JP6837023B2 - Gas separation method - Google Patents

Gas separation method Download PDF

Info

Publication number
JP6837023B2
JP6837023B2 JP2018037893A JP2018037893A JP6837023B2 JP 6837023 B2 JP6837023 B2 JP 6837023B2 JP 2018037893 A JP2018037893 A JP 2018037893A JP 2018037893 A JP2018037893 A JP 2018037893A JP 6837023 B2 JP6837023 B2 JP 6837023B2
Authority
JP
Japan
Prior art keywords
gas
water
adsorption
adsorbent
kpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2018037893A
Other languages
Japanese (ja)
Other versions
JP2019150768A (en
Inventor
たかし 原岡
たかし 原岡
伸行 紫垣
伸行 紫垣
茂木 康弘
康弘 茂木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Kobe Steel Ltd
Nippon Steel Corp
Nippon Steel Engineering Co Ltd
Original Assignee
JFE Steel Corp
Kobe Steel Ltd
Nippon Steel Corp
Nippon Steel Engineering Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp, Kobe Steel Ltd, Nippon Steel Corp, Nippon Steel Engineering Co Ltd filed Critical JFE Steel Corp
Priority to JP2018037893A priority Critical patent/JP6837023B2/en
Publication of JP2019150768A publication Critical patent/JP2019150768A/en
Application granted granted Critical
Publication of JP6837023B2 publication Critical patent/JP6837023B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、ガス分離方法に関する。 The present invention relates to a gas separation method.

製鉄所においては、コークス炉、高炉、転炉等の設備から副生ガスと呼ばれるガスが発生する。この副生ガスには、水素(以下、「H2」とも言う。)、一酸化炭素(以下、「CO」とも言う。)、メタン(以下、「CH4」とも言う。)といった燃料として利用可能な成分のほかに、窒素(以下、「N2」とも言う。)、二酸化炭素(以下、「CO2」とも言う。)が含有されている。特に、高炉炉頂から排出される高炉ガスは、体積では製鉄所から排出される副生ガスの8割を占めるとともに、製鉄所から排出されるCO2の約4割がここに含まれている。 At steelworks, gas called by-product gas is generated from equipment such as coke ovens, blast furnaces, and converters. This by-product gas is used as a fuel for hydrogen (hereinafter, also referred to as "H 2 "), carbon monoxide (hereinafter, also referred to as "CO"), and methane (hereinafter, also referred to as "CH 4"). In addition to the possible components, nitrogen (hereinafter, also referred to as "N 2 ") and carbon dioxide (hereinafter, also referred to as "CO 2 ") are contained. In particular, the blast furnace gas discharged from the top of the blast furnace accounts for 80% of the by-product gas discharged from the steelworks in terms of volume, and about 40% of the CO 2 discharged from the steelworks is included here. ..

最近のCO2排出削減の要請から、CO2を分離回収する技術の開発が多方面で行われており、化学吸収法を筆頭として様々な手法が提案されている。その中でも圧力スイング吸着法(以下、「PSA法」とも言う。)は、分離回収に要する動力が比較的小さいこと、化学反応を利用した方法と異なり常温での運転が可能な場合が多いこと、時間当たりで数千Nm3程度の比較的大規模なガス処理も可能であることから、有用な技術の一つである(例えば、特許文献1参照)。 In response to recent demands for reduction of CO 2 emissions, technologies for separating and recovering CO 2 have been developed in various fields, and various methods have been proposed, including the chemical absorption method. Among them, the pressure swing adsorption method (hereinafter, also referred to as "PSA method") requires relatively small power for separation and recovery, and unlike the method using a chemical reaction, it can often be operated at room temperature. It is one of the useful techniques because it can process gas on a relatively large scale of about several thousand Nm 3 per hour (see, for example, Patent Document 1).

PSA法は、活性炭やゼオライトといった、上記のガス成分に対してそれぞれ異なる吸着性能を有する材料(吸着剤)を充填した吸着塔に、原料ガスを導入することにより、吸着剤に比較的吸着しやすいガス成分(通常複数のガス種である)と、比較的吸着しづらいガス成分(これも通常複数のガス種である)とを分離する方法である。通常は、原料ガスの導入を所定時間行うことによって、原料ガス中の吸着しやすいガス成分を吸着剤に吸着させ(以下、「吸着工程」と言う。)、その後に、上記のガス導入時よりも吸着塔内を減圧することによって吸着したガス成分を脱着させて回収するとともに、吸着剤のガス吸着性能の再生を行うこと(以下、「脱着工程」と言う。)により、ガスの分離操作を繰り返すことが可能となる。 The PSA method is relatively easy to adsorb to the adsorbent by introducing the raw material gas into an adsorption tower filled with materials (adsorbents) that have different adsorption performances for the above gas components such as activated carbon and zeolite. This is a method of separating a gas component (usually a plurality of gas types) and a gas component (which is also usually a plurality of gas types) that are relatively difficult to adsorb. Normally, by introducing the raw material gas for a predetermined time, the easily adsorbed gas component in the raw material gas is adsorbed on the adsorbent (hereinafter referred to as "adsorption step"), and then from the time of introducing the above gas. By depressurizing the inside of the adsorption tower to desorb and recover the adsorbed gas component, and to regenerate the gas adsorption performance of the adsorbent (hereinafter referred to as "desorption step"), the gas separation operation is performed. It can be repeated.

ここで、分離したい原料ガスに含まれるガス成分の吸着剤への吸着性能にあまり差がない場合、例えば同じガス分圧での吸着量が数十倍程度の差しかない場合には、分離されたガスも、先述のように複数種のガス成分を含む混合ガスであることが多い。このため、高炉ガスを活性炭やゼオライトを吸着剤として用いてガス成分毎に分離させると、CO2を主成分として、COやN2も多少含んだガスと、それ以外のガスに分離される。 Here, when there is not much difference in the adsorption performance of the gas component contained in the raw material gas to be separated to the adsorbent, for example, when the adsorption amount at the same gas partial pressure is only about several tens of times different, the gas is separated. As described above, the gas is often a mixed gas containing a plurality of types of gas components. Therefore, when the blast furnace gas is separated into gas components using activated carbon or zeolite as an adsorbent, it is separated into a gas containing CO 2 as a main component and a small amount of CO and N 2 and other gases.

そのため、吸着工程と脱着工程の間に、脱着工程で得られたCO2ガス濃度の高いガスの一部を吸着塔に導入して、吸着剤に吸着したCOやN2を脱着させることによって、これらの成分を減少させる工程(以下、「洗浄工程」と言う。)を行うこともある。 Therefore, between the adsorption step and the desorption step, a part of the gas having a high CO 2 gas concentration obtained in the desorption step is introduced into the adsorption tower to desorb the CO and N 2 adsorbed on the adsorbent. A step of reducing these components (hereinafter referred to as "cleaning step") may be performed.

