JP6295170B2 - Method for producing magnesium hydride - Google Patents

Method for producing magnesium hydride Download PDF

Info

Publication number
JP6295170B2
JP6295170B2 JP2014181282A JP2014181282A JP6295170B2 JP 6295170 B2 JP6295170 B2 JP 6295170B2 JP 2014181282 A JP2014181282 A JP 2014181282A JP 2014181282 A JP2014181282 A JP 2014181282A JP 6295170 B2 JP6295170 B2 JP 6295170B2
Authority
JP
Japan
Prior art keywords
powder
average particle
magnesium
organic solvent
particle size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014181282A
Other languages
Japanese (ja)
Other versions
JP2016056034A (en
Inventor
洸 瀧澤
洸 瀧澤
和彦 常世田
和彦 常世田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2014181282A priority Critical patent/JP6295170B2/en
Publication of JP2016056034A publication Critical patent/JP2016056034A/en
Application granted granted Critical
Publication of JP6295170B2 publication Critical patent/JP6295170B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)

Description

本発明は、水素貯蔵材料として有用な水素化マグネシウムの製造法に関する。   The present invention relates to a method for producing magnesium hydride useful as a hydrogen storage material.

水素化マグネシウム(MgH2)は大気中で安定に存在し、以下の反応により多量の水素を放出することから、有望な水素貯蔵材料として期待されている。 Magnesium hydride (MgH 2 ) is stably present in the atmosphere and releases a large amount of hydrogen by the following reaction, and thus is expected as a promising hydrogen storage material.

MgH2 → Mg + H2
MgH2 + H2O → Mg(OH)2 + 2H2
MgH 2 → Mg + H 2
MgH 2 + H 2 O → Mg (OH) 2 + 2H 2

また、水素化マグネシウムはマグネシウムを主成分とした高性能な水素吸蔵材料の原料としても用いられている。すなわち、水素化マグネシウムと五酸化ニオブをミリング処理した後に脱水素化を行うこと常温で4wt%もの水素吸蔵を可能にするマグネシウムと酸化ニオブからなる水素吸蔵材料の製造方法が報告されている(特許文献1)。   Magnesium hydride is also used as a raw material for high-performance hydrogen storage materials mainly composed of magnesium. That is, a method for producing a hydrogen storage material composed of magnesium and niobium oxide that enables hydrogen storage of 4 wt% at room temperature by performing dehydrogenation after milling magnesium hydride and niobium pentoxide has been reported (patent) Reference 1).

水素化マグネシウムの製造法としては、金属マグネシウムと五酸化ニオブを水素ガス雰囲気下でメカニカルミリング処理を行うことで水素化マグネシウムを製造する方法が報告されている(特許文献2)。また、金属マグネシウムに耐圧容器中で加圧水素を反応させる方法、加圧水素反応の加圧加熱を2段階で行う方法等が報告されている(非特許文献1、特許文献4〜6)。   As a method for producing magnesium hydride, there has been reported a method for producing magnesium hydride by subjecting metallic magnesium and niobium pentoxide to mechanical milling in a hydrogen gas atmosphere (Patent Document 2). In addition, a method of reacting metal magnesium with pressurized hydrogen in a pressure vessel, a method of performing pressurized heating of the pressurized hydrogen reaction in two stages, and the like have been reported (Non-Patent Document 1, Patent Documents 4 to 6).

特許第4986101号公報Japanese Patent No. 4986101 特開2008−239367号公報JP 2008-239367 A 特表2004−512254号公報Special table 2004-512254 gazette 特開2008−44832号公報JP 2008-44832 A 特開2013−23406号公報JP 2013-23406 A 特開平07−330305号公報Japanese Patent Laid-Open No. 07-330305

化学大辞典(東京化学同人)第1179頁The Great Dictionary of Chemistry (Tokyo Chemical Doujin), page 1179

