JP6286301B2 - Method for manufacturing unidirectional fiber-reinforced tape-shaped composite material, manufacturing apparatus, and method for manufacturing random sheet using tape-shaped composite material - Google Patents

Method for manufacturing unidirectional fiber-reinforced tape-shaped composite material, manufacturing apparatus, and method for manufacturing random sheet using tape-shaped composite material Download PDF

Info

Publication number
JP6286301B2
JP6286301B2 JP2014134969A JP2014134969A JP6286301B2 JP 6286301 B2 JP6286301 B2 JP 6286301B2 JP 2014134969 A JP2014134969 A JP 2014134969A JP 2014134969 A JP2014134969 A JP 2014134969A JP 6286301 B2 JP6286301 B2 JP 6286301B2
Authority
JP
Japan
Prior art keywords
resin
reinforced
composite material
fiber bundle
unidirectional
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014134969A
Other languages
Japanese (ja)
Other versions
JP2016011403A (en
Inventor
俊暁 唐澤
俊暁 唐澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Suncorona Oda Co., Ltd.
Original Assignee
Suncorona Oda Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Suncorona Oda Co., Ltd. filed Critical Suncorona Oda Co., Ltd.
Priority to JP2014134969A priority Critical patent/JP6286301B2/en
Publication of JP2016011403A publication Critical patent/JP2016011403A/en
Application granted granted Critical
Publication of JP6286301B2 publication Critical patent/JP6286301B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Moulding By Coating Moulds (AREA)

Description

本発明は高い生産性を維持しつつボイド率を低減すると共に強化繊維と樹脂が均一・均質に混在した一方向性繊維強化テープ状複合材の製造方法、製造装置及び当該テープ状複合材を使用したランダムシートの製造方法に関する。 The present invention reduces the void ratio while maintaining high productivity and uses a unidirectional fiber-reinforced tape-shaped composite material, a manufacturing apparatus, and the tape-shaped composite material in which reinforcing fibers and resin are mixed uniformly and homogeneously. The present invention relates to a method for manufacturing a random sheet.

FRPは、エポキシ樹脂やウレタン樹脂等の熱硬化性樹脂をマトリックスとして炭素繊維やアラミド繊維などの強化繊維基材に含浸させた複合材である。このような複合材は軽量高強度であるため、例えば、航空宇宙、自動車、スポーツ用品等の分野で使用されている。熱硬化性樹脂は未硬化で低粘度であるため強化繊維に対して含浸が容易であり、硬化反応により高強度化することができる。 FRP is a composite material in which a reinforcing fiber substrate such as carbon fiber or aramid fiber is impregnated with a thermosetting resin such as epoxy resin or urethane resin as a matrix. Since such a composite material is lightweight and high in strength, it is used, for example, in fields such as aerospace, automobiles, and sports equipment. Since the thermosetting resin is uncured and has a low viscosity, the reinforcing fiber can be easily impregnated and can be increased in strength by a curing reaction.

しかしながら、熱硬化性樹脂は脆く耐衝撃性に劣るという欠点を有する。また熱硬化性樹脂をプリプレグ化した場合、樹脂のライフ等により可使時間の制約等取り扱いが難しく保存管理上の問題がある。また成形時間が長く生産性が低いという問題や、リサイクル性・リペア性に難点があるという問題もある。 However, thermosetting resins have the disadvantage of being brittle and inferior in impact resistance. Further, when a thermosetting resin is made into a prepreg, it is difficult to handle due to restrictions on the usable time due to the life of the resin, and there is a problem in storage management. In addition, there is a problem that molding time is long and productivity is low, and there is a problem that recyclability and repairability are difficult.

これに対して、熱可塑性樹脂をマトリックスとして使用する複合材(FRTP)は、靭性が高く、プリプレグの保存管理が容易であり、硬化反応が不要なので射出成形・スタンピング成形など成形サイクルの高速化が可能である。更に、FRTPはリサイクル性に優れ、溶接、補修等のリペア性も優れている等、FRPを上回る多数の利点があることから幅広い分野で実用化されている。 In contrast, a composite material (FRTP) using a thermoplastic resin as a matrix has high toughness, easy prepreg storage management, and does not require a curing reaction, thus speeding up molding cycles such as injection molding and stamping molding. Is possible. Furthermore, FRTP has been put to practical use in a wide range of fields because it has many advantages over FRP, such as excellent recyclability and repair properties such as welding and repair.

しかし、熱硬化性樹脂は力学的特性に優れたものほど一般的に高分子量で溶融粘度が高い。溶融粘度が高いと強化繊維への溶融含浸と低ボイド率化が困難になる。また、プリプレグ中で強化繊維と樹脂の均一・均質な混在化も困難になる。このため、高分子量・高粘度の熱可塑性樹脂を強化繊維中に含浸した低ボイド率FRTPは生産性が低く製造コストが高い。一方、含浸容易な低分子量・低粘度の熱可塑性樹脂を使用したFRTPは力学的特性が大幅に低く使用用途が限られる。 However, thermosetting resins having higher mechanical properties generally have higher molecular weight and higher melt viscosity. When the melt viscosity is high, it becomes difficult to melt impregnate the reinforcing fibers and reduce the void ratio. In addition, it becomes difficult to mix the reinforcing fiber and the resin uniformly and homogeneously in the prepreg. For this reason, the low void rate FRTP in which the reinforcing fiber is impregnated with a high molecular weight / high viscosity thermoplastic resin has low productivity and high production cost. On the other hand, FRTP using a low-molecular-weight and low-viscosity thermoplastic resin that is easily impregnated has a significantly low mechanical property and has limited applications.

そこで、高分子量・高粘度の熱可塑樹脂を使用した低ボイド率FRTPを含浸性よく効率的に生産する様々な方法が以下のように提案されている。1)溶媒で希釈して低粘度化した溶液を連続繊維束に含浸し、次工程で溶媒を除去する方法(特許文献1:特開2005−239843号公報)、2)高粘度の熱可塑性樹脂をエマルジョン、ディスパーション化したものを連続繊維束に含浸した後に媒体を除去する方法(特許文献2:特開2002−249984号公報)、3)高粘度の熱可塑性樹脂粉末を流動床中で連続繊維束の中に入れた後加熱溶融含浸する方法(特許文献3:特許第3672043号公報)、4)溶融樹脂中に浸漬した連続繊維束を開繊し、しごき、さらに樹脂に圧力を付与するなどして機械的に含浸させるプルトルージョン法(特許文献4:特開2009−143158号公報)等などがその例である。さらに、5)サイジング剤、カップリング剤などで繊維の表面を改質することで熱可塑性樹脂に対する繊維の濡れ性などを改善することで含浸性を向上させる方法も提案されている(特許文献5:特開昭61−236832号公報)。 Therefore, various methods for efficiently producing a low void ratio FRTP using a high molecular weight / high viscosity thermoplastic resin with good impregnation have been proposed as follows. 1) A method of impregnating a continuous fiber bundle with a solution diluted with a solvent to reduce the viscosity, and removing the solvent in the next step (Patent Document 1: Japanese Patent Application Laid-Open No. 2005-239843), 2) High viscosity thermoplastic resin A method of removing a medium after impregnating a continuous fiber bundle with an emulsion and a dispersion of the powder (Patent Document 2: JP-A-2002-249984), 3) Continuously heating a high-viscosity thermoplastic resin powder in a fluidized bed Method of heat-melt impregnation after putting in fiber bundle (Patent Document 3: Japanese Patent No. 3672043), 4) Opening and squeezing continuous fiber bundle immersed in molten resin, and applying pressure to resin Examples thereof include a pultrusion method (Patent Document 4: Japanese Patent Laid-Open No. 2009-143158) and the like that are mechanically impregnated. Furthermore, 5) a method for improving the impregnation property by improving the wettability of the fiber with respect to the thermoplastic resin by modifying the surface of the fiber with a sizing agent, a coupling agent or the like has been proposed (Patent Document 5). : JP-A-61-236832).

特開2005−239843号公報Japanese Patent Laid-Open No. 2005-239843 特開2002−249984号公報JP 2002-249984 A 特許第3672043号公報Japanese Patent No. 3672043 特開2009−143158号公報JP 2009-143158 A 特開昭61−236832号公報Japanese Patent Application Laid-Open No. 61-236832

複合材(FRTP)の中にマトリックス樹脂の未含浸部分(ボイド)があると力学特性が低下する。このため、できるだけボイドが発生しないようにする様々な技術が従来から提案されている。前記特許文献にも低ボイド率化を目的とした技術が複数提案されている。 If there is an unimpregnated portion (void) of the matrix resin in the composite material (FRTP), the mechanical properties are deteriorated. For this reason, various techniques for preventing the generation of voids as much as possible have been proposed. A plurality of techniques for reducing the void ratio have been proposed in the patent document.

例えば特表2006−523543号公報では、実質無気孔(ボイドレス)のプリプレグを形成する方法が開示されている。当該公報でいう実質無気孔とは、測定できるほどの気孔を含まないという意味である(0053段)。また、特許文献1(特開2005−239843号公報)では、硫酸分解法により測定したボイド率が最も低いもので0.2%の熱可塑性樹脂を使用したプリプレグが開示されている(実施例3)。しかしながら、樹脂含浸性は生産性の律速となるため、低ボイド率と高い生産性を両立させることは非常に難しい。 For example, Japanese translations of PCT publication No. 2006-523543 discloses a method of forming a prepreg having substantially no pores. The term “substantially poreless” as used in this publication means that pores that can be measured are not included (step 0053). Further, Patent Document 1 (Japanese Patent Laid-Open No. 2005-239443) discloses a prepreg having the lowest void ratio measured by a sulfuric acid decomposition method and using 0.2% thermoplastic resin (Example 3). ). However, since the resin impregnation property is a rate-determining factor for productivity, it is very difficult to achieve both a low void ratio and high productivity.

本発明は、ボイド率を低減した一方向性繊維強化テープ状複合材(FRTP)を高い生産性(高い引取速度)で、かつ、強化繊維と樹脂を均一・均質に混在化して製造する製造方法と製造装置及び当該テープ状複合材を使用したランダムシートの製造方法を提供する。 The present invention relates to a production method for producing a unidirectional fiber-reinforced tape-shaped composite material (FRTP) with a reduced void fraction with high productivity (high take-up speed) and by mixing reinforced fibers and resin uniformly and homogeneously. And a manufacturing apparatus and a method for manufacturing a random sheet using the tape-shaped composite material.

本発明は、熱可塑性樹脂を含浸させた強化連続繊維束を互いに離間した2つの支持部材で支持しつつ両支持部材間を移動中に前記熱可塑性樹脂を固化させる際、前記支持部材間の距離L[mm]を下式で算出される距離にしたことを特徴とする一方向性繊維強化テープ状複合材の製造方法である。式中のLidealは理想値、200mmは、実験値より、経験則
で定義された条件である。
0.9×Lideal[mm]<L[mm]<1.1×Lideal[mm]…式(1)
ideal[mm]=[200mm]×{(総フィラメント数)/[(T+W)/(単糸直径)]]×(Vf/Vr)
[総フィラメント数]:使用する強化繊維のフィラメント本数
[T]:製造する一方向性プリプレグの厚み[mm]
[W]:製造する一方向性プリプレグの幅[mm]
[単糸直径]:使用する強化繊維のフィラメントの直径[mm]
[Vf]:製造する一方向性プリプレグの全体積中に対して強化繊維の占める体積の割合[%]
[Vr]:製造する一方向性プリプレグの全体積中に対して熱可塑性樹脂の占める体積の割合[%]
The present invention provides a distance between the support members when solidifying the thermoplastic resin while moving between the two support members while supporting the reinforcing continuous fiber bundle impregnated with the thermoplastic resin with two support members spaced apart from each other. A method for producing a unidirectional fiber-reinforced tape-shaped composite material, wherein L [mm] is a distance calculated by the following equation. L ideal in the formula is an ideal value, and 200 mm is a condition defined by an empirical rule based on an experimental value.
0.9 x L ideal [mm] <L [mm] <1.1 x L ideal [mm] ... Formula (1)
L ideal [mm] = [200 mm] × {(total number of filaments) / [(T + W) / (single yarn diameter)]] × (Vf / Vr)
[Total number of filaments]: Number of filaments of reinforcing fibers used [T]: Thickness [mm] of unidirectional prepreg to be produced
[W]: Width of unidirectional prepreg to be manufactured [mm]
[Single yarn diameter]: Diameter of reinforcing fiber filament used [mm]
[Vf]: Ratio of volume occupied by reinforcing fibers with respect to the total volume of the unidirectional prepreg to be produced [%]
[Vr]: Ratio of volume occupied by thermoplastic resin with respect to the total volume of the unidirectional prepreg to be produced [%]

前記熱可塑性樹脂は、開繊された強化連続繊維束に溶剤溶解樹脂浴(ウェット法)又は溶融樹脂浴(ホットメルト法)にて含浸せしめる。必要に応じ、当該含浸直後の強化連続繊維束に所定圧で絞りをかけるとよい。 The thermoplastic resin is impregnated into a reinforced continuous fiber bundle that has been opened by a solvent-soluble resin bath (wet method) or a molten resin bath (hot melt method). If necessary, the reinforced continuous fiber bundle immediately after the impregnation may be squeezed with a predetermined pressure.

