JP6289231B2 - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
JP6289231B2
JP6289231B2 JP2014081272A JP2014081272A JP6289231B2 JP 6289231 B2 JP6289231 B2 JP 6289231B2 JP 2014081272 A JP2014081272 A JP 2014081272A JP 2014081272 A JP2014081272 A JP 2014081272A JP 6289231 B2 JP6289231 B2 JP 6289231B2
Authority
JP
Japan
Prior art keywords
vibration
rotary compressor
reducing device
sealed container
vibration reducing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014081272A
Other languages
Japanese (ja)
Other versions
JP2015203306A (en
Inventor
▲ひろ▼中 康雄
康雄 ▲ひろ▼中
雄也 江崎
雄也 江崎
寛行 中河
寛行 中河
亮太 増本
亮太 増本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2014081272A priority Critical patent/JP6289231B2/en
Publication of JP2015203306A publication Critical patent/JP2015203306A/en
Application granted granted Critical
Publication of JP6289231B2 publication Critical patent/JP6289231B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えば空気調和装置、ヒートポンプ給湯機及び冷蔵庫等に採用される冷凍サイクルの一構成要素として使用される回転型圧縮機に関するものである。   The present invention relates to a rotary compressor used as a component of a refrigeration cycle employed in, for example, an air conditioner, a heat pump water heater, a refrigerator, and the like.

従来の回転型圧縮機には、回転周波数の変化による振動を低減させるために、振動低減装置を備えたものがある。このような従来の回転型圧縮機としては、電動機部と圧縮要素部を固定収納した密閉ケースの外周部に1端部を固定した密着コイル状の連結部と、この連結部の他端部に固定した慣性体とを備えたものが提案されている(特許文献1参照)。   Some conventional rotary compressors include a vibration reducing device in order to reduce vibration due to a change in rotational frequency. As such a conventional rotary type compressor, a tightly coiled connecting part having one end fixed to the outer peripheral part of a sealed case in which the electric motor part and the compression element part are fixedly housed, and the other end of the connecting part The thing provided with the fixed inertial body is proposed (refer patent document 1).

特許第2553642号公報(請求項1、第1図)Japanese Patent No. 2553642 (Claim 1, FIG. 1)

従来より、回転型圧縮機は、モータ(特許文献1では電動機部と記載)の駆動力を圧縮部(特許文献1では圧縮要素部と記載)に伝達する回転軸が鉛直方向に沿うように縦置きに配置され、密閉容器(特許文献1では密閉ケースと記載)を防振構造で支持して設置される場合がある。このような回転型圧縮機の冷媒配管(吸入配管及び吐出配管)を冷凍サイクルを構成するその他の冷媒配管(空気調和装置等の筐体に取り付けられている配管)に接続し、回転型圧縮機を運転した場合、回転型圧縮機の重量と密閉容器を支持した防振構造のバネ定数とで決まる共振が低い周波数にあり、回転型圧縮機が倒れるような振動が生じる。そして、回転型圧縮機の運転速度(モータの回転数)を下げていき共振周波数に近づくと、回転型圧縮機の振動変位が大きくなり、回転型圧縮機と接続された冷媒配管から当該振動が空気調和装置等の筐体に伝わり、筐体から騒音が放射するという問題点があった。   2. Description of the Related Art Conventionally, a rotary compressor has a longitudinal axis so that a rotating shaft that transmits a driving force of a motor (described as an electric motor portion in Patent Document 1) to a compression portion (described as a compression element portion in Patent Document 1) is along a vertical direction. There are cases in which a closed container (described as a sealed case in Patent Document 1) is installed with a vibration-proof structure. The refrigerant pipe (suction pipe and discharge pipe) of such a rotary compressor is connected to other refrigerant pipes (pipe attached to a housing such as an air conditioner) constituting the refrigeration cycle, and the rotary compressor When the is operated, the resonance determined by the weight of the rotary compressor and the spring constant of the vibration-proof structure that supports the hermetic container is at a low frequency, and vibration that causes the rotary compressor to fall occurs. When the operating speed of the rotary compressor (the number of rotations of the motor) is reduced and approaches the resonance frequency, the vibration displacement of the rotary compressor increases, and the vibration is generated from the refrigerant pipe connected to the rotary compressor. There was a problem that noise was radiated from the casing to the casing such as an air conditioner.

本発明は、上記のような問題点を解決するためになされたものであり、低振動の回転型圧縮機を得ることを目的としている。   The present invention has been made to solve the above-described problems, and an object thereof is to obtain a low-vibration rotary compressor.

本発明に係る回転型圧縮機は、圧縮部、モータ及び該モータの駆動力を前記圧縮部に伝達する回転軸が収納された密閉容器と、該密閉容器を支持する防振構造と、前記密閉容器に接続された吸入配管及び吐出配管と、を備え、前記回転軸が鉛直方向に沿うように縦置きに設置される回転型圧縮機において、錘と、一端が該錘に接続されて他端が前記密閉容器に直接又は間接的に接続された弾性部材とを有する振動低減装置を備え、該振動低減装置が当該回転型圧縮機の重心よりも高い位置に設けられており、前記密閉容器と前記吸入配管との接続箇所の中心点と、前記密閉容器と前記吐出配管との接続箇所の中心点とを通る垂直な平面を平面B、該平面Bの法線方向をV方向、及び、設置状態の前記密閉容器を平面視したときに前記V方向と垂直になる方向をH方向と定義した場合、前記振動低減装置は、前記弾性部材が前記V方向のバネ定数と前記H方向のバネ定数とが異なる形状であり、固有振動数の異なる前記V方向及び前記H方向における振動を同時に低減させるものである。 The rotary compressor according to the present invention includes a hermetically sealed container in which a compressor, a motor, and a rotating shaft that transmits a driving force of the motor to the compressing part are housed, a vibration-proof structure that supports the hermetically sealed container, In a rotary compressor comprising a suction pipe and a discharge pipe connected to a container, wherein the rotary shaft is installed vertically so that the rotary shaft is along the vertical direction, a weight and one end is connected to the weight and the other end Including a vibration reducing device having an elastic member connected directly or indirectly to the sealed container, the vibration reducing device being provided at a position higher than the center of gravity of the rotary compressor , A vertical plane passing through the central point of the connection point with the suction pipe and the central point of the connection point between the airtight container and the discharge pipe is the plane B, the normal direction of the plane B is the V direction, and installation When the airtight container in a state is viewed in plan, the V direction In the case where the straight direction is defined as the H direction, in the vibration reducing device, the elastic member has a shape in which the spring constant in the V direction is different from the spring constant in the H direction, and the V direction has a different natural frequency. and a shall simultaneously reduce the vibrations in the H direction.

本発明によれば、振動低減装置を回転型圧縮機の重心よりも高い位置に取り付けたことにより、防振構造で支持して縦置きに設置された回転型圧縮機を運転した場合でも、回転型圧縮機の振動が大きくなることを抑制できる。このため、本発明は、運転速度を下げて回転型圧縮機を運転しても、冷媒配管から回転型圧縮機の振動が空気調和装置等の筐体に伝わることを抑制でき、筐体から騒音が放射することを抑制できるという従来にない顕著な効果を奏することができる。換言すると、本発明は、運転速度を下げて運転できるという従来にない顕著な効果を奏することができる。   According to the present invention, the vibration reduction device is mounted at a position higher than the center of gravity of the rotary compressor, so that even when the rotary compressor installed in a vertical position is supported by the vibration-proof structure, the rotation can be rotated. The vibration of the mold compressor can be prevented from increasing. For this reason, the present invention can suppress the vibration of the rotary compressor from being transferred from the refrigerant pipe to the casing of the air conditioner or the like even when the rotary compressor is operated at a reduced operating speed. It is possible to achieve an unprecedented remarkable effect that it is possible to suppress the radiation. In other words, the present invention can achieve an unprecedented remarkable effect that the vehicle can be operated at a reduced driving speed.