特許第5069087号公報Japanese Patent No. 5069087

ところで、高炉炉頂から排出された状態の高炉ガスは、ダスト等を含んでいるため、高炉ガスに対して湿式除塵を行ってダスト等を除去している。そのため、除塵された高炉ガスは多量の水分を含んでおり、その湿度はほぼ100%(露点=ガスの温度)である。 By the way, since the blast furnace gas discharged from the top of the blast furnace contains dust and the like, wet dust removal is performed on the blast furnace gas to remove the dust and the like. Therefore, the dust-removed blast furnace gas contains a large amount of water, and its humidity is almost 100% (dew point = gas temperature).

しかし、吸着剤として、CO2に対して高い吸着能力を有するゼオライトを使用する場合、ゼオライトは水分によりCO2を吸着する能力が低下することが多い。そのため、従来のガス分離方法においては、吸着塔に高炉ガスを導入するに先立って、高度の除湿(例えば、露点:−60℃)を行っている。 However, when a zeolite having a high ability to adsorb CO 2 is used as an adsorbent, the ability of the zeolite to adsorb CO 2 is often reduced by water. Therefore, in the conventional gas separation method, a high degree of dehumidification (for example, dew point: −60 ° C.) is performed prior to introducing the blast furnace gas into the adsorption tower.

上記高炉ガスの除湿に要する動力は、ガス分離全体に要する動力の比較的大きな割合を占めており、その削減が課題となっている。上述のように、原料ガスの高度な除湿は、ゼオライトが水分を含むことによりCO2を吸着する能力が低下するのを防止するためである。一方、動力削減のために除湿の程度を低下させ、これによってゼオライトがCO2を吸着する能力が低下して、脱着ガスのCO2濃度や量(回収量)、必要動力といったPSAとしての性能が低下するのは好ましくない。 The power required for dehumidifying the blast furnace gas accounts for a relatively large proportion of the power required for the entire gas separation, and its reduction is an issue. As described above, the advanced dehumidification of the raw material gas is to prevent the zeolite from decreasing its ability to adsorb CO 2 due to the inclusion of water. On the other hand, the degree of dehumidification is reduced to reduce power, which reduces the ability of zeolite to adsorb CO 2 , resulting in PSA performance such as CO 2 concentration and amount (recovery amount) of desorbed gas and required power. It is not desirable to decrease.

そこで本発明の目的は、除湿の程度を緩和すると同時に、PSAとしての性能を維持することを両立するガス分離方法を提案することにある。 Therefore, an object of the present invention is to propose a gas separation method that can alleviate the degree of dehumidification and at the same time maintain the performance as PSA.

上記課題を解決する本発明の要旨構成は以下の通りである。すなわち、
(1)水分を含み、かつ、少なくとも2種類以上のガス成分からなる混合ガスを吸着剤が充填された吸着塔に導入して、混合ガスに含まれる所定のガス成分を前記吸着剤に吸着させる所定ガス吸着工程と、吸着塔内の圧力を前記所定ガス吸着工程に比べて低減させることで前記吸着剤に吸着した所定のガス成分を脱着させる所定ガス脱着工程とを含む複数の工程から構成されるとともに、前記吸着剤が、水分に対する所定の温度での吸脱着等温線の測定において気相の水分分圧を増加させて測られる水分吸着等温線と、気相の水分分圧を低減させて測られる水分脱着等温線との間にヒステリシスを有する吸着剤である、混合ガス分離方法において、
前記混合ガス中の水分量を、前記水分脱着等温線において水分分圧がゼロまで低減させたときの水分吸着量に相当する、前記水分吸着等温線における水分分圧以下となるように制御することを特徴とする、混合ガスの分離方法。
The gist structure of the present invention for solving the above problems is as follows. That is,
(1) A mixed gas containing water and composed of at least two types of gas components is introduced into an adsorption tower filled with an adsorbent, and a predetermined gas component contained in the mixed gas is adsorbed on the adsorbent. It is composed of a plurality of steps including a predetermined gas adsorption step and a predetermined gas desorption step of desorbing a predetermined gas component adsorbed on the adsorbent by reducing the pressure in the adsorption tower as compared with the predetermined gas adsorption step. At the same time, the adsorbent reduces the water adsorption isotherm measured by increasing the water partial pressure of the gas phase and the water partial pressure of the gas phase in the measurement of the adsorption isotherm of water at a predetermined temperature. In the mixed gas separation method, which is an adsorbent having hysteresis between the measured moisture desorption isotherm and the temperature line.
The amount of water in the mixed gas is controlled to be equal to or less than the water partial pressure in the water adsorption isotherm, which corresponds to the amount of water adsorbed when the water partial pressure is reduced to zero in the water desorption isotherm. A method for separating a mixed gas, which comprises.

(2)前記所定ガス脱着工程における前記吸着塔内の到達圧力の下限値を5kPaとする、前記(1)に記載のガス分離方法。 (2) The gas separation method according to (1) above, wherein the lower limit of the ultimate pressure in the adsorption tower in the predetermined gas desorption step is 5 kPa.

(3)前記吸着剤はゼオライトである、前記(1)または(2)に記載のガス分離方法。 (3) The gas separation method according to (1) or (2) above, wherein the adsorbent is zeolite.

(4)前記所定ガス吸着工程において、水分の分圧が0.06kPa以上0.16kPa以下である原料ガスを前記吸着塔に導入する、前記(3)に記載のガス分離方法。 (4) The gas separation method according to (3) above, wherein in the predetermined gas adsorption step, a raw material gas having a partial pressure of water of 0.06 kPa or more and 0.16 kPa or less is introduced into the adsorption tower.

(5)前記所定ガス吸着工程において、水分の分圧が0.06kPa以上0.15kPa以下である原料ガスを前記吸着塔に導入する、前記(4)に記載のガス分離方法。 (5) The gas separation method according to (4) above, wherein in the predetermined gas adsorption step, a raw material gas having a partial pressure of water of 0.06 kPa or more and 0.15 kPa or less is introduced into the adsorption tower.

本発明によれば、水分を含む原料ガスを、水分によって影響を受ける吸着剤を用いて分離する方法において、所定ガスの分離に対する効率を下げることなく、原料ガス水分の除湿動力を削減することができる。 According to the present invention, in a method of separating a raw material gas containing water using an adsorbent affected by water, it is possible to reduce the dehumidifying power of the raw material gas water without lowering the efficiency for separating a predetermined gas. it can.

