JP6290688B2 - Bactericidal and antiviral components - Google Patents

Bactericidal and antiviral components Download PDF

Info

Publication number
JP6290688B2
JP6290688B2 JP2014073932A JP2014073932A JP6290688B2 JP 6290688 B2 JP6290688 B2 JP 6290688B2 JP 2014073932 A JP2014073932 A JP 2014073932A JP 2014073932 A JP2014073932 A JP 2014073932A JP 6290688 B2 JP6290688 B2 JP 6290688B2
Authority
JP
Japan
Prior art keywords
substrate
antiviral
bactericidal
functional group
sterilizing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014073932A
Other languages
Japanese (ja)
Other versions
JP2015195826A (en
Inventor
洋平 直原
洋平 直原
大志 早田
大志 早田
朋和 長尾
朋和 長尾
中山 鶴雄
鶴雄 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NBC Meshtec Inc
Original Assignee
NBC Meshtec Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NBC Meshtec Inc filed Critical NBC Meshtec Inc
Priority to JP2014073932A priority Critical patent/JP6290688B2/en
Publication of JP2015195826A publication Critical patent/JP2015195826A/en
Application granted granted Critical
Publication of JP6290688B2 publication Critical patent/JP6290688B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は酸性ガスに対する消臭性を有する官能基を基材表面に導入し、さらに該官能基に、殺菌性、抗ウイルス性を有する金属錯体をイオン結合させた殺菌・抗ウイルス性部材に関するものである。   The present invention relates to a sterilizing / antiviral member in which a functional group having a deodorizing property against acid gas is introduced on the surface of a substrate, and further, a metal complex having bactericidal and antiviral properties is ionically bonded to the functional group. It is.

国民の生活水準の向上に伴い、健康および衛生に関する意識も高まっており、衣食住の各分野において、消臭加工を施した製品や技術が実用化されている。   As people's living standards improve, awareness of health and hygiene has increased, and products and technologies that have been deodorized have been put into practical use in the fields of food, clothing and housing.

一方で、近年、SARS(重症急性呼吸器症候群)やノロウイルス、鳥インフルエンザなどウイルス感染による死者が報告されている。さらに病院、介護老人ホームなどの施設内におけるノロウイルスやインフルエンザの感染症、またMRSAなどの薬剤耐性菌による院内感染などが流行し、それに対する早急な対処策が求められている。これらの背景から、ウイルスや細菌に対する高い不活化機能を有する部材の開発が望まれている。   On the other hand, deaths due to viral infections such as SARS (Severe Acute Respiratory Syndrome), Norovirus and avian influenza have been reported in recent years. In addition, norovirus and influenza infections in facilities such as hospitals and nursing homes are prevalent, and nosocomial infections caused by drug-resistant bacteria such as MRSA are prevalent, and immediate countermeasures are required. From these backgrounds, development of a member having a high inactivation function against viruses and bacteria is desired.

このような事態に対応するために、消臭性に関しては、繊維表面に放射線グラフト重合によりイオン交換基を導入することにより酸性、塩基性ガス成分を吸着除去できるガス除去材料(特許文献1)などが開発されている。また、殺菌性を有する材料としてはヨウ素吸着サイトとしての第四級アンモニウム基とヨウ素徐放サイトとしてのN−アルキルアミド基を放射線グラフト重合にて基材に導入し、さらにヨウ素を固定することでヨウ素の徐放性を制御した殺菌材料なども開発されている(特許文献2)。   In order to cope with such a situation, with regard to deodorization, a gas removing material that can adsorb and remove acidic and basic gas components by introducing ion exchange groups onto the fiber surface by radiation graft polymerization (Patent Document 1), etc. Has been developed. In addition, as a material having bactericidal properties, a quaternary ammonium group as an iodine adsorption site and an N-alkylamide group as an iodine sustained release site are introduced into a substrate by radiation graft polymerization, and further iodine is fixed. A sterilizing material that controls the sustained release of iodine has also been developed (Patent Document 2).

特開2005−211698号公報Japanese Patent Laying-Open No. 2005-21698 特開2008−307253号公報JP 2008-307253 A

しかし特許文献1のように、官能基のみを固定した部材では、ガス除去効果はあるものの、ウイルスや細菌に対する不活化能がない。従って、捕集されたウイルスや細菌が、再度、使用環境内に排出される恐れがあり、院内感染など感染範囲の拡大につながってしまう可能性がある。また特許文献2のように、殺菌性を付与するためにヨウ素などを固定した場合、部材が黄色く着色してしまったり、ウイルスに対する不活化効果がない、などの問題があった。   However, as in Patent Document 1, a member in which only a functional group is fixed has a gas removing effect but does not have an inactivating ability against viruses and bacteria. Therefore, there is a possibility that the collected virus and bacteria may be discharged again into the use environment, which may lead to expansion of the infection range such as hospital infection. Moreover, like patent document 2, when iodine etc. were fixed in order to provide bactericidal property, there existed a problem that a member was colored yellow or there was no inactivation effect with respect to a virus.

そこで本発明は、上記課題を解決するために、様々なガスに対する消臭性と、付着した細菌の殺菌機能やウイルスの不活化機能とを兼ね備えた殺菌・抗ウイルス性部材を提供することを目的とする。   Therefore, in order to solve the above-mentioned problems, the present invention aims to provide a sterilizing / antiviral member having both a deodorizing property against various gases and a sterilizing function of attached bacteria and an inactivating function of viruses. And

すなわち第1の発明は、基体と、少なくとも前記基体の一部に導入された消臭性を有する塩基性官能基と、該塩基性官能基にイオン結合により固定された殺菌・抗ウイルス性を有する金属錯体と、を有することを特徴とする殺菌・抗ウイルス性部材である。   That is, the first invention has a base, a basic functional group having a deodorizing property introduced into at least a part of the base, and a bactericidal / antiviral property fixed to the basic functional group by ionic bonding. It is a bactericidal and antiviral member characterized by having a metal complex.

また第2の発明は、上記第1の発明において、前記消臭性を有する塩基性官能基がアミノ基からなる酸性ガス吸着能を有する官能基であることを特徴とする殺菌・抗ウイルス性部材である。   The second invention is the bactericidal / antiviral member according to the first invention, wherein the deodorant basic functional group is an amino group-functional acid group having an acid gas adsorption ability. It is.

さらにまた第3の発明は、上記第1または第2の発明のいずれかにおいて、前記消臭性を有する塩基性官能基が放射線グラフト重合法にて導入されることを特徴とする殺菌・抗ウイルス性部材である。   Still further, a third invention is the bactericidal / antiviral method according to any one of the first and second inventions, wherein the deodorizing basic functional group is introduced by a radiation graft polymerization method. It is a sex member.

さらにまた第4の発明は、上記第1から第3のいずれかの発明において、前記金属錯体に含まれる金属イオンが金、白金から少なくとも1種選択されることを特徴とする殺菌・抗ウイルス性部材である。   Still further, a fourth invention is the bactericidal / antiviral property according to any one of the first to third inventions, wherein the metal ion contained in the metal complex is selected from gold and platinum. It is a member.

さらにまた第5の発明は、上記第1から第4のいずれかの発明において、前記基体に導入された消臭性を有する酸性官能基をさらに有することを特徴とする殺菌・抗ウイルス性部材である。   Furthermore, a fifth invention is the bactericidal / antiviral member according to any one of the first to fourth inventions, further comprising an acidic functional group having a deodorizing property introduced into the substrate. is there.

さらにまた第6の発明は、上記第1から第5のいずれかの発明において、前記消臭性を有する酸性官能基が、スルホン酸基、リン酸基、カルボキシル基から少なくとも1種選択される塩基性ガス吸着能を有する官能基であることを特徴とする殺菌・抗ウイルス性部材である。   Furthermore, a sixth invention provides the base according to any one of the first to fifth inventions, wherein the deodorizing acidic functional group is selected from at least one selected from a sulfonic acid group, a phosphoric acid group, and a carboxyl group. It is a sterilizing / antiviral member characterized by being a functional group having a adsorptive gas adsorption ability.

さらにまた第7の発明は、上記第1から第6のいずれかの発明において、前記基体の一部にさらに酸性ガス吸着特性を有する無機微粒子および/または塩基性ガス吸着特性を有する無機微粒子を含有することを特徴とする殺菌・抗ウイルス性部材である。   Furthermore, a seventh invention according to any one of the first to sixth inventions, further comprising inorganic fine particles having acidic gas adsorption characteristics and / or inorganic fine particles having basic gas adsorption characteristics in a part of the substrate. It is a sterilizing / antiviral member.

さらにまた第8の発明は、上記第1から第7のいずれかの発明において、前記基体が繊維構造体であることを特徴とする殺菌・抗ウイルス性部材である。   Furthermore, an eighth invention is the bactericidal / antiviral member according to any one of the first to seventh inventions, wherein the substrate is a fiber structure.

さらにまた第9の発明は、上記第1から第7のいずれかの発明において、前記基体が樹脂成形体であることを特徴とする殺菌・抗ウイルス性部材である。   Furthermore, a ninth invention is the sterilizing / antiviral member according to any one of the first to seventh inventions, wherein the substrate is a resin molded body.

さらにまた第10の発明は、上記第1から第7のいずれかの発明において、前記基体がフィルムまたはシートであることを特徴とする殺菌・抗ウイルス性部材である。   Furthermore, a tenth invention is a bactericidal / antiviral member according to any one of the first to seventh inventions, wherein the substrate is a film or a sheet.

さらにまた第11の発明は、上記第1から第10のいずれかに記載の殺菌・抗ウイルス性部材を用いたマスクである。   Furthermore, an eleventh invention is a mask using the bactericidal / antiviral member according to any one of the first to tenth aspects.

さらにまた第12の発明は、上記第1から第10のいずれかに記載の殺菌・抗ウイルス性部材を用いたフィルタである。   Furthermore, a twelfth aspect of the invention is a filter using the bactericidal / antiviral member according to any one of the first to tenth aspects.

本発明によれば、消臭性だけでなく、基体に付着した細菌を殺したりウイルスを不活化する機能を兼ね備える殺菌・抗ウイルス性部材を提供することができる。   According to the present invention, it is possible to provide a bactericidal / antiviral member having not only a deodorizing property but also a function of killing bacteria attached to a substrate or inactivating a virus.

以下、本発明の実施形態について詳述する。本発明の抗ウイルス性部材は、基体と、基体の少なくとも一部に導入された消臭性を有する塩基性官能基と、該消臭性を有する塩基性官能基にイオン結合にて固定された金属錯体から構成されており、基体に付着した細菌やウイルスを不活化すると共に、消臭性も兼ね備えた抗ウイルス性部材である。   Hereinafter, embodiments of the present invention will be described in detail. The antiviral member of the present invention is fixed to the base, the basic functional group having deodorizing properties introduced into at least a part of the base, and the basic functional group having deodorizing properties by ionic bonds. The antiviral member is composed of a metal complex, inactivates bacteria and viruses attached to the substrate, and has deodorizing properties.