本発明の実施の形態1による回転型圧縮機を示す平面図である。It is a top view which shows the rotary compressor by Embodiment 1 of this invention. 本発明の実施の形態1による回転型圧縮機を示す正面図である。It is a front view which shows the rotary compressor by Embodiment 1 of this invention. 本発明の実施の形態1による回転型圧縮機を示す縦断面図である。It is a longitudinal cross-sectional view which shows the rotary compressor by Embodiment 1 of this invention. 本発明の実施の形態1による振動低減装置を示す横断面図であり、図3のA−A断面図である。It is a cross-sectional view which shows the vibration reduction apparatus by Embodiment 1 of this invention, and is AA sectional drawing of FIG. 本発明の実施の形態1による振動低減装置を示す縦断面図である。It is a longitudinal cross-sectional view which shows the vibration reduction apparatus by Embodiment 1 of this invention. 振動低減装置9を回転型圧縮機100上部に設けた場合と、振動低減装置9を回転型圧縮機100に設けていない場合とにおいて、回転型圧縮機100の倒れ振動D1を比較したグラフである。6 is a graph comparing the falling vibration D1 of the rotary compressor 100 when the vibration reducing device 9 is provided on the rotary compressor 100 and when the vibration reducing device 9 is not provided on the rotary compressor 100. . 回転型圧縮機100(より詳しくは密閉容器5)の中央外周部に振動低減装置9を付けた場合の従来の振動低減装置の正面図である。It is a front view of the conventional vibration reduction apparatus at the time of attaching the vibration reduction apparatus 9 to the center outer peripheral part of the rotary compressor 100 (more specifically, the airtight container 5). 振動低減装置9を回転型圧縮機100上部に設けた場合と、振動低減装置9を回転型圧縮機100中央外周部に設けた場合とにおいて、回転型圧縮機100の倒れ振動D1を比較したグラフである。The graph which compared the fall vibration D1 of the rotary compressor 100 in the case where the vibration reduction apparatus 9 is provided in the upper part of the rotary compressor 100, and the case where the vibration reduction apparatus 9 is provided in the center outer periphery of the rotary compressor 100. It is. 本発明の実施の形態1による回転型圧縮機の振動低減装置の別の一例を示す断面図である。It is sectional drawing which shows another example of the vibration reduction apparatus of the rotary compressor by Embodiment 1 of this invention. 本発明の実施の形態2による振動低減装置を示す横断面図であり、図3のA−A断面図である。It is a cross-sectional view which shows the vibration reduction apparatus by Embodiment 2 of this invention, and is AA sectional drawing of FIG. 本発明の実施の形態2による振動低減装置の別の一例を示す横断面図であり、図3のA−A断面図である。It is a cross-sectional view which shows another example of the vibration reduction apparatus by Embodiment 2 of this invention, and is AA sectional drawing of FIG. 本発明の実施の形態3による回転型圧縮機を示す平面図である。It is a top view which shows the rotary compressor by Embodiment 3 of this invention. 本発明の実施の形態3による回転型圧縮機を示す正面図である。It is a front view which shows the rotary compressor by Embodiment 3 of this invention. 回転型圧縮機100の振動低減装置9の錘7を密閉容器5に接触させた場合と、回転型圧縮機100の振動低減装置9の錘7を密閉容器5に接触させない場合とにおいて、回転型圧縮機100の倒れ振動D1を比較したグラフである。In the case where the weight 7 of the vibration reducing device 9 of the rotary compressor 100 is brought into contact with the sealed container 5 and in the case where the weight 7 of the vibration reducing device 9 of the rotary compressor 100 is not brought into contact with the sealed container 5, the rotary type is used. It is the graph which compared the fall vibration D1 of the compressor 100. FIG.

実施の形態1.
図1は、本発明の実施の形態1による回転型圧縮機を示す平面図である。図2は、この回転型圧縮機を示す正面図である。また、図3は、この回転型圧縮機を示す縦断面図である。なお、図3は、回転型圧縮機100の回転軸10の軸線と、図1の密閉容器5と吸入配管3との接続箇所の中心点3a、とを含む平面で切断した断面図である。
図3に示すように、本実施の形態1に係る回転型圧縮機100は、冷媒を圧縮する圧縮部11、モータ14、及び、該モータ14の駆動力を圧縮部11に伝達する回転軸10が収納された密閉容器5を備えている。本実施の形態1では、圧縮部11に接続された回転軸10には、モータ14のローター12が例えば焼嵌めで固定されている。また、回転型圧縮機100のモータ14のステーター13は、密閉容器5の内面に例えば焼嵌めや溶接で固定されている。また、密閉容器5には、冷媒配管4(冷媒を密閉容器5内に導く吸入配管3、密閉容器5内から冷媒を外部に流出させる吐出配管2)が接続されている。
なお、図3では、回転型圧縮機100の一例として、ロータリー式の圧縮部を有するロータリー圧縮機を示している。
Embodiment 1 FIG.
FIG. 1 is a plan view showing a rotary compressor according to Embodiment 1 of the present invention. FIG. 2 is a front view showing the rotary compressor. FIG. 3 is a longitudinal sectional view showing the rotary compressor. 3 is a cross-sectional view taken along a plane including the axis of the rotary shaft 10 of the rotary compressor 100 and the center point 3a of the connection location between the sealed container 5 and the suction pipe 3 of FIG.
As shown in FIG. 3, the rotary compressor 100 according to the first embodiment includes a compressor 11 that compresses a refrigerant, a motor 14, and a rotating shaft 10 that transmits a driving force of the motor 14 to the compressor 11. Is provided with a hermetically sealed container 5. In the first embodiment, the rotor 12 of the motor 14 is fixed to the rotating shaft 10 connected to the compression unit 11 by shrink fitting, for example. The stator 13 of the motor 14 of the rotary compressor 100 is fixed to the inner surface of the sealed container 5 by, for example, shrink fitting or welding. In addition, a refrigerant pipe 4 (a suction pipe 3 that guides the refrigerant into the sealed container 5 and a discharge pipe 2 that causes the refrigerant to flow out of the sealed container 5) are connected to the sealed container 5.
In FIG. 3, a rotary compressor having a rotary compression unit is shown as an example of the rotary compressor 100.

図1〜図3に示すように、この回転型圧縮機100は、密閉容器5の例えば下部を支持する防振構造1を備えている。そして、回転型圧縮機100は、回転軸10が鉛直方向に沿うように縦置きに設置され、回転型圧縮機100の冷媒配管4(冷媒を密閉容器5内に導く吸入配管3、密閉容器5内から冷媒を外部に流出させる吐出配管2)が冷凍サイクルを構成するその他の冷媒配管(空気調和装置等の筐体に取り付けられている配管)と接続されて用いられる。なお、本実施の形態1では、回転型圧縮機100の下部は3箇所の防振構造1で支持されている。防振構造1は、一般には、ゴム又は金属バネとなっている。   As shown in FIGS. 1 to 3, the rotary compressor 100 includes a vibration isolation structure 1 that supports, for example, a lower portion of the hermetic container 5. The rotary compressor 100 is installed vertically so that the rotary shaft 10 extends along the vertical direction, and the refrigerant pipe 4 of the rotary compressor 100 (the suction pipe 3 for guiding the refrigerant into the sealed container 5, the sealed container 5). A discharge pipe 2) through which the refrigerant flows out from the inside is connected to other refrigerant pipes (pipes attached to a housing such as an air conditioner) constituting the refrigeration cycle. In the first embodiment, the lower part of the rotary compressor 100 is supported by three vibration isolating structures 1. The anti-vibration structure 1 is generally a rubber or a metal spring.