吸着塔内のガスの圧力と吸着剤へのガス成分の吸着量との関係を示す図である。It is a figure which shows the relationship between the pressure of a gas in an adsorption tower, and the amount of a gas component adsorbed on an adsorbent. 吸着塔内のガスの圧力と吸着剤へのガス成分の吸着量との関係を示す図である。It is a figure which shows the relationship between the pressure of a gas in an adsorption tower, and the amount of a gas component adsorbed on an adsorbent. 吸着剤への水分吸着量と吸着剤へのCO2の吸着量との関係を示す図である。It is a figure which shows the relationship between the amount of water adsorbed by an adsorbent and the amount of CO 2 adsorbed by an adsorbent. 吸着剤への水分吸着量と吸着剤へのN2の吸着量との関係を示す図である。It is a figure which shows the relationship between the amount of water adsorbed by an adsorbent and the amount of N 2 adsorbed by an adsorbent. 吸着工程におけるガスの圧力を101kPa、脱着工程におけるガスの圧力を0kPaとした場合の、吸着剤への水分吸着量とCO2およびN2の有効吸着量との関係を示す図である。It is a figure which shows the relationship between the amount of water adsorbed to the adsorbent and the effective adsorbed amount of CO 2 and N 2 when the pressure of the gas in the adsorption process is 101 kPa and the pressure of the gas in a desorption step is 0 kPa. 吸着工程におけるガスの圧力を101kPa、脱着工程におけるガスの圧力を5kPaとした場合の、吸着剤への水分吸着量とCO2およびN2の有効吸着量との関係を示す図である。It is a figure which shows the relationship between the amount of water adsorbed to the adsorbent and the effective adsorbed amount of CO 2 and N 2 when the pressure of the gas in the adsorption process is 101 kPa and the pressure of the gas in a desorption step is 5 kPa. 吸着剤への水分吸着量と脱着ガスのCO2濃度および脱着ガスでのCO2の回収率を示す図である。It is a figure which shows the amount of moisture adsorbed to an adsorbent, the CO 2 concentration of a desorption gas, and the recovery rate of CO 2 by a desorption gas. 水分の分圧と吸着剤への水分吸着量との関係を示す図である。It is a figure which shows the relationship between the partial pressure of water, and the amount of water adsorbed on an adsorbent. 実施例に用いたガス分離試験装置を示す図である。It is a figure which shows the gas separation test apparatus used in an Example.

以下、図面を参照して、本発明の実施形態について説明する。本発明によるガス分離方法は、水分を含み、かつ、少なくとも2種類以上のガス成分からなる混合ガスを吸着剤が充填された吸着塔に導入して、混合ガスに含まれる所定のガス成分を吸着剤に吸着させる所定ガス吸着工程と、吸着塔内の圧力を上記所定ガス吸着工程に比べて低減させることで吸着剤に吸着した所定のガス成分を脱着させる所定ガス脱着工程とを含む複数の工程から構成されるとともに、上記吸着剤が、水分に対する所定の温度での吸脱着等温線の測定において気相の水分分圧を増加させて測られる水分吸着等温線と、気相の水分分圧を低減させて測られる水分脱着等温線との間にヒステリシスを有する吸着剤である、混合ガス分離方法である。ここで、上記混合ガス中の水分量を、水分脱着等温線において水分分圧がゼロまで低減させたときの水分吸着量に相当する、水分吸着等温線における水分分圧以下となるように制御することを特徴とする。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the gas separation method according to the present invention, a mixed gas containing water and composed of at least two types of gas components is introduced into an adsorption tower filled with an adsorbent to adsorb a predetermined gas component contained in the mixed gas. A plurality of steps including a predetermined gas adsorption step of adsorbing to the agent and a predetermined gas desorption step of desorbing a predetermined gas component adsorbed on the adsorbent by reducing the pressure in the adsorption tower as compared with the above-mentioned predetermined gas adsorption step. The adsorbent is composed of a water adsorption isotherm measured by increasing the water partial pressure of the gas phase in the measurement of the adsorption and desorption isotherm of water at a predetermined temperature, and the water partial pressure of the gas phase. It is a mixed gas separation method which is an adsorbent having hysteresis between it and the moisture desorption isotherm measured by reducing it. Here, the amount of water in the mixed gas is controlled to be equal to or less than the water partial pressure in the water adsorption isotherm, which corresponds to the amount of water adsorbed when the water partial pressure is reduced to zero in the water desorption isotherm. It is characterized by that.

本発明者らは、ガス分離に要する動力を削減する方途について検討する中で、吸着剤に吸着する水分量がガス分離に与える影響について詳細に調査した。その結果、従来、水分に弱いと考えられていた吸着剤(例えば、ゼオライト)であっても、吸着する水分量を適切に管理することにより、水分の含む原料ガスの除湿の程度を抑えるとともに、ガス分離性能を維持できることを発見した。以下、この発見に至った知見について説明する。 The present inventors investigated in detail the effect of the amount of water adsorbed on the adsorbent on gas separation while investigating ways to reduce the power required for gas separation. As a result, even if the adsorbent (for example, zeolite) is conventionally considered to be sensitive to water, by appropriately controlling the amount of water adsorbed, the degree of dehumidification of the raw material gas containing water can be suppressed and the degree of dehumidification can be suppressed. It was discovered that the gas separation performance can be maintained. The findings that led to this discovery will be described below.

まず、図1はCO2とN2の各々単成分のガスの圧力と吸着剤(ゼオライト)へのガス成分の吸着量との関係を示している。なお、吸着剤へのガス成分の吸着量は、吸着剤1gに対する値である。この図に示すように、吸着剤へのCO2の吸着量は、0kPaからの圧力の増加とともに急激に増大し、ある程度吸着すると、それ以上に圧力が増加してもCO2の吸着量はあまり増加しない。こうしたことから、ゼオライトには、CO2が吸着しやすいサイト(以下、「強吸着サイト」とも言う。)と、吸着しにくいサイト(以下、「弱吸着サイト」とも言う。)が存在すると考えられる。 First, FIG. 1 shows the relationship between the gas pressure of each single component of CO 2 and N 2 and the amount of the gas component adsorbed on the adsorbent (zeolite). The amount of the gas component adsorbed on the adsorbent is a value with respect to 1 g of the adsorbent. As shown in this figure, the amount of CO 2 adsorbed on the adsorbent increases sharply with the increase in pressure from 0 kPa, and after adsorbing to some extent, the amount of CO 2 adsorbed is not so large even if the pressure increases further. Does not increase. From these facts, it is considered that zeolite has a site where CO 2 is easily adsorbed (hereinafter, also referred to as “strong adsorption site”) and a site where CO 2 is hard to be adsorbed (hereinafter, also referred to as “weak adsorption site”). ..

これに対して、吸着剤へのN2の吸着量は圧力にほぼ比例して増加し(図4も参照)、またCO2に比べて極めて小さい。例えば、ガスの圧力が100kPaの場合には、吸着剤へのCO2の吸着量は5.5mmolであるのに対して、N2の吸着量は0.4mmolである。その結果、吸着工程において、例えば吸着工程における吸着塔内の圧力を101kPaまで昇圧してCO2およびN2を吸着剤に吸着させ、脱着工程において、吸着塔内の圧力を0kPaまで減圧してCO2およびN2を吸着剤から脱着させると、脱着ガスのCO2濃度は、単成分の吸着等温線からの単純計算では5.5/(5.5+0.4)=93.2%と想定される。 On the other hand, the amount of N 2 adsorbed on the adsorbent increases almost in proportion to the pressure (see also FIG. 4), and is extremely small compared to CO 2. For example, when the gas pressure is 100 kPa, the amount of CO 2 adsorbed on the adsorbent is 5.5 mmol, whereas the amount of N 2 adsorbed is 0.4 mmol. As a result, in the adsorption step, for example, the pressure in the adsorption tower in the adsorption step is increased to 101 kPa to adsorb CO 2 and N 2 to the adsorbent, and in the desorption step, the pressure in the adsorption tower is reduced to 0 kPa to reduce CO. When 2 and N 2 are desorbed from the adsorbent, the CO 2 concentration of the desorbed gas is assumed to be 5.5 / (5.5 + 0.4) = 93.2% by simple calculation from the adsorption isotherm of a single component. To.

