtain a higher sliding resistance as compared with a reinforcing support portion made of only stone as shown in FIG. That is, the reinforced soil layer 4 made of the reinforced soil having a unit volume mass in water equal to or greater than that of the stone and having an adhesive strength of 10 kN / m 2 or more has a higher sliding resistance than the reinforced layer made of only the stone. Since the support part 3 is a composite structure of the reinforced soil layer 4 and the stone layer 5, a high sliding resistance can be obtained. Normally, the outer side of the reinforcing support 3 is covered with the covering block 6. However, even when a tsunami overflows the breakwater top and the covering block 6 flows out, the reinforcing soil layer 4 has strength. Therefore, there is an advantage that scouring hardly occurs.

以上の述べたような本発明の重力式防波堤を造成する場合は、まず、防波堤の設置場所の全長にわたる水底の地盤7に捨石マウンド1を構築し、その上にケーソンなどの重量構造物を複数並べて堤体2を設置する。次いで、補強用支持部3を構築するに当たっては、まず、堤体2の背面側において堤体2から少し離れた位置に石材を積み上げて石材層5を形成し、次いで、この石材層5と堤体2との間に補強土を投入・敷設して補強土層4を形成する。これにより、図1に示すような補強土層4と石材層5からなる補強用支持部3が構築される。さらに、通常では、補強構造部3の上面を被覆ブロック6で被覆するとともに、堤体2の前面側の捨石マウンド部分の上面も被覆ブロックや根固ブロックで被覆する。   When constructing the gravitational breakwater of the present invention as described above, first, a rubble mound 1 is constructed on the bottom 7 of the bottom of the water over the entire length of the breakwater installation place, and a plurality of heavy structures such as caissons are formed thereon. The bank 2 is installed side by side. Next, in constructing the reinforcing support 3, first, a stone layer 5 is formed by stacking stone materials at a position slightly away from the bank body 2 on the back side of the bank body 2, and then the stone layer 5 and the bank The reinforcing soil layer 4 is formed by introducing and laying the reinforcing soil between the body 2 and the body 2. As a result, the reinforcing support portion 3 including the reinforcing soil layer 4 and the stone layer 5 as shown in FIG. 1 is constructed. Furthermore, normally, while covering the upper surface of the reinforcement structure part 3 with the covering block 6, the upper surface of the rubble mound part of the front side of the dam body 2 is also covered with a covering block or a root block.

朔望平均満潮面+0.5m、水深16.5mの海域に、図3に示すような本発明の重力式防波堤を設置した。この重力式防波堤は、捨石マウンド1の厚さを3mとし、堤体2は、幅を19m、パラペット天端までの高さを19mとした。補強土層4の設置高さは捨石マウンド1の天端から6.5mとし、補強土層4の天端幅を11m、石材層5の天端幅を2mとした。また、石材層5の法面勾配を1:1.5とした。補強土は少量でも滑動抵抗力が発揮されるようにするため、水中単位体積質量は石材以上が望ましく、本実施例では、浚渫土に製鋼スラグ(改質材)を混合し、浚渫土70体積%、製鋼スラグ30体積%とした混合土を用いた。室内配合試験の結果、この混合土は、水中単位体積質量が11.0kN/m、28日養生後の一軸圧縮強さが120kN/m(粘着力60kN/m)であった。 The gravity type breakwater of the present invention as shown in FIG. 3 was installed in the sea area of envy average high tide surface +0.5 m and water depth 16.5 m. In this gravity type breakwater, the thickness of the rubble mound 1 was 3 m, and the dike body 2 was 19 m in width and 19 m in height to the top of the parapet. The installation height of the reinforcing soil layer 4 was 6.5 m from the top of the rubble mound 1, the top width of the reinforcing soil layer 4 was 11 m, and the top width of the stone layer 5 was 2 m. The slope of the stone layer 5 was set to 1: 1.5. In order to ensure that sliding resistance can be exerted even with a small amount of reinforced soil, the unit volume mass in water is preferably greater than that of stone. In this embodiment, steelmaking slag (modifier) is mixed with the clay and 70 volumes of clay is obtained. %, Mixed soil made of steelmaking slag 30% by volume was used. As a result of the indoor blending test, this mixed soil had a unit volume mass in water of 11.0 kN / m 3 and a uniaxial compressive strength after curing on the 28th of 120 kN / m 2 (adhesive strength 60 kN / m 2 ).

