JP6284563B2 - Method and apparatus for adsorptive separation of H2 from steam reformed gas containing H2, CO, CO2, H2O as main components - Google Patents

Method and apparatus for adsorptive separation of H2 from steam reformed gas containing H2, CO, CO2, H2O as main components Download PDF

Info

Publication number
JP6284563B2
JP6284563B2 JP2016045842A JP2016045842A JP6284563B2 JP 6284563 B2 JP6284563 B2 JP 6284563B2 JP 2016045842 A JP2016045842 A JP 2016045842A JP 2016045842 A JP2016045842 A JP 2016045842A JP 6284563 B2 JP6284563 B2 JP 6284563B2
Authority
JP
Japan
Prior art keywords
adsorption tower
hydrogen
adsorbent
adsorption
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016045842A
Other languages
Japanese (ja)
Other versions
JP2017160084A (en
Inventor
泉 順
順 泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Futamura Chemical Co Ltd
Original Assignee
Futamura Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Futamura Chemical Co Ltd filed Critical Futamura Chemical Co Ltd
Priority to JP2016045842A priority Critical patent/JP6284563B2/en
Publication of JP2017160084A publication Critical patent/JP2017160084A/en
Application granted granted Critical
Publication of JP6284563B2 publication Critical patent/JP6284563B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Drying Of Gases (AREA)

Description

本発明はH、CO、CO、HO、を含有する水蒸気改質ガスからのコンパクトで高効率な水素の分離方法及び装置、特に吸着工程で塔後方に残留した水素を補助吸着塔に吸着貯蔵し、次の吸着工程の昇圧工程の昇圧気体として供給して、水素分離・回収効率を向上させた水蒸気改質ガスからの水素の分離方法及び装置に関する。 The present invention relates to a compact and highly efficient method and apparatus for separating hydrogen from steam reformed gas containing H 2 , CO, CO 2 , and H 2 O, and in particular, an auxiliary adsorption tower for hydrogen remaining behind the tower in the adsorption step The present invention relates to a method and apparatus for separating hydrogen from steam reformed gas, which is adsorbed and stored and supplied as a pressurized gas in a pressure increasing step of the next adsorption step to improve hydrogen separation / recovery efficiency.

水蒸気改質ガスとは、800℃程度の高温、Ni等遷移金属触媒上で進行する水蒸気改質反応
CH+HO→CO+3H
CO+HO→CO+H
で生成するH、CO、CO、HO、CHから構成されるガスである。水蒸気改質ガスは、一般に、水素を概ね50〜65vol%、二酸化炭素を概ね20vol%含み、一酸化炭素を20vol%、さらに、例えば1vol%未満のごく微量の硫化水素、シロキサン類、メチルメルカブタン、飽和水分、揮発性有機化合物(VOC)、有機ケイ素化合物等の成分を含むものである。当該水蒸気改質ガス中の水素を燃料電池用発電燃料として利用するためには、水蒸気改質ガスから一酸化炭素および二酸化炭素を除去する必要があり、また有害成分であるメチルメルカプタン、硫化水素、シロキサン類も除去する必要がある。現在最もよく使用されているCO選択型吸着剤を使用したH分離・精製装置としては、PSA−Hタイプの装置が知られている。
The steam reforming gas is a steam reforming reaction that proceeds on a transition metal catalyst such as Ni at a high temperature of about 800 ° C. CH 4 + H 2 O → CO + 3H 2
CO + H 2 O → CO 2 + H 2
Is a gas composed of H 2 , CO, CO 2 , H 2 O, and CH 4 produced in The steam reformed gas generally contains about 50 to 65 vol% hydrogen, about 20 vol% carbon dioxide, 20 vol% carbon monoxide, and a very small amount of hydrogen sulfide, siloxanes, methyl mercaptan, for example, less than 1 vol%. , Saturated water, volatile organic compounds (VOC), organic silicon compounds and the like. In order to use the hydrogen in the steam reformed gas as a fuel cell power generation fuel, it is necessary to remove carbon monoxide and carbon dioxide from the steam reformed gas, and harmful components such as methyl mercaptan, hydrogen sulfide, Siloxanes also need to be removed. A PSA-H 2 type apparatus is known as an H 2 separation / purification apparatus using a CO 2 selective adsorbent that is most often used at present.

Linde社(現UOP社モレキューラーシブス.デイビジョン)により工業的な製造の開始された合成ゼオライトは、H2−CO、COの3成分系において大きなCO、CO吸着量と水素に対して大きなCO、CO選択性を有することが示されている。ここで100〜200kPa−absの大気圧以上の高圧に水蒸気改質ガスを圧縮し、Li−LSX型ゼオライト(低SiO/Al比X型ゼオライト)をCO選択型吸着剤として充填されたCO吸着塔に導いて水蒸気の中の30%を占めるCOを吸着して塔頂から99vol%以上の高純度の水素を取り出す吸着工程と、吸着COで飽和したCO吸着塔を大気圧または大気圧以下の真空に近い状態に導いた後、塔頂から製品H2の一部を流してCO選択型吸着剤を再生する工程(向流パージ)から構成される、すなわち、高圧吸着と大気圧再生または真空再生から成る2搭式の水素製造装置が標準的な装置として既知である。 Linde (now UOP Inc. leak queue error inclusive scan. Day Vision) by industrial preparation of the starting synthetic zeolites, H2-CO, for large CO, CO 2 adsorption amount of hydrogen in the 3-component system of CO 2 It has been shown to have large CO, CO 2 selectivity. Here, the steam reformed gas is compressed to a pressure higher than the atmospheric pressure of 100 to 200 kPa-abs, and Li-LSX type zeolite (low SiO 2 / Al 2 O 3 ratio X type zeolite) is filled as a CO 2 selective adsorbent. and the adsorption step of taking a high-purity hydrogen over 99 vol% from the column top and CO 2 leading to the adsorption tower to adsorb CO 2 occupying 30% in the water vapor that is, CO 2 adsorption column saturated with adsorbed CO 2 Is brought to a state close to atmospheric pressure or a vacuum below atmospheric pressure, and then a part of the product H2 is flowed from the top of the column to regenerate the CO 2 selective adsorbent (countercurrent purge). A two-stage hydrogen production apparatus consisting of high pressure adsorption and atmospheric pressure regeneration or vacuum regeneration is known as a standard apparatus.

当該装置は、2,000mN/h以下の中小容量での水素精製・分離回収製造が可能なことから、操作、保守が容易で、かつコンパクトであり、水蒸気改質炉で生成される水蒸気改質ガスの精製・分離回収を中心に普及している。PSA−水素の電力原単位(1mNの水素の精製・分離回収に必要な消費電力)の低減を目的として、300〜500kPa−absの比較的低圧に吸着圧力を低減し、かつ50kPa−abs程度の減圧再生を行う加圧吸着−減圧再生が採用される場合もある。さらに、一段の電力原単位の低減のために、大気圧近傍で吸着を行い、再生は10〜30kPa−absのかなりの真空で行われる大気圧吸着−減圧再生も採用されており、これらの操作条件は、初期に開発された高圧吸着−大気圧再生よりも電力原単位低減に優れている。これらの装置および工程に使用される吸着剤としては、当初Caイオン交換A型ゼオライトが主として使用されたが、サイクルタイムの短縮による装置コンパクト化を意図して、吸着速度の大きな吸着剤が必要なことから、Naイオン交換、Liイオン交換X型ゼオライトが採用されるようになっている。 The apparatus is capable of hydrogen purification / separation / recovery production with a small and medium capacity of 2,000 m 3 N / h or less. Therefore, the apparatus is easy to operate and maintain, is compact, and produces steam generated in a steam reforming furnace. It is widely used mainly for purification / separation / recovery of reformed gas. For the purpose of reducing the power consumption of PSA-hydrogen (power consumption required for purification / separation / recovery of 1m 3 N hydrogen), the adsorption pressure is reduced to a relatively low pressure of 300 to 500 kPa-abs, and 50 kPa-abs. In some cases, pressure adsorption-reduced pressure regeneration that performs a reduced pressure regeneration is employed. Furthermore, in order to reduce the unit of power consumption in one stage, adsorption is performed near atmospheric pressure, and regeneration is performed using atmospheric pressure adsorption-regeneration under reduced pressure of 10 to 30 kPa-abs. The conditions are superior to the reduction in power consumption rate than the high-pressure adsorption-atmospheric pressure regeneration developed in the early stage. As the adsorbent used in these apparatuses and processes, Ca ion-exchanged A-type zeolite was mainly used at first, but an adsorbent with a high adsorption rate is required for the purpose of downsizing the apparatus by shortening the cycle time. For this reason, Na ion exchange and Li ion exchange X-type zeolite have been adopted.

しかしながら、これらの装置および方法においては、500mN/h以下の水素精製・分離回収では、電力原単位の低減は図れるものの、設備投資を考慮すると、水素製造のトータルコストの低減はそれ程有効でなかった。例えば、中容量の水素製造装置として15mN/hの水素精製・分離回収装置を例示すると、高圧吸着−大気圧再生のPSA−水素の設備費が500万円程度、電力原単位が1kWh/mN−水素であるので、これを大気圧吸着−真空再生に変更しても、設備費1,200万円程度、電力原単位が0.5kWh/mN−水素となり、電力量単価を10円/kWhとすると1年間の電力コスト低減は、120万円/年から60万円/年と60万円/年のコストダウンにとどまり、700万円の設備費増を吸収できなかった。したがって、大容量水素精製・分離回収製造による電力原単位の低減によるコストの低減は、未だ十分ではない。 However, in these apparatuses and methods, reduction of the basic unit of electric power can be reduced by hydrogen purification / separation recovery of 500 m 3 N / h or less, but considering the capital investment, the reduction of the total cost of hydrogen production is much more effective. There wasn't. For example, when a 15 m 3 N / h hydrogen purification / separation / recovery device is illustrated as a medium-capacity hydrogen production device, the equipment cost of PSA-hydrogen for high-pressure adsorption-regeneration at atmospheric pressure is about 5 million yen, and the power unit is 1 kWh / Since it is m 3 N-hydrogen, even if it is changed to atmospheric pressure adsorption-vacuum regeneration, the equipment cost will be about 12 million yen, and the power unit will be 0.5 kWh / m 3 N-hydrogen, If the cost is 10 yen / kWh, the reduction in power cost for one year has been reduced from 1.2 million yen / year to 600,000 yen / year and 600,000 yen / year, and the increase in equipment cost of 7 million yen could not be absorbed. . Therefore, the cost reduction due to the reduction of the power consumption rate by the large-capacity hydrogen purification / separation / recovery production is not yet sufficient.

Oxygen Selectivity on Partially K Exchanged Na−A Type Zeolite at Low Temperature, IZUMI J, SUZUKI M, ADSORPTION,VOL.7, PAGE.27−39,(2001)Oxygen Selectivity on Partially K Exchanged Na-A Type Zeolite at Low Temperature, IZUMI J, SUZUKI M, ADSORPTION, VOL. 7, PAGE. 27-39, (2001)

本発明はこのような従来技術における問題点を解決し、従来の水素精製・分離製造法よりもさらに安価で電力原単位も低値を維持する低コストの、水蒸気改質ガスから水素をより高純度で吸着分離するための方法及びそのための装置を提供することを目的とする。   The present invention solves such problems in the prior art, and lowers the hydrogen from steam reformed gas, which is cheaper than conventional hydrogen purification / separation production methods and maintains a low power consumption rate. It is an object of the present invention to provide a method for adsorptive separation with purity and an apparatus therefor.