本実施形態の殺菌・抗ウイルス性部材の基体は、殺菌性と抗ウイルス性と消臭性を付与する基材である。当該基体に用いられる材料としては、特に限定されないが、後述のように放射線グラフト重合法によって塩基性官能基を導入する場合には表面の少なくとも一部がポリマーであることが好ましい。アルミニウムやステンレスなどの金属材料や、ガラスおよびセラミックなどの無機材料の場合、その表面に塗膜などによりポリマー層が形成されていれば利用できる。ポリマーの例としては、ポリエチレン、ポリプロピレン、ポリスチレン、ポリカーボネート、ポリエステル、ポリアミド、ポリアセタール、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリフッ化ビニリデン、ポリアクリル酸、ポリメチルメタアクリレート、ポリウレタン、ABS、SBC、ラテックスなどが挙げられる。   The substrate of the bactericidal / antiviral member of the present embodiment is a base material imparting bactericidal properties, antiviral properties and deodorizing properties. The material used for the substrate is not particularly limited, but when a basic functional group is introduced by a radiation graft polymerization method as described later, it is preferable that at least a part of the surface is a polymer. In the case of a metal material such as aluminum or stainless steel, or an inorganic material such as glass or ceramic, it can be used if a polymer layer is formed on the surface thereof by a coating film or the like. Examples of polymers include polyethylene, polypropylene, polystyrene, polycarbonate, polyester, polyamide, polyacetal, polyvinyl chloride, polyvinylidene chloride, polyvinylidene fluoride, polyacrylic acid, polymethyl methacrylate, polyurethane, ABS, SBC, latex, etc. Can be mentioned.

本実施形態の殺菌・抗ウイルス性部材に用いられる基体の形状、形態は特に限定されず、織物、編物、不織布、シート、フィルムなどのシート状のものに加え、成形体などの樹脂製品なども使用可能である。したがって、本実施形態の殺菌・抗ウイルス性部材を用いて、マスク、キャップ(帽子)、シューズカバー、カーテン、ブラインド、エアコン用フィルタ、空気清浄機用フィルタ、掃除機用フィルタ、換気扇用フィルタ、車両用空調フィルタ、空調用フィルタ、人工呼吸器用フィルタ、チューブ、人工鼻、医療用ドレープ(医療用覆布、医療用シート)、使い捨て手袋、医療用手袋、創傷部被覆用部材、インサイズドレープ、サージカルテープ、ガーゼ、壁紙、衣類、寝具、網戸用ネット、鶏舎用ネット、蚊屋などのネット類、などを構成することができる。   The shape and form of the substrate used for the bactericidal / antiviral member of the present embodiment are not particularly limited, and in addition to sheet-like materials such as woven fabrics, knitted fabrics, nonwoven fabrics, sheets, and films, resin products such as molded products are also available. It can be used. Therefore, masks, caps (caps), shoe covers, curtains, blinds, air conditioner filters, air cleaner filters, cleaner filters, ventilation fan filters, vehicles, using the sterilizing / antiviral member of the present embodiment Air conditioning filter, air conditioning filter, ventilator filter, tube, artificial nose, medical drape (medical covering, medical sheet), disposable glove, medical glove, wound covering member, in-size drape, surgical tape , Gauze, wallpaper, clothing, bedding, nets for screen doors, nets for poultry houses, nets such as mosquito nets, and the like.

さらに、本実施形態の殺菌・抗ウイルス性部材の表面には、他の部材、例えばフィルムやシートが積層されるようにしてもよい。例えば、防水性を有するフィルムやシートを積層することで殺菌・抗ウイルス性部材に防水性を付与することができる。当該防水性を備えるシート状の殺菌・抗ウイルス性部材を用いて、該シートを例えば縫い合わせたり接着したりすることにより、ウイルスや血液が透過するのを防止できる高性能防護服や医療用手袋、また病院や介護用のシーツなどを構成することができる。   Furthermore, another member, for example, a film or a sheet may be laminated on the surface of the sterilizing / antiviral member of the present embodiment. For example, waterproofing can be imparted to the sterilizing / antiviral member by laminating a waterproof film or sheet. High-performance protective clothing and medical gloves that can prevent the transmission of viruses and blood by, for example, sewing or bonding the sheets using the waterproof, sheet-like sterilizing and antiviral member, In addition, sheets for hospitals and nursing care can be configured.

積層するフィルムやシートとしては、使用者が快適に過ごせるように、水を遮蔽し、空気(湿気)を透過させる透湿性を備えたものが好適に用いられる。具体的には、一般に市販されているものを使用目的に合わせて選定し使用すればよい。   As the film or sheet to be laminated, a film having moisture permeability that shields water and allows air (humidity) to pass therethrough is preferably used so that the user can spend comfortably. Specifically, a commercially available product may be selected and used according to the purpose of use.

さらにまた、本実施形態の殺菌・抗ウイルス性部材の少なくとも一方の主面に接着剤などを積層し、使用者が任意にマスクや壁や床に簡単に接着できるようにすることもできる。具体的には、手持ちのマスクの表面に本発明の殺菌・抗ウイルス性部材を貼付けることで、ウイルス不活化マスクにすることができる。   Furthermore, an adhesive or the like can be laminated on at least one main surface of the sterilizing / antiviral member of the present embodiment so that the user can arbitrarily adhere to a mask, wall or floor. Specifically, a virus inactivating mask can be obtained by sticking the sterilizing / antiviral member of the present invention to the surface of a hand-held mask.

また、本実施形態の殺菌・抗ウイルス性部材に係る基体は、通気性を有する構造体に係らず、空気を透過させない、言い換えれば遮気性を備えていてもよい。具体的には基体を、ポリエステル、ポリエチレン、ポリプロピレン、ポリアミド、ポリ塩化ビニル、ポリフッ化ビニリデン、ポリビニルアルコール、ポリ酢酸ビニル、ポリイミド、ポリアミドイミド、ポリテトラフルオロエチレン、四フッ化エチレン−エチレン共重合体などの樹脂、ポリカーボネート樹脂シート・フィルム、塩化ビニルシート、フッ素樹脂シート、ポリエチレンシート、シリコーン樹脂シート、ナイロンシート、ABSシート、ウレタンシートなどの高分子からなるシート、に構成してもよい。また、基体の表面は、塗装や印刷などが施されてあっても良い。   Moreover, the base | substrate which concerns on the bactericidal and antiviral member of this embodiment does not permeate | transmit air irrespective of the structure which has air permeability, In other words, you may be equipped with airtightness. Specifically, the substrate may be polyester, polyethylene, polypropylene, polyamide, polyvinyl chloride, polyvinylidene fluoride, polyvinyl alcohol, polyvinyl acetate, polyimide, polyamideimide, polytetrafluoroethylene, ethylene tetrafluoride-ethylene copolymer, etc. It is also possible to constitute a resin sheet, a polycarbonate resin sheet / film, a vinyl chloride sheet, a fluororesin sheet, a polyethylene sheet, a silicone resin sheet, a nylon sheet, an ABS sheet, a sheet made of a polymer such as a urethane sheet. The surface of the substrate may be painted or printed.

本発明の殺菌・抗ウイルス性部材が保持された遮気性を有する基体は、例えば、壁紙やシャワーカーテン、ブラインド、デスクマット、食品用保存袋、食品用ラップフィルム、キーボードカバー、タッチパネル、タッチパネルカバー、医療用ドレープ、インサイズドレープ、病院内などのビル用内装材、電車や自動車などの内装材、車両用シート、椅子やソファーのカバー、ウイルスを扱う設備、ドアや床板の防汚シート、人工呼吸器用マスク、人工呼吸器用部品など、様々な分野に利用できる。   Examples of the substrate having air-tightness on which the bactericidal / antiviral member of the present invention is held include, for example, wallpaper, shower curtain, blind, desk mat, food storage bag, food wrap film, keyboard cover, touch panel, touch panel cover, Medical drapes, in-size drapes, interior materials for buildings such as hospitals, interior materials for trains and automobiles, vehicle seats, chair and sofa covers, virus handling equipment, antifouling sheets for doors and floorboards, artificial respiration It can be used in various fields such as masks for ventilators and ventilator parts.

次に、本実施形態の殺菌・抗ウイルス性部材が有する消臭性を有する塩基性官能基について説明する。殺菌・抗ウイルス性部材は、基体の少なくとも一部に消臭性を有する塩基性官能基を備える。基体の少なくとも一部は、ガスに接触可能な部分であればよく、基体の表面でもよいし、基体の内部でもよい。消臭性を有する塩基性官能基は、主に酸性ガスと反応して酸性ガスを吸着し、酸性ガスの消臭を行う。消臭性を有する塩基性官能基としてはアミノ基などが挙げられる。   Next, the basic functional group having the deodorizing property of the bactericidal / antiviral member of the present embodiment will be described. The sterilizing / antiviral member has a basic functional group having deodorizing properties on at least a part of the substrate. At least a part of the substrate may be a part that can come into contact with the gas, and may be the surface of the substrate or the inside of the substrate. The basic functional group having a deodorizing property mainly reacts with an acid gas to adsorb the acid gas and deodorize the acid gas. An amino group etc. are mentioned as a basic functional group which has deodorizing property.

前記消臭性を有する塩基性官能基は、後述の放射線グラフト重合法を用いて基体に導入されるのが好ましい。放射線グラフト重合法とは、基材のポリマー部分に放射線を照射するなどしてラジカルを形成させ、この発生したラジカル部分にビニルモノマーなどの重合性単量体をグラフト反応させた後、目的の官能基を含む物質(本実施形態の場合、遊離型酸性官能基を含む物質)と接触させ、固定するというものである。当該方法は、様々な形状の高分子に多くの機能性官能基を導入することができるので、分離機能性材などで使われている手法である。   The basic functional group having the deodorizing property is preferably introduced into the substrate using a radiation graft polymerization method described later. Radiation graft polymerization is a method in which radicals are formed by irradiating the polymer part of the base material with radiation, etc., and a grafted monomer such as a vinyl monomer is grafted to the generated radical part. It is brought into contact with a substance containing a group (in this embodiment, a substance containing a free acidic functional group) and fixed. Since this method can introduce many functional functional groups into polymers having various shapes, it is a method used for separation functional materials and the like.

基体にラジカルを生成させる方法としては、窒素、アルゴン、ヘリウムガスなどの不活性ガス中で、基体へ、α線や、β線や、γ線や、電子線等の放射線を照射する方法(放射線照射法)や、紫外線を照射する方法(紫外線(UV)法)、または、コロナ放電を照射する方法(コロナ放電法)や、グロー放電により発生するプラズマを照射する方法(プラズマ法)、あるいは、これらを組み合わせた方法などを挙げることができる。   As a method of generating radicals on the substrate, a method of irradiating the substrate with radiation such as α rays, β rays, γ rays, or electron beams in an inert gas such as nitrogen, argon or helium gas (radiation) Irradiation method), ultraviolet irradiation method (ultraviolet (UV) method), corona discharge irradiation method (corona discharge method), plasma discharge generated by glow discharge (plasma method), or The method which combined these etc. can be mentioned.

また、基体にラジカルを生成させる別の方法として、基体をイソプロピルアルコール(IPA)などのアルコール類に含浸させた状態で、α線や、β線や、γ線や、電子線や、紫外線を基体へ照射する方法、または、コロナ放電を照射する方法や、グロー放電により発生するプラズマを照射する方法を用いても良い。   As another method for generating radicals on the substrate, the substrate is impregnated with α rays, β rays, γ rays, electron beams, or ultraviolet rays while the substrate is impregnated with an alcohol such as isopropyl alcohol (IPA). Alternatively, a method of irradiating, a method of irradiating corona discharge, or a method of irradiating plasma generated by glow discharge may be used.