本発明は、望ましくは所定の開繊度(目標製品幅の1.1〜1.30倍幅とし、目標製品厚の0.76倍〜0.91倍厚)で開繊された強化連続繊維束に熱可塑性樹脂を溶剤溶解樹脂浴又は溶融樹脂浴にて含浸せしめ、浴直後に所定圧で絞りを掛ける。その後、この樹脂で濡れた強化連続繊維束に所定張力を掛けながら、熱可塑性樹脂を固化させる。 The present invention provides a reinforced continuous fiber bundle that is preferably opened at a predetermined opening degree (1.1 to 1.30 times the target product width and 0.76 to 0.91 times the target product thickness). The thermoplastic resin is impregnated with a solvent-soluble resin bath or a molten resin bath, and squeezed with a predetermined pressure immediately after the bath. Thereafter, the thermoplastic resin is solidified while applying a predetermined tension to the reinforced continuous fiber bundle wetted with the resin.

プリプレグの製造においては、強化連続繊維束を均一かつ薄く開繊することが樹脂含浸性を高めるために重要である。このため、太い強化連続繊維束又はフィラメント数の多い強化連続繊維束を、均一かつ薄く開繊した強化連続繊維束シートを作り、これを溶剤溶解樹脂浴又は溶融樹脂浴にてプリプレグ化する。開繊の程度(開繊度)は、用いる強化連続繊維束を、目標製品幅の1.1〜1.30倍幅とし、目標製品厚の0.76倍〜0.91倍厚とする。 In the production of a prepreg, it is important to increase the resin impregnation property by opening the reinforcing continuous fiber bundle uniformly and thinly. For this reason, a thick reinforced continuous fiber bundle or a reinforced continuous fiber bundle sheet having a large number of filaments is formed into a uniform and thin reinforced continuous fiber bundle sheet, which is prepregted in a solvent-soluble resin bath or a molten resin bath. The degree of opening (opening degree) is such that the reinforcing continuous fiber bundle to be used is 1.1 to 1.30 times as wide as the target product width, and 0.76 to 0.91 times as thick as the target product thickness.

樹脂で濡れた強化連続繊維束の樹脂固化の際、強化連続繊維束の幅と厚みに対応して適正な支点距離と適正な張力を保持し、強化連続繊維束を搬送しながら固化させる。この固化により低ボイド率の一方向性繊維強化テープ状複合材を得る。
以下、本発明のテープ状複合材の製造方法について説明する。
At the time of resin solidification of the reinforced continuous fiber bundle wetted with the resin, an appropriate fulcrum distance and an appropriate tension are maintained corresponding to the width and thickness of the reinforced continuous fiber bundle, and the reinforced continuous fiber bundle is solidified while being conveyed. By this solidification, a unidirectional fiber-reinforced tape-shaped composite material having a low void ratio is obtained.
Hereinafter, the manufacturing method of the tape-shaped composite material of this invention is demonstrated.

(強化連続繊維束)
本発明で使用する強化連続繊維束は、例えば、アラミド繊維、ポリエチレン繊維、ポリパラフェニレンベンズオキサドール(PBO)繊維などの有機繊維、ガラス繊維、炭素繊維、炭化ケイ素繊維、アルミナ繊維、チラノ繊維、玄武岩繊維、セラミックス繊維などの無機繊維、ステンレス繊維やスチール繊維などの金属繊維、その他、ボロン繊維、天然繊維、変性した天然繊維などを繊維として用いた強化繊維などが挙げられる。また、これら強化繊維は数千本以上のフィラメントで構成されるものが好ましい。また、使用する強化繊維は一種だけでなく、二種以上を組み合わせて使用することも可能である。
(Reinforced continuous fiber bundle)
The reinforced continuous fiber bundle used in the present invention includes, for example, an aramid fiber, a polyethylene fiber, an organic fiber such as a polyparaphenylene benzoxador (PBO) fiber, a glass fiber, a carbon fiber, a silicon carbide fiber, an alumina fiber, a tyrano fiber, Examples thereof include inorganic fibers such as basalt fibers and ceramic fibers, metal fibers such as stainless fibers and steel fibers, and reinforced fibers using boron fibers, natural fibers, modified natural fibers, and the like as fibers. These reinforcing fibers are preferably composed of several thousand or more filaments. Moreover, the reinforcing fiber to be used is not limited to one kind, and two or more kinds can be used in combination.

(予備含浸)
溶剤溶解樹脂浴の場合、浴直前の強化連続繊維束に浴と同じ熱可塑性樹脂の溶液を片側からノズルで塗布し、熱可塑性樹脂の溶液によって強化連続繊維束に含まれた樹脂ボイドを強化連続繊維束の反対側に強制排除する。この状態で溶剤溶解樹脂浴に通すことで強化連続繊維束内をボイドなく完全に熱可塑性樹脂の溶液で満たすことができる。
(Pre-impregnation)
In the case of a solvent-dissolved resin bath, the same thermoplastic resin solution as the bath is applied to the reinforced continuous fiber bundle just before the bath with a nozzle from one side, and the resin voids contained in the reinforced continuous fiber bundle are continuously reinforced by the thermoplastic resin solution. Force exclusion to the opposite side of the fiber bundle. By passing through a solvent-soluble resin bath in this state, the reinforced continuous fiber bundle can be completely filled with the thermoplastic resin solution without voids.

(溶剤溶解樹脂浴)
溶剤溶解樹脂浴(ウェット法)に使用する樹脂は、加熱溶融した場合に、10mPa・s〜3500mPa・sの粘度となる熱可塑性樹脂が好ましい。この熱可塑性樹脂の例としては、特に制限はないが、耐衝撃性に優れ、かつ、成形が容易である熱可塑性樹脂が好ましい。
(Solvent-soluble resin bath)
The resin used in the solvent-soluble resin bath (wet method) is preferably a thermoplastic resin having a viscosity of 10 mPa · s to 3500 mPa · s when heated and melted. An example of this thermoplastic resin is not particularly limited, but a thermoplastic resin that is excellent in impact resistance and easy to mold is preferable.

そのような熱可塑性樹脂としては、例えばナイロン6、ナイロン12、ナイロン66、ナイロン46に代表されるポリアミド系樹脂、ポリエチレンテレフタレ−トやポリブチレンテレフタレ−トなどのポリエステル系樹脂、ポリエチレンやポリプロピレンなどのポリオレフィン系樹脂、ポリエ−テルケトン樹脂、ポリフェニレンサルファイド樹脂、ポリエ−テルイミド樹脂、ポリカ−ボネ−ト樹脂、熱硬化性樹脂を変性させ熱可塑性を有する樹脂や、これらの共重合体、変性体、および2種類以上ブレンドした樹脂等が挙げられる。 Examples of such thermoplastic resins include polyamide resins represented by nylon 6, nylon 12, nylon 66, and nylon 46, polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polyethylene, and polypropylene. Such as polyolefin resins, polyether ketone resins, polyphenylene sulfide resins, polyetherimide resins, polycarbonate resins, thermosetting resins, thermoplastic resins, copolymers thereof, modified products, And two or more types of blended resins.

また、更に耐衝撃性向上のために、上記樹脂にエラストマー、もしくは、ゴム成分を添加した樹脂であっても良い。また、溶剤に可溶化する熱可塑性を有する樹脂も好適である。樹脂を溶かす溶剤は特に制限はないが、例えばNMP(N‐メチル‐2‐ピロリドン)を使用することができる。 Further, in order to further improve the impact resistance, an elastomer or a resin in which a rubber component is added to the above resin may be used. A thermoplastic resin that is solubilized in a solvent is also suitable. The solvent for dissolving the resin is not particularly limited. For example, NMP (N-methyl-2-pyrrolidone) can be used.

なお、溶剤溶解樹脂浴に代えて溶融樹脂含浸浴(ホットメルト法又はドライ法)を使用することも可能であり、この溶融樹脂含浸浴でも前記と同じ熱可塑性樹脂を使用することができる。 In addition, it is also possible to use a molten resin impregnation bath (hot melt method or dry method) instead of the solvent-soluble resin bath, and the same thermoplastic resin as described above can also be used in this molten resin impregnation bath.

熱可塑性樹脂の重量平均分子量Aは、良好な含浸性と固化後の低ボイド化を担保するために所定の低分子量A(A=1000〜28000)とするのが望ましい。例えば、分子量A=0.1C〜0.7Cとする(C:ランダムシートの分子量)。そして、固化後の強度を担保するために後述する乾燥・固化工程又は冷却・固化工程で重量平均分子量が少なくとも分子量B[B=10000〜30000]になるまで重縮合させるのが望ましい。 The weight average molecular weight A of the thermoplastic resin is desirably a predetermined low molecular weight A (A = 1000 to 28000) in order to ensure good impregnation and low voiding after solidification. For example, molecular weight A = 0.1C to 0.7C (C: molecular weight of random sheet). And in order to ensure the strength after solidification, it is desirable to carry out polycondensation until the weight average molecular weight becomes at least the molecular weight B [B = 10000 to 30000] in the drying / solidification step or cooling / solidification step described later.

溶剤溶解樹脂浴させる強化連続繊維束は、拡繊または開繊したものを用いるか、もしくは、拡繊または開繊しながら樹脂含浸する事が好ましい。溶剤溶解樹脂浴させる際の強化連続繊維束の厚みは、10μm〜50μmにするのが望ましい。 The reinforced continuous fiber bundle to be used in the solvent-dissolved resin bath is preferably expanded or opened, or is preferably impregnated with resin while being expanded or opened. The thickness of the reinforced continuous fiber bundle when the solvent-soluble resin bath is used is desirably 10 μm to 50 μm.

拡繊または開繊しながら樹脂含浸する方法でも、用いる強化連続繊維束を上記幅・厚みにする事で含浸工程を単純・短距離化する事が出来る。すなわち、強化連続繊維束10に対して熱可塑性樹脂をボイド無く十分に含浸させるには、従来のように強化連続繊維束の厚みが100μm以上であると、強化連続繊維束を樹脂浴に数m/分以下の引取速度で通す必要がある。それ以上高速で樹脂浴を通過させると熱可塑性樹脂の含浸不良となる。したがって、テープ状複合材の樹脂含浸性がその生産性の律速となる。 Even in the method of impregnating with resin while spreading or opening, the impregnation process can be simplified and shortened by setting the width and thickness of the reinforced continuous fiber bundle to be used. That is, in order to sufficiently impregnate the reinforced continuous fiber bundle 10 with no thermoplastic resin without voids, if the thickness of the reinforced continuous fiber bundle is 100 μm or more as in the prior art, the reinforced continuous fiber bundle is several m in the resin bath. It is necessary to pass at a take-up speed of less than 1 minute. If the resin bath is passed at a higher speed than that, the impregnation of the thermoplastic resin becomes poor. Therefore, the resin impregnation property of the tape-shaped composite material becomes the rate-limiting factor of the productivity.