波高10mの津波を想定して計算したところ、波力合力2724.12kN/mに対して、滑動抵抗力は3292.57kN/m(うち補強土層4の滑動抵抗力は1012.38kN/m)となり、設計基準である滑動安全率1.2を満足した。
図2に示す従来の重力式防波堤のように石材(水中単位体積質量10.0kN/m,内部摩擦角φ=40°)のみからなる補強用支持部(石材層)を設けた場合について計算したところ、補強用支持部の設置高さを6.5mとした場合、滑動抵抗力の上限は971.52kN/mとなり、補強用支持部の幅を広げても安全率1.2を満たすために必要な滑動抵抗力が得られないという結果になった。一方、本発明の重力式防波堤の場合には、補強土層4と石材層5との複合構造により、補強用支持部3の断面をより小さくしても、必要な滑動抵抗力を確保できると考えられる。
Assuming a tsunami with a wave height of 10 m, the sliding resistance is 3292.57 kN / m against the resultant wave force of 2724.12 kN / m (of which the sliding resistance of the reinforced soil layer 4 is 1012.38 kN / m) The sliding safety factor of 1.2, which is a design standard, was satisfied.
Calculation for the case where a reinforcing support (stone layer) consisting only of stone (underwater unit volume mass 10.0 kN / m 3 , internal friction angle φ = 40 °) is provided as in the conventional gravity breakwater shown in FIG. As a result, when the installation height of the reinforcing support portion is 6.5 m, the upper limit of the sliding resistance is 971.52 kN / m, and the safety factor of 1.2 is satisfied even if the width of the reinforcing support portion is widened. As a result, it was impossible to obtain the necessary sliding resistance. On the other hand, in the case of the gravity breakwater according to the present invention, the composite structure of the reinforcing soil layer 4 and the stone layer 5 can secure the required sliding resistance even if the cross section of the reinforcing support 3 is made smaller. Conceivable.

1 捨石マウンド
2 堤体
3 補強用支持部
4 補強土層
5 石材層
6 被覆ブロック
7 地盤
8 水底部分
10 捨石マウンド部分
40 天端部
41 下端部
42 背面
50 天端部
51,52 法面
DESCRIPTION OF SYMBOLS 1 Rubble mound 2 Dike body 3 Reinforcement support part 4 Reinforcement soil layer 5 Stone layer 6 Covering block 7 Ground 8 Water bottom part 10 Rubble mound part 40 Top end part 41 Lower end part 42 Back surface 50 Top end part 51,52 Slope

Claims (6)

水底に構築された捨石マウンド(1)と、該捨石マウンド(1)上に設置された堤体(2)と、該堤体(2)の背面側に設けられる補強用支持部(3)を備えた重力式防波堤であって、
補強用支持部(3)は、水中における単位体積質量が10kN/m以上で且つ28日養生後の粘着力が10kN/m以上の補強土で構成され、堤体(2)の背面と捨石マウンド(1)に接するようにして設けられる補強土層(4)と、該補強土層(4)の背面と捨石マウンド(1)に接するようにして設けられる石材層(5)を備えることを特徴とする重力式防波堤。
A rubble mound (1) constructed on the bottom of the water, a dam body (2) installed on the rubble mound (1), and a reinforcing support (3) provided on the back side of the dam body (2) A gravitational breakwater equipped,
The reinforcing support (3) is made of reinforced soil having a unit volume mass in water of 10 kN / m 3 or more and an adhesive strength after curing for 28 days of 10 kN / m 2 or more. A reinforced soil layer (4) provided in contact with the rubble mound (1), and a stone layer (5) provided in contact with the rear surface of the reinforced stone layer (4) and the rubble mound (1). A gravity breakwater.
補強土層(4)を構成する補強土は、浚渫土又は/及び土砂に水和反応を生じさせる改質材を混合したものであることを特徴とする請求項1に記載の重力式防波堤。   The gravitational breakwater according to claim 1, wherein the reinforced soil constituting the reinforced soil layer (4) is a mixture of a modifying material that causes a hydration reaction in dredged soil and / or earth and sand. 捨石マウンド(1)上での補強土層(4)の高さは、堤体(2)の高さの1/3以上であることを特徴とする請求項1又は2に記載の重力式防波堤。   The gravity breakwater according to claim 1 or 2, wherein the height of the reinforced soil layer (4) on the rubble mound (1) is not less than 1/3 of the height of the dam body (2). . 捨石マウンド(1)の天端面に接する補強土層(4)の下端幅が2m以上であることを特徴とする請求項1〜3のいずれかに記載の重力式防波堤。   The gravity type breakwater according to any one of claims 1 to 3, wherein the bottom width of the reinforcing soil layer (4) in contact with the top end surface of the rubble mound (1) is 2 m or more. 補強用支持部(3)の上面が被覆ブロック(6)で被覆されることを特徴とする請求項1〜4のいずれかに記載の重力式防波堤。   The gravity type breakwater according to any one of claims 1 to 4, wherein the upper surface of the reinforcing support (3) is covered with a covering block (6). 請求項1〜5のいずれかに記載の重力式防波堤の造成方法であって、
水底の地盤に構築された捨石マウンド(1)の上に堤体(2)を設置した後、堤体(2)の背面側において、堤体(2)から離れた位置に石材を積み上げて石材層(5)を形成し、次いで、石材層(5)と堤体(2)との間に補強土を投入・敷設して補強土層(4)を形成することにより、補強土層(4)と石材層(5)を備えた補強用支持部(3)を構築することを特徴とする重力式防波堤の造成方法。
A method for constructing a gravity breakwater according to any one of claims 1 to 5,
After installing the levee body (2) on the rubble mound (1) constructed on the bottom of the water, the stone material is piled up at a position away from the dam body (2) on the back side of the dam body (2). The layer (5) is formed, and then the reinforced soil layer (4) is formed by introducing and laying the reinforced soil between the stone layer (5) and the dam body (2) to form the reinforced soil layer (4). And a reinforcing support (3) provided with a stone layer (5).
JP2015153019A 2015-08-03 2015-08-03 Gravity breakwater Active JP6296017B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015153019A JP6296017B2 (en) 2015-08-03 2015-08-03 Gravity breakwater