しかしながら、特許文献2及び3に記載の方法では、高圧に耐えられる特殊仕様の粉砕容器が必要であるといった問題がある。特に大量に製造する場合には、水素化反応の進行に伴う発熱温度の制御が難しくなり、粉砕装置や粉砕容器(特にシール部分)へかかる負荷が大きくなるという問題がある。また、特許文献4及び5記載の方法では、2段階以上の加熱処理工程が必要であることや500℃以上の高温が必要である。さらに、特許文献6記載の方法では、高活性の触媒Mg粉末を得るために不安定な有機マグネシウムを経た反応が必要であるという問題があった。   However, the methods described in Patent Documents 2 and 3 have a problem that a specially pulverized container that can withstand high pressure is required. In particular, when manufacturing in large quantities, it becomes difficult to control the heat generation temperature accompanying the progress of the hydrogenation reaction, and there is a problem that the load on the pulverizer and the pulverization container (especially the seal portion) becomes large. Moreover, in the method of patent document 4 and 5, the heat processing process of two steps or more is required, and the high temperature of 500 degreeC or more is required. Furthermore, the method described in Patent Document 6 has a problem that a reaction via unstable organomagnesium is required to obtain highly active catalyst Mg powder.

従って、本発明の課題は、高圧高温の条件を必要とせず、制御不能となるような発熱を伴なうことなく、高純度の水素化マグネシウムを安定して製造する方法を提供することにある。   Accordingly, an object of the present invention is to provide a method for stably producing high-purity magnesium hydride without requiring high-pressure and high-temperature conditions and without generating heat that cannot be controlled. .

そこで本発明者は、水素化反応の条件を緩和な条件であっても反応が進行する手段について検討した結果、金属マグネシウムと触媒量の五酸化ニオブとの混合物を不活性有機溶媒中で粉砕した後に、水素化反応を行えば、水素化反応が500℃以下の条件で速やかに進行し、制御不能な発熱も生じることなく、高純度の水素化マグネシウムが製造できることを見出し、本発明を完成した。   Thus, as a result of studying means for allowing the reaction to proceed even under mild conditions for the hydrogenation reaction, the present inventors pulverized a mixture of metallic magnesium and a catalytic amount of niobium pentoxide in an inert organic solvent. Later, if a hydrogenation reaction was performed, the hydrogenation reaction proceeded rapidly under conditions of 500 ° C. or less, and it was found that high-purity magnesium hydride could be produced without causing uncontrollable heat generation, thereby completing the present invention. .

すなわち、本発明は、以下の発明〔1〕〜〔6〕を提供するものである。   That is, the present invention provides the following inventions [1] to [6].

〔1〕金属マグネシウム粉末及び触媒量の五酸化ニオブ粉末を不活性有機溶媒中で粉砕する工程と、該粉砕物を水素ガス雰囲気下200〜450℃に加熱する工程とを有することを特徴とする水素化マグネシウムの製造法。
〔2〕五酸化ニオブ粉末の使用量が、金属マグネシウム粉末1モルに対して0.005〜0.02モルである〔1〕記載の製造法。
〔3〕金属マグネシウム粉末の平均粒子径が200〜500μmであり、五酸化ニオブ粉末の平均粒子径が1〜10μmであり、粉砕物の平均粒子径が10〜100μmである〔1〕又は〔2〕記載の製造法。
〔4〕不活性有機溶媒が、炭化水素系溶媒、エーテル系溶媒、ケトン系溶媒及びアミド系溶媒から選ばれる1種又は2種以上である〔1〕〜〔3〕のいずれか1項記載の製造法。
〔5〕加熱工程が、水素圧1〜10MPa下、200〜450℃に10〜24時間加熱する工程である〔1〕〜〔4〕のいずれか1項記載の製造法。
〔6〕不活性有機溶媒の使用量が、金属マグネシウム粉末1質量部に対して1〜5質量部である〔1〕〜〔5〕のいずれか1項記載の製造法。
[1] It comprises a step of pulverizing metallic magnesium powder and a catalytic amount of niobium pentoxide powder in an inert organic solvent, and a step of heating the pulverized product to 200 to 450 ° C. in a hydrogen gas atmosphere. Manufacturing method of magnesium hydride.
[2] The production method according to [1], wherein the amount of niobium pentoxide powder used is 0.005 to 0.02 mol with respect to 1 mol of metal magnesium powder.
[3] The average particle size of the metal magnesium powder is 200 to 500 μm, the average particle size of the niobium pentoxide powder is 1 to 10 μm, and the average particle size of the pulverized product is 10 to 100 μm [1] or [2 ] The manufacturing method of description.
[4] The method according to any one of [1] to [3], wherein the inert organic solvent is one or more selected from hydrocarbon solvents, ether solvents, ketone solvents, and amide solvents. Manufacturing method.
[5] The production method according to any one of [1] to [4], wherein the heating step is a step of heating at 200 to 450 ° C. for 10 to 24 hours under a hydrogen pressure of 1 to 10 MPa.
[6] The production method according to any one of [1] to [5], wherein the amount of the inert organic solvent used is 1 to 5 parts by mass with respect to 1 part by mass of the metal magnesium powder.