これに対して本発明は、強化連続繊維束の厚みが前述のように従来の半分以下であり、溶剤溶解樹脂浴部における樹脂含浸性を高めることができるので当該樹脂含浸性が生産性の律速となることがなくなるという大きな利点がある。したがって、良好な含浸性を維持した状態で引取速度1〜15m/分が可能であり、含浸性と生産性を両立させることができる。 In contrast, according to the present invention, the thickness of the reinforced continuous fiber bundle is less than half that of the conventional one as described above, and the resin impregnation property in the solvent-dissolving resin bath can be enhanced. There is a great advantage that it will not be. Therefore, a take-up speed of 1 to 15 m / min is possible while maintaining good impregnation properties, and both impregnation properties and productivity can be achieved.

(絞り)
溶剤溶解樹脂浴の液面から出た直後の強化連続繊維束をローラによる絞りで脱液する。ローラに掛ける絞り圧Pは、0.05MPa〜0.3MPa(より好ましくは0.1MPa〜0.25MPa)である。これにより、ボイド除去と樹脂量制御を行う。当該樹脂量は、一方向性繊維強化テープ状複合材中の強化繊維体積含有率VfがVf=30〜65%になるように制御する。体積含有率が65%より高くなると繊維相互の交絡箇所(未含浸部分)が増えてボイドレス化が困難になる。また体積含有率が30%未満では複合材の強度を確保するのが困難になる。(他の範囲:10%〜70%、30%〜55%)
(Aperture)
The reinforced continuous fiber bundle immediately after coming out of the liquid surface of the solvent-dissolving resin bath is drained by squeezing with a roller. The drawing pressure P applied to the roller is 0.05 MPa to 0.3 MPa (more preferably 0.1 MPa to 0.25 MPa). Thereby, void removal and resin amount control are performed. The amount of the resin is controlled so that the reinforcing fiber volume content Vf in the unidirectional fiber-reinforced tape-shaped composite material is Vf = 30 to 65%. If the volume content is higher than 65%, the number of entangled portions (unimpregnated portions) between the fibers increases, making it difficult to make a voidless. If the volume content is less than 30%, it is difficult to ensure the strength of the composite material. (Other ranges: 10% to 70%, 30% to 55%)

(固化工程)
固化工程は使用する樹脂の状態により固化方法を適宜選択できる。溶剤含浸法で含浸した樹脂を固化させる場合には固化工程で加熱部としての送風機付乾燥炉を用いる。乾燥炉温度は溶剤の蒸発温度以上とし、発火温度に対して2/3以下の温度とし、加温送風する事が好ましい。
(Solidification process)
The solidification process can select the solidification method suitably according to the state of resin to be used. When the resin impregnated by the solvent impregnation method is solidified, a drying furnace with a blower as a heating unit is used in the solidification step. The drying furnace temperature is preferably not less than the evaporation temperature of the solvent, not more than 2/3 of the ignition temperature, and is preferably heated.

高融点樹脂を高沸点溶剤に溶解させて使用する場合は、加熱から溶剤蒸発、凝固工程の雰囲気温度の変化による析出を抑制する為、乾燥炉自体を保温槽内で行い、蒸気を吸引させる等の方法も好ましい。または、低沸点溶剤を混入させ、蒸発量を増加させる方法も使用できる。 When using a high-melting resin dissolved in a high-boiling solvent, the drying furnace itself is kept in a heat-reserving tank and steam is sucked in order to suppress precipitation due to changes in the ambient temperature of the solvent evaporation and coagulation processes. This method is also preferable. Alternatively, a method in which a low boiling point solvent is mixed to increase the evaporation amount can be used.

また、加熱後の溶融含浸法(ホットメルト法又はドライ法)のようにペレット状、フイルム状、パウダー状の樹脂を加熱溶融して強化連続繊維束に含浸溶融させる場合は固化工程で冷却器を用いる。 Also, in the case of melting and impregnating into a reinforced continuous fiber bundle by heating and melting a pellet-like, film-like or powder-like resin as in the melt impregnation method (hot melt method or dry method) after heating, a cooler is used in the solidification process. Use.

固化工程に使用する乾燥炉又は冷却器は縦型・横型のいずれでも良いが、未固化の樹脂が乾燥・固化中に垂れ落ちることで強化連続繊維束と樹脂の混合状態が乱れるのを防ぐには縦型が好ましい。 The drying furnace or cooler used in the solidification process may be either vertical or horizontal, but it prevents unmixed resin from dripping during drying and solidification to prevent the mixed state of the reinforced continuous fiber bundle and resin from being disturbed. Is preferably a vertical type.

乾燥炉又は冷却器の前後に支持部材としてのローラが配設され、乾燥炉・冷却器において前後のローラ間を樹脂含浸した強化連続繊維束が空走する。 Rollers as support members are arranged before and after the drying furnace or cooler, and the reinforced continuous fiber bundle impregnated with resin runs freely between the front and rear rollers in the drying furnace / cooler.

(ローラ間支点距離と張力)
本発明では、固化工程のローラ間支点距離L[mm]を従来よりも大幅に短くする。支点距離Lは以下の式(1)で算出することができる。Lidealは理想的支点距離であり、Lidealを基準として±10%の範囲の支点距離が望ましい。式中の200mmは、実験値よ
り、経験則で定義された条件である。
0.9×Lideal[mm]<L[mm]<1.1×Lideal[mm] …式(1)
ideal[mm]=[200mm]×{(総フィラメント数)/[(T+W)/(単糸直径)]}×(Vf/Vr)
[総フィラメント数]:使用する強化繊維のフィラメント本数
[T]:製造する一方向性プリプレグの厚み[mm]
[W]:製造する一方向性プリプレグの幅[mm]
[単糸直径]:使用する強化繊維のフィラメントの直径[mm]
[Vf]:製造する一方向性プリプレグの全体積中に対して強化繊維の占める体積の割合[%]
[Vr]:製造する一方向性プリプレグの全体積中に対して熱可塑性樹脂の占める体積の割合[%]
また、強化連続繊維束を乾燥・固化する際の強化連続繊維束の張力は、0.1cN/dtex〜0.25cN/dtexにする。
(Roller fulcrum distance and tension)
In the present invention, the inter-roller fulcrum distance L [mm] in the solidification process is made significantly shorter than in the prior art. The fulcrum distance L can be calculated by the following equation (1). L ideal is an ideal fulcrum distance, and a fulcrum distance in a range of ± 10% based on L ideal is desirable. 200 mm in the equation is a condition defined by an empirical rule based on experimental values.
0.9 × L ideal [mm] <L [mm] <1.1 × L ideal [mm] (1)
L ideal [mm] = [200 mm] × {(total number of filaments) / [(T + W) / (single yarn diameter)]} × (Vf / Vr)
[Total number of filaments]: Number of filaments of reinforcing fibers used [T]: Thickness [mm] of unidirectional prepreg to be produced
[W]: Width of unidirectional prepreg to be manufactured [mm]
[Single yarn diameter]: Diameter of reinforcing fiber filament used [mm]
[Vf]: Ratio of volume occupied by reinforcing fibers with respect to the total volume of the unidirectional prepreg to be produced [%]
[Vr]: Ratio of volume occupied by thermoplastic resin with respect to the total volume of the unidirectional prepreg to be produced [%]
Further, the tension of the reinforced continuous fiber bundle when the reinforced continuous fiber bundle is dried and solidified is 0.1 cN / dtex to 0.25 cN / dtex.

従来、固化時のローラ間支点距離は前記Lidealの二倍程度であり、また張力は本発明の10倍程度である。すなわち本発明では樹脂含浸強化連続繊維束を従来よりも大幅に短スパン・低張力で固化させる。このように短スパン・低張力で固化させることで、溶剤含浸した繊維束の乾燥固化又は溶融含浸した繊維束の冷却固化に伴う含浸樹脂の収縮により繊維の方向性が乱れたり、割れが生じたりするのを防止することができる。 Conventionally, the fulcrum distance between rollers at the time of solidification is about twice that of L ideal , and the tension is about 10 times that of the present invention. That is, in the present invention, the resin-impregnated reinforced continuous fiber bundle is solidified with a much shorter span and lower tension than before. By solidifying with a short span and low tension in this way, the directionality of the fiber may be disturbed or cracked due to shrinkage of the impregnated resin accompanying dry solidification of the solvent-impregnated fiber bundle or cooling and solidification of the melt-impregnated fiber bundle. Can be prevented.

また、単糸直径、Vf及びVrは一定として、テープが厚く(総フィラメント数はその分増加)なるとこのローラ間支点距離Lは長くなり、テープが薄く(総フィラメント数はその分減少)なると支点距離Lは短くなる。また、この時のテープに含まれる樹脂と繊維の体積割合に於いて、他のパラメータは一定にして繊維量が大きい場合、樹脂の凝集による体積収縮が生じず、支点距離Lは、長くなり、 樹脂量が多い場合、支点距離Lは短くなる。 Further, when the single yarn diameter, Vf and Vr are constant, the fulcrum distance L between the rollers becomes longer as the tape becomes thicker (the total number of filaments increases by that amount), and the fulcrum becomes smaller as the tape becomes thinner (the total number of filaments decreases by that amount). The distance L is shortened. Further, in the volume ratio of the resin and the fiber contained in the tape at this time, when the other parameters are constant and the fiber amount is large, the volume shrinkage due to the aggregation of the resin does not occur, and the fulcrum distance L becomes long, When the amount of resin is large, the fulcrum distance L is shortened.

固化工程において、強化連続繊維束に含浸された樹脂(低分子量A=3500〜25000)を、重量平均分子量が少なくとも分子量B[高分子量B=10000〜30000]になるまで重縮合させるのが望ましい。これにより、ボイドが少なくかつ厚みのバラツキも少ない、均一性と表面平滑性に優れたテープ状複合材が得られる。このテープ状複合材は、テープ状のまま単層又は一方向性を維持した積層状にして様々な用途に使用可能である。 In the solidification step, it is desirable that the resin impregnated in the reinforced continuous fiber bundle (low molecular weight A = 3500 to 25000) is polycondensed until the weight average molecular weight is at least molecular weight B [high molecular weight B = 10000 to 30000]. As a result, a tape-shaped composite material having less voids and less variation in thickness and excellent in uniformity and surface smoothness can be obtained. This tape-shaped composite material can be used for various applications in the form of a single layer or a laminated layer maintaining unidirectionality in the form of a tape.

また、得られたテープ状複合材を短く切断して多数の短冊状片とし、この多数の短冊状片を疑似等方性となるように配向・積層して使用することもできる。積層体は加熱することで熱可塑性樹脂を所望の分子量C[C=35000以上]になるまで重合反応させるのが望ましい。この重合反応により積層体の高強度化が可能である。当該積層体は、加熱軟化させた状態でプレス機を使用して所望形状に賦形することが可能である。この賦形成形により積層体の層間脱気も同時に行うことができる。 Moreover, the obtained tape-shaped composite material can be cut into short strips, and the strips can be oriented and laminated so as to be pseudo-isotropic. The laminate is preferably heated to cause the thermoplastic resin to undergo a polymerization reaction until a desired molecular weight C [C = 35000 or more] is reached. This polymerization reaction can increase the strength of the laminate. The laminate can be shaped into a desired shape using a press in a heat-softened state. With this forming form, interlayer deaeration of the laminate can be performed simultaneously.

本発明は、連続繊維束の含浸樹脂を前述した式(1)により算出される所定範囲の短支点距離で固化させることで、当該固化に伴う含浸樹脂の収縮により繊維の方向性が乱れたり、割れが生じたりするのを防止することができるから、低ボイド率の一方向性繊維強化テープ状複合材を高い生産性で低コストに製造することが可能となる。また、強化繊維と樹脂の均一・均質な混在化を達成することができ、これにより一方向性繊維強化テープ状複合材のカールを防止して、当該複合材を使用したランダムシートのバルクアップとボイド発生を防止し、その品質・強度を向上することができる。 In the present invention, by impregnating the impregnating resin of the continuous fiber bundle with a short fulcrum distance in a predetermined range calculated by the above-described formula (1), the directionality of the fiber is disturbed due to shrinkage of the impregnating resin accompanying the solidification, Since cracking can be prevented, a unidirectional fiber-reinforced tape-shaped composite material having a low void ratio can be manufactured with high productivity and low cost. In addition, uniform and homogeneous mixing of reinforcing fibers and resin can be achieved, thereby preventing curling of the unidirectional fiber-reinforced tape-like composite material, and bulk-up of random sheets using the composite material. The generation of voids can be prevented and the quality and strength can be improved.