さらに、本実施の形態1に係る回転型圧縮機100は、回転型圧縮機100を運転した際に発生する振動を従来よりも抑制するため、振動低減装置9も備えている。
なお、以下では、振動低減装置9の振動低減効果の理解を容易とするため、まず、回転型圧縮機100を運転した際に発生する振動について説明する。その後、振動低減装置9の詳細構成について説明する。また、以下では、密閉容器5と吸入配管3との接続箇所の中心点を中心点3a、密閉容器5と吐出配管2との接続箇所の中心点を中心点2a、中心点3aと中心点2aとを通る垂直な平面を平面Bと定義する。
Furthermore, the rotary compressor 100 according to the first embodiment is also provided with a vibration reducing device 9 in order to suppress the vibration generated when the rotary compressor 100 is operated as compared with the conventional one.
In the following, in order to facilitate understanding of the vibration reduction effect of the vibration reduction device 9, first, vibration generated when the rotary compressor 100 is operated will be described. Thereafter, a detailed configuration of the vibration reducing device 9 will be described. In the following, the center point of the connection point between the sealed container 5 and the suction pipe 3 is the center point 3a, the center point of the connection point between the sealed container 5 and the discharge pipe 2 is the center point 2a, and the center point 3a and the center point 2a. A vertical plane passing through is defined as plane B.

鉛直方向に縦置きされて防振構造1で密閉容器5が支持された回転型圧縮機100を運転すると、回転軸10の回転により、図1に示した回転方向の振動Cが発生する。また、モータ14のローター12を含めた回転部のアンバランス等により、回転型圧縮機100が傾くような倒れ振動が発生する。密閉容器5の例えば下部を防振構造1で支持した場合、回転型圧縮機100の重量と回転型圧縮機100を支持した防振構造1のバネ定数とで決まる共振が低い周波数にあるため、低速度で運転をすると倒れ振動D1,D2が大きくなる。   When the rotary compressor 100 which is vertically placed in the vertical direction and the airtight container 5 is supported by the vibration isolating structure 1 is operated, the rotation C of the rotation direction shown in FIG. Further, due to the unbalance of the rotating part including the rotor 12 of the motor 14, a falling vibration that causes the rotary compressor 100 to tilt occurs. For example, when the lower part of the hermetic container 5 is supported by the vibration isolation structure 1, the resonance determined by the weight of the rotary compressor 100 and the spring constant of the vibration isolation structure 1 supporting the rotary compressor 100 is at a low frequency. When driving at a low speed, the falling vibrations D1 and D2 increase.

さらに、回転型圧縮機100の吸入配管3及び吐出配管2が冷凍サイクルを構成するその他の冷媒配管(空気調和装置等の筐体に取り付けられている配管)と接続されているため、吸入配管3及び吐出配管2で回転型圧縮機100の動きを拘束することとなる。このため、回転型圧縮機100に発生する倒れ振動は、平面Bの法線方向となるV方向の倒れ振動D1と、設置状態の密閉容器5を平面視したときにV方向と垂直になるH方向の倒れ振動D2とに大きく分かれる(図1参照)。つまり、鉛直方向に縦置きされて防振構造1で密閉容器5が支持された回転型圧縮機100には、それぞれの方向で共振する周波数が違う特有の倒れ振動D1,D2が発生する。   Further, since the suction pipe 3 and the discharge pipe 2 of the rotary compressor 100 are connected to other refrigerant pipes (pipe attached to a housing such as an air conditioner) constituting the refrigeration cycle, the suction pipe 3 In addition, the movement of the rotary compressor 100 is restricted by the discharge pipe 2. For this reason, the falling vibration generated in the rotary compressor 100 includes the falling vibration D1 in the V direction, which is the normal direction of the plane B, and the H that is perpendicular to the V direction when the sealed container 5 in the installed state is viewed in plan view. It is largely divided into a direction falling vibration D2 (see FIG. 1). That is, in the rotary compressor 100 that is vertically placed in the vertical direction and the airtight container 5 is supported by the vibration isolating structure 1, specific falling vibrations D1 and D2 having different frequencies that resonate in the respective directions are generated.

上記の倒れ振動D1,D2は、吸入配管3及び吐出配管2が並んでいるH方向の倒れ振動D2の方が一般に拘束が大きい。このため、拘束が小さいV方向の倒れ振動D1の方が、H方向の倒れ振動D2より大きくなる傾向にある。また、倒れ振動D1,D2には、回転型圧縮機100の下部の防振構造1付近を軸とした倒れ振動と、回転型圧縮機100の重心6付近を軸とした倒れ振動がある。どちらの倒れ振動も回転型圧縮機100の上部の振動変位が大きくなるという特徴がある。そのため、従来の回転型圧縮機では、回転型圧縮機の運転速度を下げると、これらの振動により回転型圧縮機の振動が大きくなってしまう。つまり、従来の回転型圧縮機は、当該回転型圧縮機と接続した冷媒配管から振動が筐体(図示せず)に伝わり、筐体から騒音が増大する等の問題点が発生してしまう。すなわち、従来の回転型圧縮機は、圧縮機を低速度で運転することが困難だった。   The above-described falling vibrations D1 and D2 are generally more restrained in the H-direction falling vibration D2 in which the suction pipe 3 and the discharge pipe 2 are arranged. For this reason, the falling vibration D1 in the V direction that is less constrained tends to be larger than the falling vibration D2 in the H direction. Further, the fall vibrations D1 and D2 include a fall vibration with the vicinity of the vibration isolation structure 1 below the rotary compressor 100 as an axis and a fall vibration with the vicinity of the center of gravity 6 of the rotary compressor 100 as an axis. Both falling vibrations are characterized in that the vibration displacement at the top of the rotary compressor 100 increases. Therefore, in the conventional rotary compressor, when the operation speed of the rotary compressor is lowered, the vibration of the rotary compressor increases due to these vibrations. That is, the conventional rotary compressor causes problems such as vibration transmitted from a refrigerant pipe connected to the rotary compressor to a casing (not shown), and noise from the casing increasing. That is, it is difficult for the conventional rotary compressor to operate the compressor at a low speed.

そこで、本実施の形態1に係る回転型圧縮機100は、回転型圧縮機100の重心6よりも高い位置に、錘7と弾性部材8を備えた振動低減装置9を設けている。本実施の形態1では、密閉容器5の上部に振動低減装置9を設けている。そして、振動低減装置9は、錘7が平面B(密閉容器5と吸入配管3との接続箇所の中心点3aと、密閉容器5と吐出配管2との接続箇所の中心点2aとを通る垂直な平面)の法線方向となるV方向に振動するように設けられている。より詳しくは、振動低減装置9は次のように構成されている。   Therefore, the rotary compressor 100 according to the first embodiment is provided with the vibration reducing device 9 including the weight 7 and the elastic member 8 at a position higher than the center of gravity 6 of the rotary compressor 100. In the first embodiment, a vibration reducing device 9 is provided on the top of the sealed container 5. In the vibration reducing device 9, the weight 7 is perpendicular to the plane B (the center point 3 a of the connection point between the sealed container 5 and the suction pipe 3 and the center point 2 a of the connection point between the sealed container 5 and the discharge pipe 2. It is provided so as to vibrate in the V direction, which is the normal direction of the flat plane. More specifically, the vibration reducing device 9 is configured as follows.

