JP6285073B1 - Optical water quality detector cleaning method and optical water quality detector cleaning system - Google Patents

Optical water quality detector cleaning method and optical water quality detector cleaning system Download PDF

Info

Publication number
JP6285073B1
JP6285073B1 JP2017217284A JP2017217284A JP6285073B1 JP 6285073 B1 JP6285073 B1 JP 6285073B1 JP 2017217284 A JP2017217284 A JP 2017217284A JP 2017217284 A JP2017217284 A JP 2017217284A JP 6285073 B1 JP6285073 B1 JP 6285073B1
Authority
JP
Japan
Prior art keywords
cleaning
liquid
gas
measured
water quality
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017217284A
Other languages
Japanese (ja)
Other versions
JP2019086496A (en
Inventor
大平 美智男
美智男 大平
紘嗣 山田
紘嗣 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
scan Messtechnik GmbH
Original Assignee
scan Messtechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by scan Messtechnik GmbH filed Critical scan Messtechnik GmbH
Priority to JP2017217284A priority Critical patent/JP6285073B1/en
Application granted granted Critical
Publication of JP6285073B1 publication Critical patent/JP6285073B1/en
Publication of JP2019086496A publication Critical patent/JP2019086496A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/01Arrangements or apparatus for facilitating the optical investigation
    • G01N21/15Preventing contamination of the components of the optical system or obstruction of the light path
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/85Investigating moving fluids or granular solids
    • G01N21/8507Probe photometers, i.e. with optical measuring part dipped into fluid sample
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2201/00Features of devices classified in G01N21/00
    • G01N2201/02Mechanical
    • G01N2201/021Special mounting in general
    • G01N2201/0218Submersible, submarine
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/18Water

Abstract

【課題】洗浄効果を向上させると共に、測定プローブの大型化・重量化を防止する。洗浄作業にともなう作業者の負担を軽減する。【解決手段】本発明は、被測定液1に接し且つ前記被測定液1中を通過する測定光を透過させる測定窓3を有する光学式水質検出器2の洗浄方法であって、測定窓3に向けて設けられた噴出口4から被測定液1中に気体とともに洗浄用粒子7を噴出させて気体と洗浄用粒子7と被測定液1とが混じり合った流れを発生させ、その流れを測定窓3に衝突させることで測定窓3を洗浄する光学式水質検出器の洗浄方法に関する。【選択図】図4An object of the present invention is to improve a cleaning effect and prevent an increase in size and weight of a measurement probe. Reduce the burden on the workers associated with cleaning operations. The present invention relates to a method for cleaning an optical water quality detector 2 having a measurement window 3 that transmits measurement light that is in contact with the measurement liquid 1 and passes through the measurement liquid 1. The cleaning particles 7 are ejected together with the gas into the liquid 1 to be measured from the nozzle 4 provided toward the surface to generate a flow in which the gas, the cleaning particles 7 and the liquid 1 to be measured are mixed. The present invention relates to a method for cleaning an optical water quality detector that cleans the measurement window 3 by colliding with the measurement window 3. [Selection] Figure 4

Description

本発明は、被測定液に接し且つ前記被測定液中を通過する測定光を透過させる測定窓を有する光学式水質検出器の洗浄方法、およびその光学式水質検出器の洗浄システムに関する。   The present invention relates to a cleaning method for an optical water quality detector having a measurement window that transmits measurement light that is in contact with the liquid to be measured and passes through the liquid to be measured, and a cleaning system for the optical water quality detector.

被測定液の吸光度に基づいてその被測定液の水質、例えばSS(浮遊物質量)、濁度、BOD(生物化学的酸素要求量)、COD(化学的酸素要求量)、TOC(全有機体炭素)、硝酸態窒素、亜硝酸態窒素等を検出する光学式水質検出器がある。この種の光学式水質検出器は、被測定液に接する測定窓(セル窓)を通して被測定液中に測定光を照射し、被測定液中を通過する前後の測定光を比較することで被測定液の吸光度を求めるようにしている。そのため、測定窓を清浄に保つことが必要であり、種々の洗浄方法・洗浄装置がある。   Based on the absorbance of the liquid to be measured, the water quality of the liquid to be measured, such as SS (suspended substance amount), turbidity, BOD (biochemical oxygen demand), COD (chemical oxygen demand), TOC (total organisms) There is an optical water quality detector that detects carbon), nitrate nitrogen, nitrite nitrogen, and the like. This type of optical water quality detector irradiates the measurement liquid through the measurement window (cell window) in contact with the measurement liquid, and compares the measurement light before and after passing through the measurement liquid. The absorbance of the measurement solution is obtained. Therefore, it is necessary to keep the measurement window clean, and there are various cleaning methods and apparatuses.

例えば、特許文献1に開示された光学式水質検出器では、酸化チタン膜を形成した石英ガラスをセル窓に対して平行に往復移動させると共に下降した状態で所定時間(例えば10分間)停止させ、OHラジカルによる洗浄作用でセル窓に付着した汚れを除去するようにしている。   For example, in the optical water quality detector disclosed in Patent Document 1, the quartz glass on which the titanium oxide film is formed is reciprocated in parallel with the cell window and stopped for a predetermined time (for example, 10 minutes) while being lowered, Dirt adhering to the cell window is removed by a cleaning action by OH radicals.

また、別の洗浄方法として、ワイパー装置を設けてワイパーによってセル窓を拭うようにすることも知られている。さらに、作業者が光学式水質検出器を設置場所から回収し、手作業でセル窓の洗浄を行うことも広く普及している。   As another cleaning method, it is also known to provide a wiper device and wipe the cell window with the wiper. Furthermore, it is also widespread that the operator collects the optical water quality detector from the installation location and manually cleans the cell window.

特開平9−311105号公報JP-A-9-311105

しかしながら、上記の酸化チタン膜付き石英ガラスを使用した洗浄方法では、OHラジカルによる洗浄効果を十分に得るためには長時間を要し、洗浄にかかる時間が長くなる。そして、洗浄にかかる時間が長い割には大きな洗浄効果を期待できない。さらに、酸化チタン膜付き石英ガラスを往復移動させる駆動機構をセル窓付近に設ける必要があり、構造が複雑になると共に、セル自体を大型化・重量化させてしまう。   However, in the above-described cleaning method using a quartz glass with a titanium oxide film, it takes a long time to sufficiently obtain the cleaning effect by OH radicals, and the time required for cleaning becomes long. In addition, a large cleaning effect cannot be expected for a long cleaning time. Furthermore, it is necessary to provide a drive mechanism for reciprocating the quartz glass with a titanium oxide film in the vicinity of the cell window, which complicates the structure and increases the size and weight of the cell itself.

また、ワイパー装置を設けてセル窓を拭う洗浄方法では、セル窓に被測定液中の夾雑物が硬く付着している場合にはその夾雑物を拭いきれない。さらに、ワイパーの駆動機構をセル窓付近に設ける必要があり、構造が複雑になると共に、セル自体を大型化・重量化させてしまう。   Further, in the cleaning method in which the cell window is wiped by providing the wiper device, when the contaminants in the liquid to be measured are firmly attached to the cell window, the contaminants cannot be wiped off. Furthermore, it is necessary to provide a wiper drive mechanism near the cell window, which complicates the structure and increases the size and weight of the cell itself.