ところで、脱着工程において、先述のように吸着塔内の圧力を0kPa近くにまで減圧するためには、極めて多くの動力や時間を要する。そのため、実際のガス分離においては、数kPa(例えば、5kPa)までの減圧に留める場合が多い。例えば、吸着工程において101kPaの圧力でCO2およびN2を吸着剤に吸着させ、脱着工程において吸着塔内を5kPaまで減圧してCO2ガスおよびN2ガスを脱着させる場合には、吸着剤への吸着量は、図2に示すように、CO2ガスは2.6mmol、N2ガスは0.4mmolとなる。このような、実際の分離工程で使用される、吸着工程におけるガスの圧力での吸着量と減圧工程におけるガスの圧力での吸着量の差は、「有効吸着量」と呼ばれる。上述の場合、排気された脱着ガスのCO2濃度は、2.6/(2.6+0.4)=86.7%となる。 By the way, in the desorption step, in order to reduce the pressure in the adsorption tower to near 0 kPa as described above, an extremely large amount of power and time are required. Therefore, in actual gas separation, the pressure reduction is often limited to several kPa (for example, 5 kPa). For example, when CO 2 and N 2 are adsorbed on an adsorbent at a pressure of 101 kPa in the adsorption step, and the inside of the adsorption tower is reduced to 5 kPa in the desorption step to desorb CO 2 gas and N 2 gas, the adsorbent is used. As shown in FIG. 2, the adsorption amount of CO 2 gas is 2.6 mmol and that of N 2 gas is 0.4 mmol. The difference between the amount of gas adsorbed at the pressure of the gas in the adsorption step and the amount of gas adsorbed at the pressure of the gas in the depressurization step, which is used in the actual separation step, is called "effective adsorption amount". In the above case, the CO 2 concentration of the exhausted desorbed gas is 2.6 / (2.6 + 0.4) = 86.7%.

ところで、先述したように原料ガスに水分が含まれるとともに、使用される吸着剤がゼオライトのような、いわゆる「水分に弱い」とされる吸着剤を使う場合には、原料ガスを除湿しなくてはならず、その除湿の程度を決めるには吸着剤への水分の影響を確認する必要がある。 By the way, as described above, when the raw material gas contains water and the adsorbent used is a so-called "moisture-sensitive" adsorbent such as zeolite, the raw material gas must be dehumidified. In order to determine the degree of dehumidification, it is necessary to confirm the effect of water on the adsorbent.

図3および図4は、水分を吸着させたゼオライトの、CO2およびN2の分圧と吸着量との関係を示している。なお、吸着剤への水分吸着は、乾燥した吸着剤を吸着塔に導入し、吸着塔内に水蒸気を含むガスを導入することで行い、水分吸着前後の重量増の乾燥吸着剤の重量比を水分吸着量とした。 3 and 4 show the relationship between the partial pressure of CO 2 and N 2 and the amount of adsorption of the zeolite on which water is adsorbed. Moisture adsorption to the adsorbent is performed by introducing a dry adsorbent into the adsorption tower and introducing a gas containing water vapor into the adsorption tower to increase the weight ratio of the dry adsorbent before and after water adsorption. The amount of water adsorbed was used.

図3および図4から明らかなように、吸着水分量が増加すると、CO2およびN2吸着量は減少する。図5は、吸着工程におけるガスの圧力を101kPa、脱着工程におけるガスの圧力を0kPa(以下、「圧力スイングの圧力範囲が0〜101kPa」とも表記する。)とした場合の、吸着剤への水分吸着量とCO2およびN2の有効吸着量との関係を示している。この図から明らかなように、CO2およびN2のいずれの場合についても、有効吸着量は吸着剤への水分吸着量とともに減少する。 As is clear from FIGS. 3 and 4, as the amount of adsorbed water increases, the amount of CO 2 and N 2 adsorbed decreases. FIG. 5 shows the water content to the adsorbent when the gas pressure in the adsorption step is 101 kPa and the gas pressure in the desorption step is 0 kPa (hereinafter, also referred to as “pressure swing pressure range is 0 to 101 kPa”). The relationship between the adsorption amount and the effective adsorption amount of CO 2 and N 2 is shown. As is clear from this figure , in both cases of CO 2 and N 2 , the effective adsorption amount decreases with the amount of water adsorbed on the adsorbent.

しかしながら、本発明者らが図3に示されたCO2の吸着量を詳細に検討した結果、脱着工程において吸着塔内の圧力を0kPaまで減圧せず、上述のように、例えば5kPaまでの減圧に留める場合には、CO2の有効吸着量は、水分吸着量が増加してもさほど変わらないことが判明した。吸着工程におけるガスの圧力を101kPa、脱着工程におけるガスの圧力を5kPa(以下、「圧力スイングの圧力範囲が5〜101kPa」とも表記する。)とした場合には、図6に示すように、CO2の有効吸着量は水分吸着量が増加しても変化せず、ほぼ一定であるのに対して、N2の有効吸着量は、水分吸着量が多いほど少なくなる。 However, as a result of detailed examination of the amount of CO 2 adsorbed shown in FIG. 3, the present inventors did not reduce the pressure in the adsorption tower to 0 kPa in the desorption step, but as described above, for example, reduced the pressure to 5 kPa. It was found that the effective adsorption amount of CO 2 does not change so much even if the water adsorption amount increases. When the pressure of the gas in the adsorption step is 101 kPa and the pressure of the gas in the desorption step is 5 kPa (hereinafter, also referred to as "the pressure range of the pressure swing is 5 to 101 kPa"), CO The effective adsorption amount of 2 does not change even if the water adsorption amount increases and is almost constant, whereas the effective adsorption amount of N 2 decreases as the water adsorption amount increases.

そこで、本発明者らは水分を吸着させた吸着剤を使用してPSA運転を行い、製鉄所における高炉ガスを模した混合ガスからのガス分離試験を行った。試験の詳細条件は後述する。 Therefore, the present inventors performed a PSA operation using an adsorbent that adsorbed water, and conducted a gas separation test from a mixed gas that imitated a blast furnace gas at a steel mill. The detailed conditions of the test will be described later.