本発明は、CO・CO吸着工程、残留水素回収工程1、減圧再生工程、残留水素回収工程2、昇圧工程を含み、これらを繰り返す水蒸気改質ガスから水素を分離する方法であって、
前方からHS・有機硫黄選択型吸着剤、水分選択型吸着剤、揮発性有機化合物(以下、VOCと示す)・有機ケイ素選択型吸着材の順序で吸着剤を充填され、さらに後方にCO・CO選択型吸着剤を充填されたCO・CO吸着塔に、圧力調整装置により大気圧より高い圧力とし水素を主成分とする湿り水蒸気改質ガスを供給して、VOC、CO、CO、HS、有機硫黄、有機ケイ素、水分を除去して塔後方から水素を回収して(CO・CO吸着工程)、
水素濃度が低下する前に、塔後方に設置した補助吸着塔の前方とCO吸着塔の後方を連結して、塔後方に残留する水素を補助吸着塔に移行し(残留水素回収工程1)、
補助吸着塔の前方とCO・CO吸着塔の後方の連結を閉じ、真空ポンプ/ブロワー兼用回転機械で大気圧未満の圧力でCO・CO吸着塔の塔前方から吸着したVOC、CO、CO、HS、有機硫黄、有機ケイ素、水分を系外に排気した後(減圧再生工程)、
再度、補助吸着塔の前方とCO・CO吸着塔の後方を連結して、大気圧のCO・CO吸着塔の後方と補助吸着塔の前方を連結して回収した水素をCO・CO吸着塔の後方へ移動させ、(残留水素回収工程2)、
その後、水素吸着塔の圧力を上昇させ(昇圧工程)、
水素含有湿り水蒸気改質ガスを供給するCO・CO吸着工程に戻ることを特長とする、水蒸気改質ガスから水素を分離する方法に関する。さらに、本発明の水蒸気改質ガスから水素を分離するための装置に関する。
The present invention includes a CO / CO 2 adsorption step, a residual hydrogen recovery step 1, a decompression regeneration step, a residual hydrogen recovery step 2, a pressure increase step, and a method for separating hydrogen from a steam reformed gas that repeats these steps,
The adsorbent is filled in the order of H 2 S / organic sulfur selective adsorbent, moisture selective adsorbent, volatile organic compound (hereinafter referred to as VOC) / organic silicon selective adsorbent from the front, and CO in the rear. A wet steam reformed gas mainly composed of hydrogen with a pressure higher than atmospheric pressure is supplied to a CO / CO 2 adsorption tower packed with a CO 2 selective type adsorbent by a pressure regulator, and VOC, CO, CO 2 , H 2 S, organic sulfur, organic silicon, water is removed and hydrogen is recovered from the rear of the tower (CO · CO 2 adsorption step),
Before the hydrogen concentration decreases, the front of the auxiliary adsorption tower installed behind the tower is connected to the rear of the CO 2 adsorption tower, and the hydrogen remaining behind the tower is transferred to the auxiliary adsorption tower (residual hydrogen recovery step 1). ,
The connection between the front of the auxiliary adsorption tower and the rear of the CO / CO 2 adsorption tower is closed, and VOC, CO, CO adsorbed from the front of the CO / CO 2 adsorption tower at a pressure lower than atmospheric pressure by a vacuum pump / blower rotating machine. 2 , after exhausting H 2 S, organic sulfur, organic silicon, and moisture out of the system (reduced pressure regeneration step),
Again, the front of the auxiliary adsorption tower and the rear of the CO / CO 2 adsorption tower are connected, the rear of the atmospheric CO / CO 2 adsorption tower and the front of the auxiliary adsorption tower are connected, and the recovered hydrogen is CO · CO 2. Moved to the rear of the adsorption tower (residual hydrogen recovery step 2),
Then, increase the pressure of the hydrogen adsorption tower (pressure increase process)
The present invention relates to a method for separating hydrogen from steam reformed gas, which is characterized by returning to the CO / CO 2 adsorption process for supplying hydrogen-containing wet steam reformed gas. Furthermore, the present invention relates to an apparatus for separating hydrogen from the steam reformed gas of the present invention.

上述の従来技術である15mN/hの水素精製・分離回収製造装置のコストについては、高圧吸着−大気圧再生のPSA−水素が、水蒸気改質ガス圧縮機、CO・CO吸着塔2塔、バルブ8個を基本構造として設備費が700万円程度、電力原単位が1kWh/mN−水素、1年間の消費電力が、電力量単価を10円/kWhとすると1年間の電力コストが、7.2万円/年である。それに対して、本発明の水蒸気改質ガスから水素を分離する方法および水蒸気改質ガスから水素を分離するための装置であれば、高圧吸着−大気圧再生のPSA−水素が、ブロワー/真空ポンプ兼用回転機械、CO吸着塔5塔、補助吸着塔バルブ4個を基本構造として設備費が400万円程度に削減され、補助吸着塔による残留水素の回収と昇圧工程への供給で、水素回収率が従来の80%から85%程度に増大するため、電力原単位が0.5kWh/mN−水素に低減され、1年間の消費電力が、電力量単価を10円/kWhとすると1年間の電力コストが、3.6万円/年に低減され、コンパクトで、低設備費、低変動費の水蒸気改質ガスからをCO・CO除去し水素を分離する方法および装置を提供することが出来る。さらに、本発明であれば、より高純度で水素を分離することができる。 Regarding the cost of the conventional 15m 3 N / h hydrogen purification / separation / recovery production apparatus, the high pressure adsorption-atmospheric pressure regeneration PSA-hydrogen is a steam reformed gas compressor, CO / CO 2 adsorption tower 2 If the basic structure consists of 8 towers and valves, the equipment cost is about 7 million yen, the power consumption is 1 kWh / m 3 N-hydrogen, and the annual power consumption is 10 yen / kWh. The cost is 72,000 yen / year. On the other hand, if the method for separating hydrogen from the steam reformed gas and the apparatus for separating hydrogen from the steam reformed gas of the present invention are used, the PSA-hydrogen for high pressure adsorption and atmospheric pressure regeneration is a blower / vacuum pump. The equipment cost is reduced to about 4 million yen with a basic rotating machine, five CO 2 adsorption towers, and four auxiliary adsorption tower valves. Hydrogen recovery is achieved by collecting residual hydrogen and supplying it to the pressurization process. Since the rate increases from the conventional 80% to about 85%, the power unit is reduced to 0.5 kWh / m 3 N-hydrogen, and the power consumption per year is 10 yen / kWh. Provided is a method and apparatus for separating hydrogen by removing CO / CO 2 from a steam reformed gas that is reduced in annual power cost to 36,000 yen / year, is compact, has low equipment costs, and has low variable costs. I can do it. Furthermore, according to the present invention, hydrogen can be separated with higher purity.

本発明の方法の一実施態様を実施する水蒸気改質ガスから水素を分離するための装置を示す概略図である。FIG. 2 is a schematic diagram showing an apparatus for separating hydrogen from steam reformed gas implementing an embodiment of the method of the present invention.

本発明の第一の形態としては、水素、水分、二酸化炭素、一酸化炭素を含有し、さらに、少量の揮発性有機化合物(VOC)、硫化水素(HS)、有機硫黄化合物、有機ケイ素化合物等を含有する水素含有湿り水蒸気改質ガスからのコンパクトで高効率な水素の分離方法である。ここで、揮発性有機化合物とは、常温常圧で大気中に容易に揮発する有機化合物をさす。例えば、ホルムアルデヒド、ベンゼン、トルエン、キシレン、クレゾール、フェノール、ベンズアルデヒド、スチレン、クロロホルム、ジクロロメタン、ジクロロエタン、四塩化炭素、トリクロロエチレン、テトラクロロエチレン、ブロモホルム、クロロベンゼン、ジクロロベンゼン、アセトン、メチルエチルケトン、ジエチルケトン、アセトアルデヒド、プロピオンアルデヒド、アクロレイン、酢酸エチル、酢酸ブチル、酢酸ビニル、ジエチルエーテル、テトラヒドロフラン、ジオキサン、ピリジン、ピロール、ビニルピリジンなどである。有機ケイ素化合物とは、ケイ素を含有する有機化合物をさす。例えば、有機シロキサン、有機シラン、有機ケイ素ポリマー、シレンなどである。また、有機硫黄化合物とは、硫黄を含有する有機化合物をさし、例えば、チオール、スルホキシド、スルホン、チオケトン、スルホン酸エステル、スルホン酸アミド、チオエーテル、チオフェン、具体的にはメチルメルカプタンなどである。 The first form of the present invention contains hydrogen, moisture, carbon dioxide, carbon monoxide, and a small amount of volatile organic compound (VOC), hydrogen sulfide (H 2 S), organic sulfur compound, organic silicon. It is a compact and highly efficient method for separating hydrogen from a hydrogen-containing wet steam reformed gas containing a compound or the like. Here, the volatile organic compound refers to an organic compound that easily volatilizes in the atmosphere at normal temperature and pressure. For example, formaldehyde, benzene, toluene, xylene, cresol, phenol, benzaldehyde, styrene, chloroform, dichloromethane, dichloroethane, carbon tetrachloride, trichloroethylene, tetrachloroethylene, bromoform, chlorobenzene, dichlorobenzene, acetone, methyl ethyl ketone, diethyl ketone, acetaldehyde, propionaldehyde , Acrolein, ethyl acetate, butyl acetate, vinyl acetate, diethyl ether, tetrahydrofuran, dioxane, pyridine, pyrrole, vinylpyridine and the like. An organosilicon compound refers to an organic compound containing silicon. For example, organosiloxane, organosilane, organosilicon polymer, silene and the like. The organic sulfur compound refers to an organic compound containing sulfur, such as thiol, sulfoxide, sulfone, thioketone, sulfonic acid ester, sulfonic acid amide, thioether, thiophene, specifically methyl mercaptan.

さらに、本発明の他の実施形態においては、水蒸気改質ガスから水素を分離するための装置に関する。   Furthermore, another embodiment of the present invention relates to an apparatus for separating hydrogen from steam reformed gas.

