JP6276727B2 - Statistical model creation device, statistical model creation method, and statistical model creation program - Google Patents
Statistical model creation device, statistical model creation method, and statistical model creation program Download PDFInfo
- Publication number
- JP6276727B2 JP6276727B2 JP2015071214A JP2015071214A JP6276727B2 JP 6276727 B2 JP6276727 B2 JP 6276727B2 JP 2015071214 A JP2015071214 A JP 2015071214A JP 2015071214 A JP2015071214 A JP 2015071214A JP 6276727 B2 JP6276727 B2 JP 6276727B2
- Authority
- JP
- Japan
- Prior art keywords
- statistical model
- model
- processing
- statistical
- operation condition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/28—Error detection; Error correction; Monitoring by checking the correct order of processing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/30—Monitoring
- G06F11/32—Monitoring with visual or acoustical indication of the functioning of the machine
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/60—Protecting data
- G06F21/62—Protecting access to data via a platform, e.g. using keys or access control rules
Landscapes
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Quality & Reliability (AREA)
- Bioethics (AREA)
- Health & Medical Sciences (AREA)
- Automation & Control Theory (AREA)
- General Health & Medical Sciences (AREA)
- Computer Hardware Design (AREA)
- Computer Security & Cryptography (AREA)
- Software Systems (AREA)
- Testing And Monitoring For Control Systems (AREA)
- Debugging And Monitoring (AREA)
- Selective Calling Equipment (AREA)
Description
本発明は、統計モデル作成装置、統計モデル作成方法及び統計モデル作成プログラムに関する。 The present invention relates to a statistical model creation device, a statistical model creation method, and a statistical model creation program.
従来、機器の保守は機器運転時間を基準とした“時間基準保守(TBM:Time-Based Maintenance)”が主流であった。しかしながら、機器稼働状態のセンシング技術の発達により、機器稼働状態を基準とした“状態基準保守(CBM:Condition-Based Maintenance)”が普及しつつある。CBMは、機器の稼働状態に応じた統計モデルを使用して機器の状態を監視し、機器が異常であると判断した場合に警告等を発し、機器の早期保守を促す。診断対象となる機器の種類は様々であり、機器の使用環境も様々である。したがって、CBMにおいては、診断対象となる機器ごとにカスタマイズされた統計モデルを作成する必要がある。一方、機器ごとに全くゼロから統計モデルを作成する(スクラッチ開発する)ことはコストアップにつながる。 Conventionally, the maintenance of equipment has been “Time-Based Maintenance (TBM)” based on equipment operation time. However, with the development of sensing technology for equipment operating status, “condition-based maintenance (CBM)” based on equipment operating status is becoming widespread. The CBM monitors the state of the device using a statistical model corresponding to the operating state of the device, and issues a warning or the like when it is determined that the device is abnormal to prompt early maintenance of the device. There are various types of devices to be diagnosed, and there are various usage environments of the devices. Therefore, in CBM, it is necessary to create a statistical model customized for each device to be diagnosed. On the other hand, creating a statistical model from scratch for each device (scratch development) leads to an increase in cost.
特許文献1の電子制御システムは、このようなスクラッチ開発のコストを削減する。ノイズ、季節変動のような過渡フォールトがあるセンサに発生した場合、センサの種類によらず、他のセンサにおいても同じ傾向の過渡フォールトが生じる場合が多い。そこで、特許文献1の電子制御システムは、過渡フォールトを検出する診断処理と、本来検出すべき固定フォールトを検出する診断処理とを分離し、過渡フォールトを検出する診断処理を、複数の診断対象の機器について共通化する。 The electronic control system of Patent Document 1 reduces the cost of developing such a scratch. When a transient fault such as noise or seasonal variation occurs in a sensor, the same type of transient fault often occurs in other sensors regardless of the type of sensor. Therefore, the electronic control system of Patent Document 1 separates diagnostic processing for detecting transient faults from diagnostic processing for detecting fixed faults that should be detected, and performs diagnostic processing for detecting transient faults for a plurality of diagnostic targets. Standardize on equipment.
開発効率を向上させることを目的に、既存の統計モデルの一部を流用し、他の部分のみを別の機器向けに新たに変更することが一般的に行われている。いま機器A向けの統計モデルの一部を変更し、機器B向けの統計モデルを作成することを想定する。この際、機器B向けの統計モデル内に、機器Aの設計知識(例えば異常判定閾値、センサ検出の時間帯又は周期等)を想像させるような情報が残ってしまう危険性がある。通常、機器Aのユーザは、機器Bのユーザに対して秘密にしておきたい情報と、開示してもかまわない情報を区別する。同様に、機器Bのユーザは、機器Aのユーザに対して秘密にしておきたい情報と、開示してもかまわない情報を区別する。 In order to improve development efficiency, it is common practice to divert part of an existing statistical model and newly change only the other part for another device. Assume that a part of the statistical model for device A is changed and a statistical model for device B is created. At this time, there is a risk that information that makes the design knowledge of the device A (for example, an abnormality determination threshold, a sensor detection time zone or a cycle, etc.) imagine in the statistical model for the device B may remain. Usually, the user of the device A distinguishes information that the user of the device B wants to keep secret from information that may be disclosed. Similarly, the user of the device B distinguishes information that should be kept secret from the user of the device A and information that may be disclosed.
機器ごとの設計知識は、その機器のユーザにとって公開したくない情報である。しかしながら、実際にはこのような区別が明確にできないために、本来公開可能な情報を公開することに対して慎重になりすぎ、統計モデルの部分共有化(使い回し)の可能性が阻害されることもある。特許文献1の電子制御システムは、統計モデルの部分共有化を前提とするセキュリティ管理(どのような立場の者がどのような情報を知ってよいのかの管理)を特に狙ったものではない。
そこで、本発明は、既存の統計モデルに内在する設計知識を流出させることなく既存の統計モデルを流用し、新たな統計モデルの開発コストを削減することを目的とする。
The design knowledge for each device is information that the user of the device does not want to disclose. However, in fact, such a distinction cannot be made clear, so it becomes too cautious for publicly disclosing information, and the possibility of partial sharing (reuse) of statistical models is hindered. Sometimes. The electronic control system of Patent Document 1 is not particularly aimed at security management (management of what kind of information a person who knows what kind of information may be known) on the premise of partial sharing of a statistical model.
Therefore, an object of the present invention is to divert an existing statistical model without leaking design knowledge inherent in the existing statistical model, and to reduce the development cost of a new statistical model.
本発明の統計モデル作成装置は、機器に対する取扱についての動作手順及び動作手順のそれぞれに対応する動作条件を含む統計モデルが格納される記憶部と、記憶部を参照して第1の機器に対する取扱についての第1の統計モデルを取得し、取得した第1の統計モデルを基に、第2の機器に対する取扱についての第2の統計モデルを新たに作成し、第1の統計モデルの動作手順及び動作条件、並びに、第2の統計モデルの動作手順及び動作条件を対比形式でユーザに対して出力する際に、第1の統計モデルの動作条件の少なくとも一部、又は、第2の統計モデルの動作条件の少なくとも一部を、出力先のユーザの立場に応じて、情報の内容を秘匿するように変更したうえで出力する制御部と、を備える。
その他の手段については、発明を実施するための形態のなかで説明する。
The statistical model creation apparatus according to the present invention includes an operation procedure for handling equipment and a storage unit storing a statistical model including operation conditions corresponding to each of the operation procedures, and handling the first equipment with reference to the storage unit. The first statistical model for the first device is acquired, a second statistical model for handling the second device is newly created based on the acquired first statistical model, and the operation procedure of the first statistical model and When the operating conditions and the operating procedure and operating conditions of the second statistical model are output to the user in a comparison format, at least a part of the operating conditions of the first statistical model or the second statistical model A control unit that outputs at least a part of the operating conditions after changing the content of the information to be concealed according to the position of the user of the output destination.
Other means will be described in the embodiment for carrying out the invention.
本発明によれば、既存の統計モデルに内在する設計知識を流出させることなく既存の統計モデルを流用し、新たな統計モデルの開発コストを削減することが可能になる。 According to the present invention, it is possible to divert an existing statistical model without leaking design knowledge inherent in the existing statistical model, and to reduce the development cost of a new statistical model.
以降、本発明を実施するための2つの実施形態を、図等を参照しながら詳細に説明する。2つの実施形態は、基本型としての第1の実施形態、及び、応用型としての第2の実施形態からなる。詳細は後記するが、これらの間の相違点は、ポイント付与部が行うインセンティブ処理手順(詳細後記)の有無である。まず、インセンティブ処理手順を有さない第1の実施形態を説明し、その後、インセンティブ処理手順を有する第2の実施形態を、第1の実施形態との相違点に注目して説明する。2つの実施形態は、機器の異常を診断する例であるが、本発明は、機器の診断だけでなく、機器の取扱全般に対して適用できる。 Hereinafter, two embodiments for carrying out the present invention will be described in detail with reference to the drawings. The two embodiments consist of the first embodiment as a basic type and the second embodiment as an application type. The details will be described later, but the difference between them is the presence or absence of an incentive processing procedure (detailed later) performed by the point granting unit. First, a first embodiment having no incentive processing procedure will be described, and then a second embodiment having an incentive processing procedure will be described by paying attention to differences from the first embodiment. The two embodiments are examples of diagnosing device abnormality, but the present invention can be applied not only to device diagnosis but also to overall handling of the device.
(第1の実施形態)
(実施形態の背景等)
いま、A社が自社の機器Aの診断を行うために統計モデルAを使用しているとする。統計モデルAはある程度の運用実績を有する。一方、B社が自社の機器Bの使用を開始し、機器Bの診断を行うために、新たに機器B向けの統計モデルBを必要としている。C社は、統計モデルBの開発をB社から請け負っている。C社は、統計モデルAの開発をA社から請け負った実績を有する。そこで、C社としては、統計モデルAを基に、できるだけ少ないコストで、かつ、機器Aの設計知識がB社に知られないように、統計モデルBを開発したい。さらに、C社としては、統計モデルBを、機器Bの設計知識が知られないように、A社にフィードバックしたい。なお、詳細は後記するが、統計モデルとは、過去のデータを機械学習し機械学習の結果に基づいて機器の状態を判定するための処理手順等である。
(First embodiment)
(Background of the embodiment, etc.)
Assume that company A uses statistical model A to diagnose its own device A. The statistical model A has a certain operational track record. On the other hand, Company B needs a new statistical model B for the device B in order to start using the device B and to diagnose the device B. Company C is contracted by Company B to develop statistical model B. Company C has a track record of undertaking development of statistical model A from Company A. Therefore, company C wants to develop statistical model B based on statistical model A so that the design knowledge of device A is not known to company B at the lowest possible cost. Further, company C wants to feed back statistical model B to company A so that the design knowledge of device B is not known. Although details will be described later, the statistical model is a processing procedure for machine learning of past data and determining the state of the device based on the result of the machine learning.