一方向性繊維強化テープ状複合材の製造装置の概略側面図である。It is a schematic side view of the manufacturing apparatus of a unidirectional fiber reinforced tape-shaped composite material. 図1の1A部分の拡大図である。It is an enlarged view of 1A part of FIG. 図1の1B部分の拡大図である。It is an enlarged view of the 1B part of FIG. 乾燥工程を示すもので、(a)は乾燥炉の概略側面図、(b)はテープ状複合材の収縮状態を示す平面図である。The drying process is shown, (a) is a schematic side view of the drying furnace, (b) is a plan view showing a contracted state of the tape-shaped composite material. テープ状複合材の旋回癖とその計測方法を説明する図である。It is a figure explaining the swivel rod of a tape-shaped composite material, and its measuring method. テープ状複合材の実施例1〜3と比較例1〜4の表である。It is a table | surface of Examples 1-3 and Comparative Examples 1-4 of a tape-shaped composite material. ランダムシートを模式的に示したもので、(a)はランダムシートの斜視図、(b)は本発明のランダムシートを賦形プレスした状態を示す概略図、(c)は従来のランダムシートを賦形プレスした状態を示す概略図である。A random sheet is schematically shown, (a) is a perspective view of the random sheet, (b) is a schematic view showing a state of press forming the random sheet of the present invention, (c) is a conventional random sheet It is the schematic which shows the state which shape-pressed. ランダムシートの実施例1と比較例1〜3を示す表である。It is a table | surface which shows Example 1 and Comparative Examples 1-3 of a random sheet. ランダムシートの比較例4と5を示す表である。It is a table | surface which shows the comparative examples 4 and 5 of a random sheet.

(一方向性繊維強化テープ状複合材)
以下、本発明の好ましい実施の形態を図面に基づいて説明する。図1は本発明の一方向性繊維強化テープ状複合材の製造に用いる製造装置の概略側面図である。この製造装置は、拡繊された強化連続繊維束10の巻取パッケージ21、張力制御用ダンサーロール22、一対の引き出しローラ23、樹脂塗布器24、溶剤溶解樹脂浴25、含浸ローラ26、中間ローラ27、絞りローラ26、第1支持ローラ29、乾燥炉30、第2支持ローラ31、巻取ロール32を有する。
(Unidirectional fiber-reinforced tape-shaped composite)
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic side view of a manufacturing apparatus used for manufacturing a unidirectional fiber-reinforced tape-like composite material of the present invention. This manufacturing apparatus includes a winding package 21 of a reinforced continuous fiber bundle 10 expanded, a tension control dancer roll 22, a pair of drawer rollers 23, a resin applicator 24, a solvent dissolving resin bath 25, an impregnation roller 26, an intermediate roller. 27, a squeezing roller 26, a first support roller 29, a drying furnace 30, a second support roller 31, and a take-up roll 32.

樹脂塗布器24のノズル24aにより、樹脂浴直前の空中において強化連続繊維束10に熱可塑性樹脂を塗布する。強化連続繊維束10の片側からノズル24aにより樹脂を塗布することにより、強化連続繊維束10の樹脂ボイドが反対側に強制排除される。ノズル24aから吐出される樹脂の圧力は、樹脂ボイドの強制排除が可能な圧力であって、かつ、強化連続繊維束10の一方向性と繊維間隔を乱さない圧力とするのが望ましい。なお、ノズル24aによる樹脂塗布工程は樹脂塗布器24を複数段配設することで複数回行っても良い。 The thermoplastic resin is applied to the reinforced continuous fiber bundle 10 in the air immediately before the resin bath by the nozzle 24a of the resin applicator 24. By applying resin from one side of the reinforced continuous fiber bundle 10 with the nozzle 24a, the resin voids of the reinforced continuous fiber bundle 10 are forcibly removed to the opposite side. The pressure of the resin discharged from the nozzle 24a is preferably a pressure at which resin voids can be forcibly removed, and a pressure that does not disturb the unidirectionality and fiber spacing of the reinforced continuous fiber bundle 10. The resin coating process using the nozzle 24a may be performed a plurality of times by arranging a plurality of resin applicators 24.

この樹脂塗布により樹脂が繊維束内部に浸透し、繊維―繊維間を拡開しながら樹脂を包含させ、十分な樹脂量を繊維束内部に担保させることができる。この状態で、溶剤溶解樹脂浴25において強化連続繊維束10を含浸ローラ26から絞りローラ28へ通過させる事で、溶剤溶解樹脂を満遍なく含浸させてボイドを低減させる事が出来る。 By applying the resin, the resin penetrates into the inside of the fiber bundle, and the resin can be included while expanding the space between the fibers, so that a sufficient amount of resin can be secured inside the fiber bundle. In this state, by passing the reinforced continuous fiber bundle 10 from the impregnation roller 26 to the squeezing roller 28 in the solvent-soluble resin bath 25, it is possible to uniformly impregnate the solvent-soluble resin and reduce voids.

また、樹脂浴をローラで支持しながら通過させる方法では、一つのローラに支持させて搬送するよりも、複数のローラを介して樹脂浴を通過させる事が好ましい。但し、強化連続繊維束10がローラを通過する間に強化連続繊維束10に含浸された樹脂が絞り出される様な強い抵抗を加えると、繊維−繊維間に包含された樹脂が当該繊維−繊維間の距離が縮まる事で絞り出されてしまう。 Further, in the method of passing the resin bath while being supported by the rollers, it is preferable that the resin bath is passed through a plurality of rollers, rather than being transported while being supported by one roller. However, when a strong resistance is applied such that the resin impregnated in the reinforced continuous fiber bundle 10 is squeezed out while the reinforced continuous fiber bundle 10 passes through the roller, the resin contained between the fibers and the fibers becomes the fiber-fiber. It is squeezed because the distance between them is reduced.

そうすると、高い樹脂含有量で一方向性プリプレグを製造することが出来ない。したがって、樹脂浴で強化連続繊維束に掛ける張力は、繊維間に樹脂が浸透する為に出来るだけ低くすることが好ましく、その適正張力は0.1cN/dtex以下である事が好ましい。なお、溶剤溶解樹脂浴25に対して、使用する樹脂の特性に応じた加温機能を付与しても良い。 If it does so, a unidirectional prepreg cannot be manufactured with high resin content. Accordingly, the tension applied to the reinforced continuous fiber bundle in the resin bath is preferably as low as possible because the resin penetrates between the fibers, and the appropriate tension is preferably 0.1 cN / dtex or less. In addition, you may provide the heating function according to the characteristic of resin to be used with respect to the solvent melt | dissolution resin bath 25. FIG.

絞り工程では、溶剤溶解樹脂浴25の液面で表面張力による収縮が発生する。この為、中間ローラ27との間のニップ部で強化連続繊維束10を支持しながら、絞りローラ28で0.05MPa〜0.3MPa、好ましくは0.1MPa〜0.25MPaの押圧力で抑えながら樹脂含浸した強化連続繊維束10を搬送する事が好ましい。 In the squeezing process, shrinkage due to surface tension occurs on the liquid surface of the solvent-soluble resin bath 25. For this reason, while supporting the reinforced continuous fiber bundle 10 at the nip portion with the intermediate roller 27, the squeezing roller 28 suppresses with a pressing force of 0.05 MPa to 0.3 MPa, preferably 0.1 MPa to 0.25 MPa. It is preferable to transport the reinforced continuous fiber bundle 10 impregnated with resin.

また、中間ローラ27と絞りローラ28の間で過度に強い圧力を加えると、樹脂が強化連続繊維束から必要以上に流れ出てしまう。そうすると、最終製品の一方向性プリプレグの厚みに応じた隙間に必要量の樹脂を確保することができない。したがって、中間ローラ27と絞りローラ28の間に必要最低限の所定隙間を確保し、当該隙間に強化連続繊維束10を通しながら適正押圧力を掛ける。 Further, if an excessively strong pressure is applied between the intermediate roller 27 and the squeezing roller 28, the resin flows out from the reinforced continuous fiber bundle more than necessary. If it does so, a required quantity of resin cannot be ensured in the clearance gap according to the thickness of the unidirectional prepreg of a final product. Therefore, a necessary minimum gap is secured between the intermediate roller 27 and the squeezing roller 28, and an appropriate pressing force is applied while passing the reinforced continuous fiber bundle 10 through the gap.

強化連続繊維束10が絞りローラ28を通過後、図2のように当該強化連続繊維束10に対して乾燥炉30による乾燥・固化工程を行う。この乾燥・固化工程の支点距離Lと適正張力Tの関係は、前述した式(1)の関係とする。 After the reinforced continuous fiber bundle 10 passes through the squeezing roller 28, a drying / solidifying step is performed on the reinforced continuous fiber bundle 10 by a drying furnace 30 as shown in FIG. The relationship between the fulcrum distance L and the appropriate tension T in this drying / solidification step is the relationship of the above-described formula (1).

支点距離Lを理想値(Lideal)よりも10%以上大きくすると、強化連続繊維束10に大きな張力を掛けなければならない。そうすると、強化連続繊維束10の緊張力増大により、繊維束内に含まれる蛇行、または、並行でない繊維単糸が、増大した緊張力で他の繊維束を拘束し、幅収縮させ束状化が進み、その結果樹脂が絞り出される。そうすると強化繊維と樹脂が均一・均質に混在した状態にならない。 When the fulcrum distance L is increased by 10% or more than the ideal value (L ideal ), a large tension must be applied to the reinforced continuous fiber bundle 10. Then, due to the increase in the tension of the reinforced continuous fiber bundle 10, the meandering or non-parallel fiber single yarn contained in the fiber bundle restrains other fiber bundles with the increased tension, shrinks in width, and forms a bundle. As a result, the resin is squeezed out. If it does so, it will not be in the state where reinforced fiber and resin were mixed uniformly and homogeneously.

しかも、大きな張力により強化繊維が損傷して十分な品質を有する一方向性プリプレグが製造出来ない。また、支点距離Lを理想値(Lideal)よりも10%以上小さくすると樹脂の固化が不十分となり、この固化不十分な樹脂が搬送工程で繊維束から絞り出され、樹脂と繊維の均一・均質な分布を損ねる事となる。この為、前述した支点距離が必要となる。ここで「均一・均質」とは、顕微鏡で観察可能な繊維と樹脂の混合状態だけでなく、顕微鏡では観察不可能な繊維と樹脂の質的に均等な混合状態も含む趣旨である。 In addition, the unidirectional prepreg having sufficient quality cannot be manufactured due to damage of the reinforcing fiber due to a large tension. Also, if the fulcrum distance L is made 10% or more smaller than the ideal value (L ideal ), the resin will be insufficiently solidified, and this insufficiently solidified resin will be squeezed out of the fiber bundle in the conveying process, and the resin The homogenous distribution will be impaired. For this reason, the fulcrum distance mentioned above is needed. Here, “uniform / homogeneous” means not only a mixed state of fibers and resin that can be observed with a microscope but also a qualitatively uniform mixed state of fibers and resin that cannot be observed with a microscope.

(繊維束の繊維と樹脂の均一・均質性と繊維束のカールとの関係)
強化繊維と樹脂が均一・均質に混在していないと、強化繊維束のプリプレグがカールして当該プリプレグを平面上に置いた時に完全にフラットな状態にならない。そうすると、例えばプリプレグを所定寸に切断してランダムシートを積層形成する場合、ランダムシートがバルクアップして内部にボイドを含みやすくなる。また、プリプレグを切断する際に繊維束が切断刃から浮いて切断面に割れ、亀裂又は毛羽が発生しやすくなり、これもバルクアップ要因・ボイド発生要因となって、製品の品質低下・強度低下の原因となる。
(Relationship between uniformity and homogeneity of fiber and resin in fiber bundle and curl of fiber bundle)
If the reinforcing fiber and the resin are not mixed uniformly and homogeneously, the prepreg of the reinforcing fiber bundle curls and does not become completely flat when the prepreg is placed on a flat surface. Then, for example, when a prepreg is cut into a predetermined size and a random sheet is laminated and formed, the random sheet is bulked up and easily includes voids therein. Also, when cutting the prepreg, the fiber bundle floats from the cutting blade, and the cut surface tends to crack, cracks or fluff, which also causes bulk-up and voids, resulting in product quality reduction and strength reduction. Cause.