さらに、作業者が手作業で洗浄を行う方法では、設置場所から光学式水質検出器を回収し、洗浄後には設置場所に正しく設置し直す必要があり、洗浄作業に手間がかかる。特に、被測定液が下水等の汚水である場合等には、光学式水質検出器自体の汚れが激しく、設置場所からの回収に余計な手間がかかり、作業が重労働になる。   Furthermore, in the method in which the operator manually cleans, it is necessary to collect the optical water quality detector from the installation location and to re-install it correctly at the installation location after cleaning, which takes time and effort. In particular, when the liquid to be measured is sewage such as sewage, the optical water quality detector itself is heavily soiled, requiring extra labor for recovery from the installation location, and the work becomes labor intensive.

本発明は、かかる課題を解決するためになされたものであり、短時間で洗浄を行うことができると共に、洗浄効果を向上させることができ、測定プローブを大型化・重量化させることがなく、さらに作業者の負担を極めて軽くすることができる光学式水質検出器の洗浄方法および光学式水質検出器洗浄システムを提供することを目的とする。   The present invention has been made to solve such a problem, can be cleaned in a short time, can improve the cleaning effect, without increasing the size and weight of the measurement probe, It is another object of the present invention to provide an optical water quality detector cleaning method and an optical water quality detector cleaning system capable of extremely reducing the burden on the operator.

上記目的を達成するため、一実施形態に係る光学式水質検出器の洗浄方法は、被測定液に接し且つ被測定液中を通過する測定光を透過させる測定窓を有する光学式水質検出器の洗浄方法であって、測定窓に向けて設けられた噴出口から被測定液中に気体とともに洗浄用粒子を噴出させて気体と洗浄用粒子と被測定液とが混じり合った流れを発生させ、流れを測定窓に衝突させることで測定窓を洗浄する。   In order to achieve the above object, a cleaning method for an optical water quality detector according to an embodiment includes an optical water quality detector having a measurement window that transmits measurement light that is in contact with a measurement liquid and passes through the measurement liquid. A cleaning method, in which cleaning particles are ejected together with gas into a liquid to be measured from a jet port provided toward a measurement window to generate a flow in which the gas, the cleaning particles and the liquid to be measured are mixed, The measurement window is cleaned by impinging the flow on the measurement window.

別の実施形態に係る光学式水質検出器の洗浄方法は、気体を噴出口へと導く流路内に気体の流れを発生させた後、気体の流れによって流路内に洗浄用粒子を吸引し、噴出口から被測定液中に噴出させることが好ましい。   According to another embodiment of the optical water quality detector cleaning method, after a gas flow is generated in the flow channel that guides the gas to the ejection port, the cleaning particles are sucked into the flow channel by the gas flow. It is preferable that the liquid to be measured be ejected from the ejection port.

別の実施形態に係る光学式水質検出器の洗浄方法は、気体を噴出口へと導く流路の途中に洗浄用粒子を供給した後、流路内に気体の流れを発生させて気体とともに洗浄用粒子を被測定液中に噴出させることが好ましい。   According to another embodiment of the optical water quality detector cleaning method, after supplying the cleaning particles in the middle of the flow path for guiding the gas to the jet outlet, the gas flow is generated in the flow path and cleaned with the gas. It is preferable to eject the particles for measurement into the liquid to be measured.

また、一実施形態に係る光学式水質検出器の洗浄システムは、被測定液に接し且つ被測定液中を通過する測定光を透過させる測定窓を有する光学式水質検出器と、測定窓に向けて設けられた噴出口と、噴出口から被測定液中に噴出される気体を加圧する圧力源と、圧力源によって加圧された気体を噴出口に導く流路と、流路の途中に接続されて気体の流れに洗浄用粒子を混入させる洗浄用粒子供給手段と、を備える。   An optical water quality detector cleaning system according to an embodiment is directed to an optical water quality detector having a measurement window that transmits measurement light that is in contact with the liquid to be measured and passes through the liquid to be measured, and the measurement window. Connected to the nozzle, a pressure source that pressurizes the gas jetted from the jet into the liquid to be measured, a channel that leads the gas pressurized by the pressure source to the jet, and a midway in the channel Cleaning particle supply means for mixing the cleaning particles into the gas flow.

別の実施形態に係る光学式水質検出器の洗浄システムは、洗浄用粒子供給手段として、洗浄用粒子を蓄える第1の容器と、第1の容器と流路とを連通し、流路内に発生した気体の流れによって第1の容器内の洗浄用粒子を吸引させて気体の流れに混入させる第1の混入用通路と、第1の混入用通路を開閉する第1の開閉手段と、を備えることが好ましい。   In the cleaning system for an optical water quality detector according to another embodiment, as a cleaning particle supply means, a first container for storing cleaning particles, a first container, and a flow channel are communicated, and the flow channel is provided in the flow channel. A first mixing passage for sucking the cleaning particles in the first container by the generated gas flow and mixing the particles in the gas flow; and a first opening / closing means for opening and closing the first mixing passage. It is preferable to provide.

別の実施形態に係る光学式水質検出器の洗浄システムは、洗浄用粒子供給手段として、洗浄用粒子を蓄える第2の容器と、第2の容器内の洗浄用粒子を移動させて流路内に導く第2の混入用通路と、第2の混入用通路を開閉する第2の開閉手段と、を備えることが好ましい。   In the cleaning system for an optical water quality detector according to another embodiment, as a cleaning particle supply means, a second container for storing cleaning particles, and the cleaning particles in the second container are moved to move into the flow path. It is preferable to include a second mixing path that leads to the second mixing path, and a second opening / closing means that opens and closes the second mixing path.

別の実施形態に係る光学式水質検出器の洗浄システムは、噴出口から噴出された気体を噴出口の近傍から逃がす開放部を備えていることが好ましい。   It is preferable that the cleaning system for an optical water quality detector according to another embodiment includes an opening that allows the gas ejected from the ejection port to escape from the vicinity of the ejection port.

本発明によれば、短時間で洗浄を行うことができると共に、洗浄効果を向上させることができ、測定プローブを大型化・重量化させることがなく、さらに作業者の負担を極めて軽くすることができる。   According to the present invention, cleaning can be performed in a short time, the cleaning effect can be improved, the measuring probe is not increased in size and weight, and the burden on the operator can be extremely reduced. it can.

図1は、本発明の第1の実施形態に係る光学式水質検出器の洗浄システムの概略構成図である。FIG. 1 is a schematic configuration diagram of a cleaning system for an optical water quality detector according to a first embodiment of the present invention. 図2は、光学式水質検出器による吸光度の測定出原理を説明するための図である。FIG. 2 is a diagram for explaining the principle of measurement of absorbance by an optical water quality detector. 図3は、光学式水質検出器の噴出口を示す平面図である。FIG. 3 is a plan view showing a spout of the optical water quality detector. 図4は、図3のIV−IV線に沿う光学式水質検出器の断面図である。4 is a cross-sectional view of the optical water quality detector taken along line IV-IV in FIG. 図5は、光学式水質検出器の設置の様子を示す概略構成図である。FIG. 5 is a schematic configuration diagram showing an installation state of the optical water quality detector. 図6は、本発明の第2の実施形態に係る光学式水質検出器の洗浄システムの概略構成図である。FIG. 6 is a schematic configuration diagram of a cleaning system for an optical water quality detector according to a second embodiment of the present invention.