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015153019A JP6296017B2 (en) 2015-08-03 2015-08-03 Gravity breakwater

Publications (2)

Publication Number Publication Date
JP2017031678A JP2017031678A (en) 2017-02-09
JP6296017B2 true JP6296017B2 (en) 2018-03-20

Family

ID=57985674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015153019A Active JP6296017B2 (en) 2015-08-03 2015-08-03 Gravity breakwater

Country Status (1)

Country Link
JP (1) JP6296017B2 (en)

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4175888A (en) * 1978-06-12 1979-11-27 Iida Kensetsu Co., Ltd. Block for constructing breakwater
ES291366Y (en) * 1985-12-28 1987-06-16 Suarez Bores Pedro DIKE-STEPPED STAGE IN QUADRANGULAR MOSAIC.
JP4051652B2 (en) * 1999-10-15 2008-02-27 東洋建設株式会社 Environment-friendly breakwater
JP3785505B2 (en) * 2001-07-27 2006-06-14 東洋建設株式会社 Multipurpose artificial leaf
JP2005299337A (en) * 2004-04-15 2005-10-27 Nippon Steel Corp Consolidation accelerating method for blast-furnace slag back-filling material
JP4678496B2 (en) * 2005-05-23 2011-04-27 東洋建設株式会社 Impervious structure of waste disposal site
JP4131447B2 (en) * 2005-07-25 2008-08-13 みらい建設工業株式会社 Wall structure and method for forming the same
JP4500231B2 (en) * 2005-08-02 2010-07-14 国立大学法人京都大学 Method for determining strength and thickness of improved layer of backfill sand by chemical injection and experimental apparatus used therefor
JP2009203664A (en) * 2008-02-27 2009-09-10 Nippon Steel Corp Infill for caisson, and caisson, and water area structure
JP2013059758A (en) * 2012-03-26 2013-04-04 Toyo Constr Co Ltd Impervious material
JP6077766B2 (en) * 2012-06-26 2017-02-08 東洋建設株式会社 Offshore structure analysis method
JP6341834B2 (en) * 2014-10-29 2018-06-13 五洋建設株式会社 Caisson type hybrid bank structure

Also Published As

Publication number Publication date
JP2017031678A (en) 2017-02-09

Similar Documents

Publication Publication Date Title
CN111395267A (en) Core wall rock-fill dam
JP5998713B2 (en) Filling method
CN104452829B (en) A kind of pile-raft foundation float Structure and construction method
CN110984213A (en) Offshore wind power single pile-friction cone composite foundation and construction method thereof
CN106284205A (en) Method for building dam by hydraulic flushing of tailings of mold bag edge stems
KR101169023B1 (en) Method for installing soil nailing and tunnel prevent hole for tidal plant
JP6327215B2 (en) Gravity breakwater
CN212248108U (en) Core wall rock-fill dam
CN205917662U (en) Prevent concrete face rockfill dam that ftractures
CN104963323B (en) A kind of chain prefabricated section mask anti-scour trench
JP6296017B2 (en) Gravity breakwater
CN106149624B (en) A kind of gravity type quay and its construction method suitable for roadbed of alluvial silt
JP5954351B2 (en) Artificial shallow ground or tidal flat and its repair method
CN105178338A (en) Soil slope protecting structure and protecting method thereof
JP6361889B2 (en) Artificial shallow or tidal flat
CN113338315B (en) Earth-rock cofferdam structure of silt soft soil foundation and construction method thereof
WO2014141679A1 (en) Seawall and seawall reinforcement or construction method
Ramkrishnan et al. Utilization of geotextile fabric and permeable concrete to prevent coastal erosion
CN204326119U (en) A kind of pile-raft foundation float Structure
JP6213749B2 (en) Artificial shallow or tidal flat
CN108560569B (en) Construction process for building dike by throwing dregs and squeezing silt
CN206768731U (en) A kind of armoured type lightweight dock structure
JP2023047749A (en) Structure of quay or revetment
JP6376254B2 (en) Artificial shallow or tidal flat
CN110158547A (en) A kind of cement sand and gravel buttress dam

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170322

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180205

R150 Certificate of patent or registration of utility model

Ref document number: 6296017

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250