そこで本発明の実施形態では、強化繊維束のプリプレグのカールの大きさにより、プリプレグ中での繊維と樹脂の均一・均質性を判定することで、強化繊維束プリプレグ製品の品質管理を行うこととした。すなわち、強化繊維束がカールしていると、図3に示すようにテープ状複合材に旋回癖が発生することから、その旋回角度でカールの大きさを表すことでプリプレグ製品の品質管理に使用する。 Therefore, in the embodiment of the present invention, the quality control of the reinforced fiber bundle prepreg product is performed by determining the uniformity and homogeneity of the fiber and the resin in the prepreg according to the curl size of the prepreg of the reinforcing fiber bundle. did. In other words, when the reinforcing fiber bundle is curled, swirling wrinkles occur in the tape-shaped composite material as shown in FIG. 3, so the curling angle is expressed by the swiveling angle, which is used for quality control of prepreg products. To do.

図3は旋回癖とその計測方法を説明する図であり、同図に示すように、プリプレグとしての強化連続繊維束10を所定長Hで切断し、その上端部をクリップ40で固定して自然状態で吊り下げる。ここで所定長Hは、繊維束10の幅が30mm以内の場合は1mとする。なお、繊維束10の幅が30mmを超える場合は、後述するように所定長Hを1m超にする。 FIG. 3 is a diagram for explaining a swirl rod and its measuring method. As shown in FIG. 3, the reinforcing continuous fiber bundle 10 as a prepreg is cut at a predetermined length H, and its upper end portion is fixed by a clip 40 to naturally Hanging in the state. Here, the predetermined length H is 1 m when the width of the fiber bundle 10 is within 30 mm. In addition, when the width | variety of the fiber bundle 10 exceeds 30 mm, predetermined length H shall be over 1 m so that it may mention later.

この状態で繊維束下端部10aの旋回角度θを測定する。繊維と樹脂が均一・均質に混在している場合、繊維束下端部10aの旋回角度θは通常360度未満である。繊維と樹脂が均一・均質に混在していないと、繊維束下端部10aの旋回角度θが360度以上になる。これは本願出願人が数多くの実験を繰り返して得た経験則である。 In this state, the turning angle θ of the fiber bundle lower end portion 10a is measured. When fibers and resin are mixed uniformly and homogeneously, the turning angle θ of the fiber bundle lower end portion 10a is usually less than 360 degrees. If the fibers and the resin are not mixed uniformly and homogeneously, the turning angle θ of the fiber bundle lower end portion 10a becomes 360 degrees or more. This is an empirical rule obtained by the applicant of the present invention by repeating many experiments.

繊維束10の幅が30mmを超える場合、繊維と樹脂が均一・均質に混在していても、旋回角度θは360度以上になる。そこで、強化繊維束10の幅が30mmを超える場合は、所定長Hを1m超にする。 When the width of the fiber bundle 10 exceeds 30 mm, the turning angle θ is 360 degrees or more even if the fibers and the resin are mixed uniformly and homogeneously. Therefore, when the width of the reinforcing fiber bundle 10 exceeds 30 mm, the predetermined length H is set to more than 1 m.

強化繊維束10の幅と所定長Hの関係は、繊維と樹脂が均一・均質に混在している場合の旋回角度θを360度未満とする条件で複数の実験を行うことで定めることができる。このように、繊維と樹脂が均一・均質に混在している場合は繊維束の幅に関わらず旋回角度θを常に360度未満にする。こうすることで、旋回角度θを360度未満とする統一的管理が可能となり、任意幅のテープ状強化繊維束の品質管理が容易になる。 The relationship between the width of the reinforcing fiber bundle 10 and the predetermined length H can be determined by conducting a plurality of experiments under the condition that the turning angle θ is less than 360 degrees when the fibers and the resin are mixed uniformly and homogeneously. . Thus, when the fibers and the resin are mixed uniformly and homogeneously, the turning angle θ is always less than 360 degrees regardless of the width of the fiber bundle. By doing so, it is possible to perform unified management in which the turning angle θ is less than 360 degrees, and quality management of a tape-shaped reinforcing fiber bundle having an arbitrary width is facilitated.

図3(a)(b)は繊維束10の繊維と樹脂が均一・均質に混在した理想的な場合を示している。この場合の繊維束下端部10a旋回角度θは0度であるか、或いは(c)のように360度未満である。 FIGS. 3A and 3B show an ideal case where the fibers and the resin of the fiber bundle 10 are mixed uniformly and homogeneously. In this case, the turning angle θ of the fiber bundle lower end portion 10a is 0 degree or less than 360 degrees as shown in (c).

強化連続繊維束10の強化繊維と樹脂が均一・均質に混在していないと、(d)のように旋回角度θが360度以上となったり、或いは(e)のように旋回と反りが混合した状態になったりする。 If the reinforcing fibers of the reinforced continuous fiber bundle 10 and the resin are not uniformly and homogeneously mixed, the turning angle θ becomes 360 degrees or more as shown in (d), or the turning and warping are mixed as shown in (e). It will be in the state.

(実施例と比較例)
次に、前述した製造方法により製造した一方向性プリプレグの実施例1−3と、条件を変えて製造した比較例を図4により説明する。この図4は、当該実施例1〜3と比較例1〜4の各製品プリプレグの性質を、それぞれの仕様と関連させて表にしたものである。
(Examples and comparative examples)
Next, Example 1-3 of the unidirectional prepreg manufactured by the manufacturing method mentioned above and the comparative example manufactured by changing conditions are demonstrated with FIG. FIG. 4 is a table showing the properties of the product prepregs of Examples 1 to 3 and Comparative Examples 1 to 4 in association with respective specifications.

一方向性プリプレグの厚み及び幅はマイクロゲージで長さ方向1m毎に10回測定した。ボイド率の測定はJIS K 7075(2011)で行った。含浸性の評価として、一方向性プリプレグを積層した試験片を作製し、断面の観察を実施した。強化繊維は、東レ社製炭素繊維トレカT700SC−12k(総フィラメント数12000本、単糸直径0.007mm)を使用した。熱可塑性樹脂は、水溶性変性ポリアミドを使用し、粘度は、2200mPa・s(常温)を使用した。また、樹脂と繊維の均質性評価で、試作したプリプレグがカール(旋回癖)の有無を判定し、樹脂の含浸状態を確認した。 The thickness and width of the unidirectional prepreg were measured 10 times per 1 m in the length direction with a micro gauge. The void ratio was measured according to JIS K 7075 (2011). As evaluation of impregnation property, a test piece laminated with a unidirectional prepreg was prepared, and a cross section was observed. As the reinforcing fiber, carbon fiber trading card T700SC-12k (total number of filaments: 12,000, single yarn diameter: 0.007 mm) manufactured by Toray Industries, Inc. was used. As the thermoplastic resin, water-soluble modified polyamide was used, and the viscosity was 2200 mPa · s (normal temperature). In addition, in the evaluation of the homogeneity of the resin and the fiber, it was determined whether or not the prototype prepreg was curled (swirl), and the impregnation state of the resin was confirmed.

[実施例1] Vf50%、Vr50%の幅30mm、厚み0.05mmの一方向性プリプレグ製造を目的として試作した。樹脂は、水溶性変性ポリアミドを使用した。製造条件を、含浸工程入射張力を0.08cN/dtex、乾燥・固化部支点距離を550mm、式(1)から503.1mm<理想支点距離560mm<615.0mm)の範囲内とし、乾燥・固化部張力を0.2cN/dtexとし、乾燥・固化槽に熱電対を設置し、雰囲気温度180℃とし、糸速(引取速度)15m/minで実施した。結果、Vf47%、厚み0.053mmのサンプルを得た。また、旋回角度θは92度で360度未満であり、旋回癖は「無し」の判定であった(繊維と樹脂が均一・均質に混在)。 [Example 1] A prototype was manufactured for the purpose of producing a unidirectional prepreg having a Vf of 50% and a Vr of 50% of a width of 30 mm and a thickness of 0.05 mm. As the resin, a water-soluble modified polyamide was used. Drying and solidification were performed under the manufacturing conditions of impregnation step incident tension of 0.08 cN / dtex, drying / solidification portion fulcrum distance of 550 mm, and formula (1) to 503.1 mm <ideal fulcrum distance of 560 mm <615.0 mm). The tension was 0.2 cN / dtex, a thermocouple was installed in the drying / solidification tank, the ambient temperature was 180 ° C., and the yarn speed (take-up speed) was 15 m / min. As a result, a sample having a Vf of 47% and a thickness of 0.053 mm was obtained. Further, the turning angle θ was 92 degrees and less than 360 degrees, and the turning tack was judged as “None” (fiber and resin were mixed uniformly and homogeneously).

[比較例1] Vf50%、Vr50%の幅30mm、厚み0.05mmの一方向性プリプレグ製造を目的として試作した。製造条件を、含浸工程入射張力を0.08cN/dtex、乾燥・固化部支点距離を800mm、式(1)支点距離の上限範囲外とし、乾燥・固化部張力を0.2cN/dtexとし、乾燥・固化槽内の雰囲気温度180℃とし、糸速15m/minで実施した。結果、糸幅が縮まり、厚みが増大し、目標とするサンプルが得られなかった。このため、旋回癖の測定は省略した。 [Comparative Example 1] A prototype was manufactured for the purpose of producing a unidirectional prepreg having a Vf of 50% and a Vr of 50% of a width of 30 mm and a thickness of 0.05 mm. The production conditions are as follows: impregnation step incident tension is 0.08 cN / dtex, drying / solidification part fulcrum distance is 800 mm, formula (1) is outside the upper limit range of fulcrum distance, drying / solidification part tension is 0.2 cN / dtex, and drying is performed. -The atmosphere temperature in the solidification tank was 180 ° C, and the yarn speed was 15 m / min. As a result, the yarn width was reduced, the thickness was increased, and a target sample could not be obtained. For this reason, the measurement of the swivel rod was omitted.

[比較例2] Vf50%、Vr50%の幅30mm、厚み0.05mmの一方向性プリプレグ製造を目的として試作した。製造条件を、含浸工程入射張力を0.08cN/dtex、乾燥・固化部支点距離を理想支点距離560mmよりも10%以上短い430mmとし、乾燥・固化部張力を0.2cN/dtexとし、乾燥・固化槽内の雰囲気温度180℃とし、糸速15m/minで実施した。結果、乾燥不十分になり、乾燥直後の搬送ローラに接着し、工程不良となった上、、目標とするサンプルが得られなかった。 [Comparative Example 2] A prototype was manufactured for the purpose of producing a unidirectional prepreg having a Vf of 50% and a Vr of 50% of a width of 30 mm and a thickness of 0.05 mm. The production conditions were impregnation step incident tension of 0.08 cN / dtex, drying / solidification part fulcrum distance of 430 mm which is 10% or more shorter than ideal fulcrum distance of 560 mm, drying / solidification part tension of 0.2 cN / dtex, The atmosphere temperature in the solidification tank was 180 ° C., and the yarn speed was 15 m / min. As a result, the drying was insufficient, the film adhered to the transport roller immediately after drying, resulting in a defective process, and a target sample could not be obtained.

そこで、乾燥・固化槽内の雰囲気温度を180℃から220℃に上げてさらに実施したが、一方向性プリプレグ表面、内部で樹脂が燃焼・溶媒の気化により、気泡が発生し、表面性状が悪く、繊維方向に沿った亀裂が発生し、目標とするサンプルが得られなかった。このため、旋回癖の測定は省略した。なお、乾燥・固化槽内の雰囲気温度を180℃のままとし、乾燥・固化部支点距離を430mmから500mmまで広げてさらに実施してみたが、乾燥不十分で工程不良の大きな改善効果は認められなかった。 Therefore, the atmospheric temperature in the drying / solidification tank was further increased from 180 ° C. to 220 ° C., but the surface of the unidirectional prepreg surface was deteriorated due to combustion of the resin and vaporization of the solvent, resulting in bubbles and poor surface properties. Cracks along the fiber direction occurred, and the target sample was not obtained. For this reason, the measurement of the swivel rod was omitted. In addition, while the atmosphere temperature in the drying / solidification tank was kept at 180 ° C. and the drying / solidification part fulcrum distance was increased from 430 mm to 500 mm, further implementation was performed, but a significant improvement effect of process failure was recognized due to insufficient drying. There wasn't.

[比較例3] Vf50%、Vr50%の幅30mm、厚み0.05mmの一方向性プリプレグ製造を目的として試作した。製造条件を、含浸工程入射張力を0.08cN/dtex、乾燥・固化部支点距離を1000mm、式(1)支点距離の上限範囲外とし、乾燥・固化部張力を0.5cN/dtexとし、乾燥・固化槽内の雰囲気温度180℃とし、糸速15m/minで実施した。結果、比較例2より、幅を広くする事は出来たが、表面に凹凸が発生した。断面状態は、樹脂の偏りが発生した。得られたサンプルテープは旋回癖を持ち(旋回角度θ=822度>360度)、プリプレグ面の片面に樹脂が過多になっていることが確認され、樹脂の含浸に偏りがあった。 [Comparative Example 3] A prototype was manufactured for the purpose of producing a unidirectional prepreg having a Vf of 50% and a Vr of 50% of a width of 30 mm and a thickness of 0.05 mm. The production conditions are as follows: impregnation step incident tension is 0.08 cN / dtex, drying / solidification part fulcrum distance is 1000 mm, formula (1) is outside the upper limit range of fulcrum distance, drying / solidification part tension is 0.5 cN / dtex, and drying is performed. -The atmosphere temperature in the solidification tank was 180 ° C, and the yarn speed was 15 m / min. As a result, the width could be made wider than that of Comparative Example 2, but irregularities were generated on the surface. In the cross-sectional state, the resin was biased. The obtained sample tape had a swivel rod (turning angle θ = 822 degrees> 360 degrees), and it was confirmed that the resin was excessive on one side of the prepreg surface, and the resin impregnation was uneven.

[比較例4] Vf50%、Vr50%の幅30mm、厚み0.05mmの一方向性プリプレグ製造を目的として試作した。製造条件を、含浸工程入射張力を0.08cN/dtex、乾燥・固化部支点距離を550mm、式(1)支点距離の上限範囲内とし、乾燥・固化部張力を0.07cN/dtexとし、乾燥・固化槽内の雰囲気温度180℃とし、糸速15m/minで実施した。結果、強化繊維が損傷し、工程不良が発生し、プリプレグ面に亀裂が発生し、目標とするサンプルが得られなかった。このため、旋回癖の測定は省略した。 [Comparative Example 4] A prototype was manufactured for the purpose of manufacturing a unidirectional prepreg having a Vf of 50% and a Vr of 50% of a width of 30 mm and a thickness of 0.05 mm. The production conditions are as follows: impregnation step incident tension is 0.08 cN / dtex, drying / solidification portion fulcrum distance is 550 mm, formula (1) is within the upper limit range of fulcrum distance, and drying / solidification portion tension is 0.07 cN / dtex. -The atmosphere temperature in the solidification tank was 180 ° C, and the yarn speed was 15 m / min. As a result, the reinforcing fiber was damaged, a process failure occurred, a crack occurred on the prepreg surface, and a target sample could not be obtained. For this reason, the measurement of the swivel rod was omitted.

[実施例2] Vf40%、Vr60%の幅20mm、厚み0.07mmの一方向性プリプレグ製造を目的として試作した。製造条件を、含浸工程入射張力を0.08cN/dtex、乾燥・固化部支点距離を550mm、式(1)から503.1mm<理想支点距離559mm<615.0の範囲内とし、乾燥・固化部張力を0.2cN/dtexとし、乾燥・固化槽内の雰囲気温度180℃とし、糸速15m/minで実施した。結果、Vf41%、厚み0.058mmのプリプレグには旋回癖が無く(旋回角度θ=111度<360度)、樹脂含浸状態が良好なサンプルを得た。 [Example 2] A prototype was manufactured for the purpose of producing a unidirectional prepreg having a width of 20 mm and a thickness of 0.07 mm with Vf of 40% and Vr of 60%. The production conditions are as follows: impregnation step incident tension is 0.08 cN / dtex, drying / solidification part fulcrum distance is 550 mm, formula (1) is within the range of 503.1 mm <ideal fulcrum distance 559 mm <615.0, and drying / solidification part The tension was 0.2 cN / dtex, the atmospheric temperature in the drying / solidification tank was 180 ° C., and the yarn speed was 15 m / min. As a result, a prepreg having a Vf of 41% and a thickness of 0.058 mm had no swirling wrinkles (turning angle θ = 111 degrees <360 degrees), and a sample with a good resin impregnation state was obtained.

[実施例3] Vf60%、Vr40%の幅20mm、厚み0.05mmの一方向性プリプレグ製造を目的として試作した。製造条件を、含浸工程入射張力を0.08cN/dtex、乾燥・固化部支点距離を1200mm、式(1)から1131mm<理想支点距離1257mm<1383mmの上限範囲内とし、乾燥・固化部張力を0.2cN/dtexとし、乾燥・固化槽内の雰囲気温度180℃とし、糸速15m/minで実施した。結果、Vf59%、厚み0.051mmのプリプレグには旋回癖が無く(旋回角度θ=106度<360度)、樹脂含浸状態が良好なサンプルを得た。 [Example 3] A prototype was manufactured for the purpose of producing a unidirectional prepreg having a width of 20 mm and a thickness of 0.05 mm with Vf of 60% and Vr of 40%. The production conditions are: impregnation process incident tension of 0.08 cN / dtex, drying / solidification part fulcrum distance of 1200 mm, formula (1) from the upper limit range of 1131 mm <ideal fulcrum distance 1257 mm <1383 mm, and drying / solidification part tension of 0 .2 cN / dtex, the atmospheric temperature in the drying / solidification tank was 180 ° C., and the yarn speed was 15 m / min. As a result, a prepreg having a Vf of 59% and a thickness of 0.051 mm had no swirling wrinkles (turning angle θ = 106 degrees <360 degrees), and a sample with a good resin impregnation state was obtained.

実施例1−3と比較例1−4の結果から、実施例1−3はいずれも樹脂含浸状態が良好(◎、○)で旋回癖がなく、ボイド率は0.6%以下であった。これに対して比較例1−4は、樹脂含浸状態が不良(△)又は極めて不良(×)であり、ボイド率は0.6%以上であった。ボイド率0.6%の比較例4は表面品位(平滑性)が極端に悪く糸切れが発生した。 From the results of Example 1-3 and Comparative Example 1-4, Example 1-3 had a good resin-impregnated state (◎, ○), no swirling flaws, and a void ratio of 0.6% or less. . On the other hand, in Comparative Example 1-4, the resin impregnation state was poor (Δ) or extremely poor (x), and the void ratio was 0.6% or more. In Comparative Example 4 having a void ratio of 0.6%, the surface quality (smoothness) was extremely poor and thread breakage occurred.

(ランダムシート)
次に、前述した方法により得られたテープ状複合材を使用して、ランダムシートを製造する方法を図5と図6A、図6Bにより説明する。以上の方法で得られた強化連続繊維束10のテープ状複合材を数ミリから数十ミリの長さに切断する。切断したテープ片を図5(a)のように向きをランダムにして所望の厚さに積層して積層体110にする。当該積層体110を予備加熱して樹脂を軟化させ、この軟化した積層体110をプレス機にセットして図5(b)のように賦形成形する。
(Random sheet)
Next, a method for producing a random sheet using the tape-shaped composite material obtained by the above-described method will be described with reference to FIGS. 5, 6A, and 6B. The tape-shaped composite material of the reinforced continuous fiber bundle 10 obtained by the above method is cut into a length of several millimeters to several tens of millimeters. As shown in FIG. 5A, the cut tape pieces are randomly oriented and laminated to a desired thickness to obtain a laminate 110. The laminated body 110 is preheated to soften the resin, and the softened laminated body 110 is set in a press machine and shaped as shown in FIG. 5B.

従来、積層するテープ片の厚さが図5(c)に示すように分厚かった。このため、テープ片を所望の厚さに積層した積層体210にすると曲げにくく賦形性がよくなかった。本発明の実施例で得られるテープ状複合材はボイド率が低く表面平滑性を良好にすることができるので、テープ状複合材を糸切れすることなく非常に薄くすることができる。このため、テープ片積層後に積層体シートの曲げ成形が容易で賦形性が良好である。しかもテープ状複合材のカールが発生しないためランダムシートのバルクアップがなく、バルクアップによるボイド含有を防止できるので賦形製品が高強度で表面平滑性が良好となる。 Conventionally, the thickness of the tape pieces to be laminated was thick as shown in FIG. For this reason, when it was set as the laminated body 210 which laminated | stacked the tape piece to desired thickness, it was hard to bend and shapeability was not good. Since the tape-like composite material obtained in the embodiment of the present invention has a low void ratio and good surface smoothness, the tape-like composite material can be made very thin without breaking the yarn. For this reason, after a tape piece lamination | stacking, the bending process of a laminated body sheet is easy and its shapeability is favorable. Moreover, since curling of the tape-shaped composite material does not occur, there is no bulk up of the random sheet, and void inclusion due to the bulk up can be prevented, so that the shaped product has high strength and good surface smoothness.

このランダムシートの比較試験の結果を図6A、図6Bに示す。この結果から分かるように、本発明のランダムシートは強度が高く、成型性が良好であることが分かる。 The results of this random sheet comparison test are shown in FIGS. 6A and 6B. As can be seen from the results, the random sheet of the present invention has high strength and good moldability.

なお、図6A、図6BのCV値は擬似等方性を示すもので、積層しない1枚の複合材における15°きざみの引張強度と引張弾性率との比(標準偏差/平均値)である。CV値は少ないほど擬似等方性があり、理想的には1である。テープに用いた強化繊維は、東レ社製炭素繊維トレカT700SC−12kを使用した。熱可塑性樹脂は、水溶性変性ポリアミドを使用し、粘度は、2200mPa・s(常温)を使用した。 The CV values in FIGS. 6A and 6B show pseudo-isotropic properties, and are the ratio (standard deviation / average value) between the tensile strength and the tensile elastic modulus in 15 ° increments in one composite material that is not laminated. . The smaller the CV value, the more pseudo-isotropic, ideally 1. Carbon fiber trading card T700SC-12k manufactured by Toray Industries, Inc. was used as the reinforcing fiber used for the tape. As the thermoplastic resin, water-soluble modified polyamide was used, and the viscosity was 2200 mPa · s (normal temperature).

[実施例1] 強化連続繊維束は炭素繊維束であり、熱可塑性樹脂は変性ポリアミドである。糸速15m/minで製造し、ボイド率0.6%であった。この一方向性プリプレグを用いて、短冊状片を製造した。短冊状片の大きさは幅10mm、長さ20mm、厚さ0.05mmである。短冊状片の平均分子量は11000である。ランダムシートの大きさは幅200mm、長さ200mm、厚さ2mmである。ランダムシートの分子量は36000である。強化繊維の体積の割合Vfは45%である。シート加工時の樹脂フローによる繊維流出、繊維の直線性の乱れが無く、強度が高く、CV値が低い、表面外観、品質の良好なランダムシートが得られた。 [Example 1] The reinforced continuous fiber bundle is a carbon fiber bundle, and the thermoplastic resin is a modified polyamide. The yarn was manufactured at a yarn speed of 15 m / min, and the void ratio was 0.6%. Using this unidirectional prepreg, strip-shaped pieces were produced. The size of the strip-shaped piece is 10 mm in width, 20 mm in length, and 0.05 mm in thickness. The average molecular weight of the strips is 11000. The random sheet has a width of 200 mm, a length of 200 mm, and a thickness of 2 mm. The random sheet has a molecular weight of 36000. The volume ratio Vf of the reinforcing fibers is 45%. There was no outflow of fibers due to the resin flow during sheet processing, no disturbance in fiber linearity, high strength, a low CV value, and a random sheet with good surface appearance and quality.