次に、本発明に係る光学式水質検出器の洗浄方法および光学式水質検出器洗浄システムの各実施形態について、図面を参照しながら説明する。なお、以下に説明する実施形態は、本発明を限定するものではなく、また、実施形態の中で説明されている諸要素およびその組み合わせの全てが本発明の解決手段に必須であるとは限らない。また、以下の説明では、光学式水質検出器の洗浄方法を、光学式水質検出器洗浄システムの実施形態の中で説明する。   Next, embodiments of an optical water quality detector cleaning method and an optical water quality detector cleaning system according to the present invention will be described with reference to the drawings. The embodiments described below do not limit the present invention, and all the elements and combinations described in the embodiments are not necessarily essential to the solution means of the present invention. Absent. In the following description, a method for cleaning an optical water quality detector will be described in an embodiment of the optical water quality detector cleaning system.

(第1の実施形態)
図1は、本発明の第1の実施形態に係る光学式水質検出器の洗浄システムの概略構成図である。
(First embodiment)
FIG. 1 is a schematic configuration diagram of a cleaning system for an optical water quality detector according to a first embodiment of the present invention.

光学式水質検出器の洗浄システム(以下、水質検出器洗浄システムという)は、被測定液1の吸光度を測定してその水質、例えばSS(浮遊物質量)、濁度、BOD(生物化学的酸素要求量)、COD(化学的酸素要求量)、TOC(全有機体炭素)、硝酸態窒素、亜硝酸態窒素等を検出する光学式水質検出器2と、測定窓3に向けて設けられた噴出口4と、噴出口4から被測定液1中に噴出される気体を加圧する圧力源5と、圧力源5によって加圧された気体を噴出口4に導く流路6と、流路6の途中に接続されて気体の流れに洗浄用粒子7を混入させる洗浄用粒子供給手段8を備えている。   An optical water quality detector cleaning system (hereinafter referred to as a water quality detector cleaning system) measures the absorbance of the liquid 1 to be measured and measures its water quality, for example, SS (amount of suspended solids), turbidity, BOD (biochemical oxygen). (Required amount), COD (chemical oxygen demand), TOC (total organic carbon), nitrate water, nitrite nitrogen, etc. A jet port 4, a pressure source 5 that pressurizes the gas jetted from the jet port 4 into the liquid 1 to be measured, a channel 6 that guides the gas pressurized by the pressure source 5 to the jet port 4, and a channel 6 Is provided with cleaning particle supply means 8 for mixing the cleaning particles 7 in the gas flow.

図2は、光学式水質検出器による吸光度の測定出原理を説明するための図である。図3は、光学式水質検出器の噴出口を示す平面図である。図4は、図3のIV−IV線に沿う光学式水質検出器の断面図である。   FIG. 2 is a diagram for explaining the principle of measurement of absorbance by an optical water quality detector. FIG. 3 is a plan view showing a spout of the optical water quality detector. 4 is a cross-sectional view of the optical water quality detector taken along line IV-IV in FIG.

以下、図2から図4に光学式水質検出器2を詳しく示す。光学式水質検出器2は、被測定液1に接し且つ被測定液1中を通過する測定光9aを透過させる測定窓3を有している。本実施形態の光学式水質検出器2は、測定窓3として、測定プローブ10内から被測定液1中に測定光9aを透過させる出力側の測定窓3と、測定液1中を通過した測定光9aを測定プローブ10内に透過させる入力側の測定窓3を有している。光学式水質検出器2の円筒形状の測定プローブ10には、その上部を幅方向に通り抜ける溝状の凹部10aが設けられており、各測定窓3,3は凹部10aの両方の側壁10b,10bに設けられている。測定窓3は、例えば石英ガラスやサファイアガラス等の耐性のあるガラスによって構成されている。   Hereinafter, the optical water quality detector 2 is shown in detail in FIGS. The optical water quality detector 2 has a measurement window 3 that transmits measurement light 9 a that is in contact with the measurement liquid 1 and passes through the measurement liquid 1. The optical water quality detector 2 of the present embodiment has a measurement window 3 that passes through the measurement liquid 1 and the measurement window 3 on the output side that transmits the measurement light 9a from the measurement probe 10 into the liquid 1 to be measured. An input-side measurement window 3 that transmits the light 9a into the measurement probe 10 is provided. The cylindrical measurement probe 10 of the optical water quality detector 2 is provided with a groove-like recess 10a passing through the upper portion in the width direction, and each measurement window 3, 3 has both side walls 10b, 10b of the recess 10a. Is provided. The measurement window 3 is made of glass having resistance such as quartz glass or sapphire glass.

測定プローブ10は、後に図5に示すように、被測定液1中に沈められている。この状態で、凹部10a内は、被測定液1で満たされている。凹部10aは溝状を成しており、その上方が噴出口4から噴出された気体を噴出口4近傍から逃がす開放部11となっている。   As shown later in FIG. 5, the measurement probe 10 is submerged in the liquid 1 to be measured. In this state, the recess 10a is filled with the liquid 1 to be measured. The concave portion 10a has a groove shape, and an upper portion of the concave portion 10a serves as an open portion 11 that allows the gas ejected from the ejection port 4 to escape from the vicinity of the ejection port 4.

測定プローブ10内には、光源12と受光手段13が設けられている。光源12は凹部10aの一側に、受光手段13は凹部10aの反対側にそれぞれ配置されている。光源12は、測定に適した波長の光を発生させるものであり、例えばキセノンランプ等が使用されるがこれに限るものではない。光源12から照射された光9は、例えばレンズ等の分光手段14によって、凹部10aを横切る測定光9aと凹部10aを迂回する比較光9bとに分光され、所定の波長の光を通過させるビーム選別手段15を通過し、例えばレンズ等の集光手段16によって集光されて受光手段13に到達する。受光手段13は測定光9aと比較光9bを検出し、その信号をコントローラ17に出力する。コントローラ17は測定光9aの信号と比較光9bの信号を比較することで被測定液1の吸光度を求めて被測定液1の水質を測定する。   In the measurement probe 10, a light source 12 and a light receiving means 13 are provided. The light source 12 is disposed on one side of the recess 10a, and the light receiving means 13 is disposed on the opposite side of the recess 10a. The light source 12 generates light having a wavelength suitable for measurement. For example, a xenon lamp is used, but the present invention is not limited to this. The light 9 emitted from the light source 12 is split into measurement light 9a that crosses the recess 10a and comparison light 9b that bypasses the recess 10a by a spectroscopic means 14 such as a lens, for example. The light passes through the means 15 and is collected by the light collecting means 16 such as a lens and reaches the light receiving means 13. The light receiving means 13 detects the measurement light 9 a and the comparison light 9 b and outputs the signals to the controller 17. The controller 17 compares the signal of the measurement light 9a and the signal of the comparison light 9b to obtain the absorbance of the liquid 1 to be measured and measures the water quality of the liquid 1 to be measured.

噴出口4は、例えば凹部10aの底面10cに設けられている。ただし、噴出口4を設ける場所は底面10cに限らず、後述するように発生させた流れ(洗浄流30)を測定窓3に衝突させることができれば底面10c以外の場所に設けても良い。また本実施形態では、測定窓3毎に噴出口4が設けられており、各測定窓3をそれぞれ洗浄することができる。   The jet nozzle 4 is provided in the bottom face 10c of the recessed part 10a, for example. However, the place where the jet nozzle 4 is provided is not limited to the bottom surface 10c, and may be provided in a place other than the bottom surface 10c as long as the flow (cleaning flow 30) generated as described later can collide with the measurement window 3. Moreover, in this embodiment, the jet nozzle 4 is provided for every measurement window 3, and each measurement window 3 can be each wash | cleaned.