当該装置は、例えば、図1に示されるような構成を有し、水素製造量50〜250リットルN/分、好ましくは水素製造量85〜200リットルN/分程度の装置とする。具体的には、
CO・CO吸着塔5から上流および下流の各々に二股に分岐している流路を有するCO・CO吸着塔5を有し、
CO・CO吸着塔5から上流に二股に分岐している流路のうち一方にはバルブ4を介してさらに上流に二股に分岐している流路と連結し、
当該バルブ4を介してさらに上流に二股に分岐している流路のうち一方においてはバルブ14を介して流路16により外部と通じ、
当該バルブ4を介してさらに上流に二股に分岐している流路のうち上記とは別の流路の上流には、さらに上流にバルブ2を介して水蒸気改質ガスを供給する流路1を有する圧力調整装置3があり、
CO・CO吸着塔から上流に二股に分岐している流路のうち上記とは別の流路15はバルブ13を介してバルブ2の下流で流路1と接続し、
CO・CO吸着塔5から下流に二股に分岐している流路うち一方にはバルブ12を介して補助吸着塔6が接続され、
CO・CO吸着塔5から下流に二股に分岐している流路のうち上記とは別の流路にはバルブ8を介して水素を回収する容器9が接続され、さらに、容器9の下流には、ユーザーが水素ガスを回収しやすいように、バルブ10を介して外部に通じる水素を分離するための流路11が接続してもよく、
ここでCO・CO吸着塔5には、上流から順に、HS・有機硫黄選択型吸着剤51、水分選択型吸着剤52、VOC・有機ケイ素選択型吸着剤53およびCO・CO選択型吸着剤71、72が充填されており、
さらに、好ましくは補助吸着塔6にはCO・CO選択型吸着剤73が充填されていればよい。
For example, the apparatus has a configuration as shown in FIG. 1 and has a hydrogen production amount of 50 to 250 liter N / min, preferably a hydrogen production amount of about 85 to 200 liter N / min. In particular,
A CO / CO 2 adsorption tower 5 having a flow path bifurcated into upstream and downstream from the CO / CO 2 adsorption tower 5;
One of the channels bifurcated upstream from the CO / CO 2 adsorption tower 5 is connected to a channel bifurcated further upstream via the valve 4,
One of the flow paths branched bifurcated further upstream through the valve 4 communicates with the outside through the valve 14 through the flow path 16.
A flow path 1 for supplying steam reformed gas via a valve 2 further upstream is provided upstream of a flow path that is bifurcated further upstream via the valve 4. A pressure regulating device 3 having
Of the flow paths bifurcated upstream from the CO / CO 2 adsorption tower, a flow path 15 different from the above is connected to the flow path 1 downstream of the valve 2 via the valve 13,
An auxiliary adsorption tower 6 is connected through a valve 12 to one of the channels bifurcated downstream from the CO / CO 2 adsorption tower 5.
A vessel 9 for recovering hydrogen is connected to a channel different from the above among the channels bifurcated downstream from the CO / CO 2 adsorption tower 5, and further downstream of the container 9. In order to facilitate the recovery of hydrogen gas by the user, a flow path 11 for separating hydrogen that passes to the outside through the valve 10 may be connected.
Here, in the CO / CO 2 adsorption tower 5, the H 2 S / organic sulfur selective adsorbent 51, the moisture selective adsorbent 52, the VOC / organosilicon selective adsorbent 53 and the CO / CO 2 selective are sequentially selected from the upstream. The mold adsorbents 71 and 72 are filled,
Further, it is preferable that the auxiliary adsorption tower 6 is filled with the CO / CO 2 selective adsorbent 73.

さらに、CO・CO吸着塔5の容量としては、上記製造量を担保できる大きさであればよいが、例えば、100〜150リットルであることが好ましい。また、補助吸着塔6についても、同様であり、例えば、100〜150リットルであることが好ましい。 Furthermore, the capacity of the CO · CO 2 adsorption tower 5 may be a size that can secure the production amount, but is preferably 100 to 150 liters, for example. The same applies to the auxiliary adsorption tower 6, and for example, it is preferably 100 to 150 liters.

本発明の方法によれば、CO・CO吸着工程、残留水素回収工程1、減圧再生工程、残留水素回収工程2、昇圧工程を含み、これらを繰り返す水蒸気改質ガスから水素を一塔式で分離する方法である。本発明においては、当該5工程を上記の順で繰り返すことを特徴とする。本発明の方法においては、例えば、図1に示すような本発明の装置を使用すればよい。図1を使用して、PSA−水素の分離操作を構成する(吸着工程)→(残留水素回収工程1)→(減圧真空再生工程)→(残留水素回収工程2)→(昇圧工程)の各工程を以下に説明する。 According to the method of the present invention, the CO / CO 2 adsorption step, the residual hydrogen recovery step 1, the decompression regeneration step, the residual hydrogen recovery step 2, and the pressure increase step are performed. It is a method of separation. In the present invention, the five steps are repeated in the above order. In the method of the present invention, for example, an apparatus of the present invention as shown in FIG. 1 may be used. Using FIG. 1, each of PSA-hydrogen separation operation (adsorption process) → (residual hydrogen recovery process 1) → (reduced vacuum regeneration process) → (residual hydrogen recovery process 2) → (pressure increase process) The process will be described below.

吸着工程
本工程においては、前方からHS・有機硫黄選択型吸着剤51、水分選択型吸着剤52、揮発性有機化合物(以下、VOCとも示す)・有機ケイ素選択型吸着材53の順序で吸着剤を充填され、さらに後方にCO・CO選択型吸着剤71、72を充填されたCO・CO吸着塔に、圧力調整装置3により大気圧より高い圧力とし水素を主成分とする湿り水蒸気改質ガスを供給して、VOC、CO、CO、HS、有機硫黄、有機ケイ素、水分を除去して塔後方から水素を回収する。
Adsorption process In this process, H 2 S, organic sulfur selective adsorbent 51, moisture selective adsorbent 52, volatile organic compound (hereinafter also referred to as VOC), and organic silicon selective adsorbent 53 are arranged in this order. A CO / CO 2 adsorption tower filled with an adsorbent and further filled with CO / CO 2 selective adsorbents 71 and 72 in the rear is wetted with hydrogen as a main component by the pressure regulator 3 to a pressure higher than atmospheric pressure. Steam reformed gas is supplied to remove VOC, CO, CO 2 , H 2 S, organic sulfur, organic silicon, and moisture, and recover hydrogen from the rear of the tower.

ここで、本発明の方法および装置において使用されるHS・有機硫黄選択型吸着剤51としては、高シリカゼオライトを充填することが好ましい。ここで、高シリカゼオライトとは、シリカ/アルミナ比(モル/モル)が高い疎水性のゼオライトであり、本発明においては、シリカ/アルミナ比(モル/モル)が5以上のHS・有機硫黄選択型吸着剤、または10以上、例えば、シリカ/アルミナ比(モル/モル)が50以上のものを使用すればよい。HS・有機硫黄選択型吸着剤51は、吸着剤の機能等にもよるが、CO・CO吸着塔5に4〜15リットル、例えば、5〜8リットル充填することが好ましい。 Here, as the H 2 S • organic sulfur selective adsorbent 51 used in the method and apparatus of the present invention, high silica zeolite is preferably packed. Here, the high silica zeolite is a hydrophobic zeolite having a high silica / alumina ratio (mol / mol). In the present invention, the H 2 S.organic having a silica / alumina ratio (mol / mol) of 5 or more. A sulfur-selective adsorbent or one having 10 or more, for example, a silica / alumina ratio (mol / mol) of 50 or more may be used. Although the H 2 S / organic sulfur selective adsorbent 51 depends on the function of the adsorbent and the like, it is preferable to fill the CO / CO 2 adsorption tower 5 with 4 to 15 liters, for example, 5 to 8 liters.

ここで、本発明の方法および装置において使用される水分選択型吸着剤52としては、K−A型、Na−A型、Na−K−A型及びCa−A型からなる群より選ばれる一種以上のゼオライトであることが好ましい。ここでNa−K−A型は、Na−A型ゼオライトのNaの一部をKに交換して熱処理することにより窓径を縮小させたものであり、この調製法は非特許文献1に記載されている。さらに、当該吸着剤においては、有機ケイ素化合物の加水分解生成物を気相又は液相で上記吸着剤結晶表面にシリカコートすることにより、水分選択性が強化される。本発明において水分選択型吸着剤として用いる結晶表面にシリカコートを施した吸着剤として、ハニカム形成されたものを用いれば、吸着剤吸着塔を通過する際の圧損が小さくなることから望ましい。ハニカムの調製法としては、アルミノシリケートの基材に当該ゼオライトとシリカゾル等の無機バインダーの混合スラリーに浸積して、これを乾燥するとゼオライトが担持される。浸積と乾燥を数回繰り返すと所定の担持量に達する。(嵩密度0.3以上、ゼオライト担持量0.1g/ml以上)これを350℃以上、1時間焼成するとゼオライトの基材への固定と活性化が達成される。水分選択型吸着剤52は、吸着剤の機能等にもよるが、CO・CO吸着塔5に4〜15リットル、例えば、5〜8リットル充填することが好ましい。 Here, the moisture selective adsorbent 52 used in the method and apparatus of the present invention is a kind selected from the group consisting of KA type, Na-A type, Na-KA type and Ca-A type. The above zeolite is preferable. Here, the Na-KA type is obtained by reducing the window diameter by exchanging a part of Na of the Na-A type zeolite with K and performing heat treatment, and this preparation method is described in Non-Patent Document 1. Has been. Furthermore, in the adsorbent, moisture selectivity is enhanced by silica-coating the hydrolyzate of the organosilicon compound on the adsorbent crystal surface in the gas phase or liquid phase. In the present invention, it is desirable to use a honeycomb-formed adsorbent having a silica-coated crystal surface used as a moisture-selective adsorbent because pressure loss when passing through the adsorbent adsorption tower is reduced. As a method for preparing the honeycomb, the zeolite is supported by dipping in a mixed slurry of the zeolite and an inorganic binder such as silica sol on an aluminosilicate substrate and drying it. When the soaking and drying are repeated several times, a predetermined loading amount is reached. (Bulk density of 0.3 or more, zeolite loading of 0.1 g / ml or more) When this is calcined at 350 ° C. or more for 1 hour, fixation and activation of the zeolite to the base material are achieved. Depending on the function of the adsorbent and the like, the moisture selective adsorbent 52 is preferably packed in the CO / CO 2 adsorption tower 5 in an amount of 4 to 15 liters, for example, 5 to 8 liters.

ここで、本発明の方法および装置において使用される揮発性有機化合物・有機ケイ素選択型吸着材53としては、シリカライト、USM、ゼオライト−β、USY、MPSからなる群より選ばれる一種以上であることが好ましい。揮発性有機化合物・有機ケイ素選択型吸着材53は、吸着剤の機能等にもよるが、CO・CO吸着塔5に6〜25リットル、例えば、8〜15リットル充填することが好ましい。 Here, the volatile organic compound / organosilicon selective adsorbent 53 used in the method and apparatus of the present invention is at least one selected from the group consisting of silicalite, USM, zeolite-β, USY, MPS. It is preferable. The volatile organic compound / organosilicon selective adsorbent 53 is preferably packed in 6 to 25 liters, for example, 8 to 15 liters, in the CO / CO 2 adsorption tower 5 depending on the function of the adsorbent and the like.