図4は、本発明の実施の形態1による振動低減装置を示す横断面図であり、図3のA−A断面図である。また、図5は、この振動低減装置を示す縦断面図である。なお、図5は、図4に示す振動低減装置9をその中心線で切断した断面図である。
振動低減装置9の弾性部材8は、例えばバネ鋼又はステンレス等で形成された柱状(円柱状、角柱状等)の金属棒である。また、錘7は、例えば鉄、ステンレス又は真鍮等の金属で形成された例えば柱状の部材である。この錘7には、弾性部材8を挿入する挿入孔が形成されている。錘7の挿入孔に弾性部材8を例えば焼き嵌めで挿入することにより、弾性部材の一端が錘7に接続されている。
4 is a cross-sectional view showing the vibration reducing apparatus according to Embodiment 1 of the present invention, and is a cross-sectional view taken along the line AA of FIG. FIG. 5 is a longitudinal sectional view showing the vibration reducing device. 5 is a cross-sectional view of the vibration reducing device 9 shown in FIG. 4 taken along the center line.
The elastic member 8 of the vibration reducing device 9 is a columnar (cylindrical, prismatic, etc.) metal rod formed of, for example, spring steel or stainless steel. The weight 7 is, for example, a columnar member formed of a metal such as iron, stainless steel, or brass. The weight 7 is formed with an insertion hole for inserting the elastic member 8. One end of the elastic member is connected to the weight 7 by inserting the elastic member 8 into the insertion hole of the weight 7 by shrink fitting, for example.

このように構成された振動低減装置9は、弾性部材8の他端が密閉容器5における回転型圧縮機100の重心6よりも高い位置に接続されている。この振動低減装置9は、弾性部材8が変形することで、錘7が振動するようになっている。上述のように本実施の形態1に係る振動低減装置9の弾性部材8は柱状に形成されているため、平面視(上方から回転型圧縮機100を観察した状態)においてあらゆる方向に振動する構成となっている。つまり、振動低減装置9は、錘7が平面B(密閉容器5と吸入配管3との接続箇所の中心点3aと、密閉容器5と吐出配管2との接続箇所の中心点2aとを通る垂直な平面)の法線方向となるV方向に少なくとも振動するように設けられている。   In the vibration reducing device 9 configured as described above, the other end of the elastic member 8 is connected to a position higher than the center of gravity 6 of the rotary compressor 100 in the sealed container 5. The vibration reducing device 9 is configured such that the weight 7 vibrates when the elastic member 8 is deformed. As described above, since the elastic member 8 of the vibration reducing device 9 according to the first embodiment is formed in a columnar shape, the structure vibrates in all directions in a plan view (when the rotary compressor 100 is observed from above). It has become. That is, in the vibration reducing device 9, the weight 7 is perpendicular to the plane B (the center point 3 a of the connection point between the sealed container 5 and the suction pipe 3 and the center point 2 a of the connection point between the sealed container 5 and the discharge pipe 2. It is provided so as to vibrate at least in the V direction which is the normal direction of the flat plane.

また、このように構成された振動低減装置9は、錘7の重量と弾性部材8のバネ乗数を調整することにより、振動低減装置9の共振周波数を変えることができる。このため、この振動低減装置9を回転型圧縮機100に固定することにより、回転型圧縮機100の振動エネルギーが振動低減装置9の錘7を振動させるエネルギーに変換されて、回転型圧縮機100本体の振動が低減する。そのため、振動低減装置9は回転型圧縮機100本体の振動変位が大きな位置に、回転型圧縮機100本体が振動する方向に、錘7が振動するように取り付ける必要がある。   Further, the vibration reducing device 9 configured as described above can change the resonance frequency of the vibration reducing device 9 by adjusting the weight of the weight 7 and the spring multiplier of the elastic member 8. For this reason, by fixing the vibration reducing device 9 to the rotary compressor 100, the vibration energy of the rotary compressor 100 is converted into energy that vibrates the weight 7 of the vibration reducing device 9. The vibration of the main body is reduced. Therefore, it is necessary to attach the vibration reducing device 9 to a position where the vibration displacement of the main body of the rotary compressor 100 is large so that the weight 7 vibrates in the direction in which the main body of the rotary compressor 100 vibrates.

ここで、回転型圧縮機100の重心6よりも高い位置に振動低減装置9を設置したが、この設置位置は、回転型圧縮機100の下部の防振構造1を軸とした倒れ振動だけでなく、圧縮機の重心6を軸とした倒れ振動による振動変位も大きな位置となる。そのため、回転型圧縮機100の下部の防振構造1を軸とした倒れ振動だけでなく、回転型圧縮機100の重心6を軸とした倒れ振動も低減する効果が得られる。また、錘7が平面B(密閉容器5と吸入配管3との接続箇所の中心点3aと、密閉容器5と吐出配管2との接続箇所の中心点2aとを通る垂直な平面)の法線方向となるV方向に少なくとも振動するように振動低減装置9を配置したことにより、回転型圧縮機100特有の倒れ振動が大きなD1に対して、効果的に振動を低減する。回転型圧縮機100の重心6位置は、各部品の大きさや形状、配置によって変わるが、一般的に回転型圧縮機100(より詳しくは、密閉容器5)の高さ方向の概略中央付近となる。なお、V方向,H方向の倒れ振動D1,D2は別々の運転速度で大きくなるが、運転速度が近い場合は両方が同時に起こることもあり得る。しかし別々の方向に振動低減装置9を設定しておくことで、同時に起こってもそれぞれの振動で同様の低減効果を有する。   Here, the vibration reducing device 9 is installed at a position higher than the center of gravity 6 of the rotary compressor 100. However, this installation position is only a falling vibration with the anti-vibration structure 1 under the rotary compressor 100 as an axis. In addition, the vibration displacement due to the falling vibration about the center of gravity 6 of the compressor is also a large position. Therefore, an effect of reducing not only the falling vibration about the vibration isolating structure 1 at the lower part of the rotary compressor 100 but also the falling vibration about the center of gravity 6 of the rotary compressor 100 can be obtained. Further, the weight 7 is a normal line of the plane B (a vertical plane passing through the center point 3a of the connection point between the sealed container 5 and the suction pipe 3 and the center point 2a of the connection point between the sealed container 5 and the discharge pipe 2). By arranging the vibration reducing device 9 so as to vibrate at least in the V direction, which is the direction, the vibration is effectively reduced with respect to D1, which has a large falling vibration unique to the rotary compressor 100. The position of the center of gravity 6 of the rotary compressor 100 varies depending on the size, shape, and arrangement of each component, but is generally near the approximate center in the height direction of the rotary compressor 100 (more specifically, the sealed container 5). . Note that the falling vibrations D1 and D2 in the V direction and the H direction increase at different operating speeds, but both may occur simultaneously when the operating speeds are close. However, by setting the vibration reduction device 9 in different directions, the same reduction effect can be obtained for each vibration even if they occur simultaneously.

以下に、本実施の形態1に係る振動低減装置9の振動低減効果の検証結果を示す。   Below, the verification result of the vibration reduction effect of the vibration reduction apparatus 9 which concerns on this Embodiment 1 is shown.