また、UV法の光開始剤としてはベンゾフェノン、アントラキノンなどがある。光開始剤が吸収した光のエネルギーが、ポリマーへ移動してラジカルを作る場合と、光開始剤ラジカルがポリマーの水素を引き抜いて、ポリマーにラジカルを作る場合とがある。プラズマ法では、プラズマ中の電子がポリマーにラジカルをつくる場合と、ラジカルを酸素と反応させて過酸化ラジカルとする方法とがある。UV法とプラズマ法とコロナ放電法の特徴は基体の表面近傍のみにラジカル発生が制限される点である。   Examples of UV photoinitiators include benzophenone and anthraquinone. There are a case where the energy of light absorbed by the photoinitiator moves to the polymer to create a radical, and a case where the photoinitiator radical abstracts the hydrogen of the polymer to create a radical in the polymer. In the plasma method, there are a method in which electrons in plasma form radicals in the polymer and a method in which radicals are reacted with oxygen to form peroxide radicals. A feature of the UV method, plasma method, and corona discharge method is that radical generation is limited only to the vicinity of the surface of the substrate.

基体にラジカルを生成させる方法には、上述した放射線照射法や紫外線法(UV法)やコロナ放電法、プラズマ法などに加えて化学開始剤法がある。化学開始剤法には、連鎖移動法、乳化重合法、セリウム塩法などがある。連鎖移動法では、過酸化ベンゾイルのような過酸化物やアゾイソブチロニトリル(AIBN)などが化学開始剤として使用されている。   Methods for generating radicals on the substrate include chemical initiator methods in addition to the above-described radiation irradiation method, ultraviolet method (UV method), corona discharge method, plasma method, and the like. Examples of the chemical initiator method include a chain transfer method, an emulsion polymerization method, and a cerium salt method. In the chain transfer method, peroxides such as benzoyl peroxide, azoisobutyronitrile (AIBN), and the like are used as chemical initiators.

本発明の殺菌・抗ウイルス性部材においては、目的、用途に応じて、ラジカル生成方法として、放射線照射法、UV法、プラズマ法、及び、コロナ放電法を適宜選択すれば良いが、エネルギー量の高いα線や、β線や、γ線や、電子線を照射する放射線照射法が好適に用いられる。該放射線照射法には、同時照射法と前照射法がある。同時照射法はポリマーと反応物質の共存下で照射する方法で、前照射法は捕捉ラジカル法ともいわれ、放射線を照射して、ラジカルが生成した後から反応物質と接触させる方法である。放射線照射法の特徴としては、あらゆる形状のポリマーに活用できる点、ポリマー内部までラジカルを生成させることができる点、開始剤等の残存がない点、大量生産できる点等が挙げられる。   In the bactericidal / antiviral member of the present invention, the radiation generation method, UV method, plasma method, and corona discharge method may be appropriately selected as a radical generation method according to the purpose and application. A radiation irradiation method of irradiating high α-rays, β-rays, γ-rays, or electron beams is preferably used. The radiation irradiation method includes a simultaneous irradiation method and a pre-irradiation method. The simultaneous irradiation method is a method of irradiating in the presence of a polymer and a reactant, and the pre-irradiation method is also referred to as a trapping radical method. The characteristics of the radiation irradiation method include that it can be used for polymers of all shapes, that radicals can be generated up to the inside of the polymer, that no initiator remains, and that mass production is possible.

上述のラジカル生成方法により生成されるラジカルについてはポリエチレンでは多くの報告があり、放射線照射によってアルキル、アリル、ポリエニル、過酸化ラジカルが生成する。ラジカルは結晶部と非晶部に生成するが、分子鎖の運動が激しい非晶部では、ただちに再結合等の反応で消滅する。観察されるのは結晶部内のラジカルである。アルキルラジカルは反応性がきわめて高く、水素を引き抜きながら結晶部を移動し、非晶部で再結合(橋かけ)や酸化反応、グラフト反応で消費される。   There are many reports on radicals generated by the above-described radical generation method in polyethylene, and alkyl, allyl, polyenyl, and peroxide radicals are generated by irradiation. Radicals are generated in the crystal part and the amorphous part, but in the amorphous part where the movement of the molecular chain is intense, it immediately disappears by a reaction such as recombination. Observed are radicals in the crystal part. Alkyl radicals are extremely reactive, move through the crystal part while extracting hydrogen, and are consumed by recombination (crosslinking), oxidation reaction, and graft reaction in the amorphous part.

本実施形態において、基体への放射線照射直後、例えば1〜2分以内に、消臭性を有する塩基性官能基を導入するような場合には、放射線を照射する際の温度および、照射後に基体を保存する温度については特に制限はない。しかし、ラジカルを生成した後、時間をおいて消臭性を有する塩基性官能基を導入する場合などにはラジカルを保存するために、照射も保存も低温で行うことが望ましい。−5℃程度に低温保存すれば、照射20日経過後でも支障なくポリマーラジカルを用いた反応が可能である。   In this embodiment, when a basic functional group having deodorizing properties is introduced immediately after irradiation of radiation to the substrate, for example within 1 to 2 minutes, the temperature at the time of irradiation and the substrate after irradiation There is no particular limitation on the temperature at which the is stored. However, when a basic functional group having a deodorizing property is introduced after a period of generation of radicals, it is desirable to perform irradiation and storage at a low temperature in order to preserve the radicals. If stored at a low temperature of about −5 ° C., a reaction using polymer radicals can be performed without any problem even after 20 days of irradiation.

本実施形態の殺菌・抗ウイルス性部材の基体にラジカルを生成させる際に放射線を照射する方法を用いる場合において、放射線の照射線量は、消臭性を有する塩基性官能基を導入させるのに十分なラジカルの生成量が得られ、不必要な架橋や部分的な分解が起こらない経済的な照射線量であれば特に制限はない。ラジカルが均一に生成し、本実施形態の殺菌・抗ウイルス性部材を構成する基体の剛性や耐薬品性に及ぼす影響も少ないことから、放射線の照射線量は1kGy〜1000kGyの範囲にあることが好ましく、5kGy〜500kGyの範囲にあることがより好ましく、10kGy〜300kGyの範囲にあることが特に好ましい。   In the case of using the method of irradiating radiation when generating radicals on the substrate of the bactericidal / antiviral member of the present embodiment, the radiation irradiation dose is sufficient to introduce a basic functional group having deodorant properties. There is no particular limitation as long as it is an economical irradiation dose that produces a sufficient amount of radicals and does not cause unnecessary crosslinking or partial decomposition. Radiation dose is preferably in the range of 1 kGy to 1000 kGy because radicals are uniformly generated and have little influence on the rigidity and chemical resistance of the substrate constituting the bactericidal / antiviral member of this embodiment. It is more preferably in the range of 5 kGy to 500 kGy, and particularly preferably in the range of 10 kGy to 300 kGy.

上述のように、基体表面に放射線を照射してラジカルを発生させた後、ビニルモノマーなどのモノマー(重合性単量体)を接触させ、基体表面にモノマーを重合体(グラフト鎖)として導入するか、基体表面を、ビニルモノマーなどのモノマー(重合性単量体)と接触させた状態で放射線を照射してラジカルを発生させ、基体表面にモノマーを重合体(グラフト鎖)として導入する。そして、導入されたグラフト鎖と消臭性を有する塩基性官能基を含む物質を接触させることで、消臭性を有する塩基性官能基がグラフト鎖を構成する各モノマーに導入される。その結果、消臭性を有する塩基性官能基が、基体表面に導入されることとなる。   As described above, after generating radicals by irradiating the substrate surface with radiation, a monomer (polymerizable monomer) such as a vinyl monomer is brought into contact with the substrate surface, and the monomer is introduced as a polymer (graft chain) onto the substrate surface. Alternatively, the substrate surface is brought into contact with a monomer (polymerizable monomer) such as a vinyl monomer to irradiate radiation to generate radicals, and the monomer is introduced into the substrate surface as a polymer (graft chain). And the basic functional group which has deodorizing property is introduce | transduced into each monomer which comprises a graft chain by making the introduced graft chain and the substance containing the basic functional group which has deodorizing property contact. As a result, a basic functional group having deodorizing properties is introduced to the substrate surface.

この場合、グラフト重合に用いられるモノマーとしては、アクリロニトリル、アクロレイン、ビニルピリジン、スチレン、クロロメチルスチレン、メタクリル酸グリシジルなどが挙げられる。また、グラフト鎖に消臭性を有する塩基性官能基であるアミノ基を導入する化合物としては、ジエチルアミン、ジエタノールアミンなどが挙げられる。例えば、メタクリル酸グリシジルを放射線グラフトによって基体となる繊維構造体(たとえば不織布基材)に導入し、メタクリル酸グリシジルを介して、ジエタノールアミンなどによって3級アミノ基などの酸性ガス消臭性を有する塩基性官能基を導入することもできる。   In this case, examples of the monomer used for graft polymerization include acrylonitrile, acrolein, vinyl pyridine, styrene, chloromethyl styrene, glycidyl methacrylate, and the like. Examples of the compound that introduces an amino group, which is a basic functional group having deodorizing properties, into the graft chain include diethylamine and diethanolamine. For example, glycidyl methacrylate is introduced into a fiber structure (for example, a nonwoven fabric substrate) as a substrate by radiation grafting, and basic acid having deodorizing properties such as tertiary amino groups with diethanolamine through glycidyl methacrylate. Functional groups can also be introduced.

さらに本実施形態の殺菌・抗ウイルス性部材の基体には、殺菌効果と抗ウイルス効果を有する成分として、消臭性を有する塩基性官能基を介して金属錯体が固定されている。金属錯体は塩基性官能基とイオン結合により結合する。本実施形態の殺菌・抗ウイルス性部材に付着した細菌やウイルスは該金属錯体の作用により不活化される。金属錯体は、たとえば、塩化金酸、塩化白金酸である。金属錯体に含まれる金属イオンは、金や白金が好ましい。   Furthermore, a metal complex is fixed to the substrate of the bactericidal / antiviral member of the present embodiment via a basic functional group having a deodorizing property as a component having a bactericidal effect and an antiviral effect. The metal complex is bonded to the basic functional group by an ionic bond. Bacteria and viruses attached to the bactericidal / antiviral member of this embodiment are inactivated by the action of the metal complex. The metal complex is, for example, chloroauric acid or chloroplatinic acid. The metal ion contained in the metal complex is preferably gold or platinum.

本実施形態の殺菌・抗ウイルス性部材では、消臭性を有する塩基性官能基(カチオン)に金属イオン(カチオン)を固定する事が難しかった点を、塩化金酸、塩化白金酸のようなアニオン性の金属錯体を用いる事で解決した点に特徴がある。つまり、殺菌効果と抗ウイルス効果を有する成分として、金属錯体を、塩基性官能基と金属錯イオンとのイオン交換反応により、消臭性を有する塩基性官能基を介して基体に固定することができる。さらに、基体の表面に消臭性を有する塩基性官能基が導入されているため、金属錯体が結合せずに残っている塩基性官能基は、酢酸などの酸性の悪臭成分を該官能基に吸着し消臭する。このように基体に導入された消臭性を有する塩基性官能基の一部に金属錯体が固定されることにより、当該殺菌・抗ウイルス性部材は、消臭機能とウイルス及び/又は細菌の不活化機能との両方を兼ね備えることができる。   In the bactericidal / antiviral member of this embodiment, it is difficult to fix a metal ion (cation) to a basic functional group (cation) having deodorizing properties, such as chloroauric acid and chloroplatinic acid. It is characterized in that it is solved by using an anionic metal complex. In other words, as a component having a bactericidal effect and an antiviral effect, a metal complex can be fixed to a substrate via a basic functional group having a deodorizing property by an ion exchange reaction between a basic functional group and a metal complex ion. it can. Furthermore, since a basic functional group having a deodorizing property is introduced on the surface of the substrate, the basic functional group that remains without being bound to the metal complex has an acidic malodorous component such as acetic acid as a functional group. Adsorb and deodorize. By fixing the metal complex to a part of the deodorant basic functional group introduced into the substrate in this way, the bactericidal / antiviral member has a deodorizing function and a virus and / or bacteria improper. It can have both an activation function.