具体的には、例えば、圧力調整器としてのブロワー/真空ポンプ兼用回転機械3を有する図1に示される本発明の装置において、本発明の方法は実施される。バルブ2、バルブ4を開として、外部水蒸気改質ガスを流路1からブロワー/真空ポンプ兼用回転機械3を通じて水蒸気改質ガス流量250〜1800リットルN/min、好ましくは200〜1400リットルN/min、例えば、1000〜1400リットルN/min、さらに吸着圧力120〜175kPa−abs、好ましくは吸着圧力135〜165kPa−absで、CO,CO2吸着塔5に、吸着時間50〜70秒、例えば、55〜65秒で供給する。ここで、CO,CO2吸着塔5の吸着塔容量としては、100〜150リットル、例えば、110〜140リットルであることが好ましい。   Specifically, for example, in the apparatus of the present invention shown in FIG. 1 having a blower / vacuum pump combined rotary machine 3 as a pressure regulator, the method of the present invention is carried out. With the valves 2 and 4 opened, the steam reforming gas flow rate is 250 to 1800 liter N / min, preferably 200 to 1400 liter N / min from the flow path 1 through the blower / vacuum pump combined rotary machine 3. For example, at 1000 to 1400 liters N / min, further at an adsorption pressure of 120 to 175 kPa-abs, preferably at an adsorption pressure of 135 to 165 kPa-abs, an adsorption time of 50 to 70 seconds, for example, 55 to Supply in 65 seconds. Here, the adsorption tower capacity of the CO, CO2 adsorption tower 5 is preferably 100 to 150 liters, for example, 110 to 140 liters.

本発明の方法および装置においては、水蒸気改質ガス中の気体のうち硫黄含有成分を最初に除去するために、当該工程に使用されるCO・CO吸着塔には、一番上流(前方)において、HS・有機硫黄選択型吸着剤を充填する。硫黄成分は一般に反応性が高く、他の吸着剤と反応し、吸着剤の性能を低下させる可能性があるからである。さらに、HS・有機硫黄選択型吸着剤の次には、ガス中の水分を除去するために水分選択型吸着剤、その次にはVOC・有機ケイ素選択型吸着材を充填されている。これにより、水分、VOC・有機ケイ素化合物を吸着させ、後の吸着剤、特に選択型吸着剤の性能の低下を避けられるからである。さらに、この後方(下流)にはCO・CO選択型吸着剤が充填されている。ここで、CO・CO選択型吸着剤については、2種類のCO・CO選択型吸着剤71および72が順に充填されていることが好ましい。さらに、CO・CO吸着塔に充填されるCO・CO選択型吸着剤としては、Liイオン交換、Naイオン交換、Caイオン交換のX型ゼオライトが採用されることが好ましく、これらは同時にCOを高効率に吸着する。特にこのCO・CO吸着剤としては、好ましくは、シリカ/アルミナ比(モル/モル)が5より小さい、例えば、3より小さい、さらに好ましくは2.5より小さいX型ゼオライトを使用するとよい。吸着力が強くなるからである。2種類のCO,CO選択型吸着剤の組み合わせとしては、いずれの組み合わせでも良いが、後方により高性能のCO・CO選択型吸着剤を充填されていることが好ましい。これにより、段階的に効率よくCOおよびCOを吸着させることができるからである。例えば、より前方にCO・CO選択型吸着剤71として、シリカ/アルミナ比(モル/モル)が4より小さい、好ましくは3.5より小さいLiイオン交換のX型ゼオライトが充填され、さらに、後方に、CO・CO選択型吸着剤72として、シリカ/アルミナ比(モル/モル)が3より小さい、好ましくは2.5より小さいLiイオン交換のX型ゼオライトが充填され、COおよびCOを吸着して未吸着の水素を高純度に精製できることが好ましい。CO・CO選択型吸着剤は、CO・CO吸着塔5の容積に対して、60〜90%程度充填することが好ましい。さらに、CO・CO選択型吸着剤は、CO・CO吸着塔5に合計で60〜120リットル、例えば、90〜110リットル充填することが好ましい。例えば、より前方にシリカ/アルミナ比(モル/モル)が4より小さいLiイオン交換のX型ゼオライトが10〜60リットル充填され、さらに、シリカ/アルミナ比(モル/モル)が3より小さい、例えば、シリカ/アルミナ比(モル/モル)2〜3.5のLiイオン交換のX型ゼオライトが後方に40〜90リットル充填されている形態が好ましい。 In the method and apparatus of the present invention, in order to first remove the sulfur-containing component from the gas in the steam reformed gas, the CO / CO 2 adsorption tower used in the process has the most upstream (front). In FIG. 2 , H 2 S · organic sulfur selective adsorbent is filled. This is because the sulfur component is generally highly reactive and may react with other adsorbents, possibly reducing the performance of the adsorbents. Further, the H 2 S / organic sulfur selective adsorbent is filled with a water selective adsorbent to remove moisture in the gas, and then a VOC / organic silicon selective adsorbent. This is because moisture and VOC / organosilicon compounds can be adsorbed, and the performance of the subsequent adsorbent, particularly the selective adsorbent, can be avoided. Further, this rear (downstream) is filled with a CO / CO 2 selective adsorbent. Here, the CO / CO 2 selective adsorbent is preferably filled with two kinds of CO / CO 2 selective adsorbents 71 and 72 in order. Further, as the CO / CO 2 selective adsorbent packed in the CO / CO 2 adsorption tower, it is preferable to employ X-type zeolite of Li ion exchange, Na ion exchange, and Ca ion exchange, Adsorbs with high efficiency. In particular, as the CO / CO 2 adsorbent, it is preferable to use an X-type zeolite having a silica / alumina ratio (mol / mol) of less than 5, for example, less than 3, more preferably less than 2.5. This is because the adsorption power becomes stronger. Any combination of the two types of CO and CO 2 selective adsorbents may be used, but it is preferable that the CO / CO 2 selective adsorbent of higher performance is filled in the rear. This is because CO and CO 2 can be efficiently adsorbed step by step. For example, as the CO / CO 2 selective adsorbent 71, a Li / ion exchange X-type zeolite having a silica / alumina ratio (mol / mol) of less than 4, preferably less than 3.5, is filled, The CO / CO 2 selective adsorbent 72 is filled with Li-ion exchange type X zeolite having a silica / alumina ratio (mol / mol) of less than 3, preferably less than 2.5, and CO and CO 2. It is preferable that unadsorbed hydrogen can be purified with high purity by adsorbing. The CO / CO 2 selective adsorbent is preferably filled with about 60 to 90% of the volume of the CO / CO 2 adsorption tower 5. Further, the CO / CO 2 selective adsorbent is preferably packed in the CO / CO 2 adsorption tower 5 in a total of 60 to 120 liters, for example, 90 to 110 liters. For example, 10-60 liters of Li ion-exchanged X-type zeolite having a silica / alumina ratio (mol / mol) of less than 4 is filled in front, and the silica / alumina ratio (mol / mol) of less than 3, A form in which 40 to 90 liters of Li ion-exchanged X-type zeolite having a silica / alumina ratio (mol / mol) of 2 to 3.5 is filled in the back is preferable.

供給された水蒸気改質ガス中の水分、揮発性有機化合物(VOC)、硫化水素(HS)、有機硫黄化合物(例えば、メチルメルカプタン)、有機ケイ素化合物が上記のように吸着剤で除去され、CO・COがCO・CO吸着塔に充填された2種類のCO・CO吸着剤71,72で除去されると、CO・CO吸着塔5の後方から水素が、水素濃度99.99〜99.9995vol%程度で、未吸着のCOおよびCOとともにバルブ8を介して製品水素タンク9に供給されるとよい。さらに、バルブ10、流路11から流過させてもよい。 Moisture, volatile organic compounds (VOC), hydrogen sulfide (H 2 S), organic sulfur compounds (for example, methyl mercaptan), and organosilicon compounds in the supplied steam reformed gas are removed with the adsorbent as described above. When CO · CO 2 is removed in two CO · CO 2 adsorbents 71 and 72 filled in the CO · CO 2 adsorption towers, hydrogen from the rear of the CO · CO 2 adsorption column 5, the hydrogen concentration 99 It is good to be supplied to the product hydrogen tank 9 through the valve 8 together with unadsorbed CO and CO 2 at about .99 to 99.9995 vol%. Further, it may flow from the valve 10 and the flow path 11.

残留水素回収工程1
吸着工程の進行に伴い、CO・CO吸着剤71,72のCOとCO吸着量が増大して吸着効率が悪くなり、流過水素濃度が低下する可能性がある。したがって流過水素濃度が低下する直前に、残留水蒸気改質ガス回収工程1に移行する。当該工程においては、圧縮機/真空ポンプ兼用回転機械3を停止して、バルブ2、バルブ4、バルブ8、バルブ13を閉として、バルブ12を開とする。これにより、CO・CO吸着塔5の後方に残留する水素は、バルブ12を通じて補助吸着塔6に移行する。ここで、CO・CO吸着塔5の圧力は120〜175kPa−absから60〜90kPa程度、例えば、80kPa程度に低下し、一方、補助吸着塔6の圧力も同様に60〜90kPa程度、例えば、80kPa程度となる。補助吸着塔6に充填されるCO・CO吸着剤73としては、COとCOを選択的に吸着する、Liイオン交換、Naイオン交換、Caイオン交換のX型ゼオライト、CO・CO選択型吸着剤を1種または2種以上使用するのが好ましい。さらに、このCO・CO吸着剤としては、好ましくは、シリカ/アルミナ比(モル/モル)が5より小さい、例えば、3より小さい、さらに好ましくは2.5より小さいLiイオン交換のX型ゼオライトを使用するとよい。吸着力が強くなるからである。前述の吸着工程での水素の回収率は68〜72%程度、例えば70%超程度にとどまる場合があり、この場合、残る30%の水素は吸着塔の死容積部およびCO・CO吸着層の死容積に残留しており、依然水素の回収効率を上げる余地がある。そこで補助吸着塔6にCO・CO吸着塔5後方から高圧気体が移動すると、CO・CO吸着塔5に残留する水素は更に18〜22%程度回収され、全回収率が上昇する。
Residual hydrogen recovery process 1
With the progress of the adsorption step, CO and CO 2 adsorption amount of CO · CO 2 adsorbents 71 and 72 is increased adsorption efficiency becomes poor, flowing through the hydrogen concentration may decrease. Therefore, the process proceeds to the residual steam reformed gas recovery step 1 immediately before the flow perhydrogen concentration decreases. In this process, the compressor / vacuum pump combined rotary machine 3 is stopped, the valve 2, the valve 4, the valve 8, and the valve 13 are closed, and the valve 12 is opened. Thereby, the hydrogen remaining behind the CO / CO 2 adsorption tower 5 moves to the auxiliary adsorption tower 6 through the valve 12. Here, the pressure of the CO / CO 2 adsorption tower 5 is reduced from 120 to 175 kPa-abs to about 60 to 90 kPa, for example, about 80 kPa, while the pressure of the auxiliary adsorption tower 6 is similarly about 60 to 90 kPa, for example, It becomes about 80 kPa. The CO / CO 2 adsorbent 73 packed in the auxiliary adsorption tower 6 can selectively adsorb CO and CO 2 , Li ion exchange, Na ion exchange, Ca ion exchange X-type zeolite, CO · CO 2 selection It is preferable to use one type or two or more type adsorbents. Further, as the CO · CO 2 adsorbent, a Li ion exchange X-type zeolite having a silica / alumina ratio (mol / mol) of preferably less than 5, for example, less than 3, more preferably less than 2.5. Should be used. This is because the adsorption power becomes stronger. The recovery rate of hydrogen in the above-described adsorption step may be about 68 to 72%, for example, about 70% or more. In this case, the remaining 30% of hydrogen is the dead volume of the adsorption tower and the CO / CO 2 adsorption layer. There is still room to increase the hydrogen recovery efficiency. Therefore, when the high-pressure gas moves from the rear of the CO / CO 2 adsorption tower 5 to the auxiliary adsorption tower 6, about 18 to 22% of the hydrogen remaining in the CO / CO 2 adsorption tower 5 is further recovered, and the total recovery rate is increased.