図7は、吸着剤への水分吸着量と脱着ガスのCO2濃度および脱着ガスでのCO2の回収率を示している。なお、吸着剤としてはゼオライトを使用しており、圧力スイングの圧力範囲は5〜101kPaである。この図に示すように、吸着剤への水分吸着量が0g/g−吸着剤超え0.14g/g−吸着剤までの場合には、吸着剤が水分を含まない場合に比べて、脱着ガスのCO2濃度が高いことが分かる。また、吸着剤への水分吸着量が0.3g/g−吸着剤以上0.14g/g−吸着剤までの場合には、脱着ガスのCO2濃度が91%を超えるばかりでなく、吸着剤が水分を含まない場合に比べてCO2の回収率も向上することが分かる。 FIG. 7 shows the amount of water adsorbed on the adsorbent, the CO 2 concentration of the desorbed gas, and the CO 2 recovery rate of the desorbed gas. Zeolite is used as the adsorbent, and the pressure range of the pressure swing is 5 to 101 kPa. As shown in this figure, when the amount of water adsorbed on the adsorbent exceeds 0 g / g-adsorbent and reaches 0.14 g / g-adsorbent, the desorbing gas is compared with the case where the adsorbent does not contain water. It can be seen that the CO 2 concentration of is high. When the amount of water adsorbed on the adsorbent is 0.3 g / g-adsorbent or more and 0.14 g / g-adsorbent , not only the CO 2 concentration of the desorbed gas exceeds 91%, but also the adsorbent. It can be seen that the CO 2 recovery rate is also improved as compared with the case where the gas does not contain water.

このように、従来は、ゼオライトに含まれる水分によってCO2の吸着量が低減するため、ゼオライトに含まれる水分は少ないほどよいと考えられており、原料ガスを高度に除湿していた。しかし、本発明者らの詳細な検討の結果、脱着工程において、吸着塔内の圧力を0kPaまで減圧せず、例えば5kPaまでの減圧に留める場合には、CO2の有効吸着量は、水分吸着量が増加しても変化せず、ほぼ一定となること、N2の有効吸着量は、水分吸着量の増加とともに減少することが判明した。その結果、水分を含む原料ガスを分離する際に、原料ガスの除湿の程度を適切な範囲で管理することによって、除湿を緩和すると同時に、CO2濃度やCO2の回収率といった分離性能を維持することが可能であると判明したのである。 As described above, conventionally, since the amount of CO 2 adsorbed is reduced by the water contained in the zeolite, it is considered that the smaller the water contained in the zeolite, the better, and the raw material gas has been highly dehumidified. However, as a result of detailed studies by the present inventors, in the desorption step, when the pressure in the adsorption tower is not reduced to 0 kPa, but is limited to, for example, 5 kPa, the effective adsorption amount of CO 2 is the adsorption amount of water. It was found that the amount did not change even when the amount increased and became almost constant, and that the effective adsorption amount of N 2 decreased as the amount of water adsorbed increased. As a result, when separating the raw material gas containing water, the degree of dehumidification of the raw material gas is controlled within an appropriate range to alleviate the dehumidification and at the same time maintain the separation performance such as CO 2 concentration and CO 2 recovery rate. It turned out that it was possible to do so.

こうした吸着剤への水分吸着量を適正範囲に管理することにより、CO2濃度が向上する機構については、必ずしも明らかではないが、本発明者らは以下のように考えている。すなわち、図8は、気相の水分分圧と吸着剤への水分吸着量との関係(吸脱着曲線)を示している。なお、測定温度は25℃であり、吸着剤としてはゼオライトを用いた。 The mechanism by which the CO 2 concentration is improved by controlling the amount of water adsorbed on the adsorbent within an appropriate range is not necessarily clear, but the present inventors consider it as follows. That is, FIG. 8 shows the relationship (adsorption / desorption curve) between the partial pressure of water in the gas phase and the amount of water adsorbed on the adsorbent. The measurement temperature was 25 ° C., and zeolite was used as the adsorbent.

図8における水分吸着段階(実線)での水分吸着量を見ると、CO2と同様に、水分の圧力の低い領域で吸着量が急増し、水分がある程度吸着すると、圧力を上げても吸着量はあまり増加しないことが分かる。一方、水分脱着段階(点線)での水分吸着量を見ると、水分分圧の高い領域では圧力を下げても吸着量はあまり減少しないが、圧力が0kPaに近くなると急激に減少することが分かる。しかし、圧力が0kPa近くまで減圧しても、全ての水分が完全に脱着しきらず、吸着剤に残ることが分かる。 Looking at the amount of water adsorbed at the water adsorption stage (solid line) in FIG. 8, as with CO 2 , the amount of water adsorbed rapidly increases in the region where the pressure of water is low, and when water is adsorbed to some extent, the amount of water adsorbed even if the pressure is increased. It can be seen that does not increase much. On the other hand, looking at the amount of water adsorbed at the water desorption stage (dotted line), it can be seen that the amount of water adsorbed does not decrease much even if the pressure is lowered in the region where the partial pressure of water is high, but it decreases sharply when the pressure approaches 0 kPa. .. However, it can be seen that even if the pressure is reduced to near 0 kPa, all the water is not completely desorbed and remains in the adsorbent.

本発明者らは、上記水分脱着段階において吸着剤に残った水分こそが、吸着剤の強吸着サイトに吸着した水分ではないかと考えた。この水分はサイトに強く吸着するため、図5における低圧領域でのCO2吸着を阻害する。一方で、ガス分離操作において圧力スイングの範囲が5〜101kPaの場合にはCO2の吸脱着に使用されるサイトは、前述のようにどちらかと言えば弱吸着サイトと考えられる。すなわち、水分の吸着が強吸着サイトに留まっていれば、5〜101kPaでのCO2の吸脱着に対する影響は少なく、有効吸着量も変化しない結果となったと考えられる。 The present inventors considered that the water remaining in the adsorbent at the water desorption stage was the water adsorbed on the strong adsorption site of the adsorbent. Since this water is strongly adsorbed on the site, it inhibits CO 2 adsorption in the low pressure region shown in FIG. On the other hand, when the pressure swing range is 5 to 101 kPa in the gas separation operation, the site used for CO 2 adsorption / desorption is considered to be a rather weak adsorption site as described above. That is, it is considered that if the adsorption of water remains at the strong adsorption site, the effect on the adsorption and desorption of CO 2 at 5 to 101 kPa is small, and the effective adsorption amount does not change.

図8に示した吸脱着等温線においては、水分脱着等温線における0Pa(吸脱着測定装置で使用される真空ポンプの平均的な到達減圧)での水分吸着量Wは、吸着剤1gに対して0.14gであり、これに対応する、水分吸着等温線の水分分圧Pは0.18kPaである。よって、吸着剤がゼオライトの場合には、吸着工程において、原料ガスに含まれる水分の分圧を0.18kPa以下とすることによって、5〜101kPaでのCO2の吸脱着に対する影響は小さくすることができる。 In the adsorption / desorption isotherm shown in FIG. 8, the amount of water adsorbed W at 0 Pa (average reached depressurization of the vacuum pump used in the adsorption / desorption measuring device) in the moisture desorption isotherm is relative to 1 g of the adsorbent. It is 0.14 g, and the corresponding water partial pressure P of the water adsorption isotherm is 0.18 kPa. Therefore, when the adsorbent is zeolite, the influence on the adsorption and desorption of CO 2 at 5 to 101 kPa should be reduced by setting the partial pressure of the water contained in the raw material gas to 0.18 kPa or less in the adsorption step. Can be done.