本発明方法によれば、500℃未満の水素化反応で速やかに水素化が進行し、制御不能な発熱も生じることなく、安全に高純度の水素化マグネシウムを大量に製造することができる。   According to the method of the present invention, hydrogenation proceeds rapidly in a hydrogenation reaction at less than 500 ° C., and a large amount of high-purity magnesium hydride can be produced safely without causing uncontrollable heat generation.

実施例1における原料(Mg)の粉末のSEM像を示す。The SEM image of the powder of the raw material (Mg) in Example 1 is shown. 実施例1における粉砕後の粉末のSEM像を示す。The SEM image of the powder after the grinding | pulverization in Example 1 is shown. 比較例3における粉砕後の粉末のSEM像を示す。The SEM image of the powder after the grinding | pulverization in the comparative example 3 is shown.

本発明の水素化マグネシウムの製造法は、
(1)金属マグネシウム粉末及び触媒量の五酸化ニオブ粉末を不活性有機溶媒中で粉砕する工程(工程(1))と、
(2)該粉砕物を水素ガス雰囲気下200〜450℃に加熱する工程(工程(2))とを有する。
The method for producing magnesium hydride of the present invention includes
(1) a step of pulverizing metallic magnesium powder and a catalytic amount of niobium pentoxide powder in an inert organic solvent (step (1));
(2) A step of heating the pulverized product to 200 to 450 ° C. in a hydrogen gas atmosphere (step (2)).

工程(1)に用いられる金属マグネシウム粉末の粒子径は通常入手できるものであればよく、例えば平均粒子径200〜500μmの粉末が好ましく、200〜400μmの粉末がより好ましく、200〜300μmの粉末がさらに好ましい。
平均粒子径は、粉末を走査型電子顕微鏡で観察し、その粉末の最大長を粒子径とし、50個の粉末の最大長を平均したものである。
The particle diameter of the metal magnesium powder used in the step (1) is not particularly limited as long as it is usually available. For example, a powder having an average particle diameter of 200 to 500 μm is preferable, a powder of 200 to 400 μm is more preferable, Further preferred.
The average particle diameter is obtained by observing the powder with a scanning electron microscope, setting the maximum length of the powder as the particle diameter, and averaging the maximum length of 50 powders.

五酸化ニオブ粉末の粒子径は、通常入手できるものであればよく、例えば平均粒子径1〜10μmの粉末が好ましく、1〜8μmの粉末がより好ましく、1〜6μmの粉末がさらに好ましい。   The particle diameter of the niobium pentoxide powder is not particularly limited as long as it is usually available. For example, a powder having an average particle diameter of 1 to 10 μm is preferable, a powder of 1 to 8 μm is more preferable, and a powder of 1 to 6 μm is more preferable.