(加工前モデル、加工後モデル、モデル作成者、モデル提供者及びモデル利用者)
加工前モデルとは、新たな統計モデルを開発する際の基になる統計モデルであり、前記の例における統計モデルAに相当する。加工後モデルとは、加工前モデルを基にして新たに開発される統計モデルであり、前記の例における統計モデルBに相当する。なお、“第1の統計モデル”及び“第2の統計モデル”には、それぞれ、加工前モデル及び加工後モデルが相当する。
モデル作成者とは、加工前モデルを基にして加工後モデルを開発する主体であり、前記の例におけるC社(の従業員)に相当する。モデル提供者とは、他者の機器向けの加工後モデルを作成するために自社の機器向けの加工前モデルをモデル作成者が使用する(使い回す)ことを許可した主体であり、前記の例におけるA社(の従業員)に相当する。モデル利用者とは、加工後モデルを自社の機器向けに使用する者であり、前記の例におけるB社(の従業員)に相当する。なお、“第1の機器に関係する者”及び“第2の機器に関係する者”には、それぞれ、モデル提供者及びモデル利用者が相当する。
(Pre-processing model, post-processing model, model creator, model provider, and model user)
The pre-processing model is a statistical model that is a basis for developing a new statistical model, and corresponds to the statistical model A in the above example. The post-processing model is a statistical model newly developed based on the pre-processing model, and corresponds to the statistical model B in the above example. The “first statistical model” and the “second statistical model” correspond to a pre-processing model and a post-processing model, respectively.
The model creator is an entity that develops a post-process model based on the pre-process model, and corresponds to the company C (employee) in the above example. A model provider is an entity that allows a model creator to use (reuse) a pre-processing model for his / her device in order to create a post-processing model for another device. Is equivalent to Company A (employee). The model user is a person who uses the processed model for his / her equipment, and corresponds to company B (employee) in the above example. Note that “a person related to the first device” and “a person related to the second device” correspond to a model provider and a model user, respectively.
(機器構成)
図1に沿って、統計モデル作成装置の構成を説明する。統計モデル作成システム1は、統計モデル作成装置2及び端末装置3を有する。これらは、ネットワーク4を介して接続可能である。統計モデル作成装置2は、一般的なコンピュータであり、中央制御装置11、主記憶装置12、補助記憶装置13及び通信装置14を有する。これらはバスで相互に接続されている。補助記憶装置13は、加工前モデルDB(Date Base)31、加工後モデルDB32及びモデル差分DB33を格納している。加工前モデルDB31は、(加工前モデルである)統計モデル41を格納している。加工後モデルDB32は、(加工後モデルである)統計モデル42を格納している。モデル差分DB33は、アクセス権限43及びモデル差分44を格納している(詳細後記)。
(Equipment configuration)
The configuration of the statistical model creation device will be described with reference to FIG. The statistical model creation system 1 includes a statistical
なお、加工前モデルDB31及び加工後モデルDB32を記憶する補助記憶装置13が統計モデル作成装置2からは独立した構成であって、統計モデル作成装置2は、ネットワーク4を介して、加工前モデルDB31及び加工後モデルDB32にアクセスすることにしてもよい。
主記憶装置12における、加工前モデル選択部21、動作条件加工部22、加工後モデル作成部23、モデル差分確認部24及びポイント付与部25はプログラムである。以降、“○○部は”と主体を記した場合は、中央制御装置11が、補助記憶装置13から各プログラムを読み出し、主記憶装置12にロードしたうえで、各プログラムの機能(詳細後記)を実現するものとする。
The auxiliary storage device 13 for storing the
The pre-processing
端末装置3もまた、一般的なコンピュータであり、通信装置15、入力装置16、出力装置17、中央制御装置18、主記憶装置19及び補助記憶装置20を有する。これらはバスで相互に接続されている。端末装置3は、モデル作成者、モデル提供者又はモデル利用者によって操作される。なお、第1の実施形態に係る統計モデル作成装置2は、プログラムとしてのポイント付与部25を有さない。第2の実施形態に係る統計モデル作成装置2は、前記した5つのプログラムをすべて有する(説明の便宜上、最大構成を図1に記載した)。
The terminal device 3 is also a general computer and includes a
(統計モデル)
図2に沿って、統計モデル41を説明する。図2において、実線の矢印は、処理の流れを示し、破線の矢印は、データの流れを示す。統計モデル41自身は、統計モデル作成装置2とは別の任意のシステム(図示せず。以降“診断システム”と呼ぶ)に読み込まれることによって、機器の異常を判定する。
(Statistical model)
The
本実施形態において、機器とは、センサによって時系列の物理量を測定することができる一般的な装置であり、例えばコピー機である。物理量は、例えば、温度、騒音、振動、稼働時間、回転数、電流、電圧、液体等の流量及び圧力、情報処理量等の値、並びに、これらの値を演算して算出される値を含む。統計モデルとは、前記したように、過去のデータを機械学習し機械学習の結果に基づいて機器の状態を判定するための処理手順であり、診断手順101、動作条件102、モデル管理情報103及び動作条件書換え情報104から構成される。
In the present embodiment, the device is a general device capable of measuring a time-series physical quantity with a sensor, for example, a copier. The physical quantity includes, for example, values such as temperature, noise, vibration, operating time, rotation speed, current, voltage, liquid flow rate and pressure, information processing amount, and values calculated by calculating these values. . As described above, the statistical model is a processing procedure for machine learning of past data and determining the state of the device based on the result of the machine learning, and includes a
診断手順101は、診断システムが所定の順序で実行する複数のプログラムの集合であり、“動作手順”に相当する。ここでの診断手順101は、センサ入力処理Si、学習処理St及び識別処理Sdから構成され、各処理はこの順で実行される。
センサ入力処理Siは、診断システムがセンサの測定値を読み込む処理である。例えば、振動センサの値を所定の周期ごとに標本化(サンプリング)する処理である。
学習処理Stは、過去のデータに基づいて診断システムが機械学習を行い、統計モデル41を最適化する処理である。
識別処理Sdは、最適化された統計モデル41を使用して、診断システムが機器の異常を判定する処理である。
The
The sensor input process Si is a process in which the diagnostic system reads the measured value of the sensor. For example, it is a process of sampling (sampling) the value of the vibration sensor every predetermined period.
The learning process St is a process in which the diagnostic system performs machine learning based on past data and optimizes the
The identification process Sd is a process in which the diagnostic system determines an apparatus abnormality using the optimized
動作条件102は、センサ入力動作条件Pi、学習動作条件Pt、識別動作条件Pd及びコードブックCBから構成される。これらのうちセンサ入力動作条件Pi、学習動作条件Pt及び識別動作条件Pdは、それぞれ、センサ入力処理Si、学習処理St及び識別処理Sdに1対1に対応しており、それぞれの処理のセンサの種別又はアルゴリズムの種別、及び、動作を決定するパラメータである。
The
具体的には、センサ入力動作条件Piとしては、センサの種別(振動センサや温度センサ)、センサの数、センサごとの標本化周期(サンプリングレート)等が指定される。
学習動作条件Ptとして、例えば、機械学習のアルゴリズムとしての“k-means法”、“n層ニューロ法”等が指定される。なお、n=2、3、・・・であり、“ニューロ”とは、“神経ネットワーク”の略である。またその他にも、学習動作条件Ptとして、例えば、機械学習アルゴリズムが“k-means法”である場合、クラスタ分割数等が指定され、機械学習アルゴリズムが“n層ニューロ法”である場合、入出力層及び隠れ層の各ユニット数等が指定される。
Specifically, as the sensor input operation condition Pi, the type of sensor (vibration sensor or temperature sensor), the number of sensors, the sampling period (sampling rate) for each sensor, and the like are designated.
As the learning operation condition Pt, for example, “k-means method”, “n-layer neuro method” or the like as a machine learning algorithm is designated. Note that n = 2, 3,..., And “neuro” is an abbreviation for “neural network”. In addition, as the learning operation condition Pt, for example, when the machine learning algorithm is “k-means method”, the number of cluster divisions is specified, and when the machine learning algorithm is “n-layer neuro method”, The number of units in the output layer and hidden layer is specified.
識別動作条件Pdとしては、識別アルゴリズムとしての“k-means法”、“n層ニューロ法”等が指定される。“k-means法”の場合、識別処理Sdは、機械学習されたクラスタ情報(例えば異常を示すクラスタの重心)とセンサ値との間の距離を求め、その距離と所定の閾値との大小関係に基づき機器の異常を判定する。多くの場合、学習処理Stのアルゴリズムの種別と識別処理Sdのアルゴリズムの種別は一致している。例えば、学習処理の種別が“k-means法”であれば、識別処理の種別も“k-means法”であることが多い。同様に、学習処理の種別が“n層ニューロ法”であれば、識別処理の種別も“n層ニューロ法”であることが多い。 As the identification operation condition Pd, “k-means method”, “n-layer neuro method” or the like as an identification algorithm is designated. In the case of the “k-means method”, the identification process Sd obtains the distance between the machine-learned cluster information (for example, the center of gravity of the cluster indicating abnormality) and the sensor value, and the magnitude relationship between the distance and a predetermined threshold value. Based on the above, determine whether the device is abnormal. In many cases, the algorithm type of the learning process St matches the algorithm type of the identification process Sd. For example, if the type of learning process is “k-means method”, the type of identification process is often “k-means method”. Similarly, if the type of learning process is “n-layer neuro method”, the type of identification process is often “n-layer neuro method”.
またその他にも、識別動作条件Pdとして、例えば、識別アルゴリズムが“k-means法”である場合、クラスタ重心とセンサ値との間の距離に対して適用される異常判定閾値等が指定される。また、識別アルゴリズムが“n層ニューロ法”である場合、異常出力ユニットの評価値に対して適用される、出力ユニット間の異常判定閾値等が指定される。
コードブックCBは、機械学習の結果であり、例えば“k-means法”の場合におけるクラスタの重心情報、“n層ニューロ法”の場合における各ユニット間の結合荷重等である。
In addition, as the identification operation condition Pd, for example, when the identification algorithm is “k-means method”, an abnormality determination threshold value that is applied to the distance between the cluster centroid and the sensor value is designated. . When the identification algorithm is the “n-layer neuro method”, an abnormality determination threshold value between output units to be applied to the evaluation value of the abnormal output unit is specified.
The code book CB is a result of machine learning, and includes, for example, cluster centroid information in the case of the “k-means method”, a coupling load between units in the case of the “n-layer neuro method”, and the like.
モデル管理情報103は、統計モデル41全体に対して付されるメタ情報である。モデル管理情報103は、機器種別103a、センサ種別103b、モデル作成者103c、利用承認状態103d及びひな型適用実績103eから構成される。
機器種別103aは、診断の対象となる機器の種別(型式)である。
センサ種別103bは、センサの種別である。
モデル作成者103cは、当該統計モデルを開発した者の氏名である。
The
The device type 103a is the type (model) of the device to be diagnosed.