[比較例1] 実施例1の比較として、短冊状片の平均分子量を2000とし、ランダムシート製造時に所定の分子量まで重合を進めた。ランダムシートの分子量は37000である。強化繊維の体積の割合Vfは45%である。その他は実施例1と同じである。シート加工時の樹脂フローによる繊維流出、繊維の直線性の乱れ、樹脂の流動により残存ボイドは低くなったが、強度が低い結果となった。 [Comparative Example 1] As a comparison with Example 1, the average molecular weight of the strip-shaped pieces was set to 2000, and polymerization was advanced to a predetermined molecular weight at the time of manufacturing the random sheet. The random sheet has a molecular weight of 37000. The volume ratio Vf of the reinforcing fibers is 45%. Others are the same as in the first embodiment. Residual voids were reduced due to fiber outflow due to resin flow during sheet processing, fiber linearity disorder, and resin flow, but the strength was low.

[比較例2] 短冊状片の平均分子量は20000である。ランダムシートの分子量は37000である。強化繊維の体積の割合Vfは45%である。その他は実施例1と同じである。シート加工時の樹脂フローによる繊維流出、繊維の直線性の乱れが無くシート化出来た。また、シートの物性は、強度が高く、CV値が低い、また表面外観、品質の良好なランダムシートが得られた。 [Comparative Example 2] The average molecular weight of the strip-shaped piece is 20000. The random sheet has a molecular weight of 37000. The volume ratio Vf of the reinforcing fibers is 45%. Others are the same as in the first embodiment. The sheet could be formed without any outflow of fibers due to the resin flow during sheet processing and disturbance of fiber linearity. Further, the physical properties of the sheet were high strength, low CV value, and a random sheet with good surface appearance and quality was obtained.

[比較例3] 短冊状片の平均分子量は25000である。ランダムシートの分子量は36000である。強化繊維の体積の割合Vfは45%である。その他は実施例1と同じである。シート加工時の樹脂フローによる繊維流出、繊維の直線性の乱れが無くシート化出来たが、内部にボイドが残り、シートの物性は、強度が低く、CV値も高く、また表面外観、品質が悪い結果となった。 [Comparative Example 3] The average molecular weight of the strip-shaped piece is 25,000. The random sheet has a molecular weight of 36000. The volume ratio Vf of the reinforcing fibers is 45%. Others are the same as in the first embodiment. The sheet could be formed without any outflow of fibers due to resin flow during processing of the sheet and disturbance of fiber linearity, but voids remained inside, the physical properties of the sheet were low in strength, high in CV value, surface appearance and quality. It was a bad result.

[比較例4] 短冊状片の平均分子量は11000である。ランダムシートの分子量は36000である。強化繊維の体積の割合Vfは80%である。その他は実施例1と同じである。シート加工時に十分な樹脂フローが無く、ボイドが多数残り、シートの物性は、強度が低く、CV値も高く、また表面外観では、繊維が露出し、品質が悪い結果となった。 [Comparative Example 4] The average molecular weight of the strip-shaped piece is 11,000. The random sheet has a molecular weight of 36000. The volume ratio Vf of the reinforcing fibers is 80%. Others are the same as in the first embodiment. When the sheet was processed, there was not enough resin flow, many voids remained, the physical properties of the sheet were low in strength, the CV value was high, and in the surface appearance, the fibers were exposed, resulting in poor quality.

[比較例5] 短冊状片の平均分子量は11000である。ランダムシートの分子量は36000である。強化繊維の体積の割合Vfは60%である。その他は実施例1と同じである。シート加工時の樹脂フローによる繊維流出、繊維の直線性の乱れが無くシート化し、ボイドが多数残り、CV値が高く、表面外観は良いシートが得られたが、品質が悪い結果となった。 [Comparative Example 5] The average molecular weight of the strip-shaped piece is 11,000. The random sheet has a molecular weight of 36000. The volume ratio Vf of the reinforcing fibers is 60%. Others are the same as in the first embodiment. The sheet was formed without any outflow of fibers due to resin flow during processing of the sheet and disturbance of the linearity of the fibers, many voids remained, the CV value was high, and the surface appearance was good, but the quality was poor.

以上、本発明の実施形態について説明したが、本発明は前記実施形態に限定されることなく、特許請求の範囲の技術的思想の範囲内で種々の変形が可能であることは勿論である。 Although the embodiments of the present invention have been described above, the present invention is not limited to the above-described embodiments, and various modifications can be made within the scope of the technical idea of the claims.

10:拡繊された強化連続繊維束 21:強化連続繊維束の巻取パッケージ
22:張力制御用ダンサーロール 23:一対の引き出しローラ
24:樹脂塗布器 25:溶剤溶解樹脂浴
26:含浸ローラ 27:中間ローラ
28:絞りローラ 29:第1支持ローラ(第1支持部材)
30:乾燥炉 31:第2支持ローラ(第2支持部材)
32:巻取ロール
10: Expanded reinforced continuous fiber bundle 21: Winding package of reinforced continuous fiber bundle 22: Dancer roll for tension control 23: A pair of drawing rollers 24: Resin applicator 25: Solvent-dissolving resin bath 26: Impregnation roller 27: Intermediate roller 28: squeezing roller 29: first support roller (first support member)
30: Drying furnace 31: Second support roller (second support member)
32: Winding roll

Claims (16)

熱可塑性樹脂を含浸させた強化連続繊維束を互いに離間した2つの支持部材で支持しつつ両支持部材間を移動中に前記熱可塑性樹脂を固化させる際、前記支持部材間の距離L[mm]を下式で算出される距離にしたことを特徴とする一方向性繊維強化テープ状複合材の製造方法。
0.9×Lideal[mm]<L[mm]<1.1×Lideal[mm]
ideal[mm]=[200mm]×{(総フィラメント数)/[(T+W)/(単糸直径)]}×(Vf/Vr)
[200mm] :実験から得られた規定距離
[総フィラメント数]:使用する強化繊維のフィラメント本数
[T]:製造する一方向性プリプレグの厚み[mm]
[W]:製造する一方向性プリプレグの幅[mm]
[単糸直径]:使用する強化繊維のフィラメントの直径[mm]
[Vf]:製造する一方向性プリプレグの全体積中に対して強化繊維の占める体積の割合[%]
[Vr]:製造する一方向性プリプレグの全体積中に対して熱可塑性樹脂の占める体積の割合[%]
When solidifying the thermoplastic resin while moving between the two supporting members while supporting the reinforcing continuous fiber bundle impregnated with the thermoplastic resin with two supporting members spaced apart from each other, a distance L [mm] between the supporting members Is a distance calculated by the following equation: A method for producing a unidirectional fiber-reinforced tape-like composite material.
0.9 × L ideal [mm] <L [mm] <1.1 × L ideal [mm]
L ideal [mm] = [200 mm] × {(total number of filaments) / [(T + W) / (single yarn diameter)]} × (Vf / Vr)
[200 mm]: Specified distance obtained from experiments [total number of filaments]: number of filaments of reinforcing fiber to be used [T]: thickness of unidirectional prepreg to be manufactured [mm]
[W]: Width of unidirectional prepreg to be manufactured [mm]
[Single yarn diameter]: Diameter of reinforcing fiber filament used [mm]
[Vf]: Ratio of volume occupied by reinforcing fibers with respect to the total volume of the unidirectional prepreg to be produced [%]
[Vr]: Ratio of volume occupied by thermoplastic resin with respect to the total volume of the unidirectional prepreg to be produced [%]
熱可塑性樹脂をウェット法で含浸させた後、前記支持部材間を移動中に乾燥・固化させることを特徴とする請求項1に記載の一方向性繊維強化テープ状複合材の製造方法。 The method for producing a unidirectional fiber-reinforced tape-shaped composite material according to claim 1, wherein the thermoplastic resin is impregnated by a wet method and then dried and solidified while moving between the support members. 熱可塑性樹脂をホットメルト法で含浸させた後、前記支持部材間を移動中に冷却・固化させることを特徴とする請求項1に記載の一方向性繊維強化テープ状複合材の製造方法。 The method for producing a unidirectional fiber-reinforced tape-like composite material according to claim 1, wherein the thermoplastic resin is impregnated by a hot melt method and then cooled and solidified while moving between the support members. ウェット法による樹脂浴に前記強化連続繊維束を通し、当該樹脂浴から出た直後の強化連続繊維束を、0.05MPa〜0.3MPaの力で押圧して脱液することを特徴とする請求項2に記載の一方向性繊維強化テープ状複合材の製造方法。 The reinforced continuous fiber bundle is passed through a resin bath by a wet method, and the reinforced continuous fiber bundle immediately after coming out of the resin bath is pressed with a force of 0.05 MPa to 0.3 MPa to drain the liquid. Item 3. A method for producing a unidirectional fiber-reinforced tape-shaped composite material according to Item 2. 前記強化連続繊維束に熱可塑性樹脂を塗布した後にウェット法による樹脂浴に通すことを特徴とする請求項2又は4に記載の一方向性繊維強化テープ状複合材の製造方法。 The method for producing a unidirectional fiber-reinforced tape-shaped composite material according to claim 2 or 4, wherein a thermoplastic resin is applied to the reinforced continuous fiber bundle and then passed through a resin bath by a wet method. 熱可塑性樹脂を固化させる際の前記強化連続繊維束の開繊度を1.1〜1.3にしたことを特徴とする請求項1から5のいずれか1項に記載の一方向性繊維強化テープ状複合材の製造方法。 The unidirectional fiber reinforced tape according to any one of claims 1 to 5, wherein a degree of opening of the reinforced continuous fiber bundle at the time of solidifying the thermoplastic resin is set to 1.1 to 1.3. Method of manufacturing a composite material. 熱可塑性樹脂を固化させる際の前記強化連続繊維束の厚みを10μm〜50μmにしたことを特徴とする請求項1から5のいずれか1項に記載の一方向性繊維強化テープ状複合材の製造方法。 The unidirectional fiber-reinforced tape-shaped composite material according to any one of claims 1 to 5, wherein the thickness of the reinforcing continuous fiber bundle at the time of solidifying the thermoplastic resin is 10 µm to 50 µm. Method. 前記強化連続繊維束に重量平均分子量Aが1000〜28000の熱可塑性樹脂を含浸させ、その後熱可塑性樹脂を固化させる際に、少なくとも重量平均分子量Bが10000〜30000になるまで重縮合させることを特徴とする請求項1から7のいずれか1項に記載の一方向性繊維強化テープ状複合材の製造方法。 The reinforced continuous fiber bundle is impregnated with a thermoplastic resin having a weight average molecular weight A of 1000 to 28000, and then, when the thermoplastic resin is solidified, polycondensation is performed until at least the weight average molecular weight B is 10,000 to 30,000. The method for producing a unidirectional fiber-reinforced tape-shaped composite material according to any one of claims 1 to 7. 一方向性繊維強化テープ状複合材中の強化繊維体積含有率を30〜65%にしたことを特徴とする請求項2から8のいずれか1項に記載の一方向性繊維強化テープ状複合材の製造方法。 The unidirectional fiber-reinforced tape-shaped composite material according to any one of claims 2 to 8, wherein the reinforcing fiber volume content in the unidirectional fiber-reinforced tape-shaped composite material is 30 to 65%. Manufacturing method. 前記強化連続繊維束の搬送経路に配設されて前記強化連続繊維束に熱可塑性樹脂を含浸させる樹脂浴部と、
当該樹脂浴部の搬送方向下流側に互いに離間して配設され、前記強化連続繊維束に所定の張力を掛けて支持する2つの支持部材と、
前記支持部材間を移動する前記強化連続繊維束の前記熱可塑性樹脂を固化させる固化部とを有し、
前記支持部材間の距離L[mm]を下式で算出される距離にしたことを特徴とする一方向性繊維強化テープ状複合材の製造装置。
0.9×Lideal[mm]<L[mm]<1.1×Lideal[mm]
ideal[mm]=[200mm]×{(総フィラメント数)/[(T+W)/(単糸直径)]}×(Vf/Vr)
[総フィラメント数]:使用する強化繊維のフィラメント本数
[T]:製造する一方向性プリプレグの厚み[mm]
[W]:製造する一方向性プリプレグの幅[mm]
[単糸直径]:使用する強化繊維のフィラメントの直径[mm]
[Vf]:製造する一方向性プリプレグの全体積中に対して強化繊維の占める体積の割合[%]
[Vr]:製造する一方向性プリプレグの全体積中に対して熱可塑性樹脂の占める体積の割合[%]
A resin bath part disposed in a conveying path of the reinforcing continuous fiber bundle and impregnating the reinforcing continuous fiber bundle with a thermoplastic resin;
Two support members that are arranged apart from each other on the downstream side in the transport direction of the resin bath part and support the reinforced continuous fiber bundle by applying a predetermined tension;
A solidifying part for solidifying the thermoplastic resin of the reinforcing continuous fiber bundle moving between the support members;
The apparatus for producing a unidirectional fiber-reinforced tape-shaped composite material, wherein the distance L [mm] between the support members is a distance calculated by the following equation.
0.9 × L ideal [mm] <L [mm] <1.1 × L ideal [mm]
L ideal [mm] = [200 mm] × {(total number of filaments) / [(T + W) / (single yarn diameter)]} × (Vf / Vr)
[Total number of filaments]: Number of filaments of reinforcing fibers used [T]: Thickness [mm] of unidirectional prepreg to be produced
[W]: Width of unidirectional prepreg to be manufactured [mm]
[Single yarn diameter]: Diameter of reinforcing fiber filament used [mm]
[Vf]: Ratio of volume occupied by reinforcing fibers with respect to the total volume of the unidirectional prepreg to be produced [%]
[Vr]: Ratio of volume occupied by thermoplastic resin with respect to the total volume of the unidirectional prepreg to be produced [%]
前記樹脂浴部が、熱可塑性樹脂を溶剤で溶かした溶剤溶解樹脂浴を有し、前記固化部が、前記強化連続繊維束を加熱する加熱部を有することを特徴とする請求項10の一方向性繊維強化テープ状複合材の製造装置。 11. The one-way structure according to claim 10, wherein the resin bath part includes a solvent-dissolved resin bath obtained by dissolving a thermoplastic resin with a solvent, and the solidified part includes a heating part that heats the reinforced continuous fiber bundle. Equipment for fiber-reinforced tape-like composites. 前記樹脂浴部が、熱可塑性樹脂を溶融させた溶融樹脂浴を有し、前記固化部が、前記強化連続繊維束を冷却する冷却部を有することを特徴とする請求項10の一方向性繊維強化テープ状複合材の製造装置。 The unidirectional fiber according to claim 10, wherein the resin bath part has a molten resin bath in which a thermoplastic resin is melted, and the solidified part has a cooling part for cooling the reinforced continuous fiber bundle. Equipment for manufacturing reinforced tape-like composite materials. 請求項1から9のいずれか1項の製造方法で製造した一方向性繊維強化テープ状複合材又は請求項10から12のいずれか1項の製造装置で製造した一方向性繊維強化テープ状複合材を、短冊状に切断することにより得られた多数の短冊状片を、疑似等方性となるように配向・積層することを特徴とする強化繊維ランダムシートの製造方法。 The unidirectional fiber-reinforced tape-shaped composite material manufactured by the manufacturing method according to any one of claims 1 to 9, or the unidirectional fiber-reinforced tape-shaped composite material manufactured by the manufacturing apparatus according to any one of claims 10 to 12. A method for producing a reinforced fiber random sheet, characterized in that a large number of strip-like pieces obtained by cutting a material into strips are oriented and laminated so as to be pseudo-isotropic. 前記多数の短冊状片を疑似等方性となるように配向・積層した後、当該積層体を重量平均分子量Cが3500以上の所望の分子量になるまで重合反応させることを特徴とする請求項13の強化繊維ランダムシートの製造方法。 14. The plurality of strip-shaped pieces are oriented and laminated so as to be quasi-isotropic, and then the laminated body is subjected to a polymerization reaction until the weight average molecular weight C reaches a desired molecular weight of 3500 or more. Manufacturing method of reinforcing fiber random sheet. 請求項1から9のいずれか1項の製造方法又は請求項10から12のいずれか1項の製造装置で含浸させる熱可塑性樹脂の分子量Aを前記分子量Cの10〜70%としたことを特徴とする請求項14の強化繊維ランダムシートの製造方法。 The molecular weight A of the thermoplastic resin impregnated by the production method according to any one of claims 1 to 9 or the production apparatus according to any one of claims 10 to 12 is 10 to 70% of the molecular weight C. The method for producing a reinforcing fiber random sheet according to claim 14. 前記短冊状片の積層後に重合反応と加圧処理を同時に進行させて層間脱気を行うこと特徴とする請求項13から15のいずれか1項に記載の強化繊維ランダムシートの製造方法。 The method for producing a reinforced fiber random sheet according to any one of claims 13 to 15, wherein interlayer deaeration is performed by simultaneously proceeding a polymerization reaction and a pressure treatment after the strip pieces are laminated.
JP2014134969A 2014-06-30 2014-06-30 Method for manufacturing unidirectional fiber-reinforced tape-shaped composite material, manufacturing apparatus, and method for manufacturing random sheet using tape-shaped composite material Active JP6286301B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014134969A JP6286301B2 (en) 2014-06-30 2014-06-30 Method for manufacturing unidirectional fiber-reinforced tape-shaped composite material, manufacturing apparatus, and method for manufacturing random sheet using tape-shaped composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014134969A JP6286301B2 (en) 2014-06-30 2014-06-30 Method for manufacturing unidirectional fiber-reinforced tape-shaped composite material, manufacturing apparatus, and method for manufacturing random sheet using tape-shaped composite material