五酸化ニオブの使用量は、触媒量であればよいが、具体的には金属マグネシウム粉末1モルに対して0.005〜0.02モルが好ましく、0.005〜0.015モルがより好ましく、0.007〜0.012モルがさらに好ましい。   The amount of niobium pentoxide used may be a catalytic amount, but specifically 0.005-0.02 mol is preferable with respect to 1 mol of metal magnesium powder, and 0.005-0.015 mol is more preferable. 0.007 to 0.012 mol is more preferable.

本発明方法においては、金属マグネシウム粉末と五酸化ニオブ粉末の粉砕を、不活性有機溶媒中で行うことが重要である。不活性有機溶媒を使用しないで粉砕を行った場合、粉砕の容器やボールへの金属の付着、金属同士の固着が生じ、粉砕が進行しない。また、次の工程の水素化反応において、水素化反応はほとんど進行しない。
不活性有機溶媒としては、カルボキシル基や水酸基等の官能性基を有しない溶媒であればよく、例えば炭化水素系溶媒、エーテル系溶媒、ケトン系溶媒及びアミド系溶媒から選ばれる1種又は2種以上の溶媒が好ましい。このうち、炭化水素系溶媒が特に好ましい。
In the method of the present invention, it is important to grind the magnesium metal powder and the niobium pentoxide powder in an inert organic solvent. When pulverization is performed without using an inert organic solvent, the metal adheres to the pulverization container or ball and the metals adhere to each other, and the pulverization does not proceed. In the hydrogenation reaction in the next step, the hydrogenation reaction hardly proceeds.
The inert organic solvent may be any solvent that does not have a functional group such as a carboxyl group or a hydroxyl group. For example, one or two types selected from hydrocarbon solvents, ether solvents, ketone solvents, and amide solvents. The above solvents are preferred. Of these, hydrocarbon solvents are particularly preferred.

このうち、炭化水素系溶媒としては、炭素数4〜50の飽和又は不飽和炭化水素が好ましく、炭素数4〜50の脂肪族炭化水素、炭素数4〜50の脂環式炭化水素、炭素数5〜50の芳香族炭化水素が好ましい。より具体的には、n−ヘキサン、シクロヘキサン、ベンゼン、トルエン、キシレン、オクタン、デカン等が挙げられる。   Among these, the hydrocarbon solvent is preferably a saturated or unsaturated hydrocarbon having 4 to 50 carbon atoms, an aliphatic hydrocarbon having 4 to 50 carbon atoms, an alicyclic hydrocarbon having 4 to 50 carbon atoms, or a carbon number. 5-50 aromatic hydrocarbons are preferred. More specifically, n-hexane, cyclohexane, benzene, toluene, xylene, octane, decane and the like can be mentioned.

エーテル系溶媒としては、ジエチルエーテル、イソプロピルエーテル、ジブチルエーテル等のジアルキルエーテル、テトラヒドロフラン、ジオキサン等の環状エーテル等が挙げられる。   Examples of ether solvents include dialkyl ethers such as diethyl ether, isopropyl ether and dibutyl ether, and cyclic ethers such as tetrahydrofuran and dioxane.

ケトン系溶媒としては、アセトン、メチルエチルケトン、ジイソブチルケトン、シクロヘキサノン等が挙げられる。   Examples of the ketone solvent include acetone, methyl ethyl ketone, diisobutyl ketone, and cyclohexanone.

アミド系溶媒としては、ジメチルホルムアミド、ジメチルアセトアミド等が挙げられる。 Examples of amide solvents include dimethylformamide and dimethylacetamide.

不活性有機溶媒の使用量は、粉砕を効率よく進行させる点、粉砕容器への固着を抑制させる点から、金属マグネシウム粉末1質量部に対して1〜5質量部以上が好ましく、1〜4質量部がより好ましく、1〜3質量部がさらに好ましい。   The amount of the inert organic solvent used is preferably 1 to 5 parts by mass or more and 1 to 4 parts by mass with respect to 1 part by mass of the metal magnesium powder from the viewpoint of efficiently proceeding the pulverization and suppressing the fixation to the pulverization container. Part is more preferable, and 1 to 3 parts by mass is further preferable.