The sensor type 103b is a type of sensor.
The model creator 103c is the name of the person who developed the statistical model.
利用承認状態103dは、当該統計モデルを基にして作成された加工後モデルをモデル利用者が使用することが承認されたことを示す“承認済”、又は、承認されていないことを示す“未承認”のいずれかである。
ひな型適用実績103eは、前記の“承認済”又は“未承認”とは関係なく、加工前モデル(詳細後記)として選択された実績があること及びその回数を示す“あり(m回)”、又は、実績がないことを示す“なし”のいずれかである。但し、m=1、2、3、・・・である。
The usage approval state 103d is “approved” indicating that the model user is approved to use the post-processing model created based on the statistical model, or “unapproved” indicating that the model user has not been approved. Approved.
The model application record 103e is “present (m times)” indicating that there is a record selected as a pre-processing model (detailed later) and the number of times regardless of the above “approved” or “unapproved”. Or, “None” indicating that there is no record. However, m = 1, 2, 3,...
動作条件書換え情報104もまた、統計モデル41全体に対して付されるメタ情報である。動作条件書換え情報104は、センサ入力104a、学習104b及び識別104cから構成される。
センサ入力104aは、センサ入力動作条件が書換えられたことを示す“あり”、又は、書換えられていないことを示す“なし”のいずれかである。
学習104bは、学習動作条件が書換えられたことを示す“あり”、又は、書換えられていないことを示す“なし”のいずれかである。
識別104cは、識別動作条件が書換えられたことを示す“あり”、又は、書換えられていないことを示す“なし”のいずれかである。
補助記憶装置13は、加工前モデルDB31内に、複数の統計モデル41を記憶している。
The operation
The sensor input 104a is either “Yes” indicating that the sensor input operation condition has been rewritten or “No” indicating that the sensor input operation condition has not been rewritten.
The learning 104b is either “Yes” indicating that the learning operation condition has been rewritten, or “No” indicating that the learning operation condition has not been rewritten.
The identification 104c is either “Yes” indicating that the identification operation condition has been rewritten or “No” indicating that the identification operation condition has not been rewritten.
The auxiliary storage device 13 stores a plurality of
図3(a)に沿って、アクセス権限43を説明する。アクセス権限43は、縦軸をモデル作成者、モデル提供者及びモデル利用者とし、横軸を加工前モデル及び加工後モデルとするマトリクスである。縦軸と横軸との交点のセルにアクセス権限フラグが記憶されている。アクセス権限フラグは“○”又は“×”のいずれかである。“○”は、縦軸のユーザが、横軸のモデルの動作条件の種別及び動作条件のパラメータを完全に知り得ることを示す。“×”は、完全には知り得ないことを示す(詳細後記)。
The
図3(b)に沿って、モデル差分44を説明する。モデル差分44は、診断手順欄151に関連付けて、加工前モデル欄152及び加工後モデル欄153を有する。
診断手順欄151には、前記した診断手順が記憶される。
加工前モデル欄152は、動作条件の種別欄152a及び動作条件のパラメータ欄152bを有する。同様に、加工後モデル欄153も、動作条件の種別欄153a及び動作条件のパラメータ欄153bを有する。動作条件の種別欄152aには、センサ入力処理についてはセンサ種別が記憶され、学習処理及び識別処理についてはアルゴリズム種別が記憶される。動作条件のパラメータ欄152bには、センサ入力処理についてはセンサ数、標本化周期等のパラメータと、そのパラメータの具体的な値が記憶される。そして、学習処理及び識別処理についてはアルゴリズムに使用されるパラメータと、そのパラメータの具体的な値が記憶される。これらのことは、動作条件の種別欄153a及び動作条件のパラメータ欄153bについても同様である。
The
The
The
(モデル作成者用モデル差分表示画面)
説明の都合上、図4〜図10を飛ばして、図11に沿って、モデル作成者用モデル差分表示画面51を説明する。モデル作成者用モデル差分表示画面51のモデル差分欄201は、図3(b)のモデル差分44と同じ構成を有する。
モデル作成者用モデル差分表示画面51は、モデル作成者によって視認される画面である。統計モデル作成装置2のモデル差分確認部24は、モデル作成者用モデル差分表示画面51において、加工前モデル及び加工後モデルを対比形式で表示する。モデル作成者は、モデル作成者用モデル差分表示画面51を視認することによって、例えば以下のことを知る。
(Model difference display screen for model creator)
For convenience of explanation, the model
The model creator model
(1:診断手順について)
・加工前モデル及び加工後モデルのいずれもが、診断手順として、実行される順に“センサ入力処理”、“学習処理”及び“識別処理”を含むこと。
(2:センサ入力処理について)
・加工前モデルの“センサ入力処理”のセンサ種別は“振動センサ”であり、加工後モデルの“センサ入力処理”のセンサ種別も“振動センサ”であること。つまり、両者において、“センサ入力処理”のセンサ種別には差異がないこと。
・加工前モデルのセンサ数が“3”であるのに対し、加工後モデルのセンサ数は“2”であること。
・加工前モデルの標本化周期(周波数)が“1kHz”であるのに対し、加工後モデルの標本化周期は“2kHz”であること。
(1: About diagnostic procedure)
Both the pre-processing model and the post-processing model include “sensor input processing”, “learning processing”, and “identification processing” in the order of execution as diagnostic procedures.
(2: Sensor input processing)
-The sensor type of the “sensor input process” in the pre-processing model is “vibration sensor”, and the sensor type of the “sensor input process” in the post-processing model is also “vibration sensor”. That is, there is no difference in the sensor type of “sensor input processing” between the two.
-The number of sensors in the model before machining is "3", whereas the number of sensors in the model after machining is "2".
The sampling period (frequency) of the pre-processing model is “1 kHz”, whereas the sampling period of the post-processing model is “2 kHz”.
(3:学習処理について)
・加工前モデルが“k-means法”を使用するのに対し、加工後モデルは“3層ニューロ法”を使用すること。
・加工前モデルの“k-means法”のクラスタ数が“5”であるのに対し、加工後モデルの“3層ニューロ法”の中間層ノード数は“10”であること。
(3: About learning process)
-The pre-processing model uses the “k-means method” while the post-processing model uses the “three-layer neuro method”.
-The number of clusters in the “k-means method” in the pre-processing model is “5”, whereas the number of intermediate layer nodes in the “three-layer neuro method” in the post-processing model is “10”.
(4:識別処理について)
・加工前モデルが“k-means法”を使用するのに対し、加工後モデルは“3層ニューロ法”を使用すること。
・加工前モデルの“k-means法”のクラスタ数が“5”であるのに対し、加工後モデルの“3層ニューロ法”の中間層ノード数は“10”であること。
前記から明らかなように、モデル作成者が視認できる“動作条件の種別”及び“動作条件のパラメータ”は特に制限されない。なぜならば、モデル作成者は、モデル提供者及びモデル利用者のそれぞれに対し守秘義務を負っているからである。このことは、アクセス権限43(図3(a))において、“モデル作成者”の行のアクセス権限フラグが2つとも“○”であることに対応している。
(4: About identification processing)
-The pre-processing model uses the “k-means method” while the post-processing model uses the “three-layer neuro method”.
-The number of clusters in the “k-means method” in the pre-processing model is “5”, whereas the number of intermediate layer nodes in the “three-layer neuro method” in the post-processing model is “10”.
As apparent from the above, the “type of operation condition” and “parameter of operation condition” that can be visually recognized by the model creator are not particularly limited. This is because the model creator has a confidentiality obligation for each of the model provider and the model user. This corresponds to the fact that in the access authority 43 (FIG. 3A), the access authority flags in the “model creator” line are both “◯”.
図12に沿って、モデル提供者用モデル差分表示画面52を説明する。モデル提供者用モデル差分表示画面52のモデル差分欄221は、図3(b)のモデル差分44と同じ構成を有する。しかしながら、表示される情報は、図3(b)とは異なる。モデル提供者用モデル差分表示画面52は、モデル提供者によって視認される画面である。統計モデル作成装置2のモデル差分確認部24は、モデル提供者用モデル差分表示画面52において、加工前モデル及び加工後モデルを対比形式で表示する。モデル提供者は、モデル提供者用モデル差分表示画面52を視認することによって、例えば以下のことを知る。
The model provider model
(1:加工前モデルについて)
・加工前モデル223として表示されている情報は、過去において自身がモデル作成者へ提供した情報であること。
・モデル作成者は、加工前モデルを基にして、ある主体(モデル利用者である)向けの加工後モデルを開発しようとしていること。
(1: Model before processing)
The information displayed as the
-The model creator is trying to develop a post-processing model for a subject (which is a model user) based on the pre-processing model.
(2:加工後モデルについて)
・加工後モデル224においては、“センサ入力処理”のセンサ種別は“機械量センサ”であり、これは加工前モデルの“振動センサ”の上位概念であること。
・加工後モデルが、いくつかのセンサを使用して、ある周期でなんらかの“機械量”を標本化することは分かるが、具体的なセンサ数及び具体的な標本化周期は不明であること。
・加工後モデルの“学習処理”のアルゴリズム種別は“k-means法以外”であり、加工前モデルのアルゴリズム種別である“k-means法”ではないこと。
・加工後モデルの“学習処理”の“動作条件のパラメータ”については全くわからないこと。
(2: Model after processing)
In the
-It can be seen that the post-processing model uses some sensors to sample some "machine quantity" at a certain period, but the specific number of sensors and the specific sampling period are unknown.
The algorithm type of the “learning process” of the model after processing is “other than the k-means method” and not the “k-means method” that is the algorithm type of the model before processing.
・ Don't know at all about the “parameters of the operating conditions” of the “learning process” of the processed model.
・加工後モデルの“識別処理”のアルゴリズム種別は“k-means法以外”であり、加工前モデルのアルゴリズム種別である“k-means法”ではないこと。
・加工後モデルの“識別処理”の“動作条件のパラメータ”については全くわからないこと。
・結局、自身は、モデル利用者の秘密(設計知識)を知り得ないこと。
前記から明らかなように、モデル提供者は、モデル利用者の秘密(設計知識)に属する “動作条件の種別”及び“動作条件のパラメータ”を視認することはできない。このことは、アクセス権限43(図3(a))において、“モデル提供者”の行のアクセス権限フラグが加工前モデルについて“○”であるのに対し、加工後モデルについて“×”であることに対応している。
-The algorithm type of the “discriminating process” of the model after processing is “other than the k-means method” and not the “k-means method” that is the algorithm type of the model before processing.
・ Never know about the “parameters of the operating conditions” in the “identification process” of the model after machining.
・ After all, you cannot know the model user's secret (design knowledge).