金属錯体の基体への導入方法は、上述の方法にて基体表面に消臭性を有する塩基性官能基が導入されているので、目的の金属イオンを含む金属錯体水溶液と基体とを接触させるだけ(つまり、イオン交換による方法)でよい。具体的には、塩基性官能基と結合させる目的の金属錯イオンが含まれる量(金属錯体溶液における金属錯イオンの濃度)を調整することで、消臭性を有する塩基性官能基と結合する金属錯体の量を自由に制御することができる。従って、基体に導入する塩基性官能基の量と金属錯体溶液に含まれる金属錯イオンの濃度などのバランスによって、導入される塩基性官能基と、その塩基性官能基に対して固定される金属錯体の量のバランスを自由に制御でき、用途に応じたレベルの消臭性と殺菌抗ウイルス性を備えた殺菌・抗ウイルス性部材を提供できる。   The method for introducing the metal complex into the substrate is that the basic functional group having deodorizing properties is introduced on the surface of the substrate by the above-described method, so that the substrate is simply brought into contact with the metal complex aqueous solution containing the target metal ion. (That is, a method using ion exchange). Specifically, by adjusting the amount (concentration of the metal complex ion in the metal complex solution) containing the target metal complex ion to be bonded to the basic functional group, it binds to the deodorant basic functional group. The amount of the metal complex can be freely controlled. Therefore, the basic functional group to be introduced and the metal fixed to the basic functional group, depending on the balance of the amount of the basic functional group to be introduced into the substrate and the concentration of the metal complex ion contained in the metal complex solution. The balance of the amount of the complex can be freely controlled, and a bactericidal / antiviral member having a level of deodorization and bactericidal antiviral properties according to the application can be provided.

一方、金属イオンを基体に固定する他の方法としては、ゼオライトや活性炭などの無機多孔質体に金属イオンを吸着担持させ、それから基体に固定することで、消臭性と殺菌抗ウイルス性を発揮させる方法がある。また、フタロシアニンなどの金属錯体を基体に塗布し、消臭性を付与する方法も開発されている。しかし、無機多孔質を用いる場合は基体からの脱離が問題となる。フタロシアニンを用いる場合は、それ自身が顔料のため、着色などの問題や、本実施形態のようにイオン交換により結合する場合と比較すると消臭スピードが遅いなどの問題が生じる。また抗ウイルス効果もないため、消臭と殺菌・抗ウイルス効果の両方の機能を付与したい場合は別の機能性材料を併用する必要がある。さらに、上述のような無機多孔質を用いる方法やフタロシアニンを用いる方法では、消臭性と殺菌・抗ウイルス性のバランスを用途に応じて制御するのが難しい。   On the other hand, as another method of fixing metal ions to the substrate, the metal ions are adsorbed and supported on an inorganic porous material such as zeolite or activated carbon, and then fixed to the substrate, thereby exhibiting deodorant and bactericidal antiviral properties. There is a way to make it. In addition, a method has been developed in which a metal complex such as phthalocyanine is applied to a substrate to impart deodorizing properties. However, when an inorganic porous material is used, detachment from the substrate becomes a problem. In the case of using phthalocyanine, since it is a pigment itself, problems such as coloring and problems such as a slow deodorizing speed occur compared to the case of binding by ion exchange as in this embodiment. Moreover, since there is no antiviral effect, it is necessary to use another functional material in combination when it is desired to provide both functions of deodorization and bactericidal / antiviral effects. Furthermore, it is difficult to control the balance between the deodorizing property and the bactericidal / antiviral properties according to the use by the method using inorganic porous material or the method using phthalocyanine as described above.

しかし本実施形態のように消臭性官能基を繊維構造体などの基体に導入し、さらに導入された消臭性官能基の一部に金属イオンを結合した構造とすることによって、消臭性と殺菌・抗ウイルス性の両方を効率良く達成することができるという効果が得られる。さらに、上述のように、基体に導入された消臭性官能基と金属イオンとを接触させるだけで金属イオンを基体に結合できるので、接触させる金属イオンの濃度を調整することで消臭性と殺菌・抗ウイルス性のバランスを簡単に制御できるので、用途に応じた設計も容易である。   However, as in this embodiment, the deodorant functional group is introduced into a substrate such as a fiber structure, and a structure in which a metal ion is bonded to a part of the introduced deodorant functional group makes it deodorant. And the effect of being able to efficiently achieve both bactericidal and antiviral properties. Furthermore, as described above, since the metal ion can be bound to the substrate simply by bringing the deodorant functional group introduced into the substrate into contact with the metal ion, the deodorizing property can be achieved by adjusting the concentration of the metal ion to be contacted. Since the balance between bactericidal and antiviral properties can be easily controlled, designing according to the application is easy.

本実施形態の殺菌・抗ウイルス性部材において不活性化できるウイルスについては特に限定されず、ゲノムの種類や、エンベロープの有無等に係ることなく、様々なウイルスを不活化することができる。例えば、ライノウイルス・ポリオウイルス・口蹄疫ウイルス・ロタウイルス・ノロウイルス・エンテロウイルス・ヘパトウイルス・アストロウイルス・サポウイルス・E型肝炎ウイルス・A型、B型、C型インフルエンザウイルス・パラインフルエンザウイルス・ムンプスウイルス(おたふくかぜ)・麻疹ウイルス・ヒトメタニューモウイルス・RSウイルス・ニパウイルス・ヘンドラウイルス・黄熱ウイルス・デングウイルス・日本脳炎ウイルス・ウエストナイルウイルス・B型、C型肝炎ウイルス・東部および西部馬脳炎ウイルス・オニョンニョンウイルス・風疹ウイルス・ラッサウイルス・フニンウイルス・マチュポウイルス・グアナリトウイルス・サビアウイルス・クリミアコンゴ出血熱ウイルス・スナバエ熱・ハンタウイルス・シンノンブレウイルス・狂犬病ウイルス・エボラウイルス・マーブルグウイルス・コウモリリッサウイルス・ヒトT細胞白血病ウイルス・ヒト免疫不全ウイルス・ヒトコロナウイルス・SARSコロナウイルス・ヒトポルボウイルス・ポリオーマウイルス・ヒトパピローマウイルス・アデノウイルス・ヘルペスウイルス・水痘帯状発疹ウイルス・EBウイルス・サイトメガロウイルス・天然痘ウイルス・サル痘ウイルス・牛痘ウイルス・モラシポックスウイルス・パラポックスウイルスなどを挙げることができる。   The virus that can be inactivated in the bactericidal / antiviral member of the present embodiment is not particularly limited, and various viruses can be inactivated regardless of the type of genome, the presence or absence of an envelope, and the like. For example, rhinovirus, poliovirus, foot-and-mouth disease virus, rotavirus, norovirus, enterovirus, hepatovirus, astrovirus, sapovirus, hepatitis E virus, type A, type B, type C influenza virus, parainfluenza virus, mumps virus (mumps) ) · Measles virus · Human metapneumo virus · RS virus · Nipah virus · Hendra virus · Yellow fever virus · Dengue virus · Japanese encephalitis virus · West Nile virus · Type B, hepatitis C virus · Eastern and western equine encephalitis virus · Onion Nyon virus, rubella virus, Lassa virus, Funin virus, Machupo virus, Guanarito virus, Sabia virus, Crimea congo hemorrhagic fever virus, snubber fever, hantavirus, shin Umbre virus, rabies virus, ebola virus, marburg virus, bat lyssa virus, human T cell leukemia virus, human immunodeficiency virus, human coronavirus, SARS coronavirus, human porvovirus, polyomavirus, human papillomavirus, adenovirus Examples include herpes virus, varicella-zoster rash virus, EB virus, cytomegalovirus, smallpox virus, monkeypox virus, cowpox virus, molasipox virus, and parapox virus.

また実施形態の殺菌・抗ウイルス性部材において不活化できる細菌については、グラム陽性、陰性に関わらず殺菌することができる。例えば、大腸菌、黄色ぶどう球菌、表皮ぶどう球菌、緑膿菌、肺炎桿菌などが挙げられる。   In addition, bacteria that can be inactivated in the bactericidal / antiviral member of the embodiment can be sterilized regardless of whether they are gram positive or negative. Examples thereof include Escherichia coli, Staphylococcus aureus, Staphylococcus aureus, Pseudomonas aeruginosa, and Klebsiella pneumoniae.

(他の実施形態1)
殺菌・抗ウイルス性部材の実施形態としては、上述の酸性ガス消臭性以外にも、例えば、塩基性ガスの消臭性を付与したい場合などに、さらに塩基性ガスを吸着する酸性官能基(酸性の消臭性官能基)を基体に導入してもよい。
(Other embodiment 1)
As an embodiment of the sterilizing / antiviral member, in addition to the above-described acidic gas deodorizing property, for example, when it is desired to impart the deodorizing property of basic gas, an acidic functional group that further adsorbs basic gas ( An acidic deodorant functional group) may be introduced into the substrate.

該塩基性ガスを吸着する酸性官能基としては、スルホン酸基、リン酸基、カルボキシル基などが挙げられ、これらの酸性官能基は上述の放射線グラフト重合法の他に、導入したい消臭性官能基を含む物質を基材と接触させる方法が挙げられる。例えばスルホン酸基を導入する場合、基体を、無水硫酸、濃硫酸、クロロスルホン酸、発煙硫酸、三酸化硫黄、スルファミン酸、亜硫酸ナトリウム、亜硫酸水素ナトリウムまたはこれらを組み合わせたものに接触させる方法などがある。中でも発煙硫酸、亜硫酸ナトリウムなどが好適に用いられる。接触させる方法については、水溶液については、浸漬や塗布など公知の方法が用いられるが、無水硫酸など気化しやすいものについては、気化したガスと基体を接触させる方法を用いることもできる。酸性官能基を導入する際は、基体の酸性官能基を導入したい部分に対してグラフト重合を行ったり導入する物質との接触処理を行ったりすることで、基体の任意の位置に酸性官能基を導入できる。   Examples of the acidic functional group that adsorbs the basic gas include a sulfonic acid group, a phosphoric acid group, and a carboxyl group. These acidic functional groups include deodorizing functional groups that are desired to be introduced in addition to the above-described radiation graft polymerization method. Examples include a method of bringing a substance containing a group into contact with a substrate. For example, when a sulfonic acid group is introduced, there is a method in which a substrate is brought into contact with sulfuric anhydride, concentrated sulfuric acid, chlorosulfonic acid, fuming sulfuric acid, sulfur trioxide, sulfamic acid, sodium sulfite, sodium bisulfite, or a combination thereof. is there. Of these, fuming sulfuric acid and sodium sulfite are preferably used. As for the contacting method, a known method such as dipping or coating is used for the aqueous solution. However, for a material that is easily vaporized such as sulfuric anhydride, a method of bringing the vaporized gas into contact with the substrate can also be used. When the acidic functional group is introduced, the acidic functional group can be placed at any position on the substrate by performing graft polymerization on the portion of the substrate where the acidic functional group is to be introduced or by performing contact treatment with the substance to be introduced. Can be introduced.

なお、本実施形態の抗ウイルス性部材の基体と、消臭性を有する酸性官能基を含む物質を接触させる前に、つまり、消臭性を有する酸性官能基導入処理の前処理として、α、γ、β線などの放射線や、電子線、紫外線、コロナ放電、プラズマ照射などにより、基材表面のポリマー部にラジカルを発生させてもよい。ラジカルを発生させることにより、消臭性を有する酸性官能基とラジカルが化学結合し、消臭性を有する酸性官能基が導入し難い樹脂の劣化を抑制しつつ容易に消臭性を有する酸性官能基が導入でき、且つ、より強固に消臭性を有する酸性官能基を固定できたり、消臭性を有する酸性官能基を導入したい部分にのみ、導入できるようになるなどのメリットがある。   In addition, before contacting the substrate of the antiviral member of the present embodiment with a substance containing an acidic functional group having deodorizing properties, that is, as a pretreatment of the acidic functional group introduction processing having deodorizing properties, α, Radicals may be generated in the polymer portion of the substrate surface by radiation such as γ and β rays, electron beams, ultraviolet rays, corona discharge, plasma irradiation, and the like. By generating radicals, acidic functional groups having deodorizing properties and radicals are chemically bonded, and acidic functional groups having deodorizing properties are easily suppressed while suppressing deterioration of the resin, which is difficult to introduce acidic functional groups having deodorizing properties. There is an advantage that a group can be introduced and an acidic functional group having a deodorizing property can be fixed more firmly or only at a portion where an acidic functional group having a deodorizing property is desired to be introduced.

また、消臭性官能基を繊維構造体に導入する別の方法として、例えば、消臭性官能基を有するモノマーとして、アクリル酸、メタクリル酸、スチレンスルホン酸ナトリウム、メタリルスルホン酸ナトリウム、アリルスルホン酸ナトリウム、ビニルベンジルトリメチルアンモニウムクロライドなどを用いて放射線グラフト重合を行うことにより、繊維構造体に直接、消臭性官能基を導入することもできる。   Further, as another method for introducing a deodorant functional group into a fiber structure, for example, as a monomer having a deodorant functional group, acrylic acid, methacrylic acid, sodium styrenesulfonate, sodium methallylsulfonate, allylsulfone By performing radiation graft polymerization using sodium acid, vinylbenzyltrimethylammonium chloride or the like, a deodorant functional group can be directly introduced into the fiber structure.

さらに該消臭性を有する酸性官能基には、殺菌・抗ウイルス性を有する金属イオンが固定されていてもよい。具体的な殺菌効果や抗ウイルス性効果を有する金属イオンとしては、Ag、Zn、Cu、Co、Ni、Al、Pt、Au、Pd、Snなどが挙げられ、それぞれの目的に応じて1種あるいは2種以上を組合せて用いる事ができる。特にZnを用いると、フィルタの変色などが抑えられるため好ましい。また、これら金属イオンは消臭性を有する酸性官能基の持つイオン交換能にて容易に公知の方法にて固定できる。   Further, a metal ion having bactericidal / antiviral properties may be fixed to the acidic functional group having deodorizing properties. Specific examples of the metal ion having a bactericidal effect or an antiviral effect include Ag, Zn, Cu, Co, Ni, Al, Pt, Au, Pd, and Sn. Two or more types can be used in combination. In particular, use of Zn is preferable because discoloration of the filter can be suppressed. These metal ions can be easily fixed by a known method by the ion exchange ability of the acidic functional group having deodorizing properties.

(他の実施形態2)
殺菌・抗ウイルス性部材のさらに別の実施形態としては、さらに、塩基性ガスを吸着する無機微粒子および/または酸性ガスを吸着する無機微粒子を含んでもよい。この無機微粒子が基体に固定されることで、さらに消臭効果を向上させることができる。たとえば、上述の消臭性官能基(塩基性官能基あるいは酸性官能基)が導入し難い材質を用いる場合などでも、必要な消臭性能を有する無機微粒子を固定することで、消臭性を補完でき、殺菌・抗ウイルス性部材全体で十分な消臭性能を確保できる。
(Other embodiment 2)
Still another embodiment of the sterilizing / antiviral member may further include inorganic fine particles that adsorb basic gas and / or inorganic fine particles that adsorb acid gas. By fixing the inorganic fine particles to the substrate, the deodorizing effect can be further improved. For example, even when using materials that are difficult to introduce the above-mentioned deodorant functional groups (basic functional groups or acidic functional groups), the deodorizing properties are complemented by fixing inorganic fine particles having the necessary deodorizing performance. It is possible to secure sufficient deodorizing performance with the entire sterilizing / antiviral member.

具体的に、塩基性ガスを吸着する無機微粒子として、シリカが挙げられ、酸性ガスを吸着する無機微粒子として、酸化チタン、酸化ジルコニウム、酸化アルミニウム、酸化マグネシウムなどが挙げられる。また上述のように、無機微粒子の表面に塩基性ガスや酸性ガスの吸着能を有する官能基を固定して、塩基性ガスや酸性ガスの吸着能が付与された無機微粒子も使用できる。官能基を有する場合は無機微粒子自体、ガス吸着能を有していなくても有していてもよい。本実施形態の殺菌・抗ウイルス性部材における酸性ガス/塩基性ガス吸着特性を有する無機微粒子とは、このような無機微粒子の表面に酸性ガスや塩基性ガスを吸着する官能基を導入したものも含む概念である。   Specifically, the inorganic fine particles that adsorb the basic gas include silica, and the inorganic fine particles that adsorb the acidic gas include titanium oxide, zirconium oxide, aluminum oxide, magnesium oxide, and the like. In addition, as described above, inorganic fine particles provided with a basic gas or acidic gas adsorbing ability by fixing a functional group capable of adsorbing basic gas or acidic gas on the surface of the inorganic fine particles can also be used. In the case of having a functional group, the inorganic fine particles themselves may or may not have a gas adsorbing ability. The inorganic fine particles having acidic gas / basic gas adsorption characteristics in the bactericidal / antiviral member of the present embodiment include those in which a functional group that adsorbs acidic gas or basic gas is introduced on the surface of such inorganic fine particles. It is a concept that includes.

上記、説明した本実施形態の無機微粒子は上述の基体に導入する塩基性官能基あるいは酸性官能基である消臭性官能基を基体に導入する前に固定してもよいし、消臭性官能基を基体に導入した後に導入してもよいが、固定するためのバインダーなどで消臭性官能基が覆われてしまうなどの場合は、消臭性官能基を導入する前に固定するのが好ましい。   The inorganic fine particles of the present embodiment described above may be fixed before introducing the deodorant functional group, which is a basic functional group or an acidic functional group, to be introduced into the substrate, or the deodorant functional group. It may be introduced after the group is introduced into the substrate. However, in the case where the deodorant functional group is covered with a binder for fixing, it is necessary to fix before introducing the deodorant functional group. preferable.

本実施形態の殺菌・抗ウイルス性部材に用いられる基体に用いる塩基性ガスや酸性ガスを吸着する無機微粒子は公知のバインダーを用いて固定することができるが、ガスとの接触効率などを考慮すると、少量でも強固に基体と固定できる不飽和結合部を有するシランモノマーを用いた放射線グラフト重合による固定方法が最も好適である。これらの不飽和結合部を有するシランモノマーは、該シランモノマーが有するシラノール基と無機微粒子表面を還流などの方法により無機微粒子の表面に脱水縮合反応により化学結合(共有結合)を形成して結合させることができ、さらに、該シランモノマーが有する不飽和結合部や反応性官能基とが、グラフト重合により化学結合(共有結合)することにより基体上に固定される。   Inorganic fine particles that adsorb basic gas or acidic gas used for the substrate used in the sterilizing / antiviral member of the present embodiment can be fixed using a known binder, but considering the contact efficiency with the gas, etc. The fixing method by radiation graft polymerization using a silane monomer having an unsaturated bond portion that can be firmly fixed to a substrate even in a small amount is most preferable. These silane monomers having an unsaturated bond portion are bonded by forming a chemical bond (covalent bond) on the surface of the inorganic fine particles by a dehydration condensation reaction between the silanol groups of the silane monomer and the surface of the fine inorganic particles by a method such as reflux. Furthermore, the unsaturated bond part and the reactive functional group of the silane monomer are fixed on the substrate by chemical bond (covalent bond) by graft polymerization.

不飽和結合部を有するシランモノマーとしては、ビニル基、エポキシ基、スチリル基、メタクリロ基、アクリロキシ基、イソシアネート基、チオール基などの不飽和結合部や反応性官能基を有するものが挙げられる。具体的には、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリアセトキシシラン、N−β−(N−ビニルベンジルアミノエチル)−γ−アミノプロピルトリメトキシシランや、N−(ビニルベンジル)−2−アミノエチル−3−アミノプロピルトリメトキシシランの塩酸塩、2−(3、4エポキシシクロヘキシル)エチルトリメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−グリシドキシプロピルトリエトキシシラン、p−スチリルトリメトキシシラン、3−メタクリロキシプロピルメチルジメトキシシラン、3−メタクリロキシプロピルトリメトキシシラン、3−メタクリロキシプロピルメチルジエトキシシラン、3−メタクリロキシプロピルトリエトキシシラン、3−アクリロキシプロピルトリメトキシシラン、3−イソシアネートプロピルトリエトキシシラン、Si(OR1)4(式中、R1は炭素数1〜4のアルキル基を示す)で示されるアルコキシシラン化合物、例えば、テトラメトキシシラン、テトラエトキシシランや、R2XSi(OR3)n(式中、R2は炭素数1〜6の炭化水素基、R3は炭素数1〜4のアルキル基、Xは(4−n)であり、nは1〜3の整数を示す)で示されるアルコキシシラン化合物、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、ジメチルジエトキシシラン、フェニルトリエトキシシラン、ヘキシルトリメトキシシランや、ヘキサメチルジシラザンなどが挙げられる。 Examples of the silane monomer having an unsaturated bond include those having an unsaturated bond or a reactive functional group such as a vinyl group, an epoxy group, a styryl group, a methacrylo group, an acryloxy group, an isocyanate group, and a thiol group. Specifically, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltriacetoxysilane, N-β- (N-vinylbenzylaminoethyl) -γ-aminopropyltrimethoxysilane, N- (vinylbenzyl) -2 -Hydrochloride of aminoethyl-3-aminopropyltrimethoxysilane, 2- (3,4 epoxy cyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-glycidoxypropyltriethoxysilane, p-styryltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, 3-methacryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldiethoxysilane, 3-methacryloxypropyl G An alkoxysilane compound represented by reethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-isocyanatopropyltriethoxysilane, Si (OR1) 4 (wherein R1 represents an alkyl group having 1 to 4 carbon atoms), for example, tetramethoxysilane, and tetraethoxysilane, R2 X Si (oR @ 3) n (wherein R2 is a hydrocarbon group having 1 to 6 carbon atoms, R3 is an alkyl group having 1 to 4 carbon atoms, X is (4- n), where n represents an integer of 1 to 3, for example, methyltrimethoxysilane, methyltriethoxysilane, dimethyldiethoxysilane, phenyltriethoxysilane, hexyltrimethoxysilane, And hexamethyldisilazane.