圧力源5は、例えばコンプレッサであり、外気を取り込んで加圧し、流路6に送り込んでいる。圧力源5は、コントローラ17によって操作される。流路6の上流端6aは圧力源5の噴出口5aに接続され、下流端6bは測定プローブ10に設けられた流路接続部18に接続されている。流路接続部18は、測定プローブ10内の流路19を通じて分岐部20に接続され、流路6から送り込まれた気体を各噴出口4,4にそれぞれ供給する。また、流路6の途中には、上流側から順番に第1の電磁弁21およびエジェクタ22が設けられている。第1の電磁弁21は、コントローラ17によって開閉操作される。   The pressure source 5 is, for example, a compressor, takes in outside air, pressurizes it, and sends it into the flow path 6. The pressure source 5 is operated by the controller 17. The upstream end 6 a of the flow path 6 is connected to the jet outlet 5 a of the pressure source 5, and the downstream end 6 b is connected to a flow path connection 18 provided in the measurement probe 10. The flow path connecting part 18 is connected to the branching part 20 through the flow path 19 in the measurement probe 10, and supplies the gas sent from the flow path 6 to the respective outlets 4 and 4. A first electromagnetic valve 21 and an ejector 22 are provided in the middle of the flow path 6 in order from the upstream side. The first electromagnetic valve 21 is opened and closed by the controller 17.

洗浄用粒子供給手段8は、洗浄用粒子7を蓄える第1の容器23と、第1の容器23と流路6とを連通し、流路6内に発生した気体の流れによって第1の容器23内の洗浄用粒子7を吸引して気体の流れに混入させる第1の混入用通路24と、第1の混入用通路24を開閉する第1の開閉手段25を備えている。   The cleaning particle supply means 8 communicates the first container 23 storing the cleaning particles 7 with the first container 23 and the flow path 6, and the first container is generated by the flow of gas generated in the flow path 6. The first mixing passage 24 for sucking the cleaning particles 7 in the gas flow 23 and mixing it into the gas flow, and the first opening / closing means 25 for opening and closing the first mixing passage 24 are provided.

第1の混入用通路24の上流側端24aは第1の容器23内に挿入され、下流側端24bはエジェクタ22に接続されている。第1の容器23内には、第1の混入用通路24の上流側端24aよりも高い位置まで洗浄用粒子7が充填されている。また、第1の容器23の洗浄用粒子7よりも高い位置には、吸入通路26が接続されている。吸入通路26には、第1の容器23に向かう流れのみを許容する逆止弁27、取り込む外気を除湿する除湿手段28、取り込む外気中のゴミや塵などを除去するフィルタ29が設けられている。第1の開閉手段25は、例えば電動バルブや電磁弁等であり、第1の混入用通路24の途中に設けられている。第1の開閉手段25は、コントローラ17によって開閉操作される。   The upstream end 24 a of the first mixing passage 24 is inserted into the first container 23, and the downstream end 24 b is connected to the ejector 22. The first container 23 is filled with the cleaning particles 7 up to a position higher than the upstream end 24 a of the first mixing passage 24. A suction passage 26 is connected to the first container 23 at a position higher than the cleaning particles 7. The suction passage 26 is provided with a check valve 27 that allows only the flow toward the first container 23, a dehumidifying means 28 that dehumidifies the outside air to be taken in, and a filter 29 that removes dust, dust, and the like in the outside air to be taken in. . The first opening / closing means 25 is, for example, an electric valve or a solenoid valve, and is provided in the middle of the first mixing passage 24. The first opening / closing means 25 is opened / closed by the controller 17.

洗浄用粒子7としては、アルミナ、炭化ケイ素、窒化ケイ素等の比較的硬質のセラミックスの粒子が好ましく、その中でもアルミナの粒子がより好ましい。また、粒子径を大きくすると、洗浄効果の向上を期待できるが、その一方で測定窓3を傷付ける虞があり、逆に粒子径を小さくすると、測定窓3を傷付ける虞は少なくなるが、その一方で洗浄効果が低下する。そこで、レーザ回折式粒度分布測定によって得られる粒子径分布において最大粒子径Dmax値が11ミクロン以下、さらに好ましくは最大粒子径に近いD90値が11ミクロン以下のセラミックス粉末を用いるのが好ましい。かかる粒子径の粒子を使用することで、洗浄効果の向上と測定窓3の傷付き防止とをともに高レベルで両立させることができる。 The cleaning particles 7 are preferably relatively hard ceramic particles such as alumina, silicon carbide, and silicon nitride, and among these, alumina particles are more preferable. Further, when the particle diameter is increased, the cleaning effect can be expected to be improved. On the other hand, there is a possibility that the measurement window 3 may be damaged. Conversely, when the particle diameter is decreased, the possibility that the measurement window 3 is damaged decreases. This reduces the cleaning effect. Therefore, it is preferable to use ceramic powder having a maximum particle diameter D max value of 11 microns or less, more preferably a D 90 value close to the maximum particle diameter of 11 microns or less in the particle size distribution obtained by laser diffraction particle size distribution measurement. By using particles having such a particle size, both improvement in cleaning effect and prevention of scratching of the measurement window 3 can be achieved at a high level.

図5は、光学式水質検出器の設置の様子を示す概略構成図である。   FIG. 5 is a schematic configuration diagram showing an installation state of the optical water quality detector.

測定プローブ10は、貯留槽31の周壁31aに取り外し可能に固定された設置器具32の下端に取り付けられ、被測定液1中に沈められている。測定プローブ10は凹部10aの開口側を略水平方向(図5では紙面手前方向)に向けて設置されている。この状態では、凹部10aの各側壁10b,10bは水面に対して略垂直になっており、噴出口4から噴出させた気体を図5の紙面手前方向に移動させて開放部11から逃がすことができる。各測定窓3,3の側方を開放部11としていることから各測定窓3,3の近傍に気泡が付着するのを防止することができる。また、凹部10aの開口方向を水面以外の方向(この実施形態では横方向)にしているため、水中の浮遊物が凹部10aに貯まることを低減できる。このように、各測定窓3,3の近傍に気泡体の付着や浮遊物の堆積が生じて被測定液1の水質の測定に影響を与えるのを防止することができる。   The measurement probe 10 is attached to the lower end of an installation instrument 32 that is detachably fixed to the peripheral wall 31 a of the storage tank 31 and is submerged in the liquid 1 to be measured. The measurement probe 10 is installed with the opening side of the recess 10a facing in a substantially horizontal direction (the front side in FIG. 5). In this state, the side walls 10b and 10b of the recess 10a are substantially perpendicular to the water surface, and the gas ejected from the ejection port 4 can be moved away from the opening portion 11 by moving in the front direction of the drawing in FIG. it can. Since the side of each measurement window 3, 3 is an open portion 11, it is possible to prevent bubbles from adhering to the vicinity of each measurement window 3, 3. Moreover, since the opening direction of the recessed part 10a is made into directions other than a water surface (in this embodiment, it is a horizontal direction), it can reduce that the suspended | floating matter in water accumulates in the recessed part 10a. In this way, it is possible to prevent bubbles from adhering to the measurement windows 3 and 3 and deposits of suspended matter from affecting the measurement of the water quality of the liquid 1 to be measured.