As is apparent from the above, the model provider cannot visually recognize the “type of operation condition” and “parameter of operation condition” belonging to the secret (design knowledge) of the model user. This means that in the access authority 43 (FIG. 3A), the access authority flag in the row of “model provider” is “◯” for the pre-process model, whereas “×” for the post-process model. It corresponds to that.
図13に沿って、モデル利用者用モデル差分表示画面53を説明する。モデル利用者用モデル差分表示画面53のモデル差分欄241は、図3(b)のモデル差分44と同じ構成を有する。しかしながら、表示される情報は、図3(b)とは異なる。モデル利用者用モデル差分表示画面53は、モデル利用者によって視認される画面である。統計モデル作成装置2のモデル差分確認部24は、モデル利用者用モデル差分表示画面53において、加工前モデル及び加工後モデルを対比形式で表示する。モデル利用者は、モデル利用者用モデル差分表示画面53を視認することによって、例えば以下のことを知る。
The model user model
(1:加工後モデルについて)
・加工後モデル244として表示されている情報は、モデル作成者に対して加工後モデルの開発を依頼するに際し、自身がモデル作成者へ提供した情報であること。
・モデル作成者は、ある主体(モデル提供者である)向けの加工前モデルを基にして、自身向けの加工後モデルを開発しようとしていること。
(1: Model after processing)
The information displayed as the
-The model maker is trying to develop a post-processing model for himself / herself based on a pre-processing model for a certain subject (model provider).
(2:加工前モデルについて)
・加工前モデル243においては、“センサ入力処理”のセンサ種別は“機械量センサ”であり、これは加工後モデルの“振動センサ”の上位概念であること。
・加工前モデルが、いくつかのセンサを使用して、ある周期でなんらかの“機械量”を標本化することはわかるが、具体的なセンサ数及び具体的な周期は不明であること。
・加工前モデルの“学習処理”のアルゴリズム種別は“3層ニューロ法以外”であり、加工後モデルのアルゴリズム種別である“3層ニューロ法”ではないこと。
・加工前モデルの“学習処理”の“動作条件のパラメータ”については全くわからないこと。
(2: Model before processing)
In the
-It can be seen that the pre-processing model uses some sensors to sample some "machine quantity" at a certain period, but the specific number of sensors and the specific period are unknown.
-The algorithm type of the “learning process” of the pre-processing model is “other than the three-layer neuro method” and not the “three-layer neuro method” that is the algorithm type of the post-processing model.
・ Never know about “parameters for operating conditions” in “learning” of the pre-processing model.
・加工前モデルの“識別処理”のアルゴリズム種別は“3層ニューロ法以外”であり、加工後モデルのアルゴリズム種別である“3層ニューロ法”ではないこと。
・加工前モデルの“識別処理”の“動作条件のパラメータ”については全くわからないこと。
・結局、自身は、モデル提供者の秘密(機械知識)を知り得ないこと。
前記から明らかなように、モデル利用者は、モデル提供者の秘密(設計知識)に属する “動作条件の種別”及び“動作条件のパラメータ”を視認することはできない。このことは、アクセス権限43(図3(a))において、“モデル利用者”の行のアクセス権限フラグが加工後モデルについて“○”であるのに対し、加工前モデルについて“×”であることに対応している。
-The algorithm type of the “discriminating process” of the pre-processing model is “other than the three-layer neuro method” and not the “three-layer neuro method” that is the algorithm type of the post-processing model.
・ Don't know at all about the “parameters of the operating conditions” of the “identification” of the pre-machining model.
・ After all, you cannot know the secret (machine knowledge) of the model provider.
As is clear from the above, the model user cannot visually recognize the “type of operation condition” and “parameter of operation condition” belonging to the secret (design knowledge) of the model provider. This means that, in the access authority 43 (FIG. 3A), the access authority flag in the row of “model user” is “◯” for the model after processing, but “×” for the model before processing. It corresponds to that.
(処理手順)
以降、本実施形態の処理手順を説明する。処理手順として、(1)加工前モデル選択処理手順、(2)動作条件加工処理手順、(3)加工後モデル作成処理手順、(4)モデル差分確認処理手順、及び、(5)モデルマスク処理手順が存在する。(5)は、(4)のサブルーチンである。(1)→(2)→(3)→(4)の順に各処理手順は実行される。
(Processing procedure)
Hereinafter, the processing procedure of this embodiment will be described. As processing procedures, (1) pre-processing model selection processing procedure, (2) operating condition processing processing procedure, (3) post-processing model creation processing procedure, (4) model difference confirmation processing procedure, and (5) model mask processing Procedure exists. (5) is a subroutine of (4). Each processing procedure is executed in the order of (1) → (2) → (3) → (4).
(加工前モデル選択処理手順)
図4に沿って、加工前モデル選択処理手順を説明する。
ステップS301において、統計モデル作成装置2の加工前モデル選択部21は、ひな型モデル選択画面50(図10)を表示する。具体的には、加工前モデル選択部21は、モデル作成者が使用する端末装置3の出力装置17にひな型モデル選択画面50表示する。
(Pre-processing model selection processing procedure)
A pre-processing model selection processing procedure will be described with reference to FIG.
In step S301, the pre-processing
ステップS302において、加工前モデル選択部21は、機器種別及びセンサ種別を受け付ける。具体的には、加工前モデル選択部21は、モデル作成者がひな型モデル選択画面50の機器種別欄191及びセンサ種別欄192に対して、それぞれ機器種別及びセンサ種別を入力するのを受け付ける。そして、モデル作成者が検索ボタン193を押下するのを受け付ける。もちろん、モデル作成者は、機器種別及びセンサ種別のうちのいずれかのみを入力してもよい。さらに、モデル作成者等、他の検索条件を入力してもよい。
In step S302, the pre-processing
ステップS303において、加工前モデル選択部21は、加工前モデルを検索する。具体的には、加工前モデル選択部21は、加工前モデルDB31を検索し、ステップS302において受け付けた機器種別及びセンサ種別をそれぞれ機器種別103a(図2)及びセンサ種別103bとして有する統計モデル41をすべて取得する。このとき、加工前モデル選択部21は、検索キー(機器種別及び/又はセンサ種別)の文字列を完全一致させる必要はなく、部分一致させてもよい。さらに、類義語又は同義語を検索してもよい。
In step S303, the pre-processing
ステップS304において、加工前モデル選択部21は、検索結果を表示する。具体的には、加工前モデル選択部21は、ステップS303において取得した統計モデル41の機器種別103a、センサ種別103b、モデル作成者103c及びひな型適用実績103eを、ひな型モデル選択画面50の検索結果欄194に表示する。図10の例を見ると、加工前モデル選択部21は、少なくとも4個の統計モデル41を取得し、それぞれの統計モデル41ごとに少なくとも4つのレコード(行)を表示していることがわかる。
In step S304, the pre-processing
ステップS305において、加工前モデル選択部21は、モデル作成者による選択を受け付ける。具体的には、加工前モデル選択部21は、モデル作成者が、ひな型モデル選択画面50の検索結果欄194の複数のレコード(加工前モデルの候補である)のうちの1つを選択し(ラジオボタンをクリックし)OKボタン195を押下するのを受け付ける。
In step S305, the pre-processing
ステップS306において、加工前モデル選択部21は、ひな型適用実績を記憶する。具体的には、加工前モデル選択部21は、ステップS305において選択されたレコードに対応する統計モデル41のひな型適用実績103e(図2)が“なし”である場合は、“あり(1回)”に書換える。ひな型適用実績が“あり(1回)”である場合は、“あり(2回)”に書き換える。すると、ある1つの統計モデル41が選択される都度、当該統計モデル41のひな型適用実績は、“なし”→“あり(1回)”→“あり(2回)”→“あり(3回)”→・・・のように変化していく。
その後、加工前モデル選択処理手順を終了する。
In step S306, the pre-processing
Thereafter, the pre-processing model selection processing procedure is terminated.
(動作条件加工処理手順)
図5に沿って、動作条件加工処理手順を説明する。
ステップS311において、統計モデル作成装置2の動作条件加工部22は、センサ入力動作条件を書換える。具体的には、第1に、動作条件加工部22は、ステップS305において選択されたレコードに対応する統計モデル41を取得する。以降、当該統計モデル41を対象加工前モデルと呼ぶ。
第2に、動作条件加工部22は、対象加工前モデルの機器種別103a及びセンサ種別103bのうち機器及びセンサを特定する箇所を意味のない記号又は文字列に書換える。例えば、“吸収式冷温熱機”を“♭式♭機”に書換え、“ABC社製振動センサ”を“♭社製♭センサ”に書換える
第3に、動作条件加工部22は、センサ入力動作条件Piを意味のない数字で初期化する。例えば、“標本化周期=2kHz”を“標本化周期=999kHz”に書換える。
(Operating condition processing procedure)
The operation condition processing procedure will be described with reference to FIG.
In step S311, the operation
Secondly, the operation
ステップS312において、動作条件加工部22は、学習動作条件を書換える。具体的には、動作条件加工部22は、対象加工前モデルの学習動作条件Ptのパラメータの値を意味のない数字で初期化する。例えば、“クラスタ数=5”を“クラスタ数=999”に書換える。
In step S312, the operation
ステップS313において、動作条件加工部22は、識別動作条件を書換える。具体的には、動作条件加工部22は、対象加工前モデルの識別動作条件Pdのパラメータの値を意味のない数字で初期化する。例えば、“異常判定閾値=10”を“異常判定閾値=999”に書換える。
In step S313, the operation
ステップS314において、動作条件加工部22は、書換えた統計モデルを記憶する。具体的には、動作条件加工部22は、ステップS311〜S313においてセンサ入力動作条件Pi、学習動作条件Pt及び識別動作条件Pdが書き換えられた対象加工前モデルを主記憶装置12に一時的に記憶する。なお、動作条件加工部22は、対象加工前モデルのコードブックCBを消去しておくことが望ましい。その後、動作条件加工処理手順を終了する。
In step S314, the operation
(加工後モデル作成処理手順)
図6に沿って、加工後モデル作成処理手順を説明する。
ステップS321において、統計モデル作成装置2の加工後モデル作成部23は、加工後モデルを作成する。具体的には、加工後モデル作成部23は、診断手順101、動作条件102、モデル管理情報103及び動作条件書換え情報104が未設定である統計モデル41を作成する。以降この統計モデル41を“対象加工後モデル”と呼ぶ。
(Processing model creation processing procedure)
The post-processing model creation processing procedure will be described with reference to FIG.