以上、ゼオライトを吸着剤として用いたCO2の分離を例として説明したが、本発明はこれに限定されず、水分の吸着に対して、図8に示したヒステリシスを示すような吸着剤を用いたガス分離についても拡張できることは明らかである。よって、吸着剤はゼオライトに限定されず、例えば、アルミナ、シリカゲル、活性炭等を用いることができる。原料ガスを高炉ガスのような製鉄所副生ガスとした場合には、吸着剤にはCO2と他のガスとの吸着量の差が比較的大きいゼオライトを用いることが好ましい。 Although the separation of CO 2 using zeolite as an adsorbent has been described above as an example, the present invention is not limited to this, and an adsorbent having the hysteresis shown in FIG. 8 is used for adsorbing water. It is clear that the gas separation that was present can also be expanded. Therefore, the adsorbent is not limited to zeolite, and for example, alumina, silica gel, activated carbon, or the like can be used. When the raw material gas is a by-product gas of a steel mill such as a blast furnace gas, it is preferable to use zeolite as an adsorbent, which has a relatively large difference in the amount of adsorption between CO 2 and other gases.

高炉ガスを原料混合ガスとし、吸着剤にゼオライト(例:Na−13X型ゼオライト)を用いた場合、原料混合ガスを、吸着剤を充填した吸着塔に流通させる前に除湿を行い、ガスに含まれる水分の分圧を0.01kPa(露点−45℃相当)から0.6kPa(露点0℃相当)の範囲内とするのが好ましい。また、除湿方法は特に指定するものではないが、冷却水等によるガス冷却による凝縮と水分を吸着する剤による吸着による方法の組合せが好適である。分圧が0.01kPaとする場合には除湿に必要な動力が大きくなる他、より除湿能力の高い除湿装置が必要になる。また、分圧が0.6kPa以上では、吸着剤に水分の吸着した影響が大きくなり、目的とするCO2の吸着を阻害してしまう。 When the blast furnace gas is used as the raw material mixed gas and zeolite (eg, Na-13X type zeolite) is used as the adsorbent, the raw material mixed gas is dehumidified before being distributed to the adsorption tower filled with the adsorbent and contained in the gas. The partial pressure of the water is preferably in the range of 0.01 kPa (corresponding to the dew point −45 ° C.) to 0.6 kPa (corresponding to the dew point 0 ° C.). The dehumidification method is not particularly specified, but a combination of a method of condensation by gas cooling with cooling water or the like and a method of adsorption by an agent that adsorbs water is preferable. When the partial pressure is 0.01 kPa, the power required for dehumidification increases, and a dehumidifying device with higher dehumidifying capacity is required. Further, when the partial pressure is 0.6 kPa or more, the influence of water adsorbed on the adsorbent becomes large, and the target CO 2 adsorption is hindered.

除湿した原料混合ガスは吸着剤を充填した吸着塔に流通させ、CO2等の成分を吸着させる。この場合の、吸着塔内の圧力は101kPa〜200kPaが好ましい、圧力が101kPaより低い場合には吸着剤へのCO2吸着が減少し効率が低下する。一方、200kPaを超えて圧力を挙げても必要な動力が増える割にはCO2の吸着量はあまり増えない。 The dehumidified raw material mixed gas is circulated in an adsorption tower filled with an adsorbent to adsorb components such as CO 2. In this case, the pressure in the adsorption tower is preferably 101 kPa to 200 kPa. When the pressure is lower than 101 kPa, CO 2 adsorption to the adsorbent is reduced and the efficiency is lowered. On the other hand, even if the pressure is increased above 200 kPa, the amount of CO 2 adsorbed does not increase so much even though the required power increases.

吸着剤に吸着したCO2を脱着させるには、真空ポンプ等の排気手段を使用して吸着塔内の圧力を減圧する。減圧の到達圧力は5kPaから20kPaの範囲が好ましい。到達圧力を5kPaより低くすると動力がより多く必要になる。一方で20kPaに達しない場合にはCO2の脱着量が少なくなり、効率的でない。 To desorb CO 2 adsorbed on the adsorbent, use an exhaust means such as a vacuum pump to reduce the pressure inside the adsorption tower. The ultimate pressure for decompression is preferably in the range of 5 kPa to 20 kPa. If the ultimate pressure is lower than 5 kPa, more power is required. On the other hand, if it does not reach 20 kPa, the amount of CO 2 desorbed becomes small and it is not efficient.

以下、本発明の実施例について説明するが、本発明は実施例に何ら限定されない。 Hereinafter, examples of the present invention will be described, but the present invention is not limited to the examples.

(発明例1〜5)
図9に示したガス分離試験装置を用い、高炉ガスを模した模擬高炉ガスからCO2ガスを分離して回収する試験を行った。具体的には、まず、ガス分離試験装置の吸着塔160に、吸着剤(NaX型ゼオライト、東ソー(株)製、商品名:ゼオラム)を100g充填した。次いで、窒素ガスボンベ114からのガスを2つに分岐し、一方のガスを温度制御されたウォーターバス130の温浴中に置かれた洗浄ビン140中のイオン交換水(図示せず)中でバブリングさせ、湿分を付加させた。この湿分を付加した窒素ガスと、バブリングさせていない乾燥窒素ガスとを混合して、流量調整計124および125により加湿窒素ガスの水分を調整して吸着塔160に流通させ、吸着剤に水分を吸着させた。吸着剤への水分吸着量は、吸着剤1g当たり、0.03g(発明例1)、0.06g(発明例2)、0.09g(発明例3)、0.12g(発明例4)、0.14g(発明例5)とした。
(Invention Examples 1 to 5)
Using the gas separation test apparatus shown in FIG. 9, a test was conducted in which CO 2 gas was separated and recovered from a simulated blast furnace gas that imitated the blast furnace gas. Specifically, first, 100 g of an adsorbent (NaX-type zeolite, manufactured by Tosoh Corporation, trade name: Zeolam) was filled in the adsorption tower 160 of the gas separation test apparatus. Next, the gas from the nitrogen gas cylinder 114 is branched into two, and one gas is bubbling in ion-exchanged water (not shown) in the washing bottle 140 placed in the hot bath of the temperature-controlled water bath 130. , Moisture was added. The nitrogen gas to which this moisture is added and the dry nitrogen gas that has not been bubbled are mixed, the moisture content of the humidified nitrogen gas is adjusted by the flow rate regulators 124 and 125, and the gas is distributed to the adsorption tower 160, and the moisture content is added to the adsorbent. Was adsorbed. The amount of water adsorbed on the adsorbent was 0.03 g (Invention Example 1), 0.06 g (Invention Example 2), 0.09 g (Invention Example 3), 0.12 g (Invention Example 4), per 1 g of the adsorbent. It was 0.14 g (Invention Example 5).