粉砕装置としては、振動型ミリング装置、遊星型ボールミル装置、ローラーミル、内外筒回転型ミル、アトライターミル、インナーピース型ミル等が用いられる。粉砕装置に用いるボールとしては、クローム鋼、SUS、ジルコニウム、メノー、タングステンカーバイド等が挙げられる。   As the grinding device, a vibration milling device, a planetary ball mill device, a roller mill, an inner / outer cylinder rotating mill, an attritor mill, an inner piece mill, and the like are used. Examples of the balls used in the pulverizer include chrome steel, SUS, zirconium, meno, tungsten carbide, and the like.

粉砕条件は、特に限定されず、室温条件下、大気圧条件で行うことができる。   The pulverization conditions are not particularly limited, and can be performed under room temperature conditions and atmospheric pressure conditions.

粉砕処理により得られる粉砕物の平均粒子径は、原料金属マグネシウム粉末の粒子径より小さくなっているのが好ましく、例えば10〜100μmであるのが好ましく、20〜80μmであるのがより好ましく、30〜70μmであるのがさらに好ましい。   The average particle size of the pulverized product obtained by the pulverization treatment is preferably smaller than the particle size of the raw metal magnesium powder, for example, preferably 10 to 100 μm, more preferably 20 to 80 μm, 30 More preferably, it is -70 micrometers.

次に、粉砕物を水素ガス雰囲気下200〜450℃に加熱する(工程(2))。工程(2)は、耐圧容器中で行なわれる。
工程(2)の水素圧は、水素化反応をスムーズに進行させる点から、ゲージ圧で1〜10MPaが好ましく、2〜8MPaがより好ましく、3〜7MPaがさらに好ましい。
Next, the pulverized product is heated to 200 to 450 ° C. in a hydrogen gas atmosphere (step (2)). Step (2) is performed in a pressure vessel.
The hydrogen pressure in the step (2) is preferably 1 to 10 MPa, more preferably 2 to 8 MPa, and further preferably 3 to 7 MPa in terms of gauge pressure from the viewpoint of smoothly proceeding the hydrogenation reaction.

工程(2)の加熱温度は、500℃未満で十分であり、200〜450℃が好ましく、300〜450℃がより好ましく、350〜450℃がさらに好ましい。   The heating temperature in the step (2) is sufficient to be less than 500 ° C, preferably 200 to 450 ° C, more preferably 300 to 450 ° C, and further preferably 350 to 450 ° C.

加熱時間は、10〜24時間が好ましく、10〜20時間がより好ましく、12〜18時間がさらに好ましい。   The heating time is preferably 10 to 24 hours, more preferably 10 to 20 hours, and further preferably 12 to 18 hours.

工程(2)により、金属マグネシウムが効率良く水素化され、高純度(95%以上)の水素化マグネシウムが得られる。なお、得られた水素化マグネシウム中には、触媒量の五酸化ニオブが含まれているが、水素吸着材料として使用するに際しては何ら問題がない。   By the step (2), magnesium metal is efficiently hydrogenated, and high purity (95% or more) magnesium hydride is obtained. The obtained magnesium hydride contains a catalytic amount of niobium pentoxide, but there is no problem when used as a hydrogen adsorbing material.

次に実施例を挙げて本発明を更に詳細に説明する。   EXAMPLES Next, an Example is given and this invention is demonstrated still in detail.