塩基性ガスや酸性ガスを吸着する無機微粒子は、基体の表面に固定するだけではなく、内部に固定されてもよい。たとえば、基体として不織布を用いる場合、不織布の製造工程中に無機微粒子を噴霧することで、糸と共に交絡させて固定されていてもよい。このような塩基性ガスや酸性ガスを吸着する無機微粒子を内部に固定した不織布を用いることで、不織布の表面部分に無機微粒子を固定しなくてもよいため、消臭性官能基を導入する面積を不織布の表面部分においてより多く確保できるため好ましい。   The inorganic fine particles that adsorb basic gas or acid gas may be fixed not only on the surface of the substrate but also inside. For example, when a non-woven fabric is used as the substrate, it may be entangled with the yarn and fixed by spraying inorganic fine particles during the manufacturing process of the non-woven fabric. By using a non-woven fabric in which inorganic fine particles that adsorb such basic gas or acid gas are fixed, it is not necessary to fix the inorganic fine particles on the surface portion of the non-woven fabric. Is more preferable in the surface portion of the nonwoven fabric.

以上のいくつかの実施形態の殺菌・抗ウイルス性部材は、単層で用いるほか、目的にあわせて複数(2層以上)の積層体として用いる事もできる。   The sterilizing / antiviral member of some of the embodiments described above can be used as a single layer or a plurality of (two or more layers) laminated bodies according to the purpose.

本実施形態の殺菌・抗ウイルス性部材を単層で用いる場合、部材表面に酸性ガスを吸着する塩基性の消臭性官能基と塩基性ガスを吸着する酸性の消臭性官能基との両方を導入してもよい。酸性ガスと塩基性ガスの両方を消臭できるように塩基性と酸性の両方の消臭性官能基を導入すれば、フィルタが単層であっても両方のガスについて消臭できる。当該両方の消臭性官能基を導入する場合には、たとえばフィルタの片面側に酸性ガスを吸着する塩基性の消臭性官能基を導入し、もう片面側に塩基性ガスを吸着する酸性の消臭性官能基を導入することができる。あるいは表面や裏面の一部の領域又は複数の領域に対して、それぞれの消臭性官能基を導入することもできる。例えば線状、海島状、ストライプ状などの非連続な状態で塩基性と酸性の消臭性官能基をそれぞれ導入すればよい。   When the bactericidal / antiviral member of this embodiment is used in a single layer, both a basic deodorant functional group that adsorbs acidic gas on the member surface and an acidic deodorant functional group that adsorbs basic gas May be introduced. If both basic and acidic deodorizing functional groups are introduced so that both acidic gas and basic gas can be deodorized, both gases can be deodorized even if the filter is a single layer. When both deodorant functional groups are introduced, for example, a basic deodorant functional group that adsorbs acidic gas is introduced on one side of the filter, and an acidic gas that adsorbs basic gas on the other side is introduced. Deodorant functional groups can be introduced. Or each deodorant functional group can also be introduce | transduced with respect to the one part area | region or several area | region of the surface and the back surface. For example, basic and acidic deodorant functional groups may be introduced in a discontinuous state such as linear, sea-island, or striped.

上述のように酸性ガス・塩基性ガスの両方の消臭性官能基を導入する場合には、殺菌・抗ウイルス性を有する金属イオンまたは金属錯体は、酸性ガスを吸着する官能基と塩基性ガスを吸着する官能基との両方の消臭性官能基に固定されてよい。また、塩基性ガスをより多く消臭したい場合は、酸性官能基をより多く残すために塩基性の消臭性官能基に金属錯体を固定してもよい。酸性ガスをより多く消臭したい場合は、塩基性官能基をより多く残すために酸性の消臭性官能基に金属イオンを固定してもよい。必要な消臭性能等に応じて金属イオンや金属錯体を結合させる官能基を適宜選択すればよい。またこの時、塩基性ガスや酸性ガスを吸着する無機微粒子を、消臭機能向上のために使用環境に合わせてさらに固定してもよい。   As described above, when deodorizing functional groups of both acidic gas and basic gas are introduced, the metal ion or metal complex having bactericidal and antiviral properties is a functional group that adsorbs acidic gas and basic gas. It may be fixed to both the deodorant functional group and the functional group that adsorbs. When it is desired to deodorize more basic gas, the metal complex may be fixed to the basic deodorant functional group in order to leave more acidic functional groups. When it is desired to deodorize more acidic gas, metal ions may be fixed to the acidic deodorant functional group in order to leave more basic functional groups. What is necessary is just to select suitably the functional group which couple | bonds a metal ion or a metal complex according to required deodorizing performance. At this time, the inorganic fine particles that adsorb basic gas or acid gas may be further fixed in accordance with the use environment in order to improve the deodorizing function.

本実施形態の殺菌・抗ウイルス性部材を2層以上の積層体として用いる場合、酸性ガスを吸着する塩基性の消臭性官能基を導入した部材と、塩基性ガスを吸着する酸性の消臭性官能基を導入した部材とを積層することができる。酸性ガスと塩基性ガスの消臭に対応したそれぞれの部材を積層させることで、本実施形態の殺菌・抗ウイルス性部材は両方のガスを消臭できる。この時、部材にプリーツなどの加工を施す場合、不織布やハニカムなどの芯材を用いる事もできる。   When the sterilizing / antiviral member of the present embodiment is used as a laminate of two or more layers, a member introduced with a basic deodorizing functional group that adsorbs acidic gas, and an acidic deodorant that adsorbs basic gas A member into which a functional functional group has been introduced can be laminated. By laminating the respective members corresponding to the deodorization of the acid gas and the basic gas, the bactericidal / antiviral member of the present embodiment can deodorize both gases. At this time, when the member is processed with pleats, a core material such as a nonwoven fabric or a honeycomb can be used.

次に、実施例を挙げて本発明をより具体的に説明する。ただし、本発明はこれらの実施例のみに限定されるものではない。   Next, the present invention will be described more specifically with reference to examples. However, the present invention is not limited to only these examples.

<殺菌・抗ウイルス性部材の作製>
以下、実施例の電子線照射には、エレクトロカーテン型電子線照射装置(岩崎電気(株)製 CB250/15/180L)を用いた。殺菌・抗ウイルス性部材の実施例および比較例は以下の通り作製した。
<Production of bactericidal and antiviral components>
Hereinafter, an electron curtain type electron beam irradiation apparatus (CB250 / 15 / 180L manufactured by Iwasaki Electric Co., Ltd.) was used for the electron beam irradiation in the examples. Examples and comparative examples of the sterilizing / antiviral member were prepared as follows.

(実施例1)
殺菌・抗ウイルス性部材の基体として、PP(ポリプロピレン)基材の厚さ60μmの二軸延伸ポリプロピレン(PP)製フィルム(東セロ株式会社製OP、U−1#60)を用いた。このPPフィルムに、窒素雰囲気下にて、電子線を200kVの加速電圧で20Mrad照射した。ついでこのPPフィルムを10%のメタクリル酸グリシジル溶液に浸漬し、グラフト重合反応を行い、さらに、ジエチルアミン溶液に、グラフト重合反応を行ったPPフィルムを浸漬し、アミノ化を行った。得られたアミノ化PPフィルムを1%塩化金酸水溶液に20分間浸漬し、水洗及び乾燥し、金錯体担持アミノ化PPフィルムを得た。
Example 1
A biaxially stretched polypropylene (PP) film (OP, U-1 # 60 manufactured by Tosero Co., Ltd.) having a thickness of 60 μm and a PP (polypropylene) base material was used as the substrate of the sterilizing / antiviral member. The PP film was irradiated with an electron beam at an acceleration voltage of 200 kV for 20 Mrad in a nitrogen atmosphere. Subsequently, this PP film was immersed in a 10% glycidyl methacrylate solution to perform a graft polymerization reaction, and further, the PP film subjected to the graft polymerization reaction was immersed in a diethylamine solution to perform amination. The obtained aminated PP film was immersed in a 1% aqueous solution of chloroauric acid for 20 minutes, washed with water and dried to obtain a gold complex-carrying aminated PP film.

(実施例2)
殺菌・抗ウイルス性部材の基体として、PPのメルトブロー不織布(東レ・ファインケミカル(株)製 EM05010)を用いた。このPP不織布に、窒素雰囲気下にて、電子線を200kVの加速電圧で20Mrad照射した。ついでこの不織布を10%のメタクリル酸グリシジル溶液に浸漬し、グラフト重合反応を行い、さらに、ジエチルアミン溶液に、グラフト重合反応を行ったPP不織布を浸漬し、アミノ化を行った。得られたアミノ化PP不織布を1%塩化金酸水溶液に20分間浸漬し、水洗及び乾燥し、金錯体担持アミノ化PP不織布を得た。
(Example 2)
A PP melt-blown nonwoven fabric (EM05010 manufactured by Toray Fine Chemical Co., Ltd.) was used as a substrate for the sterilizing / antiviral member. This PP nonwoven fabric was irradiated with an electron beam at an acceleration voltage of 200 kV for 20 Mrad in a nitrogen atmosphere. Next, the nonwoven fabric was immersed in a 10% glycidyl methacrylate solution to perform a graft polymerization reaction, and further, the PP nonwoven fabric subjected to the graft polymerization reaction was immersed in a diethylamine solution to perform amination. The obtained aminated PP nonwoven fabric was immersed in a 1% aqueous solution of chloroauric acid for 20 minutes, washed with water and dried to obtain a gold complex-carrying aminated PP nonwoven fabric.

(実施例3)
殺菌・抗ウイルス性部材の基材として、厚さ100μmのポリエチレン(PE)製フィルム((株)関東オークラ製、L−LDPE、リニアポリ)を用いた。このPEフィルムに、窒素雰囲気下にて、電子線を200kVの加速電圧で20Mrad照射した。ついでこのフィルムを10%のメタクリル酸グリシジル溶液に浸漬し、グラフト重合反応を行い、さらに、ジエチルアミン溶液に、グラフト重合反応を行ったPEフィルムを浸漬し、アミノ化を行った。得られたアミノ化PEフィルムを1%塩化金酸水溶液に20分間浸漬し、水洗及び乾燥し、金錯体担持アミノ化PEフィルムを得た。
(Example 3)
A polyethylene (PE) film (manufactured by Kanto Okura Co., Ltd., L-LDPE, linear poly) having a thickness of 100 μm was used as a base material for the sterilizing / antiviral member. This PE film was irradiated with an electron beam at an acceleration voltage of 200 kV for 20 Mrad in a nitrogen atmosphere. Subsequently, this film was immersed in a 10% glycidyl methacrylate solution to perform a graft polymerization reaction, and further, the PE film subjected to the graft polymerization reaction was immersed in a diethylamine solution to perform amination. The obtained aminated PE film was immersed in a 1% aqueous solution of chloroauric acid for 20 minutes, washed with water and dried to obtain a gold complex-carrying aminated PE film.

(実施例4)
殺菌・抗ウイルス性部材の基材として、PE(ポリエチレン)基材のスパンボンド不織布(ユニチカ(株)製 S1003WDO)を用いた。このPE不織布に、窒素雰囲気下にて、電子線を200kVの加速電圧で20Mrad照射した。ついでこの不織布を10%のメタクリル酸グリシジル溶液に浸漬し、グラフト重合反応を行い、さらに、ジエチルアミン溶液に、グラフト重合反応を行ったPE不織布を浸漬し、アミノ化を行った。得られたアミノ化PE不織布を1%塩化金酸水溶液に20分間浸漬し、水洗及び乾燥し、金錯体担持アミノ化PE不織布を得た。
Example 4
A PE (polyethylene) -based spunbonded nonwoven fabric (S1003WDO manufactured by Unitika Ltd.) was used as the substrate for the sterilizing / antiviral member. This PE nonwoven fabric was irradiated with 20 Mrad of an electron beam at an acceleration voltage of 200 kV in a nitrogen atmosphere. Subsequently, this nonwoven fabric was immersed in a 10% glycidyl methacrylate solution to perform a graft polymerization reaction, and further, the PE nonwoven fabric subjected to the graft polymerization reaction was immersed in a diethylamine solution to perform amination. The obtained aminated PE nonwoven fabric was immersed in a 1% aqueous solution of chloroauric acid for 20 minutes, washed with water and dried to obtain a gold complex-carrying aminated PE nonwoven fabric.