このような水質検出器洗浄システムによって実施される本発明に係る光学式水質検出器の洗浄方法は、被測定液1に接し且つ被測定液1中を通過する測定光9aを透過させる測定窓3を有する光学式水質検出器2の洗浄方法であって、測定窓3に向けて設けられた噴出口4から被測定液1中に気体とともに洗浄用粒子7を噴出させて気体と洗浄用粒子7と被測定液1とが混じり合った流れ(以下、洗浄流という)30を発生させ、洗浄流30を測定窓3に衝突させることで測定窓3を洗浄するものである。また、本実施形態では、噴出口4から気体とともに洗浄用粒子7を噴出させる方法として、気体を噴出口4へと導く流路6内に気体の流れを発生させた後、気体の流れによって流路6内に洗浄用粒子7を吸引し、噴出口4から被測定液1中に噴出させるようにしている。   The optical water quality detector cleaning method according to the present invention implemented by such a water quality detector cleaning system includes a measurement window 3 that transmits measurement light 9a that is in contact with the measured liquid 1 and passes through the measured liquid 1. A cleaning method for an optical water quality detector 2 having a gas and a cleaning particle 7 by ejecting cleaning particles 7 together with a gas into a liquid 1 to be measured from an ejection port 4 provided toward the measurement window 3. The measurement window 3 is cleaned by generating a flow 30 (hereinafter referred to as a cleaning flow) in which the liquid to be measured 1 and the liquid 1 to be measured are mixed, and causing the cleaning flow 30 to collide with the measurement window 3. Further, in the present embodiment, as a method of ejecting the cleaning particles 7 together with the gas from the ejection port 4, a gas flow is generated in the flow path 6 that leads the gas to the ejection port 4, and then the gas flow is caused by the gas flow. The cleaning particles 7 are sucked into the passage 6 and ejected from the ejection port 4 into the measured liquid 1.

洗浄を行っていない状態では、第1の電磁弁21が閉じられ圧力源5は停止し、第一の開閉手段25は閉じられている。この状態では、測定プローブ10に設けられている2箇所の噴出口4からは気体および洗浄用粒子7は噴射口されていない。したがって、被測定液1の水質測定に影響を与えない。   In a state where cleaning is not performed, the first electromagnetic valve 21 is closed, the pressure source 5 is stopped, and the first opening / closing means 25 is closed. In this state, the gas and the cleaning particles 7 are not ejected from the two ejection ports 4 provided in the measurement probe 10. Therefore, it does not affect the water quality measurement of the liquid 1 to be measured.

洗浄は、被測定液1の水質測定を行っていないときに行われる。洗浄を行う場合には、最初に、第1の電磁弁21を開くとともに圧力源5より空気が圧送され(好ましい圧力は0.5〜0.6MPaである。以後も同様。)、エジェクタ22を含む流路6内に気体の流れが発生し、そのまま噴出口4から勢い良く噴出し始める。その後、第1の開閉手段25を開くと、エジェクタ22内の気体の流れによって第1の混入用通路24に第1の容器23内の洗浄用粒子7が吸引される。この吸引にともない、吸入通路26から第1の容器23内に外気が吸い込まれるので、第1の容器23内の洗浄用粒子7は第1の混入用通路24に吸い込まれてエジェクタ22内に移動し、気体の流れに混入される。これにより、洗浄用粒子7が添加された気体が噴出口4から被測定液1中に勢い良く噴出し、気体と洗浄用粒子7と被測定液1とが混じり合った洗浄流30が被測定液1中に発生する。噴出口4は測定窓3に向いているので、洗浄流30が測定窓3に勢い良く衝突し、測定窓3を洗浄する(図4を参照)。   Washing is performed when the water quality of the liquid 1 to be measured is not measured. When cleaning is performed, first, the first electromagnetic valve 21 is opened, and air is pumped from the pressure source 5 (preferred pressure is 0.5 to 0.6 MPa. The same applies hereinafter), and the ejector 22 is turned on. A gas flow is generated in the containing flow path 6 and begins to be ejected vigorously from the ejection port 4 as it is. Thereafter, when the first opening / closing means 25 is opened, the cleaning particles 7 in the first container 23 are sucked into the first mixing passage 24 by the gas flow in the ejector 22. Along with this suction, outside air is sucked into the first container 23 from the suction passage 26, so that the cleaning particles 7 in the first container 23 are sucked into the first mixing passage 24 and moved into the ejector 22. And mixed into the gas flow. As a result, the gas to which the cleaning particles 7 are added is ejected vigorously from the ejection port 4 into the measured liquid 1, and the cleaning flow 30 in which the gas, the cleaning particles 7 and the measured liquid 1 are mixed is measured. Occurs in liquid 1. Since the jet nozzle 4 faces the measurement window 3, the cleaning flow 30 collides with the measurement window 3 vigorously and cleans the measurement window 3 (see FIG. 4).

この状態から、第1の電磁弁21および第1の開閉手段25を閉じると、流路6内の気体と洗浄用粒子7とが混じった流れが停止するので、測定窓3に衝突する洗浄流30も停止し、洗浄を終了させることができる。コントローラ17は、所定のプログラムに従って水質検出器洗浄システムを自動的に操作する。例えば、予め設定された時間周期毎に、あるいは予め設定されたスケジュールに従って自動的に洗浄を行う。また、コントローラ17はオペレータによるスイッチ操作によっても自動洗浄を行う。   When the first electromagnetic valve 21 and the first opening / closing means 25 are closed from this state, the flow in which the gas in the flow path 6 and the cleaning particles 7 are mixed stops, so that the cleaning flow that collides with the measurement window 3 is stopped. 30 can also be stopped and cleaning can be terminated. The controller 17 automatically operates the water quality detector cleaning system according to a predetermined program. For example, the cleaning is automatically performed at a preset time period or according to a preset schedule. The controller 17 also performs automatic cleaning by a switch operation by an operator.

本実施形態では、圧力源5としてコンプレッサを使用しているので、その出力を調節することで洗浄流30の強さ(早さ)を制御することができ、測定窓3の汚れに応じた洗浄を行うことができる。また、第1の容器23内に外気を導入する吸入通路26には除湿手段28とフィルタ29が設けられているので、洗浄用粒子7が湿気で塊になるのを防止することができると共に、ゴミや塵などの混入を防止することができる。   In this embodiment, since a compressor is used as the pressure source 5, the strength (fastness) of the cleaning flow 30 can be controlled by adjusting its output, and the measurement window 3 is cleaned according to dirt. It can be performed. In addition, since the dehumidifying means 28 and the filter 29 are provided in the suction passage 26 for introducing the outside air into the first container 23, the cleaning particles 7 can be prevented from becoming a mass due to moisture, It can prevent the entry of dust and dirt.

本実施形態では、洗浄流30として洗浄用粒子7を混入させたものを使用しているので、測定窓3の汚れを簡単に除去できる。例えば、測定窓3の表面に、薬液洗浄しないと除去できない鉄・マンガン等の付着物が存在していても簡単に除去することができる。そのため、洗浄効果に優れている。また、洗浄流30として気体と液体に粒子を混入させているだけなので、測定窓3に大きなダメージを与えることがない。すなわち、洗浄効果の向上と測定窓3の傷付き防止とをともに高レベルで両立させることができる。また、OHラジカルによる洗浄作用のような長時間を要する化学反応を利用するものではないので、短時間に効率よく洗浄を行うことができる。   In the present embodiment, since the cleaning flow 30 in which the cleaning particles 7 are mixed is used, the dirt on the measurement window 3 can be easily removed. For example, even if there are deposits such as iron and manganese that cannot be removed without cleaning with a chemical solution on the surface of the measurement window 3, it can be easily removed. Therefore, the cleaning effect is excellent. Further, since particles are only mixed in the gas and liquid as the cleaning flow 30, the measurement window 3 is not greatly damaged. That is, both the improvement of the cleaning effect and the prevention of damage to the measurement window 3 can be achieved at a high level. Further, since a chemical reaction that requires a long time such as a cleaning action by OH radicals is not used, cleaning can be performed efficiently in a short time.