実施例1
(1)原料として高純度化学社製マグネシウム粉末(Mg;平均粒子径約200μm、図1参照)、添川理化学社製五酸化ニオブ粉末(Nb2O5;平均粒子径約5μm)を用いた。原料を総重量10.0g、Nb2O5 1mol%となるように秤量し、鋼鉄製のミル容器(250cc)内に100個の鋼鉄製のボール(φ10mm)とヘキサンを25mLを封入した。封入後、遊星ボールミル装置P−5(フリッチュ・ジャパン製)を用い、回転数250rpm、10時間公転させることで、マグネシウム中にサブミクロンサイズ以下の酸化ニオブが分散した、平均粒子径が約50μm以下の混合粉末を作製した(図2参照)。
Example 1
(1) Magnesium powder (Mg; average particle size of about 200 μm, see FIG. 1) and Niobium pentoxide powder (Nb 2 O 5 ; average particle size of about 5 μm) manufactured by Soekawa Rikagaku Co., Ltd. were used as raw materials. The raw materials were weighed to a total weight of 10.0 g and Nb 2 O 5 1 mol%, and 100 steel balls (φ10 mm) and 25 mL of hexane were sealed in a steel mill container (250 cc). After sealing, using a planetary ball mill device P-5 (manufactured by Fritsch Japan) and revolving at 250 rpm for 10 hours, niobium oxide of submicron size or less is dispersed in magnesium, and the average particle size is about 50 μm or less (See FIG. 2).

(2)混合粉末を耐圧容器に封入し、水素圧力(ケージ圧)4MPa、400℃の温度で12時間保持することで、水素化処理を行った。水素化処理後に熱伝導度法により試料中の水素濃度を求めることによって水素化率(MgH2/Mg+MgH2*100)を算出したところ、水素化率は95%に達した。 (2) The mixed powder was sealed in a pressure-resistant vessel, and hydrogenation was performed by maintaining the hydrogen pressure (cage pressure) at 4 MPa and a temperature of 400 ° C. for 12 hours. When the hydrogenation rate (MgH 2 / Mg + MgH 2 * 100) was calculated by obtaining the hydrogen concentration in the sample by the thermal conductivity method after the hydrogenation treatment, the hydrogenation rate reached 95%.

比較例1
実施例1において、ヘキサンを添加せずに粉砕処理を行ったところ、容器及びボールに金属マグネシウムが付着し、また金属マグネシウム同士が固着してしまい粉砕することができなかった。
Comparative Example 1
In Example 1, when pulverization was performed without adding hexane, metal magnesium adhered to the container and the balls, and metal magnesium adhered to each other, and could not be pulverized.

比較例2
原料として高純度化学社製マグネシウム粉末(Mg;平均粒子径約200μm)のみを用いた。粉末を粉砕せずに、耐圧容器に封入し、水素圧力7MPa、400℃の温度で12時間保持することで、水素化処理を行った。水素化処理後に熱伝導度法により試料中の水素濃度を求めることによって水素化率(MgH2/Mg+MgH2*100)を算出した。
測定の結果、7MPaの高い圧力条件においても水素化率は89%であった。
Comparative Example 2
Only magnesium powder (Mg; average particle size of about 200 μm) manufactured by Kojundo Chemical Co., Ltd. was used as a raw material. Without pulverizing the powder, the powder was enclosed in a pressure vessel and kept at a hydrogen pressure of 7 MPa and a temperature of 400 ° C. for 12 hours to perform a hydrogenation treatment. The hydrogenation rate (MgH 2 / Mg + MgH 2 * 100) was calculated by determining the hydrogen concentration in the sample by the thermal conductivity method after the hydrogenation treatment.
As a result of the measurement, the hydrogenation rate was 89% even under a high pressure condition of 7 MPa.

比較例3
(1)原料として高純度化学社製マグネシウム粉末(Mg)のみを用いた。原料を総重量10.0gとなるように秤量し、鋼鉄製のミル容器(250cc)内に100個の鋼鉄製のボール(φ10mm)とヘキサンを25mlを封入した。封入後、遊星ボールミル装置P−5(フリッチュ・ジャパン製)を用い、回転数250rpm、10時間公転させることで平均粒子径が50μm以下の粒子になるよう粉砕処理を行った(図3参照)。
Comparative Example 3
(1) Only magnesium powder (Mg) manufactured by Koyo Chemical Co., Ltd. was used as a raw material. The raw materials were weighed to a total weight of 10.0 g, and 100 steel balls (φ10 mm) and 25 ml of hexane were sealed in a steel mill container (250 cc). After encapsulating, a planetary ball mill device P-5 (manufactured by Fritsch Japan) was used to perform revolving treatment at a rotational speed of 250 rpm for 10 hours to obtain particles having an average particle diameter of 50 μm or less (see FIG. 3).