In step S321, the post-processing
ステップS322において、加工後モデル作成部23は、加工後モデルの診断手順を作成する。具体的には、加工後モデル作成部23は、対象加工後モデルの診断手順101の箇所に、対象加工前モデルの診断手順をコピーする。
In step S322, the post-process
ステップS323において、加工後モデル作成部23は、加工後モデルの動作条件を作成する。具体的には、加工後モデル作成部23は、対象加工後モデルの動作条件102の箇所に、対象加工前モデルの動作条件をコピーする。この段階で、対象加工後モデルの診断手順は、対象加工前モデルの診断条件と同じであり、対象加工後モデルの動作条件は、初期値(意味のない数字又は記号)に書換えられている。
In step S323, the post-processing
ステップS324において、加工後モデル作成部23は、加工後モデルを編集する。具体的には、加工後モデル作成部23は、モデル作成者が以下の情報を入力するのを受け付ける。
・センサ入力動作条件として、モデル利用者の診断対象機器のセンサ種別及びセンサの数
・学習処理及び識別処理に使用されるアルゴリズム種別
・学習動作条件及び識別条件として、パラメータ及びその値
In step S324, the post-processing
-As sensor input operation conditions, the sensor type of the model user's diagnosis target device and the number of sensors-Algorithm type used for learning processing and identification processing-As learning operation conditions and identification conditions, parameters and their values
ステップS325において、加工後モデル作成部23は、加工後モデルを完成させる。具体的には、加工後モデル作成部23は、対象加工後モデルの利用承認状態103dとして“未承認”を記憶し、対象加工後モデルを加工後モデルDB42に格納する。その後、加工後モデル作成処理手順を終了する。
In step S325, the processed
(モデル差分確認処理手順)
図7に沿って、モデル差分確認処理手順を説明する。
ステップS331において、統計モデル作成装置2のモデル差分確認部24は、ユーザがモデル提供者であるか否かを判断する。具体的には、第1に、モデル差分確認部24は、統計モデル作成装置2のユーザが自身の端末装置3の入力装置16を介して、自身の立場を示す情報を入力するのを受け付ける。自身の立場を示す情報は、“モデル提供者”、“モデル作成者”、又は、“モデル利用者”のいずれかである。
第2に、モデル差分確認部24は、受け付けた情報が “モデル提供者”である場合(ステップS331“Yes”)、ステップS332に進み、それ以外の場合(ステップS331“No”)、ステップS335に進む。
(Model difference confirmation processing procedure)
A model difference confirmation processing procedure will be described with reference to FIG.
In step S331, the model
Second, if the received information is “model provider” (step S331 “Yes”), the model
ステップS332において、モデル差分確認部24は、加工後モデルを引数としてモデルマスク処理手順を実行する。ステップS332の詳細は後記するが、結果としてモデル差分確認部24は、モデル提供者用モデル差分表示画面52(図12)のモデル差分221を表示するための情報を作成することとなる。
In step S332, the model
ステップS333において、モデル差分確認部24は、モデル提供者用モデル差分表示画面52(図12)を表示する。具体的には、モデル差分確認部24は、モデル提供者が使用する端末装置3の出力装置17に、モデル提供者用モデル差分表示画面52を表示する。
In step S333, the model
ステップS334において、モデル差分確認部24は、承認を受け付ける。モデル提供者は、モデル提供者用モデル差分表示画面52の加工後モデル欄224に注目する。そして、自身はモデル利用者の秘密(設計知識)がわからないのと同様に、自身の秘密もまたモデル利用者に対しては加工後モデル欄224のように隠されることを確認する。また、モデル提供者は加工前モデルを基に加工後モデルが新たに作成されることを確認する。そして、モデル利用者は、当該確認の証として、モデル利用承認欄225の承認状態欄225aの“承認する”を選択し(ラジオボタンをクリックし)、最終承認者欄225cに自身の氏名を入力した後、“OK”ボタン226を押下する。モデル差分確認部24は、これらの入力情報を受け付ける。そして、モデル差分確認部24は、最終承認日時欄225bに現在時点の西暦年月日時分を表示し、その後、モデル差分確認処理手順を終了する。
In step S334, the model
ステップS335において、モデル差分確認部24は、ユーザがモデル作成者であるか否かを判断する。具体的には、モデル差分確認部24は、ステップS331の“第1”において受け付けた情報が “モデル作成者”である場合(ステップS335“Yes”)、ステップS336に進み、それ以外の場合(ステップS335“No”)、ステップS337に進む。
In step S335, the model
ステップS336において、モデル差分確認部24は、モデル作成者用モデル差分表示画面51(図11)を表示する。具体的には、モデル差分確認部24は、モデル作成者が使用する端末装置3の出力装置17に、モデル作成者用モデル差分表示画面52を表示する。その後、モデル差分確認処理手順を終了する。
なお、モデル差分確認部24は、モデル利用承認状態確認欄205に、モデル提供者用モデル差分表示画面52(図12)のモデル利用承認欄225のコピーを表示する。因みに、図11の例においては、モデル提供者は未承認である。
In step S336, the model
The model
ステップS337において、モデル差分確認部24は、加工前モデルを引数としてモデルマスク処理手順を実行する。ステップS337の詳細は後記するが、結果としてモデル差分確認部24は、モデル利用者用モデル差分表示画面53(図13)のモデル差分241を表示するための情報を作成することとなる。
In step S337, the model
ステップS338において、モデル差分確認部24は、承認済であるか否かを判断する。具体的には、モデル差分確認部24は、ステップS334においてモデル提供者が“承認する”を選択した場合(ステップS338“Yes”)、ステップS339に進み、それ以外の場合(ステップS338“No”)、モデル差分確認処理手順を終了する。
In step S338, the model
ステップS339において、モデル差分確認部24は、モデル利用者用モデル差分表示画面53(図13)を表示する。具体的には、モデル差分確認部24は、モデル利用者が使用する端末装置3の出力装置17に、モデル利用者用モデル差分表示画面53を表示する。その後、モデル差分確認処理手順を終了する。
なお、ステップS333、S336及びS339では、画面表示の例を記したが、これらは一例に過ぎない。モデル差分確認部24は、例えば、各画面を作成するためのデータを、記録媒体等に対して出力してもよいし、他の装置に対して送信してもよい。つまり、モデル差分確認部24は、任意の方法で、モデル差分を対比形式で出力できればよい。
In step S339, the model
In addition, although the example of the screen display was described in step S333, S336, and S339, these are only examples. For example, the model
(モデルマスク処理手順)
図8に沿って、モデルマスク処理手順を説明する。モデルマスク処理手順は、モデル差分確認処理手順のステップS332及びS337の詳細である。モデルマスク処理手順の処理内容は、引数が“加工後モデル”である場合(ステップS332)と、引数が“加工前モデル”である場合(ステップS337)とに応じて僅かに異なる。最初に引数が“加工後モデル”である場合を説明する。
大きな流れとして、統計モデル作成装置2のモデル差分確認部24は、ステップS351〜S354の繰り返し処理を、センサ入力処理Si、学習処理St及び識別処理Sdについて繰り返す。
(Model mask processing procedure)
The model mask processing procedure will be described with reference to FIG. The model mask processing procedure is details of steps S332 and S337 of the model difference confirmation processing procedure. The processing contents of the model mask processing procedure are slightly different depending on whether the argument is a “model after processing” (step S332) or the argument is a “model before processing” (step S337). First, the case where the argument is “model after processing” will be described.
As a large flow, the model
ステップS351において、モデル差分確認部24は、動作条件の種別が同じであるか否かを判断する。具体的には、第1に、モデル差分確認部24は、対象加工前モデルと対象加工後モデルの動作条件の種別同士が同じであるか否かを判断する。動作条件の種別とは、センサ入力処理Siにおいてはセンサ種別であり、学習処理St及び識別処理Sdにおいてはアルゴリズム種別である。
第2に、モデル差分確認部24は、動作条件の種別が同じである場合(ステップS351“Yes”)、ステップS352に進み、それ以外の場合(ステップS351“No”)、ステップS353に進む。
In step S351, the model
Secondly, the model
ステップS352において、モデル差分確認部24は、動作条件の種別を上位概念化する。具体的には、モデル差分確認部24は、以下の処理を実行する。
(センサ入力処理Siについての処理中)
例えば、対象加工前モデルのセンサ種別が“振動センサ”であり、対象加工後モデルのセンサ種別も“振動センサ”である場合、モデル差分確認部24は、対象加工後モデルの動作条件の種別を“機械量センサ”に書換える。
In step S352, the model
(Processing for sensor input processing Si)
For example, when the sensor type of the target pre-processing model is “vibration sensor” and the sensor type of the target post-processing model is also “vibration sensor”, the model
(学習処理St及び識別処理Sdについての処理中)
例えば、対象加工前モデルのアルゴリズム種別が“k-means法”であり、対象加工後モデルのアルゴリズム種別も“k-means法”である場合、モデル差分確認部24は、対象加工後モデルの動作条件の種別を“クラスタリング”に書換える。“クラスタリング”は、“k-means法”の上位概念である。
(Processing for learning process St and identification process Sd)
For example, when the algorithm type of the target pre-processing model is “k-means method” and the algorithm type of the target post-processing model is also “k-means method”, the model
ステップS353において、モデル差分確認部24は、動作条件の種別をマスクする。具体的には、モデル差分確認部24は、以下の処理を実行する。
(センサ入力処理Siについての処理中)
例えば、対象加工前モデルのセンサ種別が“振動センサ”であり、対象加工後モデルのセンサ種別が“温度センサ”である場合、モデル差分確認部24は、対象加工後モデルの動作条件の種別を“振動センサ以外”に書換える。
(学習処理St及び識別処理Sdについての処理中)
例えば、対象加工前モデルのアルゴリズム種別が“k-means法”であり、対象加工後モデルのアルゴリズム種別が“n層ニューロ法”である場合、モデル差分確認部24は、対象加工後モデルの動作条件の種別を“k-means法以外”に書換える。
In step S353, the model
(Processing for sensor input processing Si)
For example, when the sensor type of the target pre-processing model is “vibration sensor” and the sensor type of the target post-processing model is “temperature sensor”, the model
(Processing for learning process St and identification process Sd)
For example, when the algorithm type of the target pre-processing model is “k-means method” and the algorithm type of the target post-processing model is “n-layer neuro method”, the model
ステップS354において、モデル差分確認部24は、動作条件のパラメータをマスクする。具体的には、モデル差分確認部24は、以下の処理を実行する。
(センサ入力処理Siについての処理中)
例えば、対象加工前モデルの動作条件のパラメータが“センサ数=999”(意味のない値に初期化されている)であり、対象加工後モデルの動作条件のパラメータが“センサ数=20”(編集されている)であるとする。この場合、モデル差分確認部24は、対象加工後モデルの動作条件のパラメータを“センサ数=#”に書換える。
他の例として、対象加工前モデルの動作条件のパラメータが“標本化周期=999kHz”であり、対象加工後モデルの動作条件のパラメータが“標本化周期=10kHz”である場合、モデル差分確認部24は、対象加工後モデルの動作条件のパラメータを“標本化周期=#kHz”に書換える。
In step S354, the model
(Processing for sensor input processing Si)
For example, the operating condition parameter of the target pre-processing model is “number of sensors = 999” (initialized to a meaningless value), and the operating condition parameter of the target post-processing model is “sensor number = 20” ( Is being edited). In this case, the model
As another example, when the operating condition parameter of the target pre-processing model is “sampling period = 999 kHz” and the operating condition parameter of the target post-processing model is “sampling period = 10 kHz”, the model
(学習処理St及び識別処理Sdについての処理中)
モデル差分確認部24は、対象加工後モデルの動作条件のパラメータを“−”に書換える。
モデル差分確認部24は、繰り返し処理を抜け出した後、モデルマスク処理手順を終了し、ステップS333に進む。
(Processing for learning process St and identification process Sd)
The model
After exiting the iterative process, the model
続いて、引数が“加工前モデル”である場合のモデルマスク処理手順を説明する。この場合のモデルマスク処理手順は、引数が“加工後モデル”である場合に比して、以下の(1)〜(3)のみが異なる。
(1)ステップS352において、書換えの対象となる動作条件の種別は、“対象加工前モデルの動作条件の種別”である。
(2)ステップS353において、書換えの対象となる動作条件の種別は、“対象加工前モデルの動作条件の種別”である。
(3)ステップS354において、書換えの対象となる動作条件のパラメータは、“対象加工前モデルの動作条件のパラメータ”である。
Next, the model mask processing procedure when the argument is “pre-processing model” will be described. The model mask processing procedure in this case is different only in the following (1) to (3) as compared with the case where the argument is “model after processing”.