なお補助吸着塔6にCO・CO吸着剤を充填しない場合であっても、当該工程を経ることにより、水素が補助吸着塔6に滞留することになり、水素の回収率は上昇する。さらに、ここで補助吸着塔6にCO・CO吸着剤を充填することが好ましく、補助吸着塔に充填CO・CO吸着剤73へのCOおよびCO吸着が優先的なため、補助吸着塔6充填CO・CO吸着剤73にはCOおよびCOが選択的に吸着され、死容積部の水素濃度は上昇する。これは、後述する昇圧工程での塔後方への高濃度水素の供給のために非常に重要である。残留水素回収工程1は、5秒〜15秒、好ましくは8〜12秒程度で完了する。補助吸着塔6の容量としては、CO・CO吸着塔5と同程度でよく、100〜150リットル、例えば、110〜140リットルであることが好ましい。この中に補助吸着塔に充填されるCO吸着剤73の容量としては、CO・CO吸着塔5中に充填されるCO・CO2吸着剤の量と同程度でよい。すなわち、CO・CO選択型吸着剤は、補助吸着塔6に60〜120リットル、例えば、90〜110リットル充填することが好ましい。CO・CO2吸着塔5の後方に残留する水素を効率良く吸着させ補助吸着塔中に保持するためである。 Even when the auxiliary adsorption tower 6 is not filled with the CO / CO 2 adsorbent, hydrogen is retained in the auxiliary adsorption tower 6 through this process, and the hydrogen recovery rate is increased. Moreover, where it is preferable to fill the CO · CO 2 sorbent in the auxiliary adsorption column 6, CO and CO 2 adsorption to fill CO · CO 2 adsorbent 73 for preferential to the auxiliary adsorption tower, the auxiliary adsorption column CO and CO 2 are selectively adsorbed on the 6-filled CO · CO 2 adsorbent 73, and the hydrogen concentration in the dead volume increases. This is very important for the supply of high-concentration hydrogen to the rear of the column in the pressurization step described later. Residual hydrogen recovery step 1 is completed in about 5 to 15 seconds, preferably about 8 to 12 seconds. The capacity of the auxiliary adsorption tower 6 may be the same as that of the CO / CO 2 adsorption tower 5 and is preferably 100 to 150 liters, for example, 110 to 140 liters. The capacity of the CO 2 adsorbent 73 filled in the auxiliary adsorption tower may be approximately the same as the amount of the CO · CO 2 adsorbent filled in the CO · CO 2 adsorption tower 5. That is, it is preferable to fill the auxiliary adsorption tower 6 with 60 to 120 liters, for example, 90 to 110 liters of the CO / CO 2 selective adsorbent. This is because the hydrogen remaining behind the CO / CO2 adsorption tower 5 is efficiently adsorbed and held in the auxiliary adsorption tower.

減圧再生工程
残留水素回収工程でCO・CO吸着塔5の圧力は、80kPa−abs程度に低下する。さらに、減圧再生工程においては、バルブ2、バルブ4、バルブ8、バルブ12を閉とし、圧縮機/真空ポンプ兼用回転機械3を再度稼働させ、さらに減圧させた。これにより、補助吸着塔に高濃度の水素を滞留させる。さらに、バルブ13、バルブ14を開とする。これにより、CO・CO吸着塔5充填CO・CO吸着剤71,72から吸着したCOおよびCOが離脱し、更に向流に流過するCOとCOにより、VOC・有機ケイ素吸着剤53からVOCおよび有機ケイ素が離脱し、水分吸着剤52から水分が離脱し、HS・有機硫黄吸着剤51からHSおよび有機硫黄が離脱し、これらを流路16から排出させるCO・CO吸着塔5に充填されたCO・CO吸着剤71,72、VOC・有機ケイ素吸着剤53、水分吸着剤52、HS・有機ケイ素吸着剤51は再生され、再び、VOC、CO、HS、有機硫黄、有機ケイ素、水分を吸着できるようになる。ここでCO・CO吸着塔5の圧力は8〜12kPa−abs程度、例えば、10kPa−abs(真空条件)に低下する。減圧再生工程は、50〜70秒、例えば、55〜65秒、60秒程度で完了させるとよい。
The pressure of the CO / CO 2 adsorption tower 5 is reduced to about 80 kPa-abs in the decompression regeneration step residual hydrogen recovery step. Further, in the decompression regeneration process, the valve 2, the valve 4, the valve 8, and the valve 12 were closed, and the compressor / vacuum pump combined rotary machine 3 was operated again to further reduce the pressure. Thereby, a high concentration of hydrogen is retained in the auxiliary adsorption tower. Further, the valves 13 and 14 are opened. Thus, CO · CO 2 adsorbed CO and CO 2 are extracted from the adsorption column 5 filled CO · CO 2 adsorbents 71 and 72, further the CO and CO 2 flowing past the countercurrent, VOC · organosilicon adsorbent VOC and organic silicon is disengaged from the 53, moisture is separated from the water absorbent 52, H 2 S and organic sulfur are extracted from the H 2 S · organosulfur adsorbent 51, CO · for discharging them from the flow channel 16 The CO / CO 2 adsorbents 71 and 72, the VOC / organosilicon adsorbent 53, the moisture adsorbent 52, and the H 2 S / organosilicon adsorbent 51 packed in the CO 2 adsorption tower 5 are regenerated, and again, VOC, CO 2 , H 2 S, organic sulfur, organic silicon, and moisture can be adsorbed. Here, the pressure of the CO / CO 2 adsorption tower 5 is reduced to about 8 to 12 kPa-abs, for example, 10 kPa-abs (vacuum condition). The decompression regeneration step may be completed in 50 to 70 seconds, for example, about 55 to 65 seconds and about 60 seconds.

残留水蒸回収工程2
当該工程においては、圧縮機/真空ポンプ兼用回転機械3を停止して、バルブ2、バルブ4、バルブ8、バルブ13を閉として、バルブ12を開とする。これにより、10kPa−abs(真空条件)よりも高い圧力にある補助吸着塔6に滞留している水素がCO・CO吸着塔後方に高濃度の水素として供給される。さらに、補助吸着塔6にCO・CO吸着剤を充填している場合、補助吸着塔6から先ず死容積部の比較的水素濃度の高い気体が、CO・CO吸着塔5後方からCO・CO吸着塔5に供給され、その後補助吸着塔充填CO・CO吸着剤73から吸着された水素および共吸着CO・COが離脱して供給水素濃度が上昇するため、CO・CO吸着塔後方にはさらに高濃度の水素が供給される。いずれの場合にしろ、このため、CO・CO吸着塔5の水素濃度分布は、吸着工程開始時に塔前方の水素濃度は低く、塔後方の水素濃度分布が高くなり、効率的な水蒸気改質ガスからの水素とCOおよびCO分離の可能な状態となっている。残留水素回収工程2は、5秒〜15秒、好ましくは8〜12秒程度で完了する。
Residual steaming process 2
In this process, the compressor / vacuum pump combined rotary machine 3 is stopped, the valve 2, the valve 4, the valve 8, and the valve 13 are closed, and the valve 12 is opened. As a result, the hydrogen staying in the auxiliary adsorption tower 6 at a pressure higher than 10 kPa-abs (vacuum condition) is supplied as high-concentration hydrogen behind the CO / CO 2 adsorption tower. Furthermore, if the auxiliary adsorption column 6 is filled with a CO · CO 2 adsorbent, relatively hydrogen concentration high gas first dead volume from the auxiliary adsorption column 6, CO · from CO · CO 2 adsorption column 5 the rear Since the hydrogen and co-adsorbed CO · CO 2 that are supplied to the CO 2 adsorption tower 5 and then adsorbed from the CO / CO 2 adsorbent 73 packed in the auxiliary adsorption tower are separated and the supplied hydrogen concentration increases, the CO · CO 2 adsorption A higher concentration of hydrogen is supplied to the rear of the column. In any case, for this reason, the hydrogen concentration distribution of the CO / CO 2 adsorption tower 5 is such that the hydrogen concentration in the front of the tower is low and the hydrogen concentration distribution in the rear of the tower is high at the start of the adsorption process. Hydrogen and CO and CO 2 can be separated from the gas. Residual hydrogen recovery step 2 is completed in about 5 to 15 seconds, preferably about 8 to 12 seconds.

昇圧工程
ここで、さらに、バルブ2およびバルブ4を開とし、バルブ12を閉とし、圧縮機3を作動させ、圧力を高める。すなわち、補助吸着塔6への流れを遮断し、外部水蒸気改質ガスを流路1からバルブ2、バルブ4を開としてブロワー/真空ポンプ兼用回転機械3を通じて水蒸気改質ガス流量250〜650リットルN/min、好ましくは200〜500リットルN/min、CO・CO吸着塔5における吸着圧力120〜175kPa−abs、好ましくは吸着圧力135〜165kPa−absとし、吸着工程の前準備を行う。当該昇圧工程は、2〜6秒、好ましくは3〜5秒程度で完了すればよい。昇圧工程で、残留水素回収工程で補助吸着塔6に回収された残留水素がCO・CO2吸着塔後方には高濃度で供給されているため、後の吸着工程において効率的に水素の回収を行うことができる。本発明においては、当該昇圧工程を終了後に、バルブ8を開として吸着工程に戻り、(吸着工程)→(残留水素回収工程1)→(減圧真空再生工程)→(残留水素回収工程2)→(昇圧工程)を繰り返すことで水素含有湿り水蒸気改質ガスから水素を分離することができる。
Here boosting step, further, the valve 2 and the valve 4 is opened, the valve 12 is closed to actuate the compressor 3, increasing the pressure. That is, the flow to the auxiliary adsorption tower 6 is shut off, and the steam reforming gas flow rate is 250 to 650 liters N through the blower / vacuum pump combined rotary machine 3 with the valve 2 and the valve 4 being opened from the flow path 1. / Min, preferably 200 to 500 liters N / min, an adsorption pressure of 120 to 175 kPa-abs in the CO / CO 2 adsorption tower 5, preferably an adsorption pressure of 135 to 165 kPa-abs, and preparation for the adsorption step is performed. The boosting step may be completed in 2 to 6 seconds, preferably about 3 to 5 seconds. In the pressurization process, the residual hydrogen recovered in the auxiliary adsorption tower 6 in the residual hydrogen recovery process is supplied at a high concentration behind the CO / CO2 adsorption tower, so that hydrogen is efficiently recovered in the subsequent adsorption process. be able to. In the present invention, after completion of the pressure increasing process, the valve 8 is opened and the process returns to the adsorption process, (adsorption process) → (residual hydrogen recovery process 1) → (reduced vacuum regeneration process) → (residual hydrogen recovery process 2) → By repeating the (pressurization step), hydrogen can be separated from the hydrogen-containing wet steam reformed gas.