(2)処理後の粉末を耐圧容器に封入し、水素圧力(ケージ圧)4MPa、400℃の温度で12時間保持を行った。水素化処理後に熱伝導度法により試料中の水素濃度を求めることによって水素化率(MgH2/Mg+MgH2*100)を算出したところ、水素化率は76%であった。 (2) The treated powder was sealed in a pressure vessel and held at a hydrogen pressure (cage pressure) of 4 MPa and a temperature of 400 ° C. for 12 hours. When the hydrogenation rate (MgH 2 / Mg + MgH 2 * 100) was calculated by obtaining the hydrogen concentration in the sample by the thermal conductivity method after the hydrogenation treatment, the hydrogenation rate was 76%.

Claims (6)

金属マグネシウム粉末及び触媒量の五酸化ニオブ粉末を不活性有機溶媒中で粉砕する工程と、該粉砕物を水素ガス雰囲気下200〜450℃に加熱する工程とを有することを特徴とする水素化マグネシウムの製造法。   Magnesium hydride comprising a step of pulverizing metallic magnesium powder and a catalytic amount of niobium pentoxide powder in an inert organic solvent, and a step of heating the pulverized product to 200 to 450 ° C. in a hydrogen gas atmosphere. Manufacturing method. 五酸化ニオブ粉末の使用量が、金属マグネシウム粉末1モルに対して0.005〜0.02モルである請求項1記載の製造法。   The production method according to claim 1, wherein the amount of niobium pentoxide powder used is 0.005 to 0.02 mole per mole of metal magnesium powder. 金属マグネシウム粉末の平均粒子径が200〜500μmであり、五酸化ニオブ粉末の平均粒子径が1〜10μmであり、粉砕物の平均粒子径が10〜100μmである請求項1又は2記載の製造法。   The production method according to claim 1 or 2, wherein the metal magnesium powder has an average particle size of 200 to 500 µm, the niobium pentoxide powder has an average particle size of 1 to 10 µm, and the pulverized product has an average particle size of 10 to 100 µm. . 不活性有機溶媒が、炭化水素系溶媒、エーテル系溶媒、ケトン系溶媒及びアミド系溶媒から選ばれる1種又は2種以上である請求項1〜3のいずれか1項記載の製造法。   The production method according to any one of claims 1 to 3, wherein the inert organic solvent is one or more selected from hydrocarbon solvents, ether solvents, ketone solvents and amide solvents. 加熱工程が、水素圧1〜10MPa下、200〜450℃に10〜24時間加熱する工程である請求項1〜4のいずれか1項記載の製造法。   The manufacturing method according to any one of claims 1 to 4, wherein the heating step is a step of heating at 200 to 450 ° C for 10 to 24 hours under a hydrogen pressure of 1 to 10 MPa. 不活性有機溶媒の使用量が、金属マグネシウム粉末1質量部に対して1〜5質量部である請求項1〜5のいずれか1項記載の製造法。
The production method according to any one of claims 1 to 5, wherein the amount of the inert organic solvent used is 1 to 5 parts by mass with respect to 1 part by mass of the metal magnesium powder.
JP2014181282A 2014-09-05 2014-09-05 Method for producing magnesium hydride Active JP6295170B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014181282A JP6295170B2 (en) 2014-09-05 2014-09-05 Method for producing magnesium hydride

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014181282A JP6295170B2 (en) 2014-09-05 2014-09-05 Method for producing magnesium hydride

Publications (2)

Publication Number Publication Date
JP2016056034A JP2016056034A (en) 2016-04-21
JP6295170B2 true JP6295170B2 (en) 2018-03-14

Family

ID=55757486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014181282A Active JP6295170B2 (en) 2014-09-05 2014-09-05 Method for producing magnesium hydride