図6は、振動低減装置9を回転型圧縮機100上部に設けた場合と、振動低減装置9を回転型圧縮機100に設けていない場合とにおいて、回転型圧縮機100の倒れ振動D1を比較したグラフである。横軸が回転型圧縮機100の運転速度(1秒間の回転軸10の回転数)、縦軸が回転型圧縮機100の倒れ振動D1の相対値(dB)である。また、破線が振動低減装置9を設けていない回転型圧縮機100を示し、実線が振動低減装置9を上部に設けた回転型圧縮機100を示している。ここで、振動低減装置9が28rpsで振動するように、弾性部材8のバネ定数を調整している。   FIG. 6 shows comparison of the falling vibration D1 of the rotary compressor 100 when the vibration reducing device 9 is provided on the rotary compressor 100 and when the vibration reducing device 9 is not provided on the rotary compressor 100. It is a graph. The horizontal axis represents the operating speed of the rotary compressor 100 (the number of rotations of the rotary shaft 10 for one second), and the vertical axis represents the relative value (dB) of the falling vibration D1 of the rotary compressor 100. Moreover, the broken line shows the rotary compressor 100 without the vibration reducing device 9, and the solid line shows the rotary compressor 100 with the vibration reducing device 9 provided on the upper part. Here, the spring constant of the elastic member 8 is adjusted so that the vibration reducing device 9 vibrates at 28 rps.

振動低減装置9を設けていない回転型圧縮機100の場合は、28rps付近に倒れ振動D1のピークがあった。振動低減装置9を上部に設けた回転型圧縮機100の場合、28rpsでの倒れ振動D1が大きく低減する。その代わりに38rpsで運転した場合に新たな振動増大が発生したが、振動低減装置9が無い場合の28rpsの振動レベルと比較すると6.5dB低減しており、エネルギーに換算すると1/5弱にまで振動が低減した。   In the case of the rotary compressor 100 not provided with the vibration reducing device 9, there was a peak of the falling vibration D1 in the vicinity of 28 rps. In the case of the rotary compressor 100 provided with the vibration reducing device 9 in the upper part, the falling vibration D1 at 28 rps is greatly reduced. Instead, a new increase in vibration occurred when operating at 38 rps, but it was reduced by 6.5 dB compared to the vibration level of 28 rps without the vibration reducing device 9, and reduced to less than 1/5 when converted to energy. Vibration was reduced to.

このように、回転型圧縮機100上部、つまり密閉容器5の外殻の上部に振動低減装置9を取り付けると、振動低減装置9がない場合に比べて、格段に回転型圧縮機100の振動を低減する効果が得られる。また、密閉容器5の外殻の上部に振動低減装置9を設置しているため、密閉型圧縮機であっても振動低減装置9の取り付けやメンテナンスが容易となる。   As described above, when the vibration reducing device 9 is attached to the upper portion of the rotary compressor 100, that is, the upper portion of the outer shell of the sealed container 5, the vibration of the rotary compressor 100 is significantly reduced as compared with the case where the vibration reducing device 9 is not provided. The effect of reducing is obtained. Further, since the vibration reducing device 9 is installed on the upper part of the outer shell of the hermetic container 5, the vibration reducing device 9 can be easily installed and maintained even with a hermetic compressor.

図7は、回転型圧縮機100(より詳しくは密閉容器5)の中央外周部に振動低減装置9を付けた場合の従来の振動低減装置の正面図である。また、図8は、振動低減装置9を回転型圧縮機100上部に設けた場合と、振動低減装置9を回転型圧縮機100中央外周部に設けた場合とにおいて、回転型圧縮機100の倒れ振動D1を比較したグラフである。横軸が回転型圧縮機100の運転速度(1秒間の回転軸10の回転数)、縦軸が回転型圧縮機100の倒れ振動D1の相対値(dB)である。また、破線が振動低減装置9を中央外周部に設けた回転型圧縮機100を示し、実線が振動低減装置9を上部に設けた回転型圧縮機100を示している。   FIG. 7 is a front view of a conventional vibration reducing device when the vibration reducing device 9 is attached to the central outer peripheral portion of the rotary compressor 100 (more specifically, the sealed container 5). Further, FIG. 8 shows that the rotary compressor 100 is overturned when the vibration reducing device 9 is provided on the upper portion of the rotary compressor 100 and when the vibration reducing device 9 is provided on the central outer periphery of the rotary compressor 100. It is the graph which compared vibration D1. The horizontal axis represents the operating speed of the rotary compressor 100 (the number of rotations of the rotary shaft 10 for one second), and the vertical axis represents the relative value (dB) of the falling vibration D1 of the rotary compressor 100. Moreover, the broken line shows the rotary compressor 100 provided with the vibration reducing device 9 in the central outer peripheral portion, and the solid line shows the rotary compressor 100 provided with the vibration reducing device 9 in the upper part.

振動低減装置9を上部に設けた回転型圧縮機100の場合の38rpsのピークに比べて、振動低減装置9を中央外周部に設けた回転型圧縮機100の場合の28rps付近の倒れ振動D1が4dB増えた。これは、同じ振動低減装置9でも、回転型圧縮機100の倒れ振動が大きな場所に振動低減装置9を付けないと、振動低減装置9にエネルギーが伝わらずに、回転型圧縮機100の倒れ振動に低減効果が出ないことを意味する。振動低減装置9を中央外周部に設けた回転型圧縮機100の場合には18rpsでも新たな倒れ振動D1のピークが発生しており、振動低減装置9との連成で発生した振動と考えられる。   Compared to the peak of 38 rps in the case of the rotary compressor 100 provided with the vibration reducing device 9 on the upper side, the falling vibration D1 in the vicinity of 28 rps in the case of the rotary compressor 100 provided with the vibration reducing device 9 in the central outer peripheral part is Increased by 4 dB. Even if the vibration reducing device 9 is the same, if the vibration reducing device 9 is not attached to a place where the falling vibration of the rotary compressor 100 is large, energy is not transmitted to the vibration reducing device 9 and the falling vibration of the rotary compressor 100 is not transmitted. This means that there is no reduction effect. In the case of the rotary compressor 100 in which the vibration reducing device 9 is provided on the outer periphery of the center, a new peak of the falling vibration D1 occurs even at 18 rps, which is considered to be vibration generated by coupling with the vibration reducing device 9. .

以上、本実施の形態1のように錘7及び弾性部材8を備えた振動低減装置9を回転型圧縮機100の重心6よりも高い位置に設置することにより、回転型圧縮機100下部を支持する防振構造1付近を軸とした倒れ振動だけでなく、重心6を軸とした倒れ振動も低減させることができるため、筺体からの音響放射を抑制することが可能となり、回転型圧縮機100を低速度で運転させることができる。   As described above, the vibration reduction device 9 including the weight 7 and the elastic member 8 as in the first embodiment is installed at a position higher than the center of gravity 6 of the rotary compressor 100, thereby supporting the lower portion of the rotary compressor 100. In addition to the falling vibration about the vibration isolating structure 1 as an axis, the falling vibration about the center of gravity 6 can be reduced, so that acoustic radiation from the housing can be suppressed, and the rotary compressor 100 can be suppressed. Can be operated at a low speed.

また、振動低減装置9を回転型圧縮機100の密閉容器5の上部に設けることにより、回転型圧縮機100の倒れ振動D1,D2をより低減させることができ、筺体からの音響放射を抑制することが可能となり、回転型圧縮機100を低速度で運転させることができる。さらに、回転型圧縮機100の組み立て、メンテナンスが容易となる。   Moreover, by providing the vibration reducing device 9 on the upper part of the hermetic container 5 of the rotary compressor 100, the falling vibrations D1 and D2 of the rotary compressor 100 can be further reduced, and the acoustic radiation from the housing is suppressed. And the rotary compressor 100 can be operated at a low speed. Furthermore, assembly and maintenance of the rotary compressor 100 are facilitated.