以下の表1に本発明の1塔式圧力スイング法(以下PSA−水素)の方法を構成する、(吸着工程)→(残留水素回収工程1)→(減圧再生工程)→(残留水素回収工程2)→(昇圧工程)のバルブの開閉、圧縮機/真空ポンプ兼用回転機械の運転・停止、各工程の所要時間の例を示す。   Table 1 below constitutes the method of the single-column pressure swing method (hereinafter referred to as PSA-hydrogen) of the present invention: (adsorption process) → (residual hydrogen recovery process 1) → (reduced pressure regeneration process) → (residual hydrogen recovery process) 2) → (Pressure raising process) valve opening / closing, compressor / vacuum pump combined rotary machine operation / stop, and examples of the time required for each process.

以下実施例により本発明をさらに具体的に説明する。
実施例1
本実施例の1塔式PSA−水素製造装置の仕様を表2に示す。
Hereinafter, the present invention will be described more specifically with reference to examples.
Example 1
Table 2 shows the specifications of the single-column PSA-hydrogen production apparatus of this example.

本装置は、水素製造量85〜200リットルN/分(5−10mN/h)を目標として製作したもので、CO・CO吸着塔5は内径が55cm、高55cmであり、当該CO・CO吸着塔5には、表2に示される各種吸着剤が充填されており、補助吸着塔6には、補助吸着塔充填CO・CO吸着剤73が70kg(100リットル)充填されている。 This device was manufactured with a target of hydrogen production of 85 to 200 liters N / min (5-10 m 3 N / h). The CO · CO 2 adsorption tower 5 has an inner diameter of 55 cm and a height of 55 cm. The CO 2 adsorption tower 5 is filled with various adsorbents shown in Table 2, and the auxiliary adsorption tower 6 is filled with 70 kg (100 liters) of the auxiliary adsorption tower-filled CO / CO 2 adsorbent 73. Yes.

実施例1および2、比較例1の操作条件を表3に示す。   The operating conditions of Examples 1 and 2 and Comparative Example 1 are shown in Table 3.

実施例1においては、吸着圧力150kPa−abs、再生終了圧力10kPa−abs、補助吸着塔53残留水素回収工程1の終了圧力80kPa−abs、補助吸着塔53昇圧終了圧力150kPa−abs、1サイクル143秒、CO・CO吸着剤として、CO・CO吸着塔5に、CO・CO吸着剤71としてLiイオン交換X型ゼオライト(SiO/Al比=3)20リットルを前方とし、その後方にCO・CO吸着剤72として80リットルのLiイオン交換X型ゼオライト(SiO/Al比=2)を1:4で2層充填し、補助吸着塔6には100リットルのLiイオン交換X型ゼオライト(SiO/Al比=2)を充填している。外部水蒸気改質ガスを流路1からバルブ2、バルブ4を開としてブロワー/真空ポンプ兼用回転機械3を通じて水蒸気改質ガス流量1210リットルN/min、吸着圧力150kPa−absで、吸着塔容量50リットルのCO・CO吸着塔5に、吸着時間60秒で供給した(吸着工程)。CO・CO吸着塔5には、予め、前方に前処理用吸着材5としてまずHS・有機硫黄吸着剤51として高シリカゼオライト(シリカ/アルミナ比(モル/モル=70))を6.25リットル充填し、次いで水分吸着剤52として比表面積700m/g以上のシリカゲルがウオッシュコートされハニカム形成されたNa−K−A型ゼオライトを6.25リットル、最後方部に有機ケイ素(シロキサン)吸着剤53であるUSYを12.5リットル多層に充填し、後方にはCO・CO選択型吸着剤71として、1.2mmφのLiイオン交換X型ゼオライト71(SiO/Al比=3)を20リットル充填し、最後方部にはCO・CO選択型吸着剤としてLi−X型ゼオライト(SiO/Al比=2)72を80リットル充填した。 In Example 1, adsorption pressure 150 kPa-abs, regeneration end pressure 10 kPa-abs, auxiliary adsorption tower 53 residual hydrogen recovery step 1 end pressure 80 kPa-abs, auxiliary adsorption tower 53 pressurization end pressure 150 kPa-abs, one cycle 143 seconds as CO · CO 2 adsorbent, the CO · CO 2 adsorption column 5, Li ion exchanged X-type zeolite as CO · CO 2 adsorbent 71 (SiO 2 / Al 2 O 3 ratio = 3) and 20 liters front, Later, 80 liters of Li ion-exchanged X-type zeolite (SiO 2 / Al 2 O 3 ratio = 2) is packed as a CO / CO 2 adsorbent 72 in a 1: 4 layer, and the auxiliary adsorption tower 6 has 100 liters. Li ion-exchanged X-type zeolite (SiO 2 / Al 2 O 3 ratio = 2). External steam reformed gas is opened from flow path 1 through valve 2 and valve 4 and through a blower / vacuum pump combined rotary machine 3 with steam reformed gas flow rate of 1210 liter N / min, adsorption pressure 150 kPa-abs, adsorption tower capacity 50 liter The CO · CO 2 adsorption tower 5 was fed with an adsorption time of 60 seconds (adsorption process). In the CO / CO 2 adsorption tower 5, a high silica zeolite (silica / alumina ratio (mole / mole = 70)) is first used as the H 2 S · organic sulfur adsorbent 51 as the pretreatment adsorbent 5 in advance. Next, 6.25 liters of Na-KA type zeolite formed by honeycomb coating with silica gel having a specific surface area of 700 m 2 / g or more as water adsorbent 52 was filled, and organosilicon (siloxane ) 12.5 liters of USY as the adsorbent 53 is packed in a multilayer, and as the CO / CO 2 selective adsorbent 71 at the back, 1.2 mmφ Li ion exchange X-type zeolite 71 (SiO 2 / Al 2 O 3 Ratio = 3) is filled with 20 liters, and the last part is a Li-X type zeolite (SiO 2 / Al 2 O 3 ratio = 2) 72 as a CO · CO 2 selective adsorbent. Of 80 liters.

吸着工程の進行に伴い、CO・CO選択型吸着剤71,72のCOおよびCO吸着量が増大して流過水素濃度が低下する。流過水素濃度が低下する直前に(60秒の吸着工程の後)、圧縮機/真空ポンプ兼用回転機械3を停止して、バルブ2,バルブ4、バルブ8を閉として、バルブ12を開とし、残留水蒸気改質ガス回収工程1に移行し、CO・CO吸着塔5の後方に残留する水素は、バルブ12を通じて補助吸着塔6に移行させた。補助吸着塔6の容量としては、125リットルであり、この中に補助吸着塔充填CO・CO吸着剤73(Li−X型ゼオライト(SiO/Al比=2)が100リットル充填されている。CO・CO吸着塔5の圧力は150kPa−absから80kPaに低下し、補助吸着塔6の圧力は80kPa−absとなった。水素回収工程は、10秒で完了した。 As the adsorption process proceeds, the CO and CO 2 adsorption amounts of the CO · CO 2 selective adsorbents 71 and 72 increase and the flow perhydrogen concentration decreases. Immediately before the flow perhydrogen concentration decreases (after the adsorption process for 60 seconds), the compressor / vacuum pump combined rotary machine 3 is stopped, the valves 2, 4 and 8 are closed, and the valve 12 is opened. Then, the process proceeds to the residual steam reformed gas recovery step 1, and the hydrogen remaining behind the CO / CO 2 adsorption tower 5 is transferred to the auxiliary adsorption tower 6 through the valve 12. The capacity of the auxiliary adsorption tower 6 is 125 liters, and the auxiliary adsorption tower-filled CO / CO 2 adsorbent 73 (Li-X zeolite (SiO 2 / Al 2 O 3 ratio = 2) is filled with 100 liters). The pressure of the CO / CO 2 adsorption tower 5 was reduced from 150 kPa-abs to 80 kPa, and the pressure of the auxiliary adsorption tower 6 was 80 kPa-abs, and the hydrogen recovery process was completed in 10 seconds.

続く減圧再生工程においては、残留水素回収工程1で80kPa−abs程度に低下したCO・CO吸着塔5の圧力を、圧縮機/真空ポンプ兼用回転機械3を稼働させてさらに減圧し、バルブ2、バルブ4、バルブ8、バルブ12を閉として、バルブ13、バルブ14を開とした。CO・CO吸着塔5に充填したCO・CO吸着剤71、72から吸着COとCOが離脱し、更に向流に流過するCOおよびCOにより、有機ケイ素吸着剤53から有機ケイ素が離脱し、水分吸着剤52から水分が離脱し、HS・有機硫黄吸着剤51からHS・有機硫黄吸着剤が離脱し、これらを流路16から排出させた。当該工程は60秒継続させた。 In the subsequent decompression regeneration step, the pressure of the CO / CO 2 adsorption tower 5 lowered to about 80 kPa-abs in the residual hydrogen recovery step 1 is further reduced by operating the compressor / vacuum pump combined rotary machine 3 and the valve 2 The valves 4, 8 and 12 were closed, and the valves 13 and 14 were opened. The adsorbed CO and CO 2 are desorbed from the CO / CO 2 adsorbents 71 and 72 packed in the CO / CO 2 adsorbing tower 5, and further, the organic silicon is adsorbed from the organic silicon adsorbent 53 by the CO and CO 2 flowing countercurrently. There leaves, the moisture is removed from the water absorbent 52, H 2 S · organosulfur adsorbent separated from the H 2 S · organosulfur adsorbent 51 and drained them from the flow channel 16. The process was continued for 60 seconds.

次に、圧縮機/真空ポンプ兼用回転機械3を停止して、バルブ2,バルブ4、バルブ8を閉として、バルブ12を開とし、残留水素回収工程2に移行した。当該工程は10秒継続させた。これにより、塔後方の水素濃度分布が高い、効率的な水蒸気改質ガスからの水素とCO、CO分離の可能な状態とした。次に、バルブ2およびバルブ4を開とし、バルブ12を閉とし、圧縮機3を作動させ、圧力を高め、昇圧工程に移行した。CO・CO吸着塔5の圧力を150kPa−abs程度に上昇させた。当該昇圧工程は、3秒行った。その後、その後バルブ8を開とし、圧縮機/真空ポンプ兼用回転機械3を引き続き稼働させ、再度、吸着工程とし、水蒸気改質ガスを再度供給し、上記サイクルを繰り返した。これにより、水素製造量170リットルN/分(5−10mN/h)、水素濃度99.9995vol%の性能が確認された。 Next, the compressor / vacuum pump combined rotary machine 3 was stopped, the valve 2, the valve 4 and the valve 8 were closed, the valve 12 was opened, and the process shifted to the residual hydrogen recovery step 2. The process was continued for 10 seconds. As a result, the hydrogen concentration distribution at the rear of the tower is high, and hydrogen and CO, CO 2 can be separated from the steam reformed gas efficiently. Next, the valve 2 and the valve 4 were opened, the valve 12 was closed, the compressor 3 was operated, the pressure was increased, and the pressure increasing process was started. The pressure of the CO · CO 2 adsorption tower 5 was increased to about 150 kPa-abs. The pressure increasing step was performed for 3 seconds. Thereafter, the valve 8 was opened, the compressor / vacuum pump combined rotary machine 3 was continuously operated, the adsorption process was performed again, the steam reformed gas was supplied again, and the above cycle was repeated. As a result, it was confirmed that the hydrogen production amount was 170 liters N / min (5-10 m 3 N / h) and the hydrogen concentration was 99.9995 vol%.