続いて、水素ガスボンベ111、一酸化炭素ガスボンベ112、炭酸ガスボンベおよび窒素ガスボンベ114に接続された流量調節計121〜124により、高炉ガスを模した模擬高炉ガスを調製した。この模擬高炉ガスの組成は、水分を除いて、CO2:22体積%、CO:23体積%、N2:52体積%、H2:3体積%とした。模擬高炉ガスは、自動弁151、152を通して吸着塔10に充填された吸着剤に通気した。その際、模擬高炉ガスの流量は8NL/分、背圧弁170の設定は150kPaとし、吸着剤に吸着されなかったガス(オフガス)は、自動弁154、背圧弁170を通って、ガス捕集・分析装置(図示せず)に送られた。 Subsequently, a simulated blast furnace gas imitating the blast furnace gas was prepared by a flow control meters 121 to 124 connected to the hydrogen gas cylinder 111, the carbon monoxide gas cylinder 112, the carbon dioxide gas cylinder and the nitrogen gas cylinder 114. The composition of this simulated blast furnace gas was CO 2 : 22% by volume, CO: 23% by volume, N 2 : 52% by volume, and H 2 : 3% by volume, excluding water. The simulated blast furnace gas was ventilated to the adsorbent filled in the adsorption tower 10 through the automatic valves 151 and 152. At that time, the flow rate of the simulated blast furnace gas was 8 NL / min, the back pressure valve 170 was set to 150 kPa, and the gas (off gas) not adsorbed by the adsorbent was collected through the automatic valve 154 and the back pressure valve 170. It was sent to an analyzer (not shown).

模擬高炉ガスを100秒間通気後、自動弁152、154を一旦閉じ、自動弁152を通して、真空ポンプ180によって、吸着塔160内を減圧時間100秒で減圧し、吸着剤に吸着したガスを脱着させた。その際、減圧時の吸着塔内の到達圧力は6kPaとした。脱着ガスは、吸着塔160から排気され、ガス捕集・分析装置(図示せず)に送られた。 After venting the simulated blast furnace gas for 100 seconds, the automatic valves 152 and 154 are temporarily closed, and the inside of the adsorption tower 160 is depressurized by the vacuum pump 180 through the automatic valve 152 for a decompression time of 100 seconds to desorb the gas adsorbed on the adsorbent. It was. At that time, the ultimate pressure in the adsorption tower at the time of depressurization was set to 6 kPa. The desorbed gas was exhausted from the adsorption tower 160 and sent to a gas collecting / analyzing device (not shown).

上記加湿ガス通気と真空ポンプによる減圧を一定時間毎に繰り返し、脱着ガスのCO2濃度および脱着ガスでのCO2の回収率を分析した。得られた結果を表1に示す。また、分析された脱着ガスのCO2濃度および脱着ガスでのCO2の回収率を図示すると、図7に示した通りである。 The above-mentioned humidification gas ventilation and decompression by a vacuum pump were repeated at regular intervals, and the CO 2 concentration of the desorbed gas and the CO 2 recovery rate of the desorbed gas were analyzed. The results obtained are shown in Table 1. Further, the CO 2 concentration of the desorbed gas analyzed and the CO 2 recovery rate of the desorbed gas are shown in FIG. 7.

Figure 0006837023
Figure 0006837023

(比較例1および2)
発明例1と同様に、図9に示したガス分離試験装置を用い、高炉ガスを模した模擬ガスからCO2ガスを分離して回収した。ただし、吸着剤への水分吸着量を、水分を吸着させない場合(比較例1)、および、水分吸着量を、吸着剤1g当たり0.15g(比較例2)とした。その他の条件は発明例1と全て同じである。脱着ガスのCO2濃度および脱着ガスでのCO2の回収率を分析した。得られた結果を表1に示す。また、分析された脱着ガスのCO2濃度および脱着ガスでのCO2の回収率を図示すると、図7に示した通りである。
(Comparative Examples 1 and 2)
Similar to Invention Example 1, the gas separation test apparatus shown in FIG. 9 was used to separate and recover the CO 2 gas from the simulated gas simulating the blast furnace gas. However, the amount of water adsorbed on the adsorbent was set to the case where water was not adsorbed (Comparative Example 1), and the amount of water adsorbed was set to 0.15 g per 1 g of the adsorbent (Comparative Example 2). Other conditions are all the same as in Invention Example 1. The CO 2 concentration of the desorbed gas and the CO 2 recovery rate of the desorbed gas were analyzed. The results obtained are shown in Table 1. Further, the CO 2 concentration of the desorbed gas analyzed and the CO 2 recovery rate of the desorbed gas are shown in FIG. 7.

<脱着ガスのCO2濃度およびCO2回収率の評価>
表1および図7から明らかなように、発明例1〜5の全てについて、脱着ガスのCO2濃度は比較例よりも高かった。また、発明例1〜4については、脱着ガスでのCO2の回収率についても比較例1および2よりも高かった。この結果から、吸着剤の水分吸着量が吸着剤1g当たり0.14g(水分分圧で0.18kPa=露点で−15℃)を超えないように原料混合ガスの水分を制御すればCO2の分離性能としては問題ないことが分かった。
<Evaluation of CO 2 concentration and CO 2 recovery rate of desorbed gas>
As is clear from Table 1 and FIG. 7, the CO 2 concentration of the desorbed gas was higher than that of the comparative example in all of Invention Examples 1 to 5. Further, in Invention Examples 1 to 4, the recovery rate of CO 2 in the desorbed gas was also higher than that in Comparative Examples 1 and 2. From this result, if the water content of the raw material mixed gas is controlled so that the amount of water adsorbed by the adsorbent does not exceed 0.14 g per 1 g of the adsorbent (0.18 kPa at partial pressure of water = -15 ° C at dew point), CO 2 It turned out that there is no problem in terms of separation performance.

本発明によれば、原料ガスから特定のガス成分を分離して回収する際に、動力を削減することができるため、製鉄業において有用である。 According to the present invention, when a specific gas component is separated from the raw material gas and recovered, the power can be reduced, which is useful in the steelmaking industry.

111 水素ガスボンベ
112 一酸化炭素ガスボンベ
113 炭酸ガスボンベ
114 窒素ガスボンベ
121〜125 流量調節計
130 ウォーターバス
140 洗浄ビン
151〜154 自動弁
160 吸着塔
170 背圧弁
180 真空ポンプ
111 Hydrogen gas cylinder 112 Carbon monoxide gas cylinder 113 Carbon monoxide gas cylinder 114 Nitrogen gas cylinder 121-125 Flow controller 130 Water bath 140 Cleaning bin 151-154 Automatic valve 160 Suction tower 170 Back pressure valve 180 Vacuum pump

Claims (4)