また、錘7が平面B(密閉容器5と吸入配管3との接続箇所の中心点3aと、密閉容器5と吐出配管2との接続箇所の中心点2aとを通る垂直な平面)の法線方向となるV方向に少なくとも振動するように振動低減装置9を配置したことにより、振動が大きなV方向の倒れ振動D1を低減することができるため、筺体からの音響放射をさらに抑制することが可能となり、回転型圧縮機100を低速度で運転させることができる。   Further, the weight 7 is a normal line of the plane B (a vertical plane passing through the center point 3a of the connection point between the sealed container 5 and the suction pipe 3 and the center point 2a of the connection point between the sealed container 5 and the discharge pipe 2). By arranging the vibration reducing device 9 so as to vibrate at least in the V direction, which is the direction, it is possible to reduce the falling vibration D1 in the V direction where the vibration is large, so that it is possible to further suppress acoustic radiation from the housing. Thus, the rotary compressor 100 can be operated at a low speed.

なお、本実施の形態1では、回転型圧縮機100をロータリー圧縮機としたが、スクロール圧縮機等の他の回転型圧縮機でもよい。回転軸10が鉛直方向に沿うように縦置きに回転型圧縮機を設置することにより、同様の効果があることは言うまでもない。   In the first embodiment, the rotary compressor 100 is a rotary compressor, but other rotary compressors such as a scroll compressor may be used. It goes without saying that the same effect can be obtained by installing the rotary compressor vertically so that the rotary shaft 10 is along the vertical direction.

また、本実施の形態1では錘7を金属としたが、重量を付加するための役目であるため、必ずしも金属である必要はない。また、弾性部材8も金属である必要は必ずしもなく、樹脂やゴム等の弾性材であればよい。また、錘7と弾性部材8との接続は、これらの材質によって適宜決定すればよく、ネジ止め及び接着等で両者を接続してもよい。   Further, although the weight 7 is made of metal in the first embodiment, it is not always necessary to be made of metal since it serves to add weight. The elastic member 8 is not necessarily made of metal, and may be an elastic material such as resin or rubber. Further, the connection between the weight 7 and the elastic member 8 may be appropriately determined depending on these materials, and both may be connected by screwing, adhesion, or the like.

また、振動低減装置9の回転型圧縮機100への取り付けは、弾性部材8を回転型圧縮機100の密閉容器5に直接溶接、ろう付け、接着したり、回転型圧縮機100の密閉容器5にメネジを設け、弾性部材8にオネジを切って固定したりする場合もある。また、図9のように弾性部材8を土台15に固定して、土台を回転型圧縮機100の密閉容器5に接着、ネジ止め等で固定する場合もあり得る。つまり、弾性部材8を、土台15を介して間接的に密閉容器5に接続してもよい。   In addition, the vibration reducing device 9 is attached to the rotary compressor 100 by directly welding, brazing, or bonding the elastic member 8 to the sealed container 5 of the rotary compressor 100, or by sealing the elastic member 8 to the sealed container 5 of the rotary compressor 100. In some cases, a female screw is provided on the elastic member 8 and the elastic member 8 is cut off and fixed. In addition, as shown in FIG. 9, the elastic member 8 may be fixed to the base 15 and the base may be fixed to the sealed container 5 of the rotary compressor 100 by bonding, screwing, or the like. That is, the elastic member 8 may be indirectly connected to the sealed container 5 via the base 15.

また、振動低減装置9は弾性部材8で錘7を支えた逆振り子形状としたが、弾性部材8と錘7で構成された振動構造であればこの形状にこだわる必要はない。   Further, although the vibration reducing device 9 has a reverse pendulum shape in which the weight 7 is supported by the elastic member 8, it is not necessary to stick to this shape as long as the vibration structure is constituted by the elastic member 8 and the weight 7.

実施の形態2.
振動低減装置9を例えば以下のように構成してもよい。なお、本実施の形態2で記載されていない構成は実施の形態1と同様とし、実施の形態1と同様の構成には実施の形態1と同じ符号を付している。
Embodiment 2. FIG.
For example, the vibration reducing device 9 may be configured as follows. Configurations not described in the second embodiment are the same as those in the first embodiment, and the same configurations as those in the first embodiment are denoted by the same reference numerals as those in the first embodiment.

図10は、本発明の実施の形態2による振動低減装置を示す横断面図であり、図3のA−A断面図である。
本実施の形態2に係る振動低減装置9の弾性部材8は、断面形状が略楕円形状となっている。そして、短半径の半径方向を平面B(密閉容器5と吸入配管3との接続箇所の中心点3aと、密閉容器5と吐出配管2との接続箇所の中心点2aとを通る垂直な平面)の法線方向となるV方向に一致させている。つまり、本実施の形態2に係る振動低減装置9の弾性部材8は、V方向のバネ定数とH方向のバネ定数とが異なる形状となっている。これにより、振動低減装置9の錘7がV方向に倒れるには柔らかく、H方向に倒れるには硬くなる。回転型圧縮機100に吸入配管3と吐出配管2を接続することで発生する方向性を持った圧縮機特有の倒れ振動D1,D2にこの弾性部材8の楕円半径を調整することで、回転型圧縮機100のV方向、H方向それぞれで振動低減の調整が可能となり、別々の弾性部材8を用いる必要がなくなる。
10 is a transverse sectional view showing a vibration reducing apparatus according to Embodiment 2 of the present invention, and is a sectional view taken along line AA in FIG.
The elastic member 8 of the vibration reducing device 9 according to the second embodiment has a substantially elliptical cross section. The radial direction of the short radius is the plane B (a vertical plane passing through the center point 3a of the connection point between the sealed container 5 and the suction pipe 3 and the center point 2a of the connection point between the sealed container 5 and the discharge pipe 2). It is made to correspond to the V direction which is the normal line direction. That is, the elastic member 8 of the vibration reducing device 9 according to the second embodiment has a shape in which the spring constant in the V direction and the spring constant in the H direction are different. As a result, the weight 7 of the vibration reducing device 9 is soft to fall in the V direction and hard to fall in the H direction. By adjusting the elliptical radius of the elastic member 8 to the falling vibrations D1 and D2 peculiar to the compressor having the directivity generated by connecting the suction pipe 3 and the discharge pipe 2 to the rotary compressor 100, the rotary type The vibration reduction can be adjusted in each of the V direction and the H direction of the compressor 100, and it is not necessary to use separate elastic members 8.

以上、本実施の形態2のように振動低減装置9を構成することにより、それぞれの方向に対する回転型圧縮機100の倒れ振動をコンパクトな振動低減装置9で、効果的に低減することができる。回転型圧縮機100を低速度で運転した場合でも、回転型圧縮機100の振動の増大を小さく抑えることができるから、冷媒配管4から筺体へ伝わる振動も大きくならず、筺体から放射される騒音も小さくすることができる。   As described above, by configuring the vibration reducing device 9 as in the second embodiment, the falling vibration of the rotary compressor 100 with respect to each direction can be effectively reduced with the compact vibration reducing device 9. Even when the rotary compressor 100 is operated at a low speed, an increase in vibration of the rotary compressor 100 can be suppressed to a small level. Therefore, vibration transmitted from the refrigerant pipe 4 to the housing does not increase, and noise radiated from the housing. Can also be reduced.

なお、図10では弾性部材の断面形状を楕円としたが、図11のように断面形状を矩形にして厚みをV方向とH方向で変えても、同じ効果が得られることは言うまでもない。   In FIG. 10, the cross-sectional shape of the elastic member is an ellipse, but it goes without saying that the same effect can be obtained if the cross-sectional shape is rectangular and the thickness is changed between the V direction and the H direction as shown in FIG.