(1) In step S352, the type of operation condition to be rewritten is “type of operation condition of target pre-machining model”.
(2) In step S353, the type of operation condition to be rewritten is “type of operation condition of target pre-processing model”.
(3) In step S354, the parameter of the operating condition to be rewritten is “the parameter of the operating condition of the target pre-processing model”.
(初期化、上位概念化及びマスクの範囲)
前記では、動作条件加工部22が動作条件を初期化する例として、センサ種別の文字列の一部を意味のない記号又は文字列で書換える例、パラメータ値を意味のない数字で書換える例を挙げた。しかしながら、初期化対象の単位はこれに限定されない。例えば、パラメータの一部(例えば、“クラスタ数”のうちの“クラスタ”)も初期化の対象にしてもよいし、パラメータ値の一部(例えば、特定の桁)のみを初期化の対象にしてもよい。つまり、動作条件の少なくとも一部が初期化されればよい。上位概念化及びマスクについても同様である。
(Initialization, superordinate conceptualization and mask range)
In the above, as an example in which the operation
(第1の実施形態の変形例1)
前記の例において、統計モデル作成装置2は、対象加工前モデル及び対象加工後モデル間のアルゴリズム種別の同異に応じて、対象加工前モデル又は対象加工後モデルの動作条件の種別の書換え態様(マスク又は上位概念化)を決定した。しかしながら、アルゴリズム種別が同じ統計モデル41の候補のうちから、モデル作成者が対象加工前モデルを選択できることがより望ましい。
(Modification 1 of the first embodiment)
In the above example, the statistical
例えば“n層ニューロ法”のパラメータは、“k-means法”のパラメータとは異なる。例えば、対象加工後モデルが“n層ニューロ法”を使用しているとする。すると、対象加工前モデルが“k-means法”を使用している場合と、対象加工前モデルが“n層ニューロ法”を使用している場合とを比較すると、後者の場合のほうが、モデル作成者にとって開発負担がより軽い。 For example, the parameters of the “n-layer neuro method” are different from the parameters of the “k-means method”. For example, assume that the target post-processing model uses the “n-layer neuro method”. Then, comparing the case where the target pre-processing model uses the “k-means method” and the case where the target pre-processing model uses the “n-layer neuro method”, the latter case is the model. The development burden is lighter for the creator.
そこで、第1の実施形態の変形例においては、前記の説明を以下のように変更する。
(1)ひな型モデル選択画面50(図10)は、必須の検索条件が入力される欄として、“アルゴリズム種別”の入力欄を有するものとする。
(2)ステップS302において、統計モデル作成装置2の加工前モデル選択部21は、モデル作成者が“アルゴリズム種別”を入力するのを受け付ける。
(3)ステップS303において、加工前モデル選択部21は、受け付けた“アルゴリズム種別”を“検索キー”に加える。加工前モデル選択部21は、学習動作条件Pt及び識別動作条件Pdの内容から、当該アルゴリズム種別を知ることができる。
Therefore, in the modification of the first embodiment, the above description is changed as follows.
(1) The model model selection screen 50 (FIG. 10) has an “algorithm type” input field as a field in which an essential search condition is input.
(2) In step S302, the pre-processing
(3) In step S303, the pre-processing
(第1の実施形態の変形例2)
モデル差分確認処理手順(図7)のステップS334において、モデル差分確認部24は、モデル提供者から承認を受け付けている。しかしながら、モデル差分確認部24は、モデル作成者から承認を受け付けてもよい。この場合、モデル提供者は、承認する権限をモデル作成者に対して予め与えているものとする。つまり、モデル差分確認部24は、ステップS334の処理を、ステップS336の処理の直後(ステップS338“No”からのパスが合流する前)に実行してもよい。
(
In step S334 of the model difference confirmation processing procedure (FIG. 7), the model
(第2の実施形態)
モデル作成者Xが、ある既存の統計モデル41aを基に、新たな統計モデル41bを作成した後、当該新たな統計モデル41bが運用され始める。すると、別のモデル作成者Yが、当該統計モデル41bを基に、さらに新たな統計モデル41cを作成する。基となる統計モデルを作成するモデル作成者の数が増加すると、又は、あるモデル作成者が作成する統計モデルの数が増加すると、それに続くモデル作成者にとって、基とする統計モデルの選択肢が増加し、統計モデル開発は促進される。そこで、第2の実施形態は、モデル作成者のそれぞれにポイントを与え、統計モデルの作成を動機付ける“インセンティブ処理手順”を有する。
(Second Embodiment)
After the model creator X creates a new statistical model 41b based on an existing statistical model 41a, the new statistical model 41b starts to be used. Then, another model creator Y creates a new statistical model 41c based on the statistical model 41b. As the number of model creators creating the underlying statistical model increases, or as the number of statistical models created by a model creator increases, the choice of the underlying statistical model increases for subsequent model builders However, statistical model development is facilitated. Therefore, the second embodiment has an “incentive processing procedure” that gives points to each model creator and motivates the creation of a statistical model.
(インセンティブ処理手順)
図9に沿って、インセンティブ処理手順を説明する。
インセンティブ処理が開始される契機は、加工前モデル選択処理手順のステップS305である。前記したように、ステップS305において、統計モデル作成装置2の加工前モデル選択部21は、モデル作成者による選択を受け付ける。統計モデル作成装置2のポイント付与部25は、当該処理を常時監視している。そして、ポイント付与部25は、このとき選択した(ラジオボタンをクリックした)モデル作成者を“新規モデル作成者”として認識し、このとき選択された統計モデル41のモデル作成者を“既存モデル作成者”として認識する。
(Incentive processing procedure)
The incentive processing procedure will be described with reference to FIG.
The trigger for starting the incentive process is step S305 of the pre-processing model selection process procedure. As described above, in step S305, the pre-processing
ステップS361において、ポイント付与部25は、ひな型ポイントを算出する。具体的には、第1に、ポイント付与部25は、“選択回数”を“1”とする。
第2に、ポイント付与部25は、“選択回数”に対して所定の係数を乗算した値を“ひな型ポイント”とする。
In step S361, the
Second, the
ステップS362において、ポイント付与部25は、動作条件ポイントを算出する。具体的には、第1に、ポイント付与部25は、対象加工前モデルのセンサ入力動作条件Piから対象加工後モデルのセンサ入力動作条件Piに書換えられたデータ量ΔPiを算出する。同様にして、対象加工前モデルの学習動作条件Ptから対象加工後モデルの学習動作条件Ptに書換えられたデータ量ΔPtを算出し、対象加工前モデルの識別動作条件Pdから対象加工後モデルの識別動作条件Pdに書換えられたデータ量ΔPdを算出する。
In step S362, the
第2に、ポイント付与部25は、“ΔPi+ΔPt+ΔPd”に対して所定の係数を乗算した値を“動作条件ポイント”とする。なお、ポイント付与部25は、“wi×ΔPi+wt×ΔPt+wd×ΔPd”に対して所定の係数を乗算した値を“動作条件ポイント”としてもよい。ここで、wi+wt+wd=1、0≦wi≦1、0≦wt≦1及び0≦wd≦1が成り立っている。つまり、wi、wt及びwdは、それぞれ、ΔPi、ΔPt及びΔPdに対する重みである。
Second, the
ステップS363において、ポイント付与部25は、インセンティブポイントを算出する。インセンティブポイントは、ひな型ポイントに対して動作条件ポイントを加算した値である。
In step S363, the
ステップS364において、ポイント付与部25は、ポイントを付加する。具体的には、第1に、ポイント付与部25は、 “r1×インセンティブポイント”の値、並びに、その内数としての“r1×ひな型ポイント”の値及び“r1×動作条件ポイント”の値を既存モデル作成者に対し付与する。
第2に、ポイント付与部25は、 “r2×インセンティブポイント”の値、並びに、その内数としての“r2×ひな型ポイント”の値及び“r2×動作条件ポイント”の値を新規モデル作成者に対し付与する。
ここで、0≦r2≦r1≦1である。つまり、既存モデル作成者に対してより大きなポイントが付与される。
In step S364, the
Second, the
Here, 0 ≦ r 2 ≦ r 1 ≦ 1. That is, a larger point is given to the existing model creator.