水分を含み、かつ、少なくとも2種類以上のガス成分からなる混合ガスを吸着剤が充填された吸着塔に導入して、混合ガスに含まれる所定のガス成分を前記吸着剤に吸着させる所定ガス吸着工程と、吸着塔内の圧力を前記所定ガス吸着工程に比べて低減させることで前記吸着剤に吸着した所定のガス成分を脱着させる所定ガス脱着工程とを含む複数の工程から構成されるとともに、前記吸着剤が、水分に対する所定の温度での吸脱着等温線の測定において気相の水分分圧を増加させて測られる水分吸着等温線と、気相の水分分圧を低減させて測られる水分脱着等温線との間にヒステリシスを有する吸着剤である、混合ガス分離方法において、
前記混合ガス中の水分量を、前記水分脱着等温線において水分分圧がゼロまで低減させたときの水分吸着量に相当する、前記水分吸着等温線における水分分圧以下となるように制御し、
前記所定ガス吸着工程における前記吸着塔内の圧力の上限値を101kPa以上200kPa以下とし、前記所定ガス脱着工程における前記吸着塔内の圧力の下限値を5kPa以上20kPa以下とすることを特徴とする、混合ガスの分離方法。
Predetermined gas adsorption in which a mixed gas containing water and composed of at least two types of gas components is introduced into an adsorption tower filled with an adsorbent to adsorb a predetermined gas component contained in the mixed gas to the adsorbent. It is composed of a plurality of steps including a step and a predetermined gas desorption step of desorbing a predetermined gas component adsorbed on the adsorbent by reducing the pressure in the adsorption tower as compared with the predetermined gas adsorption step. The adsorbent is a water adsorption isotherm measured by increasing the water partial pressure of the gas phase in the measurement of the adsorption / desorption isotherm of water at a predetermined temperature, and the water content measured by reducing the water partial pressure of the gas phase. In the mixed gas separation method, which is an adsorbent having hysteresis between the desorption isotherm and the desorption isotherm.
The amount of water in the mixed gas is controlled to be equal to or less than the water adsorption amount in the water adsorption isotherm, which corresponds to the water adsorption amount when the water partial pressure is reduced to zero in the water desorption isotherm.
The upper limit of the pressure in the adsorption tower in the predetermined gas adsorption step is 101 kPa or more and 200 kPa or less, and the lower limit of the pressure in the adsorption tower in the predetermined gas desorption step is 5 kPa or more and 20 kPa or less . Method of separating mixed gas.
前記吸着剤はゼオライトである、請求項に記載のガス分離方法。 The adsorbent is a zeolite, a gas separation method according to claim 1. 前記所定ガス吸着工程において、水分の分圧を0.06kPa以上0.16kPa以下である原料ガスを前記吸着塔に導入する、請求項に記載のガス分離方法。 The gas separation method according to claim 2 , wherein in the predetermined gas adsorption step, a raw material gas having a partial pressure of water of 0.06 kPa or more and 0.16 kPa or less is introduced into the adsorption tower. 前記所定ガス吸着工程において、水分の分圧が0.06kPa以上0.15kPa以下である原料ガスを前記吸着塔に導入する、請求項に記載のガス分離方法。 The gas separation method according to claim 3 , wherein in the predetermined gas adsorption step, a raw material gas having a partial pressure of water of 0.06 kPa or more and 0.15 kPa or less is introduced into the adsorption tower.
JP2018037893A 2018-03-02 2018-03-02 Gas separation method Active JP6837023B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2018037893A JP6837023B2 (en) 2018-03-02 2018-03-02 Gas separation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018037893A JP6837023B2 (en) 2018-03-02 2018-03-02 Gas separation method

Publications (2)

Publication Number Publication Date
JP2019150768A JP2019150768A (en) 2019-09-12
JP6837023B2 true JP6837023B2 (en) 2021-03-03

Family

ID=67947632

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2018037893A Active JP6837023B2 (en) 2018-03-02 2018-03-02 Gas separation method

Country Status (1)

Country Link
JP (1) JP6837023B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115906646A (en) * 2022-11-30 2023-04-04 武汉城市职业学院 Method and system for rapidly predicting gas adsorption capacity at different temperatures and pressures

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6010555A (en) * 1997-11-04 2000-01-04 Praxair Technology, Inc. Vacuum pressure swing adsorption system and method
KR100596903B1 (en) * 1998-02-27 2006-07-04 프랙스에어 테크놀로지, 인코포레이티드 Rate-enhanced gas separation
FR2775617B1 (en) * 1998-03-09 2000-04-07 Ceca Sa DECARBONATION OF GASEOUS STREAMS USING ZEOLIC ADSORBENTS
JP2008037672A (en) * 2006-08-02 2008-02-21 Mitsubishi Electric Corp Porous material and method of manufacturing the same
JP5186410B2 (en) * 2008-02-14 2013-04-17 公益財団法人地球環境産業技術研究機構 CO2 separation agent and method for selective separation of CO2
JP5504446B2 (en) * 2010-05-14 2014-05-28 国立大学法人大阪大学 Method for producing hydrophobic zeolite and hydrophobic zeolite obtained by the method
EP2532411A1 (en) * 2011-06-10 2012-12-12 Süd-Chemie AG Pressure swing adsorption method
JP2014079680A (en) * 2012-10-15 2014-05-08 Jfe Steel Corp Apparatus and method for separation recovery of carbon dioxide
JP6284563B2 (en) * 2016-03-09 2018-02-28 フタムラ化学株式会社 Method and apparatus for adsorptive separation of H2 from steam reformed gas containing H2, CO, CO2, H2O as main components

Also Published As

Publication number Publication date
JP2019150768A (en) 2019-09-12

Similar Documents

Publication Publication Date Title
JP2017189750A (en) Method for separating and recovering carbon dioxide from blast furnace gas and method for utilizing blast furnace gas
JP5319140B2 (en) Blast furnace gas separation method and blast furnace gas separation system
JP5186410B2 (en) CO2 separation agent and method for selective separation of CO2
JP2011526571A (en) Treatment of wet gas containing dust
JP5061482B2 (en) Method for separating and recovering carbon monoxide in source gas
JP2018071894A (en) Method for separating and recovering hydrogen from blast furnace gas, method for producing hydrogen, and separation and recovery system of hydrogen from blast furnace gas
JP6837023B2 (en) Gas separation method
EP3459626A1 (en) Adsorbent, method for removing carbon dioxide, carbon dioxide remover, and air conditioner
JP2018114464A (en) Gas separation recovery method and facility
EP3459629A1 (en) Air conditioner, air conditioning system, method for removing carbon dioxide, adsorbent, and carbon dioxide remover
JP2019150769A (en) Gas separation method
JP2014079680A (en) Apparatus and method for separation recovery of carbon dioxide
US20190262795A1 (en) Adsorbent, method for removing carbon dioxide, carbon dioxide remover, and air conditioner
JP2009249571A (en) Method for eliminating hydrogen sulfide contained in biogas
JP6791085B2 (en) Steelworks by-product gas separation equipment and separation method
EP3459627A1 (en) Adsorbent, method for producing same, method for removing carbon dioxide, device for removing carbon dioxide, and air conditioner
JP7191619B2 (en) Carbon monoxide gas separation device and carbon monoxide gas separation method
JP2018034088A (en) Adsorbent, method of removing carbon dioxide, and air conditioning device
JP4171392B2 (en) Gas separation and recovery method and pressure swing adsorption gas separation and recovery system
JP5816059B2 (en) CO2 separation method by pressure swing adsorption method
JPH04367503A (en) Concentration of chlorine gas
JP2020195993A (en) Adsorption agent and production method thereof, adsorbent and production method thereof, and method for removing carbon dioxide
JP2018051504A (en) Adsorbent, adsorbent body containing adsorbent, method for producing the same, and carbon dioxide removing method
JPH04367504A (en) Concentration of chlorine gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20191015

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20200713

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200807

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20201007

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20210126

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20210208

R150 Certificate of patent or registration of utility model

Ref document number: 6837023

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350