Publications (2)

Publication Number Publication Date
JP2016011403A JP2016011403A (en) 2016-01-21
JP6286301B2 true JP6286301B2 (en) 2018-02-28

Family

ID=55228321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014134969A Active JP6286301B2 (en) 2014-06-30 2014-06-30 Method for manufacturing unidirectional fiber-reinforced tape-shaped composite material, manufacturing apparatus, and method for manufacturing random sheet using tape-shaped composite material

Country Status (1)

Country Link
JP (1) JP6286301B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110712366A (en) * 2019-10-12 2020-01-21 西安交通大学 Plasma and laser synergistic interface processing composite material 3D printing method

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017163605A1 (en) * 2016-03-25 2017-09-28 倉敷紡績株式会社 Carbon fiber sheet for reinforcement
KR20170120417A (en) * 2016-04-21 2017-10-31 (주)엘지하우시스 Continuous fiber reinforced composites
JP6176691B1 (en) * 2016-10-07 2017-08-09 サンコロナ小田株式会社 Unidirectional prepreg and fiber reinforced thermoplastic resin sheet
FR3079164B1 (en) * 2018-03-23 2021-10-22 Arkema France FIBROUS MATERIAL IMPREGNATED WITH THERMOPLASTIC POLYMER OF THICKNESS LESS THAN OR EQUAL TO 100ΜM AND ITS PREPARATION PROCESS
FR3079163B1 (en) 2018-03-23 2021-10-15 Arkema France TABLECLOTH OF IMPREGNATED FIBROUS MATERIAL, ITS MANUFACTURING PROCESS AND ITS USE FOR THE MANUFACTURE OF COMPOSITE PARTS IN THREE DIMENSIONS
JP2019178234A (en) * 2018-03-30 2019-10-17 東洋紡株式会社 Thermoplastic prepreg sheet
JP7176236B2 (en) * 2018-06-07 2022-11-22 東洋紡株式会社 Thermoplastic prepreg sheet
JP6836763B2 (en) * 2018-12-04 2021-03-03 サンコロナ小田株式会社 A method for manufacturing a fiber-reinforced thermoplastic resin sheet, a molded product of a fiber-reinforced thermoplastic resin sheet, and a fiber-reinforced thermoplastic resin sheet.
CN111070720B (en) * 2019-12-31 2021-12-17 中国人民解放军国防科技大学 Fiber position control device and method for fiber reinforced composite material
KR102488964B1 (en) * 2020-12-16 2023-01-13 재단법인 한국탄소산업진흥원 Device for manufacturing thermoplastic strand
CN112800628B (en) * 2021-02-25 2023-04-04 江西省科学院应用物理研究所 Method for generating unidirectional fiber resin-based composite cross section based on digital image statistical algorithm
CN115366443A (en) * 2022-09-08 2022-11-22 四川大学 Continuous fiber reinforced thermoplastic composite material impregnation method, printing method and device

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10305490A (en) * 1997-05-01 1998-11-17 Chisso Corp Method and apparatus for manufacturing unidirectionally reinforced thermoplastic resin sheet
JP2007076224A (en) * 2005-09-15 2007-03-29 Toho Tenax Co Ltd Manufacturing apparatus of carbon-fiber reinforced thermoplastic tape
JP4781084B2 (en) * 2005-10-25 2011-09-28 帝人テクノプロダクツ株式会社 Carbon fiber reinforced thermoplastic resin tape and method for producing the same
WO2012133013A1 (en) * 2011-03-29 2012-10-04 東洋紡績株式会社 Layered molded article of fiber-reinforced thermoplastic resin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110712366A (en) * 2019-10-12 2020-01-21 西安交通大学 Plasma and laser synergistic interface processing composite material 3D printing method

Also Published As

Publication number Publication date
JP2016011403A (en) 2016-01-21

Similar Documents

Publication Publication Date Title
JP6286301B2 (en) Method for manufacturing unidirectional fiber-reinforced tape-shaped composite material, manufacturing apparatus, and method for manufacturing random sheet using tape-shaped composite material
KR102585419B1 (en) Method for producing fibrous materials pre-impregnated with thermoplastic polymers in powder form
US10626235B2 (en) Flexible composite prepreg materials
KR101909363B1 (en) Method of manufacturing a fibrous material preimpregnated with thermoplastic polymer using an aqueous dispersion of polymer
JP6176691B1 (en) Unidirectional prepreg and fiber reinforced thermoplastic resin sheet
US20100075144A1 (en) Flexible composite prepreg materials
EP2813532A1 (en) Carbon fiber composite material
KR20160110445A (en) Method of producing a fibrous material pre-impregnated with thermoplastic polymer in a fluid bed
KR102434377B1 (en) Coating solution impregnated sheet-type reinforcing fiber bundle and sheet-like integrated product manufacturing method, coating device
KR20190095293A (en) Method for producing fibrous material preimpregnated with thermoplastic polymer by spraying
JP2009274412A (en) Manufacturing process of unidirectional sheet base material consisting of discontinuous fibers
JP7215419B2 (en) Method for producing coating-liquid-impregnated reinforced fiber fabric, sheet-like monolith, prepreg, prepreg tape, and fiber-reinforced composite material
EP3744493A1 (en) Reinforcing fiber bundle base material, production method therefor, fiber reinforced thermoplastic resin material using same, and production method therefor
KR20190126810A (en) Manufacturing method of prepreg and manufacturing method of fiber reinforced composite material
JP2021185034A (en) Method of manufacturing fiber-reinforced thermoplastic resin sheet
JP7140131B2 (en) Multi-layer prepreg with release sheet, prepreg roll, prepreg tape and composites
JP7243629B2 (en) Prepreg manufacturing method and manufacturing apparatus
JPH0631821A (en) Manufacture of thermoplastic composite material
JP2023027050A (en) FIBROUS MATERIAL IMPREGNATED WITH THERMOPLASTIC POLYMER HAVING THICKNESS OF 100 μM OR LESS, AND ITS PRODUCTION METHOD
WO2020040154A1 (en) Production method for prepreg, prepreg tape, and fiber reinforced composite material, and prepreg production device
WO2020031766A1 (en) Method for manufacturing prepreg, coating device, and apparatus for manufacturing prepreg
JP5301132B2 (en) Prepreg manufacturing equipment
JP6974836B2 (en) One-way prepreg tape manufacturing equipment and manufacturing method
CN111527135B (en) Fiber-reinforced thermoplastic resin sheet, molded article of fiber-reinforced thermoplastic resin sheet, and method for producing fiber-reinforced thermoplastic resin sheet
CN111890595A (en) System and preparation method of composite infiltration thermoplastic carbon fiber prepreg fabric

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171026

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171030

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171031

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171124

R155 Notification before disposition of declining of application

Free format text: JAPANESE INTERMEDIATE CODE: R155

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180205

R150 Certificate of patent or registration of utility model

Ref document number: 6286301

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250