Country Status (1)

Country Link
JP (1) JP6295170B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020210583A1 (en) * 2019-08-29 2021-03-04 National University Corporation Shizuoka University Process for producing magnesium hydride and process for producing tetrahydroborate
CN112723310B (en) * 2020-12-30 2023-09-08 榆林学院 Preparation method of magnesium hydride
CN117505840A (en) * 2022-07-28 2024-02-06 中国科学院大连化学物理研究所 Preparation method of organic solvent activated nano magnesium powder
CN118083910A (en) * 2024-04-24 2024-05-28 大连金煜新能源有限公司 Magnesium-based hydrogen storage material and method for synthesizing magnesium-based hydrogen storage material with assistance of alkali metal reduced titanium dioxide catalyst

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4039278A1 (en) * 1990-12-08 1992-06-11 Goldschmidt Ag Th METHOD FOR PRODUCING ACTIVE, REVERSIBLE H (DOWN ARROW) 2 (DOWN ARROW) RECORDING MAGNESIUM HYDRODIDE MAGNESIUM HYDROGEN STORAGE SYSTEMS
JPH11503489A (en) * 1995-02-02 1999-03-26 ハイドロ−ケベック Nanocrystalline Mg-based material and its use for hydrogen transport and hydrogen storage
JP5189778B2 (en) * 2006-09-15 2013-04-24 Jx日鉱日石エネルギー株式会社 Hydrogen storage material and manufacturing method thereof
JP2008239367A (en) * 2007-03-26 2008-10-09 Taiheiyo Cement Corp Method for producing hydrogen storage material

Also Published As

Publication number Publication date
JP2016056034A (en) 2016-04-21

Similar Documents

Publication Publication Date Title
JP6295170B2 (en) Method for producing magnesium hydride
JP5278969B2 (en) Manufacturing method of titanium hydride powder (MANUFACTURINGMETHOODFORTITANIUMHYDRIDEPOWDERS)
Shao et al. Preparation of Mg-based hydrogen storage materials from metal nanoparticles
CN103526096A (en) Tungsten, zirconium and yttrium oxide alloy and preparation method thereof
Chakraborty et al. Studies on the synthesis of a Mo–30 wt% W alloy by non-conventional approaches
CN102139370A (en) Method for preparing Ti2AlC self-lubricating and heat-resisting structural material
Šestan et al. Tungsten carbide as a deoxidation agent for plasma-facing tungsten-based materials
JP2008043927A (en) Method of manufacturing hydrogen storage material
JP6977968B2 (en) Method for producing sodium borohydride
JP2009132553A (en) Method for producing hydrogen storage material and hydrogen generation method
JP4853810B2 (en) Hydrogen storage material and method for producing the same
US7592073B2 (en) Rhenium composite alloys and a method of preparing same
Verón et al. Role of MgCo compound on the sorption properties of the Mg–Co milled mixtures
KR20200053326A (en) High purity titanium powder, method for manufacturing of the same, and manufacturing device of the same
JP5532949B2 (en) Hydrogenation method of hydrogen storage material
JP6660776B2 (en) Method for producing tantalum nitride (Ta3N5)
Gorsse et al. Light iron and hard magnesium nanocomposites
RU2641428C1 (en) Method of producing quasispherical particles of titanium
Papynov et al. UO2 fuel pellets fabrication via Spark Plasma Sintering using non-standard molybdenum die
JP7070066B2 (en) Method for producing tetrahydroborate
WO2009047011A1 (en) Composite material for hydrogen storage with very high rates of absorption and desorption and method of production of said material
US9908782B2 (en) Method for synthesis of boron suboxide
JP2005095869A (en) Hydrogen storing material and its production method
Révész et al. The effect of severe plastic deformation on the hydrogen storage properties of metal hydrides
KR101014350B1 (en) Fabrication method of high purity titanium alloy powder, and high purity titanium alloy powder thereby

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170314

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180131

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180219

R150 Certificate of patent or registration of utility model

Ref document number: 6295170

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250