また、測定窓3の周囲にワイパー装置のような駆動手段を設ける必要がないので、測定プローブ10を大型化・重量化させることもなく、扱いやすさを損ねることもない。また、測定プローブ10の構造が複雑になるのを防止することもできる。さらに、測定プローブ10を被測定液1から引き上げずに洗浄を行うことができるので、作業者が測定プローブを引き上げて手作業で洗浄を行う場合に比べて、衛生的であるとともに、作業時間を短縮することができ、作業者の負荷を大幅に低減することができる。   Further, since it is not necessary to provide a driving means such as a wiper device around the measurement window 3, the measurement probe 10 is not increased in size and weight, and ease of handling is not impaired. In addition, the structure of the measurement probe 10 can be prevented from becoming complicated. Furthermore, since the measurement probe 10 can be cleaned without lifting it from the liquid 1 to be measured, it is more hygienic and requires less work time than when the operator lifts the measurement probe and performs manual cleaning. The load on the operator can be greatly reduced.

(第2の実施形態)
次に、本発明の第2の実施形態に係る光学式水質検出器の洗浄方法および光学式水質検出器洗浄システムについて説明する。
(Second Embodiment)
Next, an optical water quality detector cleaning method and an optical water quality detector cleaning system according to a second embodiment of the present invention will be described.

図6は、本発明の第2の実施形態に係る光学式水質検出器の洗浄システムの概略構成図である。   FIG. 6 is a schematic configuration diagram of a cleaning system for an optical water quality detector according to a second embodiment of the present invention.

図6に示す水質検出器洗浄システムでは、洗浄用粒子供給手段8は、洗浄用粒子7を蓄える第2の容器33と、第2の容器33内の洗浄用粒子7を移動させて流路6内に導く第2の混入用通路34と、第2の混入用通路34を開閉する第2の開閉手段35を備えている。   In the water quality detector cleaning system shown in FIG. 6, the cleaning particle supply means 8 moves the second container 33 for storing the cleaning particles 7 and the cleaning particles 7 in the second container 33 to move the flow path 6. A second mixing passage 34 that leads to the inside and a second opening / closing means 35 that opens and closes the second mixing passage 34 are provided.

本実施形態の第2の混入用通路34は、第2の容器33内の洗浄用粒子7を重力によって流路6内に導くものであり、流路6の途中に設けられた受け容器36よりも高い位置に第2の容器33を配置している。なお、第2の容器33内の洗浄用粒子7を流路6内に移動させる手段としては重力の利用に限るものではなく、コンベア等の移送手段を設けても良く、あるいは作業者が手作業で移動させても良い。第2の混入用通路34の上流側端34aは第2の容器33の底部に接続され、下流側端34bは受け容器36の天部に接続されている。第2の開閉手段35は、例えばボールバルブであり、第2の混入用通路34の途中に設けられている。第2の開閉手段35は、作業者によって開閉操作される。   The second mixing passage 34 of the present embodiment guides the cleaning particles 7 in the second container 33 into the flow path 6 by gravity, and is from a receiving container 36 provided in the middle of the flow path 6. The second container 33 is arranged at a higher position. Note that the means for moving the cleaning particles 7 in the second container 33 into the flow path 6 is not limited to the use of gravity, and a transfer means such as a conveyor may be provided, or the operator may perform manual work. You may move it with. The upstream end 34 a of the second mixing passage 34 is connected to the bottom of the second container 33, and the downstream end 34 b is connected to the top of the receiving container 36. The second opening / closing means 35 is a ball valve, for example, and is provided in the middle of the second mixing passage 34. The second opening / closing means 35 is opened / closed by an operator.

このような水質検出器洗浄システムによって実施される本発明に係る光学式水質検出器の洗浄方法では、噴出口4から気体とともに洗浄用粒子7を噴出させる方法として、気体を噴出口4へと導く流路6の途中に洗浄用粒子7を供給した後、その供給路を閉じ、即ち第2の開閉手段35を閉じ、流路6内に気体の流れを発生させて気体とともに洗浄用粒子7を被測定液1中に噴出させるようにしている。   In the optical water quality detector cleaning method according to the present invention implemented by such a water quality detector cleaning system, the gas is guided to the jet nozzle 4 as a method of jetting the cleaning particles 7 together with the gas from the jet nozzle 4. After supplying the cleaning particles 7 in the middle of the flow path 6, the supply path is closed, that is, the second opening / closing means 35 is closed, and a flow of gas is generated in the flow path 6 so that the cleaning particles 7 are combined with the gas. It is made to eject into the liquid 1 to be measured.

洗浄を行っていない状態では、第1の電磁弁21が閉じられ圧力源5からの圧送は停止し、第一の開閉手段25は閉じられている。この状態では、測定プローブ10に設けられている2箇所の噴出口4からは気体および洗浄用粒子7は噴射口されていない。したがって、被測定液1の水質検査に影響を与えることがない。   In a state where cleaning is not performed, the first electromagnetic valve 21 is closed, the pressure supply from the pressure source 5 is stopped, and the first opening / closing means 25 is closed. In this state, the gas and the cleaning particles 7 are not ejected from the two ejection ports 4 provided in the measurement probe 10. Therefore, it does not affect the water quality inspection of the liquid 1 to be measured.

洗浄は、被測定液1の水質測定を行っていないときに行われる。洗浄を行う場合には、最初に、第2の開閉手段35を開き、第2の容器33内の洗浄用粒子7を受け容器36内に落下させる。所定量の洗浄用粒子7を受け容器36内に落下させた後、第2の開閉手段35を閉じ、第1の電磁弁21を開き、圧力源5より空気が圧送される。これにより、受け容器36を含む流路6内に気体の流れが発生し、受け容器36内で洗浄用粒子7が気体の流れに混入して噴出口4から被測定液1中に勢い良く噴出し、気体と洗浄用粒子7と被測定液1とが混じり合った洗浄流30が発生する。噴出口4は測定窓3に向いているので、洗浄流30が測定窓3に勢い良く衝突し、測定窓3を洗浄する。   Washing is performed when the water quality of the liquid 1 to be measured is not measured. When cleaning is performed, first, the second opening / closing means 35 is opened, and the cleaning particles 7 in the second container 33 are dropped into the container 36. After dropping a predetermined amount of the cleaning particles 7 into the container 36, the second opening / closing means 35 is closed, the first electromagnetic valve 21 is opened, and air is pumped from the pressure source 5. As a result, a gas flow is generated in the flow path 6 including the receiving container 36, and the cleaning particles 7 are mixed into the gas flow in the receiving container 36 and ejected vigorously into the measured liquid 1 from the ejection port 4. As a result, a cleaning flow 30 in which the gas, the cleaning particles 7 and the liquid 1 to be measured are mixed is generated. Since the jet nozzle 4 faces the measurement window 3, the cleaning flow 30 collides with the measurement window 3 vigorously and cleans the measurement window 3.

この状態から、第1の電磁弁21を閉じると圧力源5からの圧送が停止し、流路6内の気体と洗浄用粒子7の流れが停止するので、測定窓3に衝突する洗浄流30も停止し、洗浄を終了させることができる。本実施形態では、作業者が圧力源5、第1の電磁弁21、第2の開閉手段35を操作し、任意のタイミングで洗浄を行う。   In this state, when the first electromagnetic valve 21 is closed, the pumping from the pressure source 5 is stopped and the flow of the gas in the flow path 6 and the cleaning particles 7 is stopped, so that the cleaning flow 30 colliding with the measurement window 3 is stopped. Can also be stopped and cleaning can be terminated. In the present embodiment, the operator operates the pressure source 5, the first electromagnetic valve 21, and the second opening / closing means 35 to perform cleaning at an arbitrary timing.

本実施形態では、圧力源5としてコンプレッサを使用しているので、その出力を調節することで洗浄流30の強さ(早さ)を制御することができ、測定窓3の汚れに応じた洗浄を行うことができる。   In this embodiment, since a compressor is used as the pressure source 5, the strength (fastness) of the cleaning flow 30 can be controlled by adjusting its output, and the measurement window 3 is cleaned according to dirt. It can be performed.

第1の実施形態と同様に第2の実施形態でも、洗浄流30として洗浄用粒子7を混入させたものを使用しているので、測定窓3の汚れを簡単に除去できる。例えば、測定窓3の表面に、薬液洗浄しないと除去できない鉄・マンガン等の付着物が存在していても簡単に除去することができる。そのため、洗浄効果に優れている。また、洗浄流30として気体と液体に粒子を混入させているだけなので、測定窓3に大きなダメージを与えることがない。すなわち、洗浄効果の向上と測定窓3の傷付き防止とをともに高レベルで両立させることができる。また、OHラジカルによる洗浄作用のような長時間を要する化学反応を利用するものではないので、短時間に効率よく洗浄を行うことができる。   Similarly to the first embodiment, in the second embodiment, the cleaning flow 30 in which the cleaning particles 7 are mixed is used, so that the dirt on the measurement window 3 can be easily removed. For example, even if there are deposits such as iron and manganese that cannot be removed without cleaning with a chemical solution on the surface of the measurement window 3, it can be easily removed. Therefore, the cleaning effect is excellent. Further, since particles are only mixed in the gas and liquid as the cleaning flow 30, the measurement window 3 is not greatly damaged. That is, both the improvement of the cleaning effect and the prevention of damage to the measurement window 3 can be achieved at a high level. Further, since a chemical reaction that requires a long time such as a cleaning action by OH radicals is not used, cleaning can be performed efficiently in a short time.

また、測定窓3の周囲にワイパー装置のような駆動手段を設ける必要がないので、測定プローブ10を大型化・重量化させることもなく、扱いやすさを損ねることもない。また、測定プローブ10の構造が複雑になるのを防止することもできる。さらに、測定プローブ10を被測定液1から引き上げずに洗浄を行うことができるので、作業者が測定プローブを引き上げて手作業で洗浄を行う場合に比べて、衛生的であるとともに、作業時間を短縮することができ、作業者の負荷を大幅に低減することができる。   Further, since it is not necessary to provide a driving means such as a wiper device around the measurement window 3, the measurement probe 10 is not increased in size and weight, and ease of handling is not impaired. In addition, the structure of the measurement probe 10 can be prevented from becoming complicated. Furthermore, since the measurement probe 10 can be cleaned without lifting it from the liquid 1 to be measured, it is more hygienic and requires less work time than when the operator lifts the measurement probe and performs manual cleaning. The load on the operator can be greatly reduced.

本発明は、下水処理施設での水質管理等に利用できる。   The present invention can be used for water quality management and the like in a sewage treatment facility.

1 被測定液
2 光学式水質検出器
3 測定窓
4 噴出口
5 圧力源
6 気体を噴出口へと導く流路
7 洗浄用粒子
8 洗浄用粒子供給手段
9a 測定光
11 開放部
23 洗浄用粒子を蓄える第1の容器
24 第1の混入用通路
25 第1の開閉手段
30 洗浄流
33 洗浄用粒子を蓄える第2の容器
34 第2の混入用通路
35 第2の開閉手段
DESCRIPTION OF SYMBOLS 1 Liquid to be measured 2 Optical water quality detector 3 Measurement window 4 Jet outlet 5 Pressure source 6 Flow path which leads gas to a jet outlet 7 Cleaning particle 8 Cleaning particle supply means 9a Measurement light 11 Opening part 23 Cleaning particle First container 24 for storing First mixing passage 25 First opening / closing means 30 Cleaning flow 33 Second container 34 for storing cleaning particles Second mixing passage 35 Second opening / closing means

Claims (5)