実施の形態3.
振動低減装置9の密閉容器5に対する取り付け方を以下のようにしてもよい。なお、本実施の形態3で記載されていない構成は実施の形態1又は実施の形態2と同様とし、実施の形態1及び実施の形態2と同様の構成には同じ符号を付している。
Embodiment 3 FIG.
The vibration reducing device 9 may be attached to the sealed container 5 as follows. Configurations that are not described in the third embodiment are the same as those in the first or second embodiment, and the same reference numerals are given to the same configurations as those in the first and second embodiments.

図12は、本発明の実施の形態3による回転型圧縮機を示す平面図である。また、図13は、この回転型圧縮機を示す正面図である。
本実施の形態3に係る回転型圧縮機100の振動低減装置9は、水平方向に振動するように密閉容器5の上部に取り付けられている。詳しくは、錘7が平面B(密閉容器5と吸入配管3との接続箇所の中心点3aと、密閉容器5と吐出配管2との接続箇所の中心点2aとを通る垂直な平面)の法線方向となるV方向にのみ振動するように振動低減装置9を配置している。また、本実施の形態3に係る振動低減装置9は、錘7が密閉容器5と接触して配置されている。
なお、平面視で本実施の形態3に係る振動低減装置9を見た場合、錘7は、厳密にはV方向に沿って円弧状に振動することとなる。本実施の形態3では、このような場合も、V方向に振動すると称する。
FIG. 12 is a plan view showing a rotary compressor according to the third embodiment of the present invention. FIG. 13 is a front view showing the rotary compressor.
The vibration reducing device 9 of the rotary compressor 100 according to the third embodiment is attached to the upper part of the sealed container 5 so as to vibrate in the horizontal direction. Specifically, the weight 7 is a method in which the weight B is a plane B (a vertical plane passing through the center point 3a of the connection point between the sealed container 5 and the suction pipe 3 and the center point 2a of the connection point between the sealed container 5 and the discharge pipe 2). The vibration reducing device 9 is arranged so as to vibrate only in the V direction, which is the linear direction. Further, in the vibration reducing device 9 according to the third embodiment, the weight 7 is disposed in contact with the sealed container 5.
When the vibration reduction device 9 according to the third embodiment is viewed in plan view, the weight 7 vibrates in an arc shape strictly along the V direction. In the third embodiment, such a case is also referred to as vibrating in the V direction.

図14は、回転型圧縮機100の振動低減装置9の錘7を密閉容器5に接触させた場合と、回転型圧縮機100の振動低減装置9の錘7を密閉容器5に接触させない場合とにおいて、回転型圧縮機100の倒れ振動D1を比較したグラフである。横軸が回転型圧縮機100の運転速度(1秒間の回転軸10の回転数)、縦軸が回転型圧縮機100の倒れ振動D1の相対値(dB)である。また、破線が振動低減装置9の錘7を密閉容器5に接触させない回転型圧縮機100を示し、実線が振動低減装置9の錘7を密閉容器5に接触させた回転型圧縮機100を示している。   FIG. 14 shows a case where the weight 7 of the vibration reducing device 9 of the rotary compressor 100 is brought into contact with the sealed container 5 and a case where the weight 7 of the vibration reducing device 9 of the rotary compressor 100 is not brought into contact with the sealed container 5. FIG. 3 is a graph comparing the falling vibration D1 of the rotary compressor 100. FIG. The horizontal axis represents the operating speed of the rotary compressor 100 (the number of rotations of the rotary shaft 10 for one second), and the vertical axis represents the relative value (dB) of the falling vibration D1 of the rotary compressor 100. The broken line indicates the rotary compressor 100 in which the weight 7 of the vibration reducing device 9 is not brought into contact with the sealed container 5, and the solid line indicates the rotary compressor 100 in which the weight 7 of the vibration reducing device 9 is brought into contact with the sealed container 5. ing.

振動低減装置9の錘7を密閉容器5に接触させていない場合は、38rps付近に倒れ振動D1のピークがあった。振動低減装置9の錘7を密閉容器5に接触させている場合、38rpsの倒れ振動D1が7dB低減した。このように振動低減装置9の錘7を密閉容器5に接触させて取り付けると、振動低減装置9がない場合に比べて、格段に回転型圧縮機100の振動が低減する効果が得られる。   When the weight 7 of the vibration reducing device 9 is not in contact with the sealed container 5, the peak of the vibration D1 collapsed in the vicinity of 38 rps. When the weight 7 of the vibration reducing device 9 is in contact with the sealed container 5, the fall vibration D1 of 38 rps is reduced by 7 dB. When the weight 7 of the vibration reducing device 9 is attached in contact with the sealed container 5 as described above, an effect of significantly reducing the vibration of the rotary compressor 100 can be obtained as compared with the case where the vibration reducing device 9 is not provided.

本実施の形態3においては、弾性部材8は軸をH方向に配置した金属棒とし、弾性部材8を固定した土台15を回転型圧縮機100の上部に固定している。これにより回転型圧縮機100の振動エネルギーが振動低減装置9の錘7を振動させることに変換されて、回転型圧縮機100のV方向の倒れ振動が低減する。この時に、錘7が回転型圧縮機100の外殻に接触して、摩擦をおこすことにより、錘7の振動エネルギーの一部が摩擦による熱エネルギーに変換されて、錘7の振動も低減する。   In the third embodiment, the elastic member 8 is a metal rod whose axis is arranged in the H direction, and the base 15 to which the elastic member 8 is fixed is fixed to the upper portion of the rotary compressor 100. As a result, the vibration energy of the rotary compressor 100 is converted into vibrating the weight 7 of the vibration reducing device 9, and the tilting vibration of the rotary compressor 100 in the V direction is reduced. At this time, when the weight 7 comes into contact with the outer shell of the rotary compressor 100 and causes friction, a part of vibration energy of the weight 7 is converted into heat energy due to friction, and vibration of the weight 7 is also reduced. .

以上、本実施の形態3のように構成された回転型圧縮機100においては、錘7が平面B(密閉容器5と吸入配管3との接続箇所の中心点3aと、密閉容器5と吐出配管2との接続箇所の中心点2aとを通る垂直な平面)の法線方向となるV方向にのみ振動するように振動低減装置9を配置しているため、振動が大きなV方向の倒れ振動D1を低減する。これにより、筺体からの音響放射を抑制することが可能となり、回転型圧縮機100を低速度で運転させることができる。また、回転型圧縮機100特有の大きな法線方向Vの振動D1に限定するため、振動低減装置9の形態が自由になり、設計が容易となる。また振動低減装置9の錘7を回転型圧縮機100に接触して配置したことにより、回転型圧縮機100の振動エネルギーを振動低減装置9の錘7との摩擦で消散し、回転型圧縮機100及び振動低減装置9の振動を小さくすることができる。密閉容器5と錘7との接触面の表面荒さを大きくし、摩擦を起こしやすくすると、さらに同様の効果が上がることはいうまでもない。   As described above, in the rotary compressor 100 configured as in the third embodiment, the weight 7 has the plane B (the center point 3a of the connection point between the sealed container 5 and the suction pipe 3, the sealed container 5 and the discharge pipe). Since the vibration reducing device 9 is arranged so as to vibrate only in the V direction, which is the normal direction of the vertical plane passing through the center point 2a of the connection point to the connection point 2, the falling vibration D1 in the V direction where the vibration is large. Reduce. Thereby, it is possible to suppress acoustic radiation from the housing, and the rotary compressor 100 can be operated at a low speed. Further, since the vibration D1 is limited to the vibration D1 in the large normal direction V that is peculiar to the rotary compressor 100, the form of the vibration reducing device 9 becomes free and the design becomes easy. Further, by arranging the weight 7 of the vibration reducing device 9 in contact with the rotary compressor 100, the vibration energy of the rotary compressor 100 is dissipated by friction with the weight 7 of the vibration reducing device 9, and the rotary compressor 100 and the vibration of the vibration reducing device 9 can be reduced. Needless to say, if the surface roughness of the contact surface between the sealed container 5 and the weight 7 is increased to easily cause friction, the same effect can be further improved.