比較例1
補助吸着塔6がなく、吸着工程および減圧再生工程のみで行うことを除き、実施例1と同様に水蒸気改質ガス分離に行った。
Comparative Example 1
The steam reforming gas separation was performed in the same manner as in Example 1 except that the auxiliary adsorption tower 6 was not provided and only the adsorption process and the decompression regeneration process were performed.

実施例2
補助吸着塔6に、CO・CO吸着剤を充填しないこと、ならびに水蒸気改質ガス流量1068リットルN/min供給したことを除き、実施例1と同様に水蒸分離に行った。補助吸着塔6に、CO・CO吸着剤を充填していない場合であっても、補助吸着塔6を利用した残留水蒸回収工程を利用することにより、表3に示すように、残留水蒸回収工程および補助吸着塔を使用しない方法(比較例1)と比較して、回収率を上昇させることができることが確認された。
Example 2
The water vapor separation was carried out in the same manner as in Example 1 except that the auxiliary adsorption tower 6 was not filled with the CO / CO 2 adsorbent and was supplied with a steam reformed gas flow rate of 1068 liter N / min. Even when the auxiliary adsorption tower 6 is not filled with a CO / CO 2 adsorbent, by using a residual water vapor recovery step using the auxiliary adsorption tower 6, as shown in Table 3, It was confirmed that the recovery rate can be increased as compared with the steam recovery step and the method not using the auxiliary adsorption tower (Comparative Example 1).

実施例3
CO・CO吸着塔5前方にLiイオン交換X型ゼオライト(SiO/Al比=3)と塔後方にLiイオン交換X型ゼオライト(SiO/Al比=2)を1:1(50リットル:50リットル)で2層充填したこと、および水蒸供給量を1331リットルN/minとしたことを除き、実施例1と同様に水素分離・精製を行った。
Example 3
CO · CO 2 adsorption column 5 forward Li ion exchanged X-type zeolite (SiO 2 / Al 2 O 3 ratio = 3) and the tower backwards Li ion exchanged X-type zeolite (SiO 2 / Al 2 O 3 ratio = 2) Hydrogen separation / purification was carried out in the same manner as in Example 1 except that two layers were filled at 1: 1 (50 liters: 50 liters) and the steam supply rate was 1331 liters N / min.

実施例4
CO・CO吸着塔5にLiイオン交換X型ゼオライト(SiO/Al比=3)とLiイオン交換X型ゼオライト(SiO/Al比=2)で2層充填する代わりに、Caイオン交換X型ゼオライトとLiイオン交換X型ゼオライト(SiO/Al比=2)を1:1(50リットル:50リットル)で2層充填したこと、および水蒸気改質ガス供給量を1270.5リットルN/minとしたことを除き、実施例1と同様に水素分離を行った。
Example 4
The CO / CO 2 adsorption tower 5 is packed in two layers with Li ion-exchanged X-type zeolite (SiO 2 / Al 2 O 3 ratio = 3) and Li ion-exchanged X-type zeolite (SiO 2 / Al 2 O 3 ratio = 2). Instead, two layers of Ca ion-exchanged X-type zeolite and Li ion-exchanged X-type zeolite (SiO 2 / Al 2 O 3 ratio = 2) were filled with 1: 1 (50 liters: 50 liters), and steam reforming Hydrogen separation was performed in the same manner as in Example 1 except that the gas supply amount was 1270.5 liter N / min.

実施例5
CO・CO吸着塔5にLiイオン交換X型ゼオライト(SiO/Al比=3)とLiイオン交換X型ゼオライト(SiO/Al比=2)を1:1で2層充填する代わりに、Caイオン交換A型ゼオライトとLiイオン交換X型ゼオライト(SiO/Al比=2)を1:1(50リットル:50リットル)で2層充填したこと、および水蒸気改質ガス供給量を871.2リットルN/minとしたことを除き、実施例1と同様に水素分離を行った。
Example 5
In the CO / CO 2 adsorption tower 5, Li ion exchange X-type zeolite (SiO 2 / Al 2 O 3 ratio = 3) and Li ion exchange X-type zeolite (SiO 2 / Al 2 O 3 ratio = 2) are 1: 1. Instead of filling two layers, two layers of Ca ion exchange A-type zeolite and Li ion exchange X-type zeolite (SiO 2 / Al 2 O 3 ratio = 2) were filled at 1: 1 (50 liters: 50 liters), Hydrogen separation was performed in the same manner as in Example 1 except that the steam reformed gas supply amount was 871.2 liter N / min.

実施例1および実施例3〜5の結果を比較した表を以下に示す。   A table comparing the results of Example 1 and Examples 3 to 5 is shown below.

CO・CO吸着剤71、72として、CO・CO吸着塔5前方にLiイオン交換X型ゼオライト(SiO/Al比=3)と塔後方にLiイオン交換X型ゼオライト(SiO/Al比=2)を1:4の割合で2層充填した場合が最も高純度で、かつ水素製造量が多く、最も効率良く水素を分離できることがわかった。 As CO / CO 2 adsorbents 71 and 72, a Li ion exchange X-type zeolite (SiO 2 / Al 2 O 3 ratio = 3) is located in front of the CO · CO 2 adsorption tower 5 and a Li ion exchange X-type zeolite (SiO 2 is located behind the tower). 2 / Al 2 O 3 ratio = 2) was filled in two layers at a ratio of 1: 4, and it was found that hydrogen could be separated most efficiently with the highest purity and a large amount of hydrogen production.

本発明は、1−200mN/h程度の分離能を有する中小容量の水素分離方法および装置に関し、水素富化燃焼、環境装置、化学装置に使用する低コスト、コンパクトで高効率な水蒸気改質ガスからの吸着法による水蒸気改質ガスからの水素の分離に利用できるものである。 The present invention relates to a small and medium-sized hydrogen separation method and apparatus having a separation ability of about 1 to 200 m 3 N / h, and relates to a low-cost, compact and high-efficiency steam reformer for use in hydrogen-enriched combustion, environmental equipment, and chemical equipment. It can be used for separation of hydrogen from steam reformed gas by an adsorption method from a gas.

1、11、15、16 流路
3 圧縮機/真空ポンプ兼用回転機械
2、4、8、10、12、13、14 バルブ
5 CO・CO吸着塔
51 HS・有機硫黄吸着剤
52 水分吸着剤
53 VOC・有機ケイ素吸着剤
71、72、73 CO・CO吸着剤
9 製品水素タンク
6 補助吸着塔
1, 11, 15, 16 Flow path 3 Compressor / vacuum pump combined rotary machine 2, 4, 8, 10, 12, 13, 14 Valve 5 CO / CO 2 adsorption tower 51 H 2 S / organic sulfur adsorbent 52 Moisture Adsorbent 53 VOC / organosilicon adsorbent 71, 72, 73 CO / CO 2 adsorbent 9 Product hydrogen tank 6 Auxiliary adsorption tower

Claims (7)