ポイント付与部25は、ステップS305を経由する都度、ステップS361〜S364の処理を繰り返す。そして、ポイント付与部25は、モデル作成者ごとに、“r1×インセンティブポイント”の値、“r1×ひな型ポイント”の値、及び、“r1×動作条件ポイント”の値をそれぞれ加算し、加算結果を補助記憶装置13に記憶する。同様に、モデル作成者ごとに、“r2×インセンティブポイント”の値、“r2×ひな型ポイント”の値、及び、“r2×動作条件ポイント”の値をそれぞれ加算し、加算結果を補助記憶装置13に記憶する。ここで一旦インセンティブ処理手順は中断する。
The
ステップS365において、ポイント付与部25は、ポイント表示画面54(図14(a))を表示する。具体的には、第1に、ポイント付与部25は、任意の時点において、モデル作成者が自身の端末装置3の入力装置16を介して、“ポイント照会要求”を入力するのを受け付けるのを契機に、インセンティブ処理手順を再開する。
第2に、ポイント付与部25は、“ポイント照会要求”を入力したモデル作成者の端末装置3の出力装置17にポイント表示画面54を表示する。
第3に、ポイント付与部25は、補助記憶装置13から加算結果を読み出し、ポイント表示画面54のユーザリスト欄251に加算結果を表示する。
In step S365, the
Secondly, the
Thirdly, the
ステップS366において、ポイント付与部25は、ユーザ詳細情報表示画面55(図14(b))を表示する。具体的には、第1に、ポイント付与部25は、モデル作成者がユーザリスト欄251の任意のレコードを選択し(ラジオボックスをクリックし)“OK”ボタン252を押下するのを受け付ける。いま、モデル作成者は“鈴木○男”のレコードを選択したとする。
In step S366, the
第2に、ポイント付与部25は、加工前モデルDB31を検索し、モデル作成者103cが“鈴木○男”である統計モデル41をすべて取得する。そして、取得した統計モデル41の機器種別103a及びセンサ種別103bをすべて取得する。
第3に、ポイント付与部25は、“ポイント照会要求”を入力したモデル作成者の端末装置3の出力装置17にユーザ詳細情報表示画面55を表示する。
Second, the
Third, the
第4に、ポイント付与部25は、ユーザ詳細情報表示画面55のユーザ名欄261aに“鈴木○男”を表示する。そして、インセンティブポイント欄261b、ひな型ポイント欄261c及び動作条件ポイント欄261dに、それぞれ、“鈴木○男”のインセンティブポイント、ひな型ポイント及び動作条件ポイントの現在値(加算結果)を表示する。
第5に、ポイント付与部25は、“第2”において取得した機器種別及びセンサ種別を、それぞれ、診断可能な機器欄261e及び取扱可能なセンサ欄261fに表示する。
その後、インセンティブ処理手順を終了する。
Fourth, the
Fifth, the
Thereafter, the incentive processing procedure is terminated.
(実施形態の効果)
本実施形態の統計モデル作成装置2は、以下の効果を奏する。
(1)新たな統計モデルの開発効率が向上し、既存の統計モデルに含まれる設計知識をユーザの立場に応じた態様で視認することができる。
(2)モデル提供者及びモデル利用者相互間で、動作条件についての設計知識を秘密にすることができる。
(3)動作条件の一部を上位概念化することによって、秘密にする必要性が比較的低い設計知識については概略を開示し、動作条件の一部をマスクすることによって、秘密にする必要性が比較的高い設計知識については、完全に秘密にすることができる。
(4)動作条件の一部を予め初期化することによって、仮に上位概念化又はマスクに失敗しても設計条件の開示を最小限に限定することができる。
(5)機器の取扱にとって枢要なアルゴリズムの種別及びパラメータ値を秘密にすることができる。
(6)機器の異常状態を検知することができる。
(Effect of embodiment)
The statistical
(1) Development efficiency of a new statistical model is improved, and design knowledge included in an existing statistical model can be visually recognized in a manner according to the user's position.
(2) It is possible to keep design knowledge about operating conditions secret between model providers and model users.
(3) The outline of design knowledge that is relatively less necessary to be kept secret by making a part of the operating conditions higher-level concept is disclosed, and the need to keep it secret by masking a part of the operating conditions The relatively high design knowledge can be kept completely secret.
(4) By initializing some of the operating conditions in advance, the disclosure of design conditions can be limited to a minimum even if the conception or masking fails.
(5) It is possible to keep secret the algorithm type and parameter value that are important for handling the device.
(6) An abnormal state of the device can be detected.
(7)モデル提供者の意向を無視することなく、新規の設計モデルを作成できる。
(8)同じ種別のアルゴリズムを有する設計モデルを基に、効率的に新規の設計モデルを作成することができる。
(9)設計モデルの作成者は、基となる設計モデルを選択することができる。
(10)既存の設計モデルの作成者及び新規の設計モデルの両者に対して、設計モデルを流用する動機を与えることができる。
(11)既存の設計モデルの作成者に、より流用されやすい統計モデルを作成する動機を与えることができる。
(12)既存の設計モデルの作成者により多くのポイントを与えることによって、既存の統計モデルの供給不足を回避できる。
(13)統計モデルを格納する記憶部が独立しているので、外部の顧客との連携が容易になる。
(7) A new design model can be created without ignoring the intention of the model provider.
(8) A new design model can be efficiently created based on a design model having the same type of algorithm.
(9) The design model creator can select a base design model.
(10) A motivation for diverting the design model can be given to both the creator of the existing design model and the new design model.
(11) The creator of an existing design model can be motivated to create a statistical model that is more easily diverted.
(12) By providing more points to the creator of the existing design model, it is possible to avoid a shortage of supply of the existing statistical model.
(13) Since the storage unit for storing the statistical model is independent, cooperation with an external customer is facilitated.
なお、本発明は前記した実施例に限定されるものではなく、様々な変形例が含まれる。例えば、前記した実施例は、本発明を分かり易く説明するために詳細に説明したものであり、必ずしも説明したすべての構成を備えるものに限定されるものではない。また、ある実施例の構成の一部を他の実施例の構成に置き換えることが可能であり、また、ある実施例の構成に他の実施例の構成を加えることも可能である。また、各実施例の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 In addition, this invention is not limited to an above-described Example, Various modifications are included. For example, the above-described embodiments have been described in detail for easy understanding of the present invention, and are not necessarily limited to those having all the configurations described. Further, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
また、前記の各構成、機能、処理部、処理手段等は、それらの一部又は全部を、例えば集積回路で設計する等によりハードウエアで実現してもよい。また、前記の各構成、機能等は、プロセッサがそれぞれの機能を実現するプログラムを解釈し、実行することによりソフトウエアで実現してもよい。各機能を実現するプログラム、テーブル、ファイル等の情報は、メモリや、ハードディスク、SSD(Solid State Drive)等の記録装置、又は、ICカード、SDカード、DVD等の記録媒体に置くことができる。
また、制御線や情報線は説明上必要と考えられるものを示しており、製品上必ずしもすべての制御線や情報線を示しているとは限らない。実際には殆どすべての構成が相互に接続されていると考えてもよい。
Each of the above-described configurations, functions, processing units, processing means, and the like may be realized by hardware by designing a part or all of them with, for example, an integrated circuit. Each of the above-described configurations, functions, and the like may be realized by software by interpreting and executing a program that realizes each function by the processor. Information such as programs, tables, and files that realize each function can be stored in a recording device such as a memory, a hard disk, or an SSD (Solid State Drive), or a recording medium such as an IC card, an SD card, or a DVD.
In addition, the control lines and information lines are those that are considered necessary for the explanation, and not all the control lines and information lines on the product are necessarily shown. In practice, it may be considered that almost all the components are connected to each other.
1 統計モデル作成システム
2 統計モデル作成装置
3 端末装置
11、18 中央制御装置(制御部)
12、19 主記憶装置(記憶部)
13、20 補助記憶装置(記憶部)
14、15 通信装置
16 入力装置
17 出力装置
21 加工前モデル選択部
22 動作条件加工部
23 加工後モデル作成部
24 モデル差分確認部
25 ポイント付与部
41、42 統計モデル
43 アクセス権限
44 モデル差分
DESCRIPTION OF SYMBOLS 1 Statistical
12, 19 Main storage device (storage unit)
13, 20 Auxiliary storage device (storage unit)
14, 15
Claims (15)
前記記憶部を参照して第1の機器に対する取扱についての第1の統計モデルを取得し、前記取得した第1の統計モデルを基に、第2の機器に対する取扱についての第2の統計モデルを新たに作成し、
前記第1の統計モデルの前記動作手順及び前記動作条件、並びに、前記第2の統計モデルの前記動作手順及び前記動作条件を対比形式でユーザに対して出力する際に、前記第1の統計モデルの前記動作条件の少なくとも一部、又は、前記第2の統計モデルの前記動作条件の少なくとも一部を、出力先の前記ユーザの立場に応じて、情報の内容を秘匿するように変更したうえで出力する制御部と、
を備えることを特徴とする統計モデル作成装置。 A storage unit that stores an operation procedure for handling the device and a statistical model including an operation condition corresponding to each of the operation procedures;
A first statistical model for handling the first device is acquired with reference to the storage unit, and a second statistical model for handling the second device is obtained based on the acquired first statistical model. Create a new one
When the operation procedure and the operation condition of the first statistical model and the operation procedure and the operation condition of the second statistical model are output to the user in a comparison format, the first statistical model After changing at least a part of the operation condition of the second statistical model or at least a part of the operation condition of the second statistical model so as to conceal the contents of the information according to the user's position of the output destination A control unit for outputting;
A statistical model creation device comprising:
前記出力先の前記ユーザが前記第1の機器に関係する者である場合、
前記第1の統計モデルの前記動作条件を変更することなく前記第2の統計モデルの前記動作条件の少なくとも一部を、情報の内容を秘匿するように変更し、
前記出力先の前記ユーザが前記第2の機器に関係する者である場合、
前記第2の統計モデルの前記動作条件を変更することなく前記第1の統計モデルの前記動作条件の少なくとも一部を、情報の内容を秘匿するように変更すること、
を特徴とする請求項1に記載の統計モデル作成装置。 The controller is
When the user of the output destination is a person related to the first device,
Changing at least part of the operating conditions of the second statistical model without changing the operating conditions of the first statistical model so as to conceal the content of the information ;
When the user of the output destination is a person related to the second device,
Changing at least part of the operating conditions of the first statistical model without changing the operating conditions of the second statistical model so as to conceal the content of the information ;
The statistical model creation device according to claim 1.
前記第1の統計モデルの前記動作条件と前記第2の統計モデルの前記動作条件とが同じである場合は、
前記第1の統計モデルの前記動作条件の少なくとも一部又は第2の統計モデルの前記動作条件の少なくとも一部を上位概念化して出力し、
前記第1の統計モデルの前記動作条件と前記第2の統計モデルの前記動作条件とが異なる場合は、
前記第1の統計モデルの前記動作条件の少なくとも一部又は第2の統計モデルの前記動作条件の少なくとも一部をマスクして出力すること、
を特徴とする請求項2に記載の統計モデル作成装置。 The controller is
When the operating condition of the first statistical model and the operating condition of the second statistical model are the same,
Outputting at least a part of the operating condition of the first statistical model or at least a part of the operating condition of the second statistical model as a superordinate concept;
If the operating condition of the first statistical model and the operating condition of the second statistical model are different,
Masking and outputting at least part of the operating condition of the first statistical model or at least part of the operating condition of a second statistical model;
The statistical model creation apparatus according to claim 2.
前記変更に先立ち、前記第1の統計モデルの前記動作条件の少なくとも一部を意味のないデータで初期化すること、
を特徴とする請求項3に記載の統計モデル作成装置。 The controller is
Prior to the change, initializing at least part of the operating conditions of the first statistical model with meaningless data;
The statistical model creation device according to claim 3.
前記機器に対する取扱についてのアルゴリズムの種別、及び、前記アルゴリズムによって使用されるパラメータ値を含むこと、
を特徴とする請求項4に記載の統計モデル作成装置。 Some of the operating conditions to be changed are:
Including the type of algorithm for handling the device, and parameter values used by the algorithm;
The statistical model creation apparatus according to claim 4.