(実施例5)
殺菌・抗ウイルス性部材の基材として、PP(ポリプロピレン)基材のメルトブロー不織布(東レ・ファインケミカル(株)製 EM05010)を用いた。このPP不織布に、窒素雰囲気下にて、電子線を200kVの加速電圧で5Mrad照射した。ついでこの不織布を、窒素雰囲気下にて、30%発煙硫酸に1時間さらし、水洗、中和して、スルホン化を行った。得られたスルホン化PP不織布を、1%硫酸亜鉛水溶液に20分間浸漬し、水洗及び乾燥し、亜鉛イオン担持スルホン化不織布を得た。ついで、この亜鉛イオン担持スルホン化PP不織布と、実施例2で作成した金錯体担持アミノ化PP不織布とを、ホットメルト接着剤としてヘンケルジャパン株式会社製MP843を、ノードソン株式会社製ALTA400シグレチャースプレーガンより糸状に吐出させ、貼り合せることで実施例5の不織布を得た。
(Example 5)
A PP (polypropylene) base melt blown nonwoven fabric (EM05010 manufactured by Toray Fine Chemical Co., Ltd.) was used as the base material of the sterilizing / antiviral member. This PP nonwoven fabric was irradiated with an electron beam at an acceleration voltage of 200 kV for 5 Mrad in a nitrogen atmosphere. The nonwoven fabric was then exposed to 30% fuming sulfuric acid for 1 hour under a nitrogen atmosphere, washed with water and neutralized to effect sulfonation. The obtained sulfonated PP nonwoven fabric was immersed in a 1% zinc sulfate aqueous solution for 20 minutes, washed with water and dried to obtain a sulfonated nonwoven fabric carrying zinc ions. Next, this zinc ion-supported sulfonated PP nonwoven fabric and the gold complex-supported aminated PP nonwoven fabric prepared in Example 2 were used as hot melt adhesives, MP843 manufactured by Henkel Japan Co., Ltd., and ALTA400 Sigleture Spray Gun manufactured by Nordson Co., Ltd. The non-woven fabric of Example 5 was obtained by discharging the fibers in a twisted form and bonding them together.

(実施例6)
市販のシリカ微粒子をメタノールに対して10.0質量%、シランモノマーとして3−メタクリロキシプロピルトリメトキシシラン(信越化学工業株式会社製、KBM−503)をシリカ微粒子に対して5.0質量%加えてpHを5.0に塩酸で調整した後、ビーズミルにより平均粒子径18nmに粉砕分散した。その後、凍結乾燥機により固液分離して120℃で加熱してシランモノマーをシリカ微粒子の表面に脱水縮合反応により化学結合させて薄膜を形成した。得られたシランモノマー被覆シリカ微粒子をメタノールに10.0質量%分散してビーズミルにより平均粒子径18nmに再度粉砕分散した後、メタノールを加えて固形分を5.0質量%に調整しスラリーを得た。その後、得られたスラリーを実施例2で作成した金錯体担持アミノ化PP不織布の片面にスプレーにて塗布し、80℃、1分間乾燥した後、電子線を200kVの加速電圧で5Mrad照射することで、シランモノマーで被覆されたシリカ微粒子からなる薄膜を不織布に結合させて実施例6の不織布を得た。
(Example 6)
Commercially available silica fine particles are added in an amount of 10.0% by mass with respect to methanol, and 3-methacryloxypropyltrimethoxysilane (KBM-503, manufactured by Shin-Etsu Chemical Co., Ltd.) is added as a silane monomer to 5.0% by mass with respect to the silica fine particles. After adjusting with hydrochloric acid, the mixture was pulverized and dispersed to an average particle size of 18 nm by a bead mill. Thereafter, solid-liquid separation was performed using a freeze dryer and the film was heated at 120 ° C. to chemically bond the silane monomer to the surface of the silica fine particles by a dehydration condensation reaction to form a thin film. The obtained silane monomer-coated silica fine particles were dispersed in 10.0% by mass in methanol and pulverized and dispersed again to an average particle size of 18 nm by a bead mill, and then methanol was added to adjust the solid content to 5.0% by mass to obtain a slurry. Then, the obtained slurry is applied to one side of the gold complex-carrying aminated PP nonwoven fabric prepared in Example 2 by spraying, dried at 80 ° C. for 1 minute, and then irradiated with an electron beam at an acceleration voltage of 200 kV for 5 Mrad. Then, a thin film made of silica fine particles coated with a silane monomer was bonded to the nonwoven fabric to obtain a nonwoven fabric of Example 6.

(実施例7)
実施例6のシリカ微粒子および金錯体担持アミノ化PP不織布と、実施例5で作成した亜鉛イオン担持スルホン化PP不織布とを、実施例5の方法で貼り合わせることで実施例7の不織布を得た。
(Example 7)
The nonwoven fabric of Example 7 was obtained by laminating the silica fine particles and gold complex-supported aminated PP nonwoven fabric of Example 6 and the zinc ion-supported sulfonated PP nonwoven fabric prepared in Example 5 by the method of Example 5. .

(比較例1)
実施例2で用いた未加工のPP不織布を比較例1のサンプルとした。
(Comparative Example 1)
The unprocessed PP nonwoven fabric used in Example 2 was used as the sample of Comparative Example 1.

(比較例2)
実施例4で用いた未加工のPE不織布を比較例2のサンプルとした。
(Comparative Example 2)
The raw PE nonwoven fabric used in Example 4 was used as the sample of Comparative Example 2.

(比較例3)
実施例2のサンプルに金を担持していないアミノ化PP不織布を比較例3のサンプルとした。
(Comparative Example 3)
The sample of Example 2 was a sample of Comparative Example 3 which was an aminated PP nonwoven fabric that did not carry gold.

各実施例、比較例の構成を表1に示す。   Table 1 shows the configuration of each example and comparative example.

Figure 0006290688
Figure 0006290688

<殺菌性の評価>
実施例1〜7、比較例1〜3の各サンプルの殺菌性評価は、大腸菌(Escherichia coli)を用いた。大腸菌の懸濁液 100μLをプラスチックシャーレ上に滴下し、その上から、2cm×2cmに切り取った各フィルタサンプルを載せて、懸濁液をサンプル全面に延ばした後、室温で60分間作用させた。60分後、20mg/mLのブイヨンタンパク質液(SCDLP培地)1900μLを添加し、ピペッティングにより細菌を洗い出し、上清液を回収した。その後、SCDLP培地を用いて、回収した上清液の10倍段階希釈系列を作製し、回収した上清液と各希釈段階液をそれぞれ1mLずつシャーレにとり、溶解したNB寒天培地を加えて、混和した。寒天培地が固化した後、37℃にて培養を行った。形成されたコロニー数をカウントし、生菌数(CFU/0.1mL, Log10);(CFU:colony-forming unit)を算出することで、それぞれの大腸菌に対する殺菌性を評価した。結果を表2に示す。
<Evaluation of bactericidal properties>
Escherichia coli was used for bactericidal evaluation of each sample of Examples 1-7 and Comparative Examples 1-3. 100 μL of the Escherichia coli suspension was dropped onto a plastic petri dish, and each filter sample cut into 2 cm × 2 cm was placed thereon. The suspension was spread over the entire surface of the sample, and then allowed to act at room temperature for 60 minutes. After 60 minutes, 1900 μL of a 20 mg / mL bouillon protein solution (SCDLP medium) was added, the bacteria were washed out by pipetting, and the supernatant was collected. Then, a 10-fold serial dilution series of the collected supernatant was prepared using SCDLP medium, and 1 mL each of the collected supernatant and each diluted liquid was placed in a petri dish, and dissolved NB agar medium was added and mixed. did. After the agar medium solidified, it was cultured at 37 ° C. The number of colonies formed was counted and the number of viable bacteria (CFU / 0.1 mL, Log10); (CFU: colony-forming unit) was calculated to evaluate the bactericidal properties against each Escherichia coli. The results are shown in Table 2.

<抗ウイルス性の評価>
実施例1〜7、比較例1〜3の各サンプルの抗ウイルス性評価は、MDCK細胞を用いて培養したインフルエンザウイルス(influenza A/北九州/159/93(H3N2))を用いた。ウイルスの懸濁液100μLをプラスチックシャーレ上に滴下し、その上から2cm×2cmに切り取った各フィルタサンプルを載せて、懸濁液をサンプル全面に延ばした後、室温で60分間作用させた。60分後、SCDLP培地 1900μLを添加し、ピペッティングによりウイルスを洗い出し、上清液を回収した。その後、細胞培養培地(MEM)を用いて、回収した上清液の10倍段階希釈系列を作製した。回収した上清液と各希釈段階液0.1mLをMDCK細胞を培養した6穴細胞培養プレートに接種した。60分間静置しウイルスを細胞へ吸着させた後、0.7%寒天培地を重層し、48時間、34℃、5%CO2インキュベータにて培養後、ホルマリン固定、メチレンブルー染色を行い、形成されたプラーク数をカウントして、ウイルスの感染価(PFU/0.1mL,Log10);(PFU:plaque-forming units)を算出した。その試験結果を表2に示す。
<Evaluation of antiviral properties>
Influenza virus (influenza A / Kitakyushu / 159/93 (H3N2)) cultured using MDCK cells was used for the antiviral evaluation of the samples of Examples 1 to 7 and Comparative Examples 1 to 3. 100 μL of the virus suspension was dropped onto a plastic petri dish, each filter sample cut out 2 cm × 2 cm from the top was placed, the suspension was spread over the entire surface of the sample, and then allowed to act at room temperature for 60 minutes. After 60 minutes, 1900 μL of SCDLP medium was added, the virus was washed out by pipetting, and the supernatant was collected. Thereafter, a 10-fold serial dilution series of the collected supernatant was prepared using cell culture medium (MEM). The recovered supernatant and 0.1 mL of each diluted solution were inoculated into a 6-well cell culture plate in which MDCK cells were cultured. Plaque formed by adsorbing virus to cells by standing for 60 minutes, overlaying 0.7% agar medium, culturing in 34 ° C, 5% CO 2 incubator for 48 hours, fixing with formalin and staining with methylene blue The number was counted, and the virus infectivity titer (PFU / 0.1 mL, Log 10); (PFU: plaque-forming units) was calculated. The test results are shown in Table 2.

Figure 0006290688
Figure 0006290688

以上の結果より、全ての実施例において、高い殺菌性と抗ウイルス性が確認できた。また、基体にアミノ基のみを導入した比較例3については、殺菌性、抗ウイルス性ともに効果がないことから、アミノ基に固定した金錯体により、殺菌性、抗ウイルス性が発現したことが確認できた。   From the above results, high bactericidal and antiviral properties could be confirmed in all Examples. In Comparative Example 3 in which only the amino group was introduced into the substrate, both the bactericidal and antiviral properties were ineffective, and it was confirmed that the bactericidal and antiviral properties were expressed by the gold complex immobilized on the amino group. did it.

<消臭性の評価>
実施例1〜7、比較例1〜3の各サンプルを10cm×10cmの大きさに切り取り、サンプリングバッグに入れた後、塩基性ガスとしてアンモニアを60ppm含む空気を、酸性ガスとして酢酸を60ppm含む空気を同サンプリングバッグ内に5L封入し、サンプリングバッグ内の各ガスの残存濃度を所定の時間毎に検知管により測定した。測定時間は、ガス含有空気を封入してから、それぞれ5、15、30分後とし、結果を表3に示した。
<Evaluation of deodorizing properties>
Each sample of Examples 1 to 7 and Comparative Examples 1 to 3 is cut into a size of 10 cm × 10 cm, put in a sampling bag, air containing 60 ppm of ammonia as a basic gas, and air containing 60 ppm of acetic acid as an acidic gas Was sealed in the same sampling bag, and the residual concentration of each gas in the sampling bag was measured with a detection tube every predetermined time. The measurement times were 5, 15, and 30 minutes after the gas-containing air was sealed. The results are shown in Table 3.

Figure 0006290688
Figure 0006290688

以上の結果より、アミノ基のみを導入した実施例1〜4、比較例3では、酸性ガスである酢酸ガスに対する高い消臭効果が確認できた。また、さらにスルホン基を導入した実施例5、7においては、塩基性ガスであるアンモニアにも高い消臭効果が認められた。また、塩基性ガスの吸着能を有するシリカ微粒子を固定した実施例6では、スルホン基ほどではないが、塩基性ガスの消臭効果が認められた。これらの結果から、本実施形態の殺菌・抗ウイルス性部材を用いると、消臭、殺菌、抗ウイルス性に優れた製品が提供できる事が確認できた。   From the above results, in Examples 1 to 4 and Comparative Example 3 in which only an amino group was introduced, a high deodorizing effect on acetic acid gas, which is an acidic gas, could be confirmed. Further, in Examples 5 and 7 in which a sulfone group was further introduced, a high deodorizing effect was also observed in ammonia, which is a basic gas. Further, in Example 6 in which silica fine particles having basic gas adsorption ability were fixed, the deodorizing effect of the basic gas was recognized, although not as much as the sulfone group. From these results, it was confirmed that when the sterilizing / antiviral member of the present embodiment was used, a product excellent in deodorizing, sterilizing and antiviral properties could be provided.

Claims (11)

基体と、
少なくとも前記基体の一部に固定されたアミノ基を含む物質と、
アミノ基にイオン結合により固定された殺菌・抗ウイルス性を有する金属錯体と、を有し、
前記アミノ基を含む物質がジエチルアミン又はジエタノールアミンであることを特徴とする殺菌・抗ウイルス性部材。
A substrate;
A substance containing an amino group fixed to at least a part of the substrate;
A bactericidal / antiviral metal complex fixed to the amino group by an ionic bond ,
A bactericidal / antiviral member, wherein the substance containing an amino group is diethylamine or diethanolamine .
前記アミノ基を含む物質は、グラフト鎖を介して前記基体の一部に固定されていることを特徴とする請求項1に記載の殺菌・抗ウイルス性部材。 2. The bactericidal / antiviral member according to claim 1, wherein the amino group-containing substance is fixed to a part of the substrate via a graft chain . 前記金属錯体が塩化金酸および/または塩化白金酸であることを特徴とする請求項1又は2に記載の殺菌・抗ウイルス性部材。 The sterilizing / antiviral member according to claim 1 or 2 , wherein the metal complex is chloroauric acid and / or chloroplatinic acid . 前記基体に導入された消臭性を有する酸性官能基をさらに有することを特徴とする請求項1からのいずれかに記載の殺菌・抗ウイルス性部材。 The sterilizing / antiviral member according to any one of claims 1 to 3 , further comprising an acidic functional group having a deodorizing property introduced into the substrate. 前記消臭性を有する酸性官能基が、スルホン酸基、リン酸基、カルボキシル基から少なくとも1種選択される塩基性ガス吸着能を有する官能基であることを特徴とする請求項に記載の殺菌・抗ウイルス性部材。 Acidic functional group having a deodorizing property, a sulfonic acid group, a phosphoric acid group, according to claim 4, characterized in that a functional group having a basic gas adsorption capacity to be selected at least one from the carboxyl group Bactericidal and antiviral material. 前記基体の一部にさらに酸性ガス吸着特性を有する無機微粒子および/または塩基性ガス吸着特性を有する無機微粒子を含有することを特徴とする請求項1からのいずれかに記載の殺菌・抗ウイルス性部材。 6. The bactericidal / antiviral agent according to any one of claims 1 to 5 , wherein a part of the substrate further contains inorganic fine particles having acid gas adsorption properties and / or inorganic fine particles having basic gas adsorption properties. Sexual member. 前記基体が繊維構造体であることを特徴とする請求項1からのいずれかに記載の殺菌・抗ウイルス性部材。 The sterilizing / antiviral member according to any one of claims 1 to 6 , wherein the substrate is a fiber structure. 前記基体が樹脂成形体であることを特徴とする請求項1からのいずれかに記載の殺菌・抗ウイルス性部材。 The sterilizing / antiviral member according to any one of claims 1 to 6 , wherein the substrate is a resin molded body. 前記基体がフィルムまたはシートであることを特徴とする請求項1からのいずれかに記載の殺菌・抗ウイルス性部材。 The sterilizing / antiviral member according to any one of claims 1 to 6 , wherein the substrate is a film or a sheet. 請求項1からに記載の殺菌・抗ウイルス性部材を用いたマスク。 Mask using the sterilization antiviral member according to claims 1-9. 請求項1からに記載の殺菌・抗ウイルス性部材を用いたフィルタ。 Filters using sterilization antiviral member according to claims 1-9.
JP2014073932A 2014-03-31 2014-03-31 Bactericidal and antiviral components Active JP6290688B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014073932A JP6290688B2 (en) 2014-03-31 2014-03-31 Bactericidal and antiviral components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014073932A JP6290688B2 (en) 2014-03-31 2014-03-31 Bactericidal and antiviral components

Publications (2)

Publication Number Publication Date
JP2015195826A JP2015195826A (en) 2015-11-09
JP6290688B2 true JP6290688B2 (en) 2018-03-07

Family

ID=54545959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014073932A Active JP6290688B2 (en) 2014-03-31 2014-03-31 Bactericidal and antiviral components

Country Status (1)

Country Link
JP (1) JP6290688B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6475059B2 (en) * 2014-03-31 2019-02-27 株式会社Nbcメッシュテック Antiviral component
CN107270398A (en) * 2017-06-30 2017-10-20 苏州瓷气时代净化设备有限公司 A kind of air-conditioning with environment regulatory function
WO2022181491A1 (en) * 2021-02-26 2022-09-01 パナソニックIpマネジメント株式会社 Antibacterial-imparting method, antibacterial recovery method for material, manufacturing method for antibacterial material, antibacterial-imparting agent, and antibacterial-imparting device

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07116674B2 (en) * 1987-05-08 1995-12-13 長谷川香料株式会社 Deodorant fiber
JPS6468578A (en) * 1987-09-02 1989-03-14 Daiwa Spinning Co Ltd Fiber having excellent washing fastness and deodorizing function
JPH07238470A (en) * 1994-02-23 1995-09-12 Onwaade Kashiyama:Kk Clothing having deodorizing performance
WO1997030057A1 (en) * 1996-02-19 1997-08-21 Sangi Co., Ltd. Antibacterial amino acids, inorganic salts thereof, and process for the preparation and use thereof
JPH09299463A (en) * 1996-05-17 1997-11-25 Yazaki Corp Deodorizer and its preparation
JPH107512A (en) * 1996-06-21 1998-01-13 Sangi Co Ltd Antimicrobial agent and its composition and production
JPH10273875A (en) * 1997-03-28 1998-10-13 Kohjin Co Ltd Composition with antimicrobial and deodorizing performance
JP2914931B2 (en) * 1997-03-31 1999-07-05 東洋レヂン株式会社 Melt-moldable biodegradable antibacterial deodorizing material
JP2005329406A (en) * 1998-01-07 2005-12-02 Ebara Corp Sterilization and cleaning method for enclosed space including germs and enclosed space with sterilization and cleaning function
JP2000034675A (en) * 1998-07-15 2000-02-02 Teijin Ltd Antibacterial polyester fiber
JP3015879B1 (en) * 1998-09-14 2000-03-06 農林水産省蚕糸・昆虫農業技術研究所長 Metal complex, antibacterial material, antibacterial article, and method for producing the article
JP3676650B2 (en) * 2000-06-01 2005-07-27 株式会社荏原製作所 Cleaning tool
JP3574845B2 (en) * 2001-02-14 2004-10-06 独立行政法人農業生物資源研究所 Antimicrobial material and method for enhancing antimicrobial activity
JP5322360B2 (en) * 2001-09-18 2013-10-23 株式会社 環境浄化研究所 Antibacterial deodorant material
JP4359157B2 (en) * 2004-02-09 2009-11-04 住江織物株式会社 Deodorizing apparatus and deodorizing method
JP2007016334A (en) * 2005-07-06 2007-01-25 Nicca Chemical Co Ltd Bacteriostatic finishing method and bacteriostatic fiber product
JP2007136029A (en) * 2005-11-22 2007-06-07 Toray Ind Inc Fiber sheet, its manufacturing method and air filter
GB0603138D0 (en) * 2006-02-16 2006-03-29 Queen Mary & Westfield College Virucidal materials
EP2261417B1 (en) * 2008-03-31 2018-08-01 Toray Industries, Inc. Deodorant fibrous structure and air filter
JP2010095820A (en) * 2008-10-17 2010-04-30 Nisshinbo Holdings Inc Method for producing zeolite-deposited fibrous structural material
AU2010302079B2 (en) * 2009-09-30 2015-04-02 Nbc Meshtec, Inc. Mask
JP5914937B2 (en) * 2012-06-27 2016-05-11 ライオン株式会社 Deodorant composition
JP3181534U (en) * 2012-11-13 2013-02-14 株式会社 環境浄化研究所 Adhesive deodorant and antibacterial sheet

Also Published As

Publication number Publication date
JP2015195826A (en) 2015-11-09

Similar Documents

Publication Publication Date Title
JP6290891B2 (en) Air cleaner
JP2015195827A (en) Antiviral member
CA2974025C (en) Virus inactivating sheet
KR101675585B1 (en) Anti-viral member
JP4547683B2 (en) Sheet used for filters, masks, etc. that have bactericidal action
Hosseini et al. The viability of SARS-CoV-2 on solid surfaces
JP6727713B2 (en) Cellulose nanofibers with bactericidal and antiviral properties
WO2004078320A1 (en) Air cleaning member, air cleaning unit and air conditioner
JP6290688B2 (en) Bactericidal and antiviral components
JP2011178720A (en) Inorganic antiviral agent and antiviral member containing the inorganic antiviral agent
TW200925529A (en) Air cleaning apparatus
JP6475059B2 (en) Antiviral component
JP5044647B2 (en) Pollen adsorbent and mask
JP2014128773A (en) Virus adsorbent and virus adsorbing component with use of the same
JP2008106398A (en) Sterilization sheet
JP5912273B2 (en) Antiviral agent and method for producing the same
JP2013087064A (en) Virus inactivation sheet
JP5837288B2 (en) Antiviral agent
JP6174946B2 (en) Wound infection prevention member
JP2022110998A (en) Iodine type sterilization filter and air cleaner using the same
JP2009233074A (en) Hazardous substance removal material and air cleaning device using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180126

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180206

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180208

R150 Certificate of patent or registration of utility model

Ref document number: 6290688

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250