CO・CO吸着工程、残留水素回収工程、減圧再生工程、残留水素回収工程、昇圧工程をこの順で行い、これらを繰り返す水蒸気改質ガスから水素を分離する方法であって、
前方からHS・有機硫黄選択型吸着剤、水分選択型吸着剤、揮発性有機化合物(以下、VOCと示す)・有機ケイ素選択型吸着材の順序で吸着剤を充填され、さらに後方にCO・CO選択型吸着剤を充填されたCO・CO吸着塔に、圧力調整装置により大気圧より高い圧力とし水素を主成分とする湿り水蒸気改質ガスを供給して、VOC、CO、CO、HS、有機硫黄、有機ケイ素、水分を除去して塔後方から水素を回収して(CO・CO吸着工程)、
水素濃度が低下する前に、塔後方の水素回収を遮断し、当該回収の経路とは別に塔後方に設置した補助吸着塔の前方とCO・CO吸着塔の後方を連結して、吸着塔の死容積部およびCO・CO 吸着層の死容積部に残留する水素を補助吸着塔に移行し(残留水素回収工程1)、
補助吸着塔の前方とCO・CO吸着塔の後方の連結を閉じ、真空ポンプ/ブロワー兼用回転機械で大気圧未満の圧力でCO・CO吸着塔の塔前方から吸着したVOC、CO、CO、HS、有機硫黄、有機ケイ素、水分を系外に排気した後(減圧再生工程)、
補助吸着塔の前方とCO・CO吸着塔の後方を連結して、大気圧のCO・CO吸着塔の後方と補助吸着塔の前方を連結して回収した水素をCO・CO吸着塔の後方へ移動させ、(残留水素回収工程2)、
その後、CO・CO吸着塔の圧力を上昇させ(昇圧工程)、
塔後方の水素回収を再開し、水蒸気改質ガスを供給するCO・CO吸着工程に戻ることを特長とする、水蒸気改質ガスから水素を分離する方法。
A CO / CO 2 adsorption process, a residual hydrogen recovery process 1 , a decompression regeneration process, a residual hydrogen recovery process 2 and a pressure increase process are performed in this order, and hydrogen is separated from the steam reformed gas by repeating these steps,
The adsorbent is filled in the order of H 2 S / organic sulfur selective adsorbent, moisture selective adsorbent, volatile organic compound (hereinafter referred to as VOC) / organic silicon selective adsorbent from the front, and CO in the rear. A wet steam reformed gas mainly composed of hydrogen with a pressure higher than atmospheric pressure is supplied to a CO / CO 2 adsorption tower packed with a CO 2 selective type adsorbent by a pressure regulator, and VOC, CO, CO 2 , H 2 S, organic sulfur, organic silicon, water is removed and hydrogen is recovered from the rear of the tower (CO · CO 2 adsorption step),
Before the hydrogen concentration is decreased to cut off the hydrogen recovery tower rear, by connecting the rear of the front and CO · CO 2 adsorption tower of the recovery of the auxiliary adsorption column was separately placed in the tower behind the path, the adsorption tower The remaining hydrogen in the dead volume and the dead volume in the CO / CO 2 adsorption layer are transferred to the auxiliary adsorption tower (residual hydrogen recovery step 1),
The connection between the front of the auxiliary adsorption tower and the rear of the CO / CO 2 adsorption tower is closed, and VOC, CO, CO adsorbed from the front of the CO / CO 2 adsorption tower at a pressure lower than atmospheric pressure by a vacuum pump / blower rotating machine. 2 , after exhausting H 2 S, organic sulfur, organic silicon, and moisture out of the system (reduced pressure regeneration step),
The front of the auxiliary adsorption tower and the rear of the CO / CO 2 adsorption tower are connected, the rear of the atmospheric CO / CO 2 adsorption tower and the front of the auxiliary adsorption tower are connected, and the recovered hydrogen is recovered in the CO / CO 2 adsorption tower. (Residual hydrogen recovery step 2),
Thereafter, the pressure of the CO / CO 2 adsorption tower is increased (pressure increase step),
A method for separating hydrogen from steam reformed gas, characterized by restarting hydrogen recovery at the rear of the tower and returning to the CO / CO 2 adsorption step for supplying steam reformed gas.
CO・CO吸着塔に充填するCO・CO選択型吸着剤として前方にシリカ/アルミナ比(モル/モル)が4より小さいLiイオン交換のX型ゼオライトが充填され、さらに、後方に、シリカ/アルミナ比(モル/モル)が3より小さいLiイオン交換のX型ゼオライトが充填される、請求項1に記載の方法。 As a CO / CO 2 selective adsorbent packed in the CO / CO 2 adsorption tower, a Li ion-exchanged X-type zeolite having a silica / alumina ratio (mol / mol) of less than 4 is packed in the front, and further in the rear. The method according to claim 1, wherein a lithium ion-exchanged X-type zeolite having a / alumina ratio (mol / mol) of less than 3 is packed. 補助吸着塔にCO・CO選択型吸着剤が充填されており、補助吸着塔に充填するCO・CO選択型吸着剤としてシリカ/アルミナ比(モル/モル)が4より小さいLiイオン交換のX型ゼオライトが使用される、請求項1または2に記載の方法。 The CO / CO 2 selective type adsorbent is packed in the auxiliary adsorption tower, and the Li / ion exchange ratio of the silica / alumina ratio (mol / mol) is less than 4 as the CO / CO 2 selective type adsorbent packed in the auxiliary adsorption tower. The process according to claim 1 or 2, wherein X-type zeolite is used. CO・CO吸着塔1搭と補助吸着塔1搭で実施することを特長とする、請求項1〜3のいずれか一つに記載の方法。 The method according to any one of claims 1 to 3, wherein the method is carried out with one CO / CO 2 adsorption tower and one auxiliary adsorption tower. CO・CO吸着塔5から上流および下流の各々に二股に分岐している流路を有するCO・CO吸着塔5を有し、
CO・CO吸着塔5から上流に二股に分岐している流路のうち一方にはバルブ4を介してさらに上流に二股に分岐している流路と連結し、
当該バルブ4を介してさらに上流に二股に分岐している流路のうち一方においてはバルブ14を介して外部と通じ、
当該バルブ4を介してさらに上流に二股に分岐している流路のうち上記とは別の流路の上流には、さらに上流にバルブ2を介して水蒸気改質ガスを供給する流路1を有する圧力調整装置3があり、
CO・CO吸着塔から上流に二股に分岐している流路のうち上記とは別の流路15はバルブ13を介してバルブ2の下流で流路1と接続し、
CO・CO吸着塔5から下流に二股に分岐している流路うち一方にはバルブ12を介して補助吸着塔6が接続され、
CO・CO吸着塔5から下流に二股に分岐している流路のうち上記とは別の流路にはバルブ8を介して水素を回収する容器9が接続され、
ここでCO・CO吸着塔5には、上流から順に、HS・有機硫黄選択型吸着剤51、水分選択型吸着剤52、VOC・有機ケイ素選択型吸着剤53およびCO・CO選択型吸着剤が充填されている、水蒸気改質ガスから水素を分離するための装置。
A CO / CO 2 adsorption tower 5 having a flow path bifurcated into upstream and downstream from the CO / CO 2 adsorption tower 5;
One of the channels bifurcated upstream from the CO / CO 2 adsorption tower 5 is connected to a channel bifurcated further upstream via the valve 4,
One of the flow paths branched into the upstream further through the valve 4 communicates with the outside through the valve 14.
A flow path 1 for supplying steam reformed gas via a valve 2 further upstream is provided upstream of a flow path that is bifurcated further upstream via the valve 4. A pressure regulating device 3 having
Of the flow paths bifurcated upstream from the CO / CO 2 adsorption tower, a flow path 15 different from the above is connected to the flow path 1 downstream of the valve 2 via the valve 13,
An auxiliary adsorption tower 6 is connected through a valve 12 to one of the channels bifurcated downstream from the CO / CO 2 adsorption tower 5.
A vessel 9 for recovering hydrogen is connected via a valve 8 to a channel different from the above among the channels bifurcated downstream from the CO / CO 2 adsorption tower 5.
Here, in the CO / CO 2 adsorption tower 5, the H 2 S / organic sulfur selective adsorbent 51, the moisture selective adsorbent 52, the VOC / organosilicon selective adsorbent 53 and the CO / CO 2 selective are sequentially selected from the upstream. An apparatus for separating hydrogen from steam reformed gas, filled with mold adsorbent.
CO・CO吸着塔に充填するCO・CO選択型吸着剤として前方にシリカ/アルミナ比(モル/モル)が4より小さいLiイオン交換のX型ゼオライトが充填され、さらに、後方に、シリカ/アルミナ比(モル/モル)が3より小さいLiイオン交換のX型ゼオライトが充填される、請求項5に記載の装置。 As a CO / CO 2 selective adsorbent packed in the CO / CO 2 adsorption tower, a Li ion-exchanged X-type zeolite having a silica / alumina ratio (mol / mol) of less than 4 is packed in the front, and further in the rear. 6. The apparatus according to claim 5, wherein the apparatus is filled with Li-ion exchanged X-type zeolite having a / alumina ratio (mol / mol) of less than 3. 補助吸着塔6にCO・CO選択型吸着剤73が充填されており、補助吸着塔6に充填するCO・CO選択型吸着剤としてシリカ/アルミナ比(モル/モル)が4より小さいLiイオン交換のX型ゼオライトが使用される、請求項5または6に記載の装置。 The auxiliary adsorption tower 6 and CO · CO 2 selective adsorbent 73 is filled, the silica / alumina ratio as CO · CO 2 selective adsorbent to be filled in the auxiliary adsorption column 6 (mol / mol) is less than 4 Li 7. An apparatus according to claim 5 or 6, wherein ion-exchanged X-type zeolite is used.
JP2016045842A 2016-03-09 2016-03-09 Method and apparatus for adsorptive separation of H2 from steam reformed gas containing H2, CO, CO2, H2O as main components Active JP6284563B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016045842A JP6284563B2 (en) 2016-03-09 2016-03-09 Method and apparatus for adsorptive separation of H2 from steam reformed gas containing H2, CO, CO2, H2O as main components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016045842A JP6284563B2 (en) 2016-03-09 2016-03-09 Method and apparatus for adsorptive separation of H2 from steam reformed gas containing H2, CO, CO2, H2O as main components

Publications (2)

Publication Number Publication Date
JP2017160084A JP2017160084A (en) 2017-09-14
JP6284563B2 true JP6284563B2 (en) 2018-02-28

Family

ID=59853855

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016045842A Active JP6284563B2 (en) 2016-03-09 2016-03-09 Method and apparatus for adsorptive separation of H2 from steam reformed gas containing H2, CO, CO2, H2O as main components

Country Status (1)

Country Link
JP (1) JP6284563B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6837023B2 (en) * 2018-03-02 2021-03-03 Jfeスチール株式会社 Gas separation method
JPWO2020196491A1 (en) * 2019-03-27 2020-10-01
WO2020196530A1 (en) * 2019-03-28 2020-10-01 Jxtgエネルギー株式会社 Hydrogen gas supply device and hydrogen gas supply method
JP2021186721A (en) 2020-05-28 2021-12-13 株式会社神戸製鋼所 Hydrogen gas supply device

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2981303B2 (en) * 1991-05-13 1999-11-22 東洋エンジニアリング株式会社 Method for separating gaseous impurities from gas mixtures
JPH10272332A (en) * 1997-03-31 1998-10-13 Nippon Sanso Kk Gas separation device and its operation method
AU2003252484A1 (en) * 2002-07-15 2004-02-02 Sumitomo Seika Chemicals Co., Ltd. Method for separating oxygen gas
JP2006016439A (en) * 2004-06-30 2006-01-19 Mitsubishi Heavy Ind Ltd Gas purification apparatus
JP2006161743A (en) * 2004-12-09 2006-06-22 Toyota Motor Corp Control device for vehicle
JP2009167233A (en) * 2008-01-11 2009-07-30 Kyuchaku Gijutsu Kogyo Kk Process for recovery and purification of methane from biofermentation gas utilizing adsorbent
JP2013154340A (en) * 2012-01-06 2013-08-15 Kyuchaku Gijutsu Kogyo Kk Method and apparatus for adsorption separation of oxygen and nitrogen from air

Also Published As

Publication number Publication date
JP2017160084A (en) 2017-09-14

Similar Documents

Publication Publication Date Title
KR100896455B1 (en) Pressure swing adsorption apparatus and method for hydrogen purification using the same
TWI521056B (en) Methane recovery method and methane recovery unit
JP5314408B2 (en) PSA equipment for high-purity hydrogen gas production
AU2008336265B2 (en) A plant and process for recovering carbon dioxide
JP6284563B2 (en) Method and apparatus for adsorptive separation of H2 from steam reformed gas containing H2, CO, CO2, H2O as main components
WO2008056579A1 (en) Hydrogen gas separation method and separation apparatus
US20110223100A1 (en) Production of hydrogen from a reforming gas and simultaneous capture of co2 co-product
WO2007055035A1 (en) Pressure fluctuation adsorption method and apparatus
JP6523134B2 (en) Hydrogen gas production method and hydrogen gas production apparatus
JP5743215B2 (en) Helium gas purification method and purification apparatus
JPWO2008047828A1 (en) Method and apparatus for separating hydrogen gas
TWI569864B (en) Purifying method and purifying apparatus for argon gas
JP6571588B2 (en) Hydrogen gas production method and hydrogen gas production apparatus
JP2011167629A (en) Method and apparatus for separating hydrogen gas
JP5846641B2 (en) Helium gas purification method and purification apparatus
JP3947752B2 (en) High purity hydrogen production method
JP4814024B2 (en) PSA equipment for high-purity hydrogen gas production
JP3985006B2 (en) High purity hydrogen production method
JP6163238B2 (en) Method for separating and obtaining oxygen from air by adsorption separation and apparatus therefor
JP5791113B2 (en) Argon gas purification method and purification apparatus
JP5875111B2 (en) Method and apparatus for separating and recovering carbon monoxide
JP6114341B2 (en) Method and apparatus for adsorptive separation of CH4 from biogas
AU2021377152B2 (en) A process and plant for producing ultrahigh-purity hydrogen from low-grade hydrogen gas
JP5761751B2 (en) Argon gas purification method and purification apparatus
JP2018177567A (en) Hydrogen gas purifier, and operation method of hydrogen gas purifier

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170925

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20171206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180124

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180130

R150 Certificate of patent or registration of utility model

Ref document number: 6284563

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250