被測定液に接し且つ前記被測定液中を通過する測定光を透過させる測定窓を有する光学式水質検出器の洗浄方法であって、
前記測定窓に向けて設けられた噴出口から前記被測定液中に気体とともに洗浄用粒子を噴出させて前記気体と前記洗浄用粒子と前記被測定液とが混じり合った流れを発生させ、前記流れを前記測定窓に衝突させることで前記測定窓を洗浄する方法において、前記気体を前記噴出口へと導く流路内に前記気体の流れを発生させた後、前記気体の流れによって前記流路内に前記洗浄用粒子を吸引し、前記噴出口から前記被測定液中に噴出させる光学式水質検出器の洗浄方法。
A method of cleaning an optical water quality detector having a measurement window that transmits measurement light that is in contact with the liquid to be measured and passes through the liquid to be measured.
The cleaning particles are jetted together with the gas into the liquid to be measured from the jet port provided toward the measurement window to generate a flow in which the gas, the cleaning particles and the liquid to be measured are mixed, In the method of cleaning the measurement window by causing a flow to collide with the measurement window, after the gas flow is generated in the flow path that guides the gas to the ejection port, the flow path causes the flow path to flow. It said cleaning particles aspirated, the method of cleaning an optical quality detector Ru is ejected to the measured liquid from the ejection port within.
被測定液に接し且つ前記被測定液中を通過する測定光を透過させる測定窓を有する光学式水質検出器の洗浄方法であって、
前記測定窓に向けて設けられた噴出口から前記被測定液中に気体とともに洗浄用粒子を噴出させて前記気体と前記洗浄用粒子と前記被測定液とが混じり合った流れを発生させ、前記流れを前記測定窓に衝突させることで前記測定窓を洗浄する方法において、前記気体を前記噴出口へと導く流路の途中に前記洗浄用粒子を供給した後、前記流路内に前記気体の流れを発生させて前記気体とともに前記洗浄用粒子を前記被測定液中に噴出させる光学式水質検出器の洗浄方法。
A method of cleaning an optical water quality detector having a measurement window that transmits measurement light that is in contact with the liquid to be measured and passes through the liquid to be measured.
The cleaning particles are jetted together with the gas into the liquid to be measured from the jet port provided toward the measurement window to generate a flow in which the gas, the cleaning particles and the liquid to be measured are mixed, In the method of cleaning the measurement window by causing a flow to collide with the measurement window, after supplying the cleaning particles in the middle of the flow path that guides the gas to the ejection port, the gas flows into the flow path. the method of cleaning an optical Gakushiki water quality detector with the gas to generate a stream Ru is ejected the cleaning particles in the test solution.
被測定液に接し且つ前記被測定液中を通過する測定光を透過させる測定窓を有する光学式水質検出器と、
前記測定窓に向けて設けられた噴出口と、
前記噴出口から前記被測定液中に噴出される気体を加圧する圧力源と、
前記圧力源によって加圧された気体を前記噴出口に導く流路と、
前記流路の途中に接続されて前記気体の流れに洗浄用粒子を混入させる洗浄用粒子供給手段と、
を備え
前記洗浄用粒子供給手段は、
前記洗浄用粒子を蓄える第1の容器と、
前記第1の容器と前記流路とを連通し、前記流路内に発生した気体の流れによって前記第1の容器内の洗浄用粒子を吸引させて前記気体の流れに混入させる第1の混入用通路と、
前記第1の混入用通路を開閉する第1の開閉手段と、
を備える光学式水質検出器の洗浄システム。
An optical water quality detector having a measurement window that transmits measurement light that is in contact with the liquid to be measured and passes through the liquid to be measured;
A spout provided toward the measurement window;
A pressure source for pressurizing a gas ejected from the ejection port into the liquid to be measured;
A flow path for guiding the gas pressurized by the pressure source to the ejection port;
Cleaning particle supply means connected in the middle of the flow path to mix cleaning particles into the gas flow,
Equipped with a,
The cleaning particle supply means includes
A first container for storing the cleaning particles;
A first mixture that communicates the first container and the flow path, and sucks the cleaning particles in the first container by the gas flow generated in the flow path and mixes the particles in the gas flow. Passage for,
First opening and closing means for opening and closing the first mixing passage;
An optical water quality detector cleaning system comprising:
被測定液に接し且つ前記被測定液中を通過する測定光を透過させる測定窓を有する光学式水質検出器と、
前記測定窓に向けて設けられた噴出口と、
前記噴出口から前記被測定液中に噴出される気体を加圧する圧力源と、
前記圧力源によって加圧された気体を前記噴出口に導く流路と、
前記流路の途中に接続されて前記気体の流れに洗浄用粒子を混入させる洗浄用粒子供給手段と、
を備え、
前記洗浄用粒子供給手段は、
前記洗浄用粒子を蓄える第2の容器と、
前記第2の容器内の洗浄用粒子を移動させて前記流路内に導く第2の混入用通路と、
前記第2の混入用通路を開閉する第2の開閉手段と、
を備える光学式水質検出器の洗浄システム。
An optical water quality detector having a measurement window that transmits measurement light that is in contact with the liquid to be measured and passes through the liquid to be measured;
A spout provided toward the measurement window;
A pressure source for pressurizing a gas ejected from the ejection port into the liquid to be measured;
A flow path for guiding the gas pressurized by the pressure source to the ejection port;
Cleaning particle supply means connected in the middle of the flow path to mix cleaning particles into the gas flow,
With
The cleaning particle supply means includes
A second container for storing the cleaning particles;
A second mixing path for moving the cleaning particles in the second container and guiding the particles into the flow path;
Second opening and closing means for opening and closing the second mixing passage;
Cleaning system of the light Gakushiki water quality detector Ru comprising a.
前記噴出口から噴出された気体を前記噴出口の近傍から逃がす開放部を備えている請求項3または4に記載の光学式水質検出器の洗浄システム。 The cleaning system for an optical water quality detector according to claim 3 or 4 , further comprising an open part that allows gas ejected from the ejection port to escape from the vicinity of the ejection port.
JP2017217284A 2017-11-10 2017-11-10 Optical water quality detector cleaning method and optical water quality detector cleaning system Active JP6285073B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017217284A JP6285073B1 (en) 2017-11-10 2017-11-10 Optical water quality detector cleaning method and optical water quality detector cleaning system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017217284A JP6285073B1 (en) 2017-11-10 2017-11-10 Optical water quality detector cleaning method and optical water quality detector cleaning system

Publications (2)

Publication Number Publication Date
JP6285073B1 true JP6285073B1 (en) 2018-02-28
JP2019086496A JP2019086496A (en) 2019-06-06

Family

ID=61282756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017217284A Active JP6285073B1 (en) 2017-11-10 2017-11-10 Optical water quality detector cleaning method and optical water quality detector cleaning system

Country Status (1)

Country Link
JP (1) JP6285073B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109186981A (en) * 2018-09-18 2019-01-11 上海工程技术大学 A kind of high-power nozzle group valve discharge characteristic is test bed

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4948185U (en) * 1972-07-28 1974-04-26
US5007733A (en) * 1984-06-12 1991-04-16 Elf France Process and device for determining the cloud point of a diesel oil
JPH10206328A (en) * 1997-01-24 1998-08-07 Suido Kiko Kaisha Ltd Water quality monitoring apparatus
JP2004151086A (en) * 2002-09-27 2004-05-27 E I Du Pont De Nemours & Co Improved system and method of cleaning in-process sensor
US20120174650A1 (en) * 2008-02-05 2012-07-12 Enertechnix, Inc Aerosol Collection Apparatus and Methods

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4948185U (en) * 1972-07-28 1974-04-26
US5007733A (en) * 1984-06-12 1991-04-16 Elf France Process and device for determining the cloud point of a diesel oil
JPH10206328A (en) * 1997-01-24 1998-08-07 Suido Kiko Kaisha Ltd Water quality monitoring apparatus
JP2004151086A (en) * 2002-09-27 2004-05-27 E I Du Pont De Nemours & Co Improved system and method of cleaning in-process sensor
US20120174650A1 (en) * 2008-02-05 2012-07-12 Enertechnix, Inc Aerosol Collection Apparatus and Methods

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109186981A (en) * 2018-09-18 2019-01-11 上海工程技术大学 A kind of high-power nozzle group valve discharge characteristic is test bed

Also Published As

Publication number Publication date
JP2019086496A (en) 2019-06-06

Similar Documents

Publication Publication Date Title
EP3240642B1 (en) System and method for cleaning wine and/or a barrel containing wine
JP6285073B1 (en) Optical water quality detector cleaning method and optical water quality detector cleaning system
KR101959739B1 (en) An automatic washing device of a pipe
CN105934676A (en) Automatic analysis device
JP2012050925A (en) Device for washing inside of pipe
DK2512738T3 (en) SYSTEM AND PROCEDURE FOR BLOWING OBJECTS WITH A MIXTURE OF FLUID AND Abrasive
JP2008272762A (en) Apparatus for cleaning needle
CN112157097A (en) Colorimetric cup group cleaning device
JP4789476B2 (en) Ink viscosity adjusting device and printing machine
KR100949349B1 (en) Membrane filtration apparatus and membrane cleaning method thereof
KR200463168Y1 (en) Apparatus for removal of a milk bubble
JP6770403B2 (en) Cleaning jig for wafer thickness measuring instrument
US20210236963A1 (en) Apparatus for separation of particulate matter from fluid
CN201984026U (en) Laboratory silicate instrument
CN208912344U (en) Foam spray device
KR0136644B1 (en) Prewetting method and apparatus of filter having teflon membrane placed on high purity chemical line in semiconductor manufacturing process
CN115803093A (en) Automated penetration testing
JP5735354B2 (en) Microbubble generator
JP2009029448A (en) Filling apparatus
KR100939285B1 (en) Cleaner for Test-Apparatus
JP6449130B2 (en) Immersion detector cleaning apparatus and cleaning method
JPH0772049A (en) Turbidity measuring apparatus for liquid
CN213793345U (en) Colorimetric cup group cleaning device
CN216117291U (en) Automatic analyzer
JP2013121570A (en) Membrane separation activated sludge apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20171124

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20171124

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20171204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171225

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180116

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180131

R150 Certificate of patent or registration of utility model

Ref document number: 6285073

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250