1 防振構造、2 吐出配管、2a 密閉容器5と吐出配管2との接続箇所の中心点、3 吸入配管、3a 密閉容器5と吸入配管3との接続箇所の中心点、4 冷媒配管、5 密閉容器、6 重心、7 錘、8 弾性部材、9 振動低減装置、10 回転軸、11 圧縮部、12 ローター、13 ステーター、14 モータ、15 土台、100 回転型圧縮機、B 平面、C 回転方向の振動、D1 倒れ振動、D2 倒れ振動、H 方向(設置状態の密閉容器5を平面視したときにV方向と垂直になるH方向)、V 方向(平面Bの法線方向)。   DESCRIPTION OF SYMBOLS 1 Anti-vibration structure, 2 discharge piping, 2a The central point of the connection location of the airtight container 5 and the discharge piping 2, 3 Suction piping, 3a The central point of the connection location of the airtight container 5 and the suction piping 3, 4 Refrigerant piping, 5 Airtight container, 6 center of gravity, 7 weights, 8 elastic member, 9 vibration reduction device, 10 rotation shaft, 11 compression section, 12 rotor, 13 stator, 14 motor, 15 base, 100 rotary compressor, B plane, C rotation direction Vibration, D1 falling vibration, D2 falling vibration, H direction (H direction perpendicular to V direction when airtight container 5 in plan view is viewed in plan), V direction (normal direction of plane B).

Claims (2)

圧縮部、モータ及び該モータの駆動力を前記圧縮部に伝達する回転軸が収納された密閉容器と、
該密閉容器を支持する防振構造と、
前記密閉容器に接続された吸入配管及び吐出配管と、
を備え、
前記回転軸が鉛直方向に沿うように縦置きに設置される回転型圧縮機において、
錘と、一端が該錘に接続されて他端が前記密閉容器に直接又は間接的に接続された弾性部材とを有する振動低減装置を備え、
該振動低減装置が当該回転型圧縮機の重心よりも高い位置に設けられており、
前記密閉容器と前記吸入配管との接続箇所の中心点と、前記密閉容器と前記吐出配管との接続箇所の中心点とを通る垂直な平面を平面B、該平面Bの法線方向をV方向、及び、設置状態の前記密閉容器を平面視したときに前記V方向と垂直になる方向をH方向と定義した場合、
前記振動低減装置は、前記弾性部材が前記V方向のバネ定数と前記H方向のバネ定数とが異なる形状であり、固有振動数の異なる前記V方向及び前記H方向における振動を同時に低減させることを特徴とする回転型圧縮機。
A hermetically sealed container containing a compression unit, a motor, and a rotating shaft that transmits the driving force of the motor to the compression unit;
An anti-vibration structure for supporting the sealed container;
A suction pipe and a discharge pipe connected to the sealed container;
With
In the rotary compressor installed vertically so that the rotation axis is along the vertical direction,
Comprising a vibration reducing device having a weight and an elastic member having one end connected to the weight and the other end connected directly or indirectly to the sealed container;
The vibration reducing device is provided at a position higher than the center of gravity of the rotary compressor ,
A vertical plane passing through the central point of the connection point between the closed container and the suction pipe and the central point of the connection point between the closed container and the discharge pipe is a plane B, and a normal direction of the plane B is a V direction. When the H direction is defined as a direction perpendicular to the V direction when the sealed container in an installed state is viewed in plan view,
The vibration damping system, the elastic member is a said V direction of the spring constant and the H direction of the spring constant and different shapes, Rukoto simultaneously reduce the vibrations in the V direction and the H direction different natural frequency Rotating compressor characterized by
前記振動低減装置が前記密閉容器の上部に取り付けられていることを特徴とする請求項1に記載の回転型圧縮機。   The rotary compressor according to claim 1, wherein the vibration reducing device is attached to an upper portion of the sealed container.
JP2014081272A 2014-04-10 2014-04-10 Rotary compressor Active JP6289231B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014081272A JP6289231B2 (en) 2014-04-10 2014-04-10 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014081272A JP6289231B2 (en) 2014-04-10 2014-04-10 Rotary compressor

Publications (2)

Publication Number Publication Date
JP2015203306A JP2015203306A (en) 2015-11-16
JP6289231B2 true JP6289231B2 (en) 2018-03-07

Family

ID=54596924

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014081272A Active JP6289231B2 (en) 2014-04-10 2014-04-10 Rotary compressor

Country Status (1)

Country Link
JP (1) JP6289231B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019193697A1 (en) * 2018-04-04 2019-10-10 東芝キヤリア株式会社 Rotary compressor and refrigeration cycle device

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53144111U (en) * 1977-04-19 1978-11-14
JPS5733247A (en) * 1980-08-07 1982-02-23 Matsushita Electric Ind Co Ltd Sealed type compressor
JPS5950244A (en) * 1982-09-17 1984-03-23 Matsushita Electric Ind Co Ltd Vibration damping device for rotary electric compressor
JPH01193429A (en) * 1988-01-29 1989-08-03 Sanwa Tekki Corp Vibration isolating device
JPH02230984A (en) * 1989-03-01 1990-09-13 Daikin Ind Ltd Vibration suppressor for rotary compressor
JPH02305385A (en) * 1989-05-17 1990-12-18 Daikin Ind Ltd Vibration restraining device for rotary compressor
JPH11107969A (en) * 1997-09-30 1999-04-20 Sanyo Electric Co Ltd Rotary compressor
JP2000240718A (en) * 1999-02-18 2000-09-05 Mitsubishi Electric Corp Vibration damping device for compressor
JP2004061462A (en) * 2002-07-31 2004-02-26 Ricoh Co Ltd Probe for measuring shape

Also Published As

Publication number Publication date
JP2015203306A (en) 2015-11-16

Similar Documents

Publication Publication Date Title
US10578088B2 (en) Reciprocating compressor having support springs of different natural frequencies
US20070041855A1 (en) Linear compressor, particularly refrigerant compressor
US7585161B2 (en) Compressor
US20080292484A1 (en) Compressor and device for reducing vibration therefor
JP6094497B2 (en) Electric compressor and method for manufacturing electric compressor
EP2129912B1 (en) Mount for compressor shell
JP2007002847A (en) Compressor
JP6289231B2 (en) Rotary compressor
JP2014055633A (en) Rubber vibration isolator for compressor
JP2015105792A (en) Outdoor unit
CN107949701B (en) Compressor
JPH05322382A (en) Sealed type motor compressor
JP3129103B2 (en) Hermetic electric compressor
JP5874567B2 (en) Blower device for vehicle air conditioning
KR100716000B1 (en) Compressor fixing apparatus
EP3203069B1 (en) Hermetic compressor and refrigeration device
CN108443120B (en) Compressor with a compressor housing having a plurality of compressor blades
WO2018131436A1 (en) Compressor comprising shaft support
WO2021064984A1 (en) Refrigeration cycle device
JP2016094923A (en) Compressor
CN110621877A (en) Heat source unit and vibration isolator
EP1653160A1 (en) Outdoor unit for air conditioner
JP6686994B2 (en) Scroll compressor
JPS6244103B2 (en)
JPH062661A (en) Closed type compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160923

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170825

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180206

R150 Certificate of patent or registration of utility model

Ref document number: 6289231

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250