前記機器が異常状態にあるか否かを診断することを含むこと、
を特徴とする請求項5に記載の統計モデル作成装置。 The handling is
Including diagnosing whether the device is in an abnormal state,
The statistical model creation apparatus according to claim 5.
前記第1の統計モデルを基に、前記第2の統計モデルを新たに作成することについて、前記第1の機器に関係する者の承認又は前記第1の機器に関係する者から権限を与えられた者の承認を受け付けること、
を特徴とする請求項6に記載の統計モデル作成装置。 The controller is
Based on the first statistical model, the creation of the second statistical model is authorized by a person related to the first device or authorized by a person related to the first device. Accepting the approval of the
The statistical model creation apparatus according to claim 6.
前記第1の機器に対する取扱についての前記第1の統計モデルを取得するに際し、
前記記憶部から、前記第2の統計モデルのアルゴリズムの種別と同じ種別のアルゴリズムを使用する前記第1の統計モデルを取得すること、
を特徴とする請求項7に記載の統計モデル作成装置。 The controller is
In obtaining the first statistical model for handling the first device,
Obtaining the first statistical model using an algorithm of the same type as the algorithm type of the second statistical model from the storage unit;
The statistical model creation device according to claim 7.
前記第1の統計モデルを取得するに際し、
前記第1の統計モデルの複数の候補を取得し、
前記ユーザが前記取得した複数の候補のうちの1つを選択するのを受け付けること、
を特徴とする請求項8に記載の統計モデル作成装置。 The controller is
In obtaining the first statistical model,
Obtaining a plurality of candidates for the first statistical model;
Receiving the user selecting one of the acquired candidates;
The statistical model creation apparatus according to claim 8.
前記選択された第1の統計モデルの作成者及び前記選択を行った者に対して、ポイントを付与すること、
を特徴とする請求項9に記載の統計モデル作成装置。 The controller is
Giving points to the creator of the selected first statistical model and the person who made the selection;
The statistical model creation apparatus according to claim 9.
前記選択された回数、及び、前記第1の統計モデルから前記第2の統計モデルに書換えられたデータ量に応じて、前記ポイントを算出すること、
を特徴とする請求項10に記載の統計モデル作成装置。 The controller is
Calculating the point according to the selected number of times and the amount of data rewritten from the first statistical model to the second statistical model;
The statistical model creation device according to claim 10.
前記選択を行った者に付与するポイントを前記選択された第1の統計モデルの作成者に付与するポイントに比して少なくすること、
を特徴とする請求項11に記載の統計モデル作成装置。 The controller is
Reducing the points to be given to those who have made the selection compared to the points to be given to the creator of the selected first statistical model;
The statistical model creation apparatus according to claim 11.
それぞれ独立した構成であり、
前記制御部は、
ネットワークを介して前記記憶部にアクセスすること、
を特徴とする請求項12に記載の統計モデル作成装置。 The storage unit and the control unit are
Each is an independent configuration,
The controller is
Accessing the storage unit via a network;
The statistical model creation apparatus according to claim 12.
機器に対する取扱についての動作手順及び前記動作手順のそれぞれに対応する動作条件を含む統計モデルを格納しており、
前記統計モデル作成装置の制御部は、
前記記憶部を参照して第1の機器に対する取扱についての第1の統計モデルを取得し、前記取得した第1の統計モデルを基に、第2の機器に対する取扱についての第2の統計モデルを新たに作成し、
前記第1の統計モデルの前記動作手順及び前記動作条件、並びに、前記第2の統計モデルの前記動作手順及び前記動作条件を対比形式でユーザに対して出力する際に、前記第1の統計モデルの前記動作条件の少なくとも一部、又は、前記第2の統計モデルの前記動作条件の少なくとも一部を、出力先の前記ユーザの立場に応じて、情報の内容を秘匿するように変更したうえで出力すること、
を特徴とする統計モデル作成装置の統計モデル作成方法。 The storage unit of the statistical model creation device is
Stores a statistical model that includes operating procedures for handling equipment and operating conditions corresponding to each of the operating procedures,
The control unit of the statistical model creation device includes:
A first statistical model for handling the first device is acquired with reference to the storage unit, and a second statistical model for handling the second device is obtained based on the acquired first statistical model. Create a new one
When the operation procedure and the operation condition of the first statistical model and the operation procedure and the operation condition of the second statistical model are output to the user in a comparison format, the first statistical model After changing at least a part of the operation condition of the second statistical model or at least a part of the operation condition of the second statistical model so as to conceal the contents of the information according to the user's position of the output destination Output,
The statistical model creation method of the statistical model creation apparatus characterized by this.
機器に対する取扱についての動作手順及び前記動作手順のそれぞれに対応する動作条件を含む統計モデルを格納させ、
前記統計モデル作成装置の制御部に対し、
前記記憶部を参照して第1の機器に対する取扱についての第1の統計モデルを取得し、前記取得した第1の統計モデルを基に、第2の機器に対する取扱についての第2の統計モデルを新たに作成し、
前記第1の統計モデルの前記動作手順及び前記動作条件、並びに、前記第2の統計モデルの前記動作手順及び前記動作条件を対比形式でユーザに対して出力する際に、前記第1の統計モデルの前記動作条件の少なくとも一部、又は、前記第2の統計モデルの前記動作条件の少なくとも一部を、出力先の前記ユーザの立場に応じて、情報の内容を秘匿するように変更したうえで出力する処理を実行させること、
を特徴とする統計モデル作成装置を機能させるための統計モデル作成プログラム。 For the storage part of the statistical model creation device,
A statistical model including an operation procedure for handling the device and an operation condition corresponding to each of the operation procedures;
For the control unit of the statistical model creation device,
A first statistical model for handling the first device is acquired with reference to the storage unit, and a second statistical model for handling the second device is obtained based on the acquired first statistical model. Create a new
When the operation procedure and the operation condition of the first statistical model and the operation procedure and the operation condition of the second statistical model are output to the user in a comparison format, the first statistical model After changing at least a part of the operation condition of the second statistical model or at least a part of the operation condition of the second statistical model so as to conceal the contents of the information according to the user's position of the output destination To execute the process to output,
Statistical model creation program for functioning a statistical model creation device characterized by
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015071214A JP6276727B2 (en) | 2015-03-31 | 2015-03-31 | Statistical model creation device, statistical model creation method, and statistical model creation program |
PCT/JP2016/051774 WO2016157950A1 (en) | 2015-03-31 | 2016-01-22 | Statistical model creation device, statistical model creation method, and statistical model creation program |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2015071214A JP6276727B2 (en) | 2015-03-31 | 2015-03-31 | Statistical model creation device, statistical model creation method, and statistical model creation program |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2016192034A JP2016192034A (en) | 2016-11-10 |
JP6276727B2 true JP6276727B2 (en) | 2018-02-07 |
Family
ID=57005535
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2015071214A Active JP6276727B2 (en) | 2015-03-31 | 2015-03-31 | Statistical model creation device, statistical model creation method, and statistical model creation program |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6276727B2 (en) |
WO (1) | WO2016157950A1 (en) |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3425324B2 (en) * | 2017-07-04 | 2022-11-16 | Sick Ag | Method for adjusting the parameters of a sensor |
JP6799708B2 (en) * | 2018-02-13 | 2020-12-16 | 三菱パワー株式会社 | Model creation method, plant operation support method, and model creation device |
US20210012003A1 (en) * | 2018-03-20 | 2021-01-14 | Sony Corporation | Information processing apparatus and information processing method |
CN111240300A (en) * | 2020-01-07 | 2020-06-05 | 国电南瑞科技股份有限公司 | Vehicle health state evaluation model construction method based on big data |
JP7487748B2 (en) | 2022-01-21 | 2024-05-21 | 横河電機株式会社 | Apparatus, method and program |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3762132B2 (en) * | 1999-03-03 | 2006-04-05 | 株式会社東芝 | Application registration reuse system |
JP5559100B2 (en) * | 2011-05-31 | 2014-07-23 | 日立オートモティブシステムズ株式会社 | Electronic control system |
JP5707250B2 (en) * | 2011-06-23 | 2015-04-22 | 株式会社日立システムズ | Database access management system, method, and program |
JP5687656B2 (en) * | 2012-05-24 | 2015-03-18 | 株式会社野村総合研究所 | Data converter |
JP2014026327A (en) * | 2012-07-24 | 2014-02-06 | Azbil Corp | Device state diagnostic apparatus using actual operation data |
-
2015
- 2015-03-31 JP JP2015071214A patent/JP6276727B2/en active Active
-
2016
- 2016-01-22 WO PCT/JP2016/051774 patent/WO2016157950A1/en active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2016157950A8 (en) | 2016-11-24 |
JP2016192034A (en) | 2016-11-10 |
WO2016157950A1 (en) | 2016-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Sarstedt et al. | Partial least squares structural equation modeling using SmartPLS: a software review | |
JP6276727B2 (en) | Statistical model creation device, statistical model creation method, and statistical model creation program | |
KR100987876B1 (en) | Custom rule system and method for expert systems | |
CN101866285B (en) | Software reuse support method and apparatus | |
JP2005322211A (en) | Design support system | |
WO2010002919A1 (en) | Data logging in graph-based computations | |
JP5112085B2 (en) | Office flow generation apparatus and method | |
JP2009238010A (en) | Trouble coping apparatus, troubleshooting method for information technology system, and program therefor | |
JP7057761B2 (en) | Computer system and information presentation method | |
JP4698477B2 (en) | Print management device, log information collection device, print management system, print management method, print management program, and storage medium | |
CN106484389A (en) | Stream of action sectional management | |
JP4525414B2 (en) | Abnormality determination apparatus and abnormality determination method | |
JP7538272B2 (en) | Machine learning model operation management system, operation management method, and computer program | |
JP6120607B2 (en) | Requirement detection apparatus and requirement detection program | |
US7558989B2 (en) | Implementing persistence and refreshing of validation error messages based upon hierarchical refresh levels | |
JP2006277282A (en) | Model evaluation analysis system and model evaluation analysis program | |
KR102383820B1 (en) | System and method for recommending property | |
JP2006350915A (en) | Information retrieval system | |
WO2020070929A1 (en) | Plant apparatus information management system | |
JP5197128B2 (en) | Dependency Estimation Device, Dependency Estimation Program, and Recording Medium | |
JP5532052B2 (en) | Evaluation model analysis system, evaluation model analysis method and program | |
Duan et al. | Towards Semantically-Aware UI Design Tools: Design, Implementation, and Evaluation of Semantic Grouping Guidelines | |
JP2015162170A (en) | Information processing device, and control method | |
JP6547341B2 (en) | INFORMATION PROCESSING APPARATUS, METHOD, AND PROGRAM | |
JP6455087B2 (en) | Form information processing program, form information processing apparatus, and form information processing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20171006 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171114 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171213 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20180109 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20180112 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6276727 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |