JP6276035B2 - Stator manufacturing method - Google Patents

Stator manufacturing method Download PDF

Info

Publication number
JP6276035B2
JP6276035B2 JP2014003534A JP2014003534A JP6276035B2 JP 6276035 B2 JP6276035 B2 JP 6276035B2 JP 2014003534 A JP2014003534 A JP 2014003534A JP 2014003534 A JP2014003534 A JP 2014003534A JP 6276035 B2 JP6276035 B2 JP 6276035B2
Authority
JP
Japan
Prior art keywords
phase
winding group
divided
winding
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014003534A
Other languages
Japanese (ja)
Other versions
JP2015133809A (en
Inventor
謙太 後藤
謙太 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asmo Co Ltd
Original Assignee
Asmo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asmo Co Ltd filed Critical Asmo Co Ltd
Priority to JP2014003534A priority Critical patent/JP6276035B2/en
Publication of JP2015133809A publication Critical patent/JP2015133809A/en
Application granted granted Critical
Publication of JP6276035B2 publication Critical patent/JP6276035B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Manufacture Of Motors, Generators (AREA)

Description

本発明は、ステータの製造方法に関するものである。   The present invention relates to a stator manufacturing method.

ブラシレスモータのステータにおいて、インシュレータに覆われた複数のT型分割コアのティース部に巻線をそれぞれ巻回する方法として、インシュレータに覆われた複数の分割コアをティース部が径方向外向きに解放するように隣接して配置する。その後、1つの連続巻線で隣り合うティース部間は渡り線を介して全ティース部に集中巻を施し、最後に、分割コアのティース部が径方向内向きになるように組み付けられる電機子が提案されている(例えば、特許文献1)。   In the stator of a brushless motor, as a method of winding the windings around the teeth of the multiple T-shaped split cores covered by the insulator, the teeth are released radially outward from the split cores covered by the insulator. To be adjacent to each other. Then, concentrated winding is applied to all teeth via a connecting wire between adjacent teeth in one continuous winding, and finally the armature assembled so that the teeth of the split core are radially inward It has been proposed (for example, Patent Document 1).

この方法は、ノズル巻線方式に対して、巻線スペースの確保が容易で高占積率となり、同一体積でのモータにおいて高出力を得ることができる点で優れて、重稀土類を含む磁石使用量を減らす有効な方法である。   This method is superior to the nozzle winding method in that a winding space can be easily secured and a high space factor can be obtained, and a high output can be obtained in a motor with the same volume. It is an effective way to reduce usage.

特開2007−20251号公報JP 2007-20251 A

しかしながら、上記方法では、最後に行う分割コアのティース部を内向きになるように環状化する工程は、複雑で高精度の技術を必要としていた。その結果、製造コストが増加し、小型高トルク化と低コスト化の両方を満足するのは困難となっている。   However, in the above method, the process of circularizing the teeth portion of the split core that is performed last so as to face inward requires a complicated and highly accurate technique. As a result, the manufacturing cost is increased, and it is difficult to satisfy both the miniaturization and the high torque and the low cost.

本発明は、上記課題を解決するためになされたものであって、その目的は、高占積率を維持しつつ分割コアからなるステータ組み付けを容易にし、製造コスト低減をと可能するステータの製造方法を提供することにある。   SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problems, and its object is to manufacture a stator that facilitates assembly of a stator composed of split cores while maintaining a high space factor, and can reduce manufacturing costs. It is to provide a method.

上記課題を解決するためのステータの製造方法は、分割環状部と、その分割環状部の周方向中間部分から径方向内側に延出したティース部とからなる分割コアにインシュレータを装着し、そのインシュレータを装着した複数個の分割コアを1組とし、その組を複数有し、その各組の各分割コアをそれぞれ予め定めた順序で連接して、円環状に形成するとともに、前記インシュレータを装着した各分割コアにおいて、自身の組の各分割コアのティース部に巻回される自身の組の巻線間が渡り線で繋いでなるステータの製造方法であって、1つの導線にて連続して巻線が巻回されるとともに、前記渡り線のために巻線と巻線の間が予め定めた間隔に開けられて連なるように連結された巻線群を、前記複数の組毎に用意する巻線群作成工程と、それぞれ自身巻線群の各分割コアを、他の巻線群の連なる分割コア間に配置して、各巻線群の各分割コアをそれぞれ予め定めた順序に一方向に一列に並べる巻線群合体工程と、予め定めた順序に一方向に一列に並んだ各巻線群の各分割コアを環状化する分割コア環状化工程とを有しており、各巻線群の各分割コアに装着された前記インシュレータは、その前記ティース部基端側の分割環状部の軸方向外側面に、内壁が前記分割環状部に沿って周方向に形成され、前記内壁の周方向中間部に径方向には、貫通する開口部が形成され、前記開口部にて周方向に2分された前記内壁の各径方向外側には、自身の巻線群の各分割コアのティース部に巻回される自身の巻線群の巻線間を繋ぐ渡り線と、他の巻線群の各分割コアのティース部に巻回される他の巻線群の巻線間を繋ぐ渡り線とを、周方向に案内する案内部が形成されており、前記巻線群は、モータの相毎に用意されるものであり、前記モータの相数は、U相、V相及びW相の3相であり、前記予め定めた間隔は、分割コアの2個分以上の間隔であり、前記インシュレータの前記案内部は、周方向に2分された前記内壁の各径方向外側面に凹設され、周方向に案内される前記渡り線を軸方向に移動不能に支持する渡り線案内溝であり、前記巻線群合体工程は、第1合体工程と第2合体工程とを有し、前記第1合体工程では、U相の巻線群の各分割コアに対して、V相の巻線群の各分割コアの姿勢をV相の渡り線を回転中心に回転させて、V相の渡り線をU相の巻線群の各分割コアのインシュレータに形成した前記渡り線案内溝にそれぞれ嵌合させた後に、V相の巻線群の各分割コアの姿勢を元の姿勢に戻して、U相の渡り線をV相の巻線群の各分割コアのインシュレータに形成した前記渡り線案内溝にそれぞれ嵌合させ、その後の前記第2合体工程では、合体したU相及びV相の巻線群の各分割コアに対して、W相の巻線群の各分割コアの姿勢をW相の渡り線を回転中心に回転させて、W相の渡り線をU相及びV相の巻線群の各分割コアのインシュレータに形成した前記渡り線案内溝にそれぞれ嵌合させた後に、W相の巻線群の各分割コアの姿勢を元の姿勢に戻して、U相及びV相の渡り線をW相の巻線群の各分割コアの前記インシュレータに形成した前記渡り線案内溝にそれぞれ嵌合させるA stator manufacturing method for solving the above-described problem includes an insulator mounted on a split core including a split annular portion and a teeth portion extending radially inward from a circumferential intermediate portion of the split annular portion. A plurality of divided cores with a plurality of sets are provided, and each of the divided cores of each set is connected in a predetermined order to form an annular shape, and the insulator is attached. In each divided core, a stator manufacturing method in which the windings of its own set wound around the teeth of each divided core of its own set are connected by a jumper, A winding group is prepared for each of the plurality of sets in which the windings are wound and connected to the connecting wires so that the windings are connected with a predetermined interval between them. Winding group creation process and it Winding group coalescing by arranging each divided core of the winding group between the divided cores of other winding groups, and arranging the divided cores of each winding group in a line in a predetermined order. And a split core annularization step for annularly dividing each divided core of each winding group arranged in a line in one direction in a predetermined order, and the above-mentioned attached to each divided core of each winding group The insulator has an inner wall formed in a circumferential direction along the divided annular portion on an axially outer side surface of the divided annular portion on the base end side of the tooth portion, and penetrates radially in a circumferential intermediate portion of the inner wall. The windings wound around the teeth of the split cores of the winding group on the radially outer side of the inner wall divided in the circumferential direction by the opening. Crossover wires connecting the windings of the group and other windings wound around the teeth of each split core of the other winding group Guide portions are formed to guide the connecting wires connecting the windings of the wire group in the circumferential direction, and the winding group is prepared for each phase of the motor, and the number of phases of the motor is , U phase, V phase and W phase, and the predetermined interval is an interval of two or more of the split cores, and the guide portion of the insulator is divided into two in the circumferential direction. It is a crossover guide groove that is recessed in each radially outer side surface of the inner wall and supports the crossover guide guided in the circumferential direction so that it cannot move in the axial direction, and the winding group union step is a first union step A second merging step, and in the first merging step, the posture of each divided core of the V-phase winding group is rotated with respect to each divided core of the U-phase winding group. Rotate to the center and fit the V-phase crossover wires into the crossover guide grooves formed in the insulators of the split cores of the U-phase winding group. After the combination, the posture of each split core of the V-phase winding group is returned to the original posture, and the U-phase crossover is formed on the insulator of each split core of the V-phase winding group. In the second merging step thereafter, the posture of each divided core of the W-phase winding group is set to the W-phase with respect to each divided core of the combined U-phase and V-phase winding groups. The W-phase connecting wire is rotated around the rotation center, and the W-phase connecting wire is fitted into the connecting wire guide grooves formed in the insulators of the split cores of the U-phase and V-phase winding groups. Return the posture of each split core of the winding group to the original posture, and connect the U-phase and V-phase crossover wires to the crossover guide grooves formed in the insulator of each split core of the W-phase winding group, respectively. Fit .

この製造方法によれば、各組の巻線群は、それぞれ予め定めた間隔を開けて1つの導線にて各巻線を分割コアに巻回することから、各巻線の占積率を上げることができる。
また、各組の巻線群は、分割コア同士が予め定めた間隔にそれぞれ開けられているので、各組の巻線群の各分割コアを、互いに他の巻線群の各分割コア間に配置できる。そして、各組の巻線群の各分割コアをそれぞれ予め定めた順序に一方向に一列に配置した後に、環状化することによって、各巻線の占積率の高く低コストのステータを簡単に作ることができる。
According to this manufacturing method, each group of windings has a predetermined interval, and each winding is wound around the split core with one conducting wire, so that the space factor of each winding can be increased. it can.
In addition, each group of winding groups has a predetermined interval between the divided cores, so that each divided core of each group of winding groups is connected between each divided core of other winding groups. Can be placed. Then, after arranging the divided cores of each group of winding groups in a line in a predetermined order in one row, and then circularizing the stator, a low-cost stator with a high space factor for each winding is easily made. be able to.

また、環状化してステータを形成したとき、各組の渡り線は、ステータの環状部に沿って安定に配置させることができるとともに溶着箇所を少なくできる Further , when the stator is formed by forming an annular shape, each set of connecting wires can be stably disposed along the annular portion of the stator and the number of welded portions can be reduced .

この製造方法によれば、各相(各組)の巻線群は、分割コア同士が分割コアの2個分の間隔にそれぞれ開けられているので、各相の巻線群の各分割コアを、一方向に一列に予め定めた順序に従って交互に配置することが可能となる。そして、後工程である分割コア環状化工程が容易となる。   According to this manufacturing method, since the winding groups of each phase (each set) are separated from each other by two divided cores, each divided core of the winding group of each phase is provided. It is possible to arrange them alternately in a line in one direction according to a predetermined order. And the division | segmentation core circularization process which is a post process becomes easy.

また、各相の巻線群に各分割コアを予め定めた順序に一方向に一列に配置でき、後工程である分割コア環状化工程が容易となる。
上記課題を解決するためのステータの製造方法分割環状部と、その分割環状部の周方向中間部分から径方向内側に延出したティース部とからなる分割コアにインシュレータを装着し、そのインシュレータを装着した複数個の分割コアを1組とし、その組を複数有し、その各組の各分割コアをそれぞれ予め定めた順序で連接して、円環状に形成するとともに、前記インシュレータを装着した各分割コアにおいて、自身の組の各分割コアのティース部に巻回される自身の組の巻線間が渡り線で繋いでなるステータの製造方法であって、1つの導線にて連続して巻線が巻回されるとともに、前記渡り線のために巻線と巻線の間が予め定めた間隔に開けられて連なるように連結された巻線群を、前記複数の組毎に用意する巻線群作成工程と、それぞれ自身巻線群の各分割コアを、他の巻線群の連なる分割コア間に配置して、各巻線群の各分割コアをそれぞれ予め定めた順序に一方向に一列に並べる巻線群合体工程と、予め定めた順序に一方向に一列に並んだ各巻線群の各分割コアを環状化する分割コア環状化工程とを有しており、各巻線群の各分割コアに装着された前記インシュレータは、その前記ティース部基端側の分割環状部の軸方向外側面に、内壁が前記分割環状部に沿って周方向に形成され、前記内壁の周方向中間部に径方向には、貫通する開口部が形成され、前記開口部にて周方向に2分された前記内壁の各径方向外側には、自身の巻線群の各分割コアのティース部に巻回される自身の巻線群の巻線間を繋ぐ渡り線と、他の巻線群の各分割コアのティース部に巻回される他の巻線群の巻線間を繋ぐ渡り線とを、周方向に案内する案内部が形成されており、前記巻線群は、モータの相毎に用意されるものであり、前記モータの相数は、U相、V相及びW相の3相であり、前記予め定めた間隔は、分割コアの2個分以上の間隔であり、前記インシュレータは、U相及びV相の各分割コアにそれぞれ装着される第1インシュレータと、W相の各分割コアにそれぞれ装着される第2インシュレータとからなり、前記第1インシュレータの前記案内部は、周方向に2分された前記内壁の各径方向外側面に凹設され、周方向に案内される前記渡り線を軸方向に移動不能に支持する渡り線案内溝を有し、前記第2インシュレータの前記案内部は、周方向に2分された前記内壁の各径方向外側面と径方向に対峙した外壁を軸方向に延出し、その外壁と前記内壁との間に、周方向に案内される前記渡り線を径方向外側に移動不能に支持するガイド溝を有したものであり、前記巻線群合体工程は、第1合体工程と第2合体工程とを有し、前記第1合体工程では、U相の巻線群の各分割コアに対して、V相の巻線群の各分割コアの姿勢をV相の渡り線を回転中心に回転させて、V相の渡り線をU相の巻線群の各分割コアのインシュレータに形成した前記渡り線案内溝にそれぞれ嵌合させた後に、V相の巻線群の各分割コアの姿勢を元の姿勢に戻して、U相の渡り線をV相の巻線群の各分割コアのインシュレータに形成した前記渡り線案内溝にそれぞれ嵌合させ、その後の前記第2合体工程では、合体したU相及びV相の巻線群の各分割コアに対して、W相の巻線群の各分割コアを軸方向に対峙するU相及びV相の渡り線に向かって移動させ、U相及びV相の渡り線をW相の巻線群の各分割コアの前記第2インシュレータに形成した前記ガイド溝に嵌合させるとともに、W相の渡り線をU相及びV相の巻線群の各分割コアの前記第1インシュレータに形成した前記渡り線案内溝にそれぞれ嵌合させる。
Further , the divided cores can be arranged in a line in one direction in a predetermined order in the winding group of each phase, and the divided core circularization process as a post process becomes easy.
Method for manufacturing a stator to solve the above problems, fitted with dividing the annular portion, the insulator core segment comprising a tooth portion extending from the circumferential intermediate portion radially inward of the split annular portion, the insulator A plurality of divided cores with a plurality of sets are provided, and each of the divided cores of each set is connected in a predetermined order to form an annular shape, and the insulator is attached. In each divided core, a stator manufacturing method in which the windings of its own set wound around the teeth of each divided core of its own set are connected by a jumper, A winding group is prepared for each of the plurality of sets in which the windings are wound and connected to the connecting wires so that the windings are connected with a predetermined interval between them. Winding group creation process and it Winding group coalescing by arranging each divided core of the winding group between the divided cores of other winding groups, and arranging the divided cores of each winding group in a line in a predetermined order. And a split core annularization step for annularly dividing each divided core of each winding group arranged in a line in one direction in a predetermined order, and the above-mentioned attached to each divided core of each winding group The insulator has an inner wall formed in a circumferential direction along the divided annular portion on an axially outer side surface of the divided annular portion on the base end side of the tooth portion, and penetrates radially in a circumferential intermediate portion of the inner wall. The windings wound around the teeth of the split cores of the winding group on the radially outer side of the inner wall divided in the circumferential direction by the opening. Crossover wires connecting the windings of the group and other windings wound around the teeth of each split core of the other winding group Guide portions are formed to guide the connecting wires connecting the windings of the wire group in the circumferential direction, and the winding group is prepared for each phase of the motor, and the number of phases of the motor is , U phase, V phase, and W phase, and the predetermined interval is an interval of two or more of the split cores, and the insulator is mounted on each of the U phase and V phase split cores. And the second insulator attached to each of the W-phase split cores, the guide portion of the first insulator being radially divided into two radially outer surfaces of the inner wall. A connecting wire guide groove that is supported in the axial direction so that the connecting wire guided in the circumferential direction is immovable, and the guide portion of the second insulator is divided into two in the circumferential direction. Extending in the axial direction the outer wall facing each radially outer surface of And having a guide groove between the outer wall and the inner wall for supporting the connecting wire guided in the circumferential direction so as to be immovable radially outward. And a second coalescing step. In the first coalescing step, the posture of each divided core of the V-phase winding group is changed over the V-phase with respect to each divided core of the U-phase winding group. After rotating the wire around the center of rotation, the V-phase connecting wire is fitted into the connecting wire guide groove formed in the insulator of each split core of the U-phase winding group, and then the V-phase winding group The posture of each split core is returned to the original posture, and the U-phase crossover wire is fitted into the crossover guide groove formed in the insulator of each split core of the V-phase winding group, and then the second In the merging process, each split core of the W-phase winding group is pivoted with respect to each split core of the combined U-phase and V-phase winding groups. The U-phase and V-phase crossover wires are moved toward the U-phase and V-phase crossover wires facing each other, and the U-phase and V-phase crossover wires are fitted into the guide grooves formed in the second insulators of the split cores of the W-phase winding group. with engaged, Ru and the crossover of the W-phase is fitted to each of the connecting wire guide grooves formed in the first insulator of the divided core groups of windings of U-phase and V-phase.

この製造方法によれば、各組の巻線群は、それぞれ予め定めた間隔を開けて1つの導線にて各巻線を分割コアに巻回することから、各巻線の占積率を上げることができる。
また、各組の巻線群は、分割コア同士が予め定めた間隔にそれぞれ開けられているので、各組の巻線群の各分割コアを、互いに他の巻線群の各分割コア間に配置できる。そして、各組の巻線群の各分割コアをそれぞれ予め定めた順序に一方向に一列に配置した後に、環状化することによって、各巻線の占積率の高く低コストのステータを簡単に作ることができる。
また、環状化してステータを形成したとき、各組の渡り線は、ステータの環状部に沿って安定に配置させることができるとともに溶着箇所を少なくできる。
また、各相(各組)の巻線群は、分割コア同士が分割コアの2個分の間隔にそれぞれ開けられているので、各相の巻線群の各分割コアを、一方向に一列に予め定めた順序に従って交互に配置することが可能となる。そして、後工程である分割コア環状化工程が容易となる。
また、各相の巻線群に各分割コアを予め定めた順序に一方向に一列に配置でき、後工程である分割コア環状化工程が容易となる。
上記課題を解決するためのステータの製造方法分割環状部と、その分割環状部の周方向中間部分から径方向内側に延出したティース部とからなる分割コアにインシュレータを装着し、そのインシュレータを装着した複数個の分割コアを1組とし、その組を複数有し、その各組の各分割コアをそれぞれ予め定めた順序で連接して、円環状に形成するとともに、前記インシュレータを装着した各分割コアにおいて、自身の組の各分割コアのティース部に巻回される自身の組の巻線間が渡り線で繋いでなるステータの製造方法であって、1つの導線にて連続して巻線が巻回されるとともに、前記渡り線のために巻線と巻線の間が予め定めた間隔に開けられて連なるように連結された巻線群を、前記複数の組毎に用意する巻線群作成工程と、それぞれ自身巻線群の各分割コアを、他の巻線群の連なる分割コア間に配置して、各巻線群の各分割コアをそれぞれ予め定めた順序に一方向に一列に並べる巻線群合体工程と、予め定めた順序に一方向に一列に並んだ各巻線群の各分割コアを環状化する分割コア環状化工程とを有しており、各巻線群の各分割コアに装着された前記インシュレータは、その前記ティース部基端側の分割環状部の軸方向外側面に、内壁が前記分割環状部に沿って周方向に形成され、前記内壁の周方向中間部に径方向には、貫通する開口部が形成され、前記開口部にて周方向に2分された前記内壁の各径方向外側には、自身の巻線群の各分割コアのティース部に巻回される自身の巻線群の巻線間を繋ぐ渡り線と、他の巻線群の各分割コアのティース部に巻回される他の巻線群の巻線間を繋ぐ渡り線とを、周方向に案内する案内部が形成されており、前記巻線群は、モータの相毎に用意されるものであり、前記モータの相数は、U相、V相及びW相の3相であり、前記予め定めた間隔は、分割コアの2個分以上の間隔であり、前記インシュレータの前記案内部は、周方向に2分された前記内壁の各径方向外側面に凹設され、周方向に案内される前記渡り線を軸方向に移動不能に支持する渡り線案内溝であり、前記巻線群合体工程は、U相、V相及びW相の前記巻線群のうちの1つの巻線群の前記インシュレータの渡り線案内溝に他の2相の巻線群の渡り線が嵌合されるとともに、各相の前記分割コアが渡り線の周囲の異なる位置に配置されるように各相の巻線群を配置する巻線群配置工程と、前記巻線群配置工程の後、前記他の2相の巻線群の各分割コアの姿勢をそれらの渡り線を回転中心に回転させることで、前記各ティース部が同一方向を向くように前記各巻線群の各分割コアをそれぞれ予め定めた順序に一方向に一列に並べる巻線群回転工程とを有する。
この製造方法によれば、各組の巻線群は、それぞれ予め定めた間隔を開けて1つの導線にて各巻線を分割コアに巻回することから、各巻線の占積率を上げることができる。
また、各組の巻線群は、分割コア同士が予め定めた間隔にそれぞれ開けられているので、各組の巻線群の各分割コアを、互いに他の巻線群の各分割コア間に配置できる。そして、各組の巻線群の各分割コアをそれぞれ予め定めた順序に一方向に一列に配置した後に、環状化することによって、各巻線の占積率の高く低コストのステータを簡単に作ることができる。
また、環状化してステータを形成したとき、各組の渡り線は、ステータの環状部に沿って安定に配置させることができるとともに溶着箇所を少なくできる。
また、各相(各組)の巻線群は、分割コア同士が分割コアの2個分の間隔にそれぞれ開けられているので、各相の巻線群の各分割コアを、一方向に一列に予め定めた順序に従って交互に配置することが可能となる。そして、後工程である分割コア環状化工程が容易となる。
According to this manufacturing method, each group of windings has a predetermined interval, and each winding is wound around the split core with one conducting wire, so that the space factor of each winding can be increased. it can.
In addition, each group of winding groups has a predetermined interval between the divided cores, so that each divided core of each group of winding groups is connected between each divided core of other winding groups. Can be placed. Then, after arranging the divided cores of each group of winding groups in a line in a predetermined order in one row, and then circularizing the stator, a low-cost stator with a high space factor for each winding is easily made. be able to.
Further, when the stator is formed by forming an annular shape, each set of connecting wires can be stably disposed along the annular portion of the stator and the number of welded portions can be reduced.
In addition, since the winding groups of each phase (each set) are separated from each other by two divided cores, the divided cores of the winding groups of each phase are aligned in one direction. Can be arranged alternately according to a predetermined order. And the division | segmentation core circularization process which is a post process becomes easy.
Further, the divided cores can be arranged in a line in one direction in a predetermined order in the winding group of each phase, and the divided core circularization process as a post process becomes easy.
Method for manufacturing a stator to solve the above problems, fitted with dividing the annular portion, the insulator core segment comprising a tooth portion extending from the circumferential intermediate portion radially inward of the split annular portion, the insulator A plurality of divided cores with a plurality of sets are provided, and each of the divided cores of each set is connected in a predetermined order to form an annular shape, and the insulator is attached. In each divided core, a stator manufacturing method in which the windings of its own set wound around the teeth of each divided core of its own set are connected by a jumper, A winding group is prepared for each of the plurality of sets in which the windings are wound and connected to the connecting wires so that the windings are connected with a predetermined interval between them. Winding group creation process and it Winding group coalescing by arranging each divided core of the winding group between the divided cores of other winding groups, and arranging the divided cores of each winding group in a line in a predetermined order. And a split core annularization step for annularly dividing each divided core of each winding group arranged in a line in one direction in a predetermined order, and the above-mentioned attached to each divided core of each winding group The insulator has an inner wall formed in a circumferential direction along the divided annular portion on an axially outer side surface of the divided annular portion on the base end side of the tooth portion, and penetrates radially in a circumferential intermediate portion of the inner wall. The windings wound around the teeth of the split cores of the winding group on the radially outer side of the inner wall divided in the circumferential direction by the opening. Crossover wires connecting the windings of the group and other windings wound around the teeth of each split core of the other winding group Guide portions are formed to guide the connecting wires connecting the windings of the wire group in the circumferential direction, and the winding group is prepared for each phase of the motor, and the number of phases of the motor is , U phase, V phase and W phase, and the predetermined interval is an interval of two or more of the split cores, and the guide portion of the insulator is divided into two in the circumferential direction. It is a crossover guide groove that is recessed in each radially outer side surface of the inner wall and supports the crossover guide guided in the circumferential direction so that it cannot move in the axial direction. And the connecting wire of the other two-phase winding group is fitted in the connecting wire guide groove of the insulator of one winding group of the winding group of the W phase, and the divided core of each phase is A winding group arranging step of arranging winding groups of each phase so as to be arranged at different positions around the crossover wire, and the winding group arranging step After that, by rotating the postures of the divided cores of the other two-phase winding groups around the connecting wire as the rotation center, the divisions of the winding groups are set so that the teeth portions are directed in the same direction. that Yusuke respectively a winding group rotation step of arranging in a row in one direction to a predetermined sequence of the core.
According to this manufacturing method, each group of windings has a predetermined interval, and each winding is wound around the split core with one conducting wire, so that the space factor of each winding can be increased. it can.
In addition, each group of winding groups has a predetermined interval between the divided cores, so that each divided core of each group of winding groups is connected between each divided core of other winding groups. Can be placed. Then, after arranging the divided cores of each group of winding groups in a line in a predetermined order in one row, and then circularizing the stator, a low-cost stator with a high space factor for each winding is easily made. be able to.
Further, when the stator is formed by forming an annular shape, each set of connecting wires can be stably disposed along the annular portion of the stator and the number of welded portions can be reduced.
In addition, since the winding groups of each phase (each set) are separated from each other by two divided cores, the divided cores of the winding groups of each phase are aligned in one direction. Can be arranged alternately according to a predetermined order. And the division | segmentation core circularization process which is a post process becomes easy.

この製造方法によれば、巻線群配置工程と巻線群回転工程とが分離されているため、巻線群配置工程で用いる組付治具に、分割コアを回転させる機能を付加する必要がない。これにより、複雑な組付治具が不要となるため、より安価な製造システムを構築することが可能となり、また、製造設備の小型化にも寄与できる。   According to this manufacturing method, since the winding group arranging step and the winding group rotating step are separated, it is necessary to add a function of rotating the split core to the assembling jig used in the winding group arranging step. Absent. This eliminates the need for a complicated assembling jig, so that a cheaper manufacturing system can be constructed and the manufacturing equipment can be reduced in size.

上記ステータの製造方法において、前記渡り線案内溝は、U相の渡り線が嵌合される第1渡り線案内溝と、V相の渡り線が嵌合される第2渡り線案内溝と、W相の渡り線が嵌合される第3渡り線案内溝とが軸方向に沿って順に形成されてなり、前記巻線群配置工程では、V相の巻線群の前記インシュレータの前記第1及び第3渡り線案内溝にU相及びW相の渡り線を嵌合するとともに、各相の前記分割コアを渡り線の周囲の異なる位置に配置し、前記巻線群回転工程では、V相の巻線群の分割コアの向きに合わせるように、U相及びW相の巻線群の各分割コアを回転させることが好ましい。   In the stator manufacturing method, the connecting wire guide groove includes a first connecting wire guide groove into which a U-phase connecting wire is fitted, a second connecting wire guide groove into which a V-phase connecting wire is fitted, and A third crossover guide groove into which a W-phase crossover is fitted is formed in order along the axial direction. In the winding group arranging step, the first of the insulator of the V-phase winding group is formed. In addition, the U-phase and W-phase crossover wires are fitted in the third crossover guide groove, and the divided cores of each phase are arranged at different positions around the crossover wires. It is preferable to rotate each divided core of the U-phase and W-phase winding groups so as to match the direction of the divided cores of the winding group.

この製造方法によれば、各相の巻線群のインシュレータに形成された第1〜第3渡り線案内溝に各相の渡り線を容易に嵌合させつつ、各相の巻線群を合体させることが可能となる。   According to this manufacturing method, the winding groups of the respective phases are combined while easily fitting the connecting wires of the respective phases into the first to third connecting wire guide grooves formed in the insulators of the winding groups of the respective phases. It becomes possible to make it.

本発明のステータの製造方法によれば、高占積率を維持しつつ分割コアからなるステータ組み付けを容易にし、製造コスト低減が可能となる。   According to the stator manufacturing method of the present invention, it is possible to facilitate the assembly of the stator composed of the split cores while maintaining a high space factor, and to reduce the manufacturing cost.

第1実施形態のブラシレスモータを軸方向から見た要部断面図。The principal part sectional view which looked at the brushless motor of a 1st embodiment from the axial direction. 同じく、分割コアの斜視図。Similarly, the perspective view of a division | segmentation core. 同じく、(a)は第1分割インシュレータを外側から見た斜視図、(b)は第1分割インシュレータを内側から見た斜視図。Similarly, (a) is a perspective view of the first divided insulator viewed from the outside, and (b) is a perspective view of the first divided insulator viewed from the inside. 同じく、(a)は第3分割インシュレータを外側から見た斜視図、(b)は第3分割インシュレータを内側から見た斜視図。Similarly, (a) is a perspective view of a third divided insulator viewed from the outside, and (b) is a perspective view of the third divided insulator viewed from the inside. 同じく、(a)は第1巻線群を示す模式図、(b)は第2巻線群を示す模式図、(c)は第3巻線群を示す模式図。Similarly, (a) is a schematic diagram showing a first winding group, (b) is a schematic diagram showing a second winding group, and (c) is a schematic diagram showing a third winding group. 同じく、第1巻線群と第2巻線群の合体を示す要部斜視図。Similarly, the principal part perspective view which shows the unification | combination of a 1st winding group and a 2nd winding group. 同じく、(a)(b)は第1巻線群と第2巻線群の合体方法を示す説明図。Similarly, (a) and (b) are explanatory views showing a method of combining the first winding group and the second winding group. 同じく、第1〜第3巻線群の合体状態を示す正面図。Similarly, the front view which shows the unification state of the 1st-3rd winding group. 同じく、合体した第1及び第2巻線群に対する第3巻線群の合体方法を示す説明図。Similarly, explanatory drawing which shows the union method of the 3rd winding group with respect to the 1st and 2nd winding group which united. 第2実施形態のステータにおいて、(a)は第1巻線群を示す模式図、(b)は第2巻線群を示す模式図、(c)は第3巻線群を示す模式図。In the stator of 2nd Embodiment, (a) is a schematic diagram which shows a 1st winding group, (b) is a schematic diagram which shows a 2nd winding group, (c) is a schematic diagram which shows a 3rd winding group. 同じく、合体した第1及び第2巻線群に対する第3巻線群の合体方法を示す説明図。Similarly, explanatory drawing which shows the union method of the 3rd winding group with respect to the 1st and 2nd winding group which united. 第2実施形態の別例において、巻線群配置工程を説明するための説明図。Explanatory drawing for demonstrating a winding group arrangement | positioning process in another example of 2nd Embodiment. 同じく、巻線群配置工程を説明するための説明図。Similarly, explanatory drawing for demonstrating a winding group arrangement | positioning process. 同じく、巻線群配置工程後の第1〜第3巻線群を示す説明図。Similarly, explanatory drawing which shows the 1st-3rd winding group after a winding group arrangement | positioning process. 同じく、巻線群回転工程を説明するための説明図。Similarly, explanatory drawing for demonstrating a winding group rotation process. 同じく、巻線群回転工程を説明するための説明図。Similarly, explanatory drawing for demonstrating a winding group rotation process. 同じく、巻線群回転工程を説明するための説明図。Similarly, explanatory drawing for demonstrating a winding group rotation process. 同じく、巻線群回転工程を説明するための説明図。Similarly, explanatory drawing for demonstrating a winding group rotation process. 別例のインシュレータであって、(a)は第1分割インシュレータを外側から見た斜視図、(b)は第1分割インシュレータを内側から見た斜視図。It is an insulator of another example, Comprising: (a) is the perspective view which looked at the 1st division | segmentation insulator from the outside, (b) is the perspective view which looked at the 1st division | segmentation insulator from the inside. 同じく、第1巻線群を示す図。Similarly, the figure which shows the 1st coil group. (a)(b)は、別例の巻線群を説明するための模式図。(A) (b) is a schematic diagram for demonstrating the winding group of another example. (a)(b)は、別例の巻線群を説明するための模式図。(A) (b) is a schematic diagram for demonstrating the winding group of another example. (a)(b)は、別例の巻線群を説明するための模式図。(A) (b) is a schematic diagram for demonstrating the winding group of another example. 別例のインシュレータを示す平面図。The top view which shows the insulator of another example. (a)は、図24におけるA−A断面図、(b)は、図24におけるB−B断面図。(A) is AA sectional drawing in FIG. 24, (b) is BB sectional drawing in FIG. 同別例におけるインシュレータ(分割コア)に巻線を巻回した状態を示す平面図。The top view which shows the state which wound the coil | winding around the insulator (divided core) in the same example.

(第1実施形態)
以下、ブラシレスモータに備えたステータの第1実施形態について説明する。
図1に示すように、ブラシレスモータ1は、有底円筒状のハウジング2の内周面に固定された円環状のステータ3と、そのステータ3の内側に配置されロータ4(図1では一点鎖線で示す)とを備えている。ロータ4は、回転軸5に固着され、同回転軸5の中心軸線Oを回転中心として回転する。ロータ4は、周方向に配置される複数のマグネット(図示略)を有し、そのマグネットがステータ3と径方向に対向配置されるように同ステータ3の内側に配置されている。
(First embodiment)
Hereinafter, a first embodiment of a stator provided in a brushless motor will be described.
As shown in FIG. 1, a brushless motor 1 includes an annular stator 3 fixed to an inner peripheral surface of a bottomed cylindrical housing 2, and a rotor 4 (indicated by a one-dot chain line in FIG. 1) disposed inside the stator 3. Indicated). The rotor 4 is fixed to the rotating shaft 5 and rotates about the central axis O of the rotating shaft 5 as a rotation center. The rotor 4 has a plurality of magnets (not shown) arranged in the circumferential direction, and the magnets are arranged inside the stator 3 so as to be opposed to the stator 3 in the radial direction.

ステータ3は、円環状のステータコア6を有し、ステータコア6の外周面がハウジング2の内周面に固定されている。ステータコア6は、電磁鋼板よりなり、ハウジング2の内周面に固定される環状部Rと、その環状部Rの内周面から径方向内側に延設された12個のティース部T(図1において、T1〜T12)とを備えている。各ティース部Tの先端面は、周方向に湾曲した円弧面であって回転軸5の中心軸線Oを中心とする同心円を形成する円弧面となる。   The stator 3 has an annular stator core 6, and the outer peripheral surface of the stator core 6 is fixed to the inner peripheral surface of the housing 2. The stator core 6 is made of an electromagnetic steel plate, and has an annular portion R fixed to the inner peripheral surface of the housing 2 and twelve tooth portions T (FIG. 1) extending radially inward from the inner peripheral surface of the annular portion R. T1-T12). The front end surface of each tooth portion T is an arc surface curved in the circumferential direction and forms an arc surface that forms a concentric circle centered on the central axis O of the rotation shaft 5.

ここで、図1に示すように、径方向内側を向いた12個のティース部Tをそれぞれ特定して説明する場合には、第1〜第12ティース部T1〜T12という。そして、第1〜第12ティース部T1〜T12は、周方向反時計回り方向に順番に互いに離間した状態で配置されている。従って、12個の第1〜第12ティース部T1〜T12は、周方向に等ピッチ(30°間隔)に配置されている。そして、これらのティース部T1〜T12は、第1インシュレータ7又は第2インシュレータ8のいずれかが装着され、それらを介して巻回方向が同じ向きの巻線U1〜U4,V1〜V4,W1〜W4が集中巻にて巻回されている。   Here, as shown in FIG. 1, when the twelve tooth portions T facing radially inward are specified and described, they are referred to as first to twelfth tooth portions T1 to T12. And 1st-12th teeth part T1-T12 is arrange | positioned in the state mutually spaced apart in order in the circumferential direction counterclockwise direction. Accordingly, the twelve first to twelfth tooth portions T1 to T12 are arranged at equal pitches (30 ° intervals) in the circumferential direction. And these teeth part T1-T12 is equipped with either the 1st insulator 7 or the 2nd insulator 8, and winding U1-U4, V1-V4, W1- of which the winding direction is the same direction through them. W4 is wound in a concentrated volume.

第1〜第12ティース部T1〜T12に巻回された各巻線U1〜U4,V1〜V4,W1〜W4は、それぞれにU相、V相、W相の3相の内の1相用の巻線となる。図1に示すように、本実施形態では、第1、第4、第7、第10ティース部T1,T4,T7,T10にU相用の巻線U1,U2,U3,U4が形成される。また、第2、第5、第8、第11ティース部T2,T5,T8,T11にV相用の巻線V1,V2,V3,V4が形成される。さらに、第3、第6、第9、第12ティース部T3,T6,T9,T12にW相の巻線W1,W2,W3,W4が形成される。   The windings U1 to U4, V1 to V4, and W1 to W4 wound around the first to twelfth tooth portions T1 to T12 are for one phase of the three phases of U phase, V phase, and W phase, respectively. Winding. As shown in FIG. 1, in the present embodiment, U-phase windings U1, U2, U3, U4 are formed in the first, fourth, seventh, and tenth tooth portions T1, T4, T7, and T10. . Also, V-phase windings V1, V2, V3, and V4 are formed in the second, fifth, eighth, and eleventh tooth portions T2, T5, T8, and T11. Further, W-phase windings W1, W2, W3, and W4 are formed in the third, sixth, ninth, and twelfth tooth portions T3, T6, T9, and T12.

従って、周方向反時計回り方向に、U相の巻線U1→V相の巻線V1→W相の巻線W1→U相の巻線U2→V相の巻線V2→W相の巻線W2→U相の巻線U3→V相の巻線V3→W相の巻線W3→U相の巻線U4→V相の巻線V4→W相の巻線W4が順番に配置される。   Accordingly, in the circumferential counterclockwise direction, the U-phase winding U1 → the V-phase winding V1 → the W-phase winding W1 → the U-phase winding U2 → the V-phase winding V2 → the W-phase winding. W2 → U phase winding U3 → V phase winding V3 → W phase winding W3 → U phase winding U4 → V phase winding V4 → W phase winding W4 are arranged in order.

そして、本実施形態では、U相の各巻線U1〜U4は、第1ティース部T1→第4ティース部T4→第7ティース部T7→第10ティース部T10の順番で絶縁被膜した1つの導線Lが連続して巻回されて、巻線U1→巻線U2→巻線U3→巻線U4が順に形成されている。   In the present embodiment, each of the U-phase windings U1 to U4 is composed of one conductive wire L that has an insulating coating in the order of the first tooth portion T1, the fourth tooth portion T4, the seventh tooth portion T7, and the tenth tooth portion T10. Are wound in succession, and the winding U1, the winding U2, the winding U3, and the winding U4 are formed in this order.

このとき、U相の各巻線U1〜U4を1つの導線Lにて連続して巻回していくことから、巻線U1と巻線U2の間、巻線U2と巻線U3の間、及び、巻線U3と巻線U4の間にそれぞれU相の渡り線Lu(図5(a)参照)が形成される。   At this time, since the U-phase windings U1 to U4 are continuously wound around one conductive wire L, between the winding U1 and the winding U2, between the winding U2 and the winding U3, and A U-phase connecting wire Lu (see FIG. 5A) is formed between the windings U3 and U4.

また、第1ティース部T1に巻回した巻線U1(導線L)の巻き始めの始端部LSuは軸方向一側に引き出されるとともに、第10ティース部T10に巻回した巻線U4(導線L)の巻き終わりの終端部LEuも軸線方向一側に引き出されるようなっている。そして、始端部LSu及び終端部LEuは、図示しないU相動力線にそれぞれ接続され、U相の駆動電源が供給されるようになっている。   The starting end LSu of the winding start of the winding U1 (conductive wire L) wound around the first tooth portion T1 is drawn out to one side in the axial direction, and the winding U4 (conductive wire L) wound around the tenth tooth portion T10. ) At the end of winding (LEu) is also drawn out to one side in the axial direction. The start end portion LSu and the end end portion LEu are respectively connected to a U-phase power line (not shown) so that U-phase drive power is supplied.

同様に、V相の各巻線V1〜V4は、第2ティース部T2→第5ティース部T5→第8ティース部T8→第11ティース部T11の順番で絶縁被膜した1つの導線Lが連続して巻回されて、巻線V1→巻線V2→巻線V3→巻線V4が順に形成されている。   Similarly, in each of the V-phase windings V1 to V4, one conductive wire L that is insulation-coated in the order of the second tooth portion T2, the fifth tooth portion T5, the eighth tooth portion T8, and the eleventh tooth portion T11 is continuous. Winding V1, winding V2, winding V3, winding V4 are formed in this order.

このとき、V相の各巻線V1〜V4を1つの導線Lにて連続して巻回していくことから、巻線V1と巻線V2の間、巻線V2と巻線V3の間、及び、巻線V3と巻線V4の間にそれぞれV相の渡り線Lv(図5(b)参照)が形成される。   At this time, since the windings V1 to V4 of the V phase are continuously wound by one conducting wire L, between the winding V1 and the winding V2, between the winding V2 and the winding V3, and A V-phase crossover line Lv (see FIG. 5B) is formed between the winding V3 and the winding V4, respectively.

また、第2ティース部T2に巻回した巻線V1(導線L)の巻き始めの始端部LSvは軸線方向一側に引き出されるとともに、第11ティース部T11に巻回した巻線V4(導線L)の巻き終わりの終端部LEvも軸線方向一側に引き出されるようなっている。そして、始端部LSv及び終端部LEvは、図示しないV相動力線にそれぞれ接続され、V相の駆動電源が供給されるようになっている。   The starting end LSv at the beginning of winding of the winding V1 (conductor L) wound around the second tooth portion T2 is drawn out to one side in the axial direction, and the winding V4 (conductor L) wound around the eleventh tooth portion T11. The end portion LEv at the end of the winding is also drawn out to one side in the axial direction. The start end portion LSv and the end end portion LEv are respectively connected to a V-phase power line (not shown) so that V-phase drive power is supplied.

同様に、W相の各巻線W1〜W4は、第3ティース部T3→第6ティース部T6→第9ティース部T9→第12ティース部T12の順番で絶縁被膜した1つの導線Lが連続して巻回されて、巻線W1→巻線W2→巻線W3→巻線W4が順に形成されている。   Similarly, in each of the W-phase windings W1 to W4, one conductive wire L that is insulation-coated in the order of the third tooth portion T3 → the sixth tooth portion T6 → the ninth tooth portion T9 → the twelfth tooth portion T12 is continuous. Winding W1, winding W2, winding W3, winding W4 are formed in this order.

このとき、W相の各巻線W1〜W4を1つの導線Lにて連続して巻回していくことから、巻線W1と巻線W2の間、巻線W2と巻線W3の間、及び、巻線W3と巻線W4の間にそれぞれW相の渡り線Lw(図5(c)参照)が形成される。   At this time, since the windings W1 to W4 of the W phase are continuously wound by one conducting wire L, between the winding W1 and the winding W2, between the winding W2 and the winding W3, and A W-phase crossover line Lw (see FIG. 5C) is formed between the winding W3 and the winding W4.

また、第3ティース部T3に巻回した巻線W1(導線L)の巻き始めの始端部LSwは軸線方向一側に引き出されるとともに、第12ティース部T12に巻回した巻線W4(導線L)の巻き終わりの終端部LEwも軸線方向一側に引き出されるようなっている。そして、始端部LSw及び終端部LEwは、図示しないW相動力線にそれぞれ接続され、W相の駆動電源が供給されるようになっている。   In addition, the starting end LSW of the winding start of the winding W1 (conductive wire L) wound around the third tooth portion T3 is drawn out to one side in the axial direction, and the winding W4 (conductive wire L) wound around the twelfth tooth portion T12. ) End portion LEw at the end of winding is also drawn out to one side in the axial direction. The start end portion LSW and the end end portion LEw are respectively connected to a W-phase power line (not shown) so that W-phase drive power is supplied.

次に、上記ブラシレスモータ1のステータ3とその製造方法について詳細に説明する。
ステータコア6は、分割構造であって、12個のティース部T1〜T12の内の1つのティース部Tをそれぞれ有するように周方向に12分割してなる12個の分割コアCから構成されている。
Next, the stator 3 of the brushless motor 1 and the manufacturing method thereof will be described in detail.
The stator core 6 has a divided structure, and is composed of 12 divided cores C that are divided into 12 pieces in the circumferential direction so as to have one of the 12 tooth portions T1 to T12. .

図2に示すように、12個の分割コアCは、同一形状であって、複数に板状のコア片(図示略)が軸方向に積層されて構成されている。このように構成された12個の分割コアCは、対応するティース部Tを有するとともに、それぞれのティース部T基端部から周方向両方向に互いに等しい長さ延びた分割環状部Caしている。つまり、ティース部Tは、分割環状部Caの周方向中央部から径方向内側に延出されている。   As shown in FIG. 2, the twelve divided cores C have the same shape, and a plurality of plate-like core pieces (not shown) are stacked in the axial direction. The twelve divided cores C configured as described above have corresponding tooth portions T, and are divided annular portions Ca extending from the respective base portions of the tooth portions T to the same length in both circumferential directions. That is, the teeth portion T extends radially inward from the circumferential central portion of the divided annular portion Ca.

そして、12個の分割コアCの各分割環状部Ca同士が周方向において環状に連接されることにより、12個の分割コアCは環状化されステータコア6が形成される。
ちなみに、環状化する前に、12個の分割コアCのティース部T、即ち、第1〜第12ティース部T1〜T12に対し、それぞれ対応する巻線U1〜U4、V1〜V4、W1〜W4が巻回される。
Then, the divided annular portions Ca of the twelve divided cores C are connected in a ring shape in the circumferential direction, so that the twelve divided cores C are annularly formed and the stator core 6 is formed.
By the way, before the circularization, the windings U1 to U4, V1 to V4, W1 to W4 corresponding to the teeth T of the 12 divided cores C, that is, the first to twelfth teeth T1 to T12, respectively. Is wound.

ここで、12個の分割コアCをそれぞれ特定して説明するために、第1〜第12ティース部T1〜T12をそれぞれ有する分割コアCをそれぞれ第1〜第12分割コアC1〜C12という。   Here, in order to identify and describe the 12 divided cores C, the divided cores C having the first to twelfth tooth portions T1 to T12 are referred to as first to twelfth divided cores C1 to C12, respectively.

そして、第1、第4、第7、第10ティース部T1,T4,T7,T10、即ち、第1、第4、第7、第10分割コアC1,C4,C7,C10に形成されるU相の各巻線U1〜U4を第1巻線群G1(図5(a)参照)とする。   The first, fourth, seventh, and tenth tooth portions T1, T4, T7, and T10, that is, the U formed on the first, fourth, seventh, and tenth divided cores C1, C4, C7, and C10. The phase windings U1 to U4 are defined as a first winding group G1 (see FIG. 5A).

また、第2、第5、第8、第11ティース部T2,T5,T8,T11、即ち、第2、第5、第8、第11分割コアC2,C5,C8,C11に形成されるV相の各巻線V1〜V4を第2巻線群G2(図5(b)参照)とする。   Further, the second, fifth, eighth, and eleventh tooth portions T2, T5, T8, and T11, that is, the V formed on the second, fifth, eighth, and eleventh divided cores C2, C5, C8, and C11. The phase windings V1 to V4 are defined as a second winding group G2 (see FIG. 5B).

また、第3、第6、第9、第12ティース部T3,T6,T9,T12、即ち、第3、第6、第9、第12分割コアC3,C6,C9,C12に形成されるW相の各巻線W1〜W4を第3巻線群G3とする。   The third, sixth, ninth, and twelfth tooth portions T3, T6, T9, and T12, that is, the W formed on the third, sixth, ninth, and twelfth divided cores C3, C6, C9, and C12. Each of the phase windings W1 to W4 is defined as a third winding group G3.

なお、U相の各巻線U1〜U4が巻回される前に、第1巻線群G1の第1、第4、第7、第10分割コアC1,C4,C7,C10には、図3(a)、(b)に示す第1インシュレータ7が装着される。   Before the U-phase windings U1 to U4 are wound, the first, fourth, seventh, and tenth divided cores C1, C4, C7, and C10 of the first winding group G1 are shown in FIG. The 1st insulator 7 shown to (a), (b) is mounted | worn.

同様に、V相の各巻線V1〜V4が巻回される前に、第2巻線群G2の第2、第5、第8、第11分割コアC2,C5,C8,C11には、図3(a)、(b)に示す第1インシュレータ7が装着される。   Similarly, before the V-phase windings V1 to V4 are wound, the second, fifth, eighth, and eleventh divided cores C2, C5, C8, and C11 of the second winding group G2 A first insulator 7 shown in 3 (a) and (b) is attached.

さらに、W相の各巻線W1〜W4が巻回される前に、第3巻線群G3の第3、第6、第9、第12分割コアC3,C6,C9,C12には、図4(a)、(b)に示す第2インシュレータ8が装着される。   In addition, before the W-phase windings W1 to W4 are wound, the third, sixth, ninth, and twelfth divided cores C3, C6, C9, and C12 of the third winding group G3 are shown in FIG. The second insulator 8 shown in (a) and (b) is mounted.

(第1インシュレータ7)
図3(a)、(b)に示すように、第1インシュレータ7は、絶縁性樹脂材料にて成形され、軸方向に2分割された同一形状の第1分割インシュレータ7aと第2分割インシュレータ7bから構成されている。そして、第1分割インシュレータ7aは、軸方向一側から第1及び第2巻線群G1,G2が巻回される各分割コアCに装着される。反対に、第2分割インシュレータ7bは、軸方向他側から第1及び第2巻線群G1,G2が巻回される各分割コアCに装着される。
(First insulator 7)
As shown in FIGS. 3A and 3B, the first insulator 7 is formed of an insulating resin material and divided into two in the axial direction. The first divided insulator 7a and the second divided insulator 7b have the same shape. It is composed of And the 1st division | segmentation insulator 7a is mounted | worn with each division | segmentation core C by which the 1st and 2nd winding group G1, G2 is wound from the axial direction one side. Conversely, the second split insulator 7b is mounted on each split core C around which the first and second winding groups G1, G2 are wound from the other side in the axial direction.

(第1分割インシュレータ7a)
第1分割インシュレータ7aは、ティース部Tにおける軸方向の一側半分の胴部(延出部分)を被覆するティース被覆部11と、分割環状部Caにおける軸方向の一側半分のティース部T側内側面と軸方向一側の外側面を被覆する環状部被覆部12を有している。
(First split insulator 7a)
The first split insulator 7a includes a teeth covering portion 11 that covers a body portion (extension portion) in one axial half of the tooth portion T, and a tooth portion T side in the axial half of the split annular portion Ca. It has an annular portion covering portion 12 that covers the inner side surface and the outer side surface on one side in the axial direction.

ティース被覆部11は、ティース部Tの先端面を露出するように、ティース部Tの周方向両側の外側面を被覆する第1及び第2被覆部11a,11bと、第1及び第2被覆部11a,11b間に形成されティース部Tの軸方向一側外側面を被覆する第3被覆部11cとから構成されている。   The teeth covering portion 11 includes first and second covering portions 11a and 11b that cover outer surfaces on both sides in the circumferential direction of the tooth portion T, and first and second covering portions so as to expose the tip end surface of the tooth portion T. 11a and 11b, and is comprised from the 3rd coating | coated part 11c which coat | covers the axial direction one side outer surface of the teeth part T. As shown in FIG.

また、ティース被覆部11は、ティース部Tの先端側であって周方向両側方向及び軸方向一側方向に第1〜第3被覆部11a〜11cからそれぞれ延出した巻線保持壁11dが形成されている。   Further, the tooth covering portion 11 is formed with a winding holding wall 11d extending from the first to third covering portions 11a to 11c on the tip side of the tooth portion T in both the circumferential direction and the one axial direction. Has been.

さらに、第1被覆部11aと第3被覆部11cで形成されるコーナ部及び第2被覆部11bと第3被覆部11cで形成されるコーナ部分には、巻回される巻線U1〜U4,V1〜V4を案内する巻線ガイド溝11eが形成されている。   Furthermore, the winding portions U1 to U4 wound around the corner portion formed by the first covering portion 11a and the third covering portion 11c and the corner portion formed by the second covering portion 11b and the third covering portion 11c. Winding guide grooves 11e for guiding V1 to V4 are formed.

一方、環状部被覆部12は、ティース被覆部11の第1及び第2被覆部11a,11bから分割環状部Caのティース部T側内側面を被覆する第1及び第2ヨーク被覆部12a,12bを有している。また、環状部被覆部12は、ティース被覆部11の第3被覆部11c、及び、第1及び第2ヨーク被覆部12a,12bの軸方向一側端部から反ティース部T側に延出され、分割環状部Caの軸方向の一側外側面を覆う第3ヨーク被覆部12cを有している。   On the other hand, the annular portion covering portion 12 includes first and second yoke covering portions 12a and 12b covering the teeth portion T side inner surface of the divided annular portion Ca from the first and second covering portions 11a and 11b of the tooth covering portion 11. have. Further, the annular portion covering portion 12 extends from the third covering portion 11c of the tooth covering portion 11 and the one end portion in the axial direction of the first and second yoke covering portions 12a and 12b to the anti-tooth portion T side. The third yoke covering portion 12c is provided to cover the outer side surface on the one side in the axial direction of the divided annular portion Ca.

第3ヨーク被覆部12cには、そのティース部T側(径方向内側)であって円弧状の分割環状部Caに沿って延びる内壁13が軸方向一側方向に延出形成されている。内壁13は、周方向中間部に開口部14が形成され、開口部14を形成することによって周方向に2分割される。そして、内壁13が分割された両側部分を分割内壁13a,13bという。   In the third yoke covering portion 12c, an inner wall 13 extending along the arc-shaped divided annular portion Ca on the tooth portion T side (radially inner side) is formed to extend in one axial direction. The inner wall 13 is formed with an opening 14 in the middle in the circumferential direction, and is divided into two in the circumferential direction by forming the opening 14. The both side portions where the inner wall 13 is divided are referred to as divided inner walls 13a and 13b.

この一対の分割内壁13a,13bにおいて周方向に互いに対向する面には、軸線方向に端末線案内溝15がそれぞれ形成されている。また、一対の分割内壁13a,13bの径方向内側面の開口部14側には、逃がし溝15aが端末線案内溝15に到達するまで径方向に凹設されている。   Terminal line guide grooves 15 are formed in the axial direction on surfaces of the pair of divided inner walls 13a and 13b that face each other in the circumferential direction. Further, on the opening 14 side on the radially inner side surface of the pair of divided inner walls 13 a and 13 b, a relief groove 15 a is recessed in the radial direction until it reaches the terminal line guide groove 15.

また、一対の分割内壁13a,13bの径方向の外側面にはそれぞれ、軸方向に並ぶ3つの渡り線案内溝16a〜16cが周方向に沿って形成されている。なお、この3つの渡り線案内溝16a〜16cについて、軸方向において第3ヨーク被覆部12cから最も離れた順に第1渡り線案内溝16a、第2渡り線案内溝16b、第3渡り線案内溝16cという。   Further, three crossover guide grooves 16a to 16c arranged in the axial direction are formed along the circumferential direction on the radially outer surfaces of the pair of divided inner walls 13a and 13b, respectively. In addition, about these three connecting wire guide grooves 16a-16c, the 1st connecting wire guide groove 16a, the 2nd connecting wire guide groove 16b, and the 3rd connecting wire guide groove in order in the furthest distance from the 3rd yoke coating | coated part 12c in the axial direction. 16c.

そして、本実施形態では、第1渡り線案内溝16aには、U相の渡り線Luの端部が配置され、第2渡り線案内溝16bには、V相の渡り線Lvの端部が配置され、第3渡り線案内溝16cには、W相の渡り線Lwの端部が配置されるように割り当てられている。従って、これら各渡り線Lu,Lv,Lwは、第1〜第3渡り線案内溝16a〜16cにて軸方向に移動しない。   In the present embodiment, the end of the U-phase connecting line Lu is disposed in the first connecting wire guide groove 16a, and the end of the V-phase connecting line Lv is provided in the second connecting wire guide groove 16b. Arranged and assigned to the third crossover guide groove 16c so that the end of the W-phase crossover line Lw is arranged. Therefore, these crossover lines Lu, Lv, and Lw do not move in the axial direction in the first to third crossover guide grooves 16a to 16c.

(第2分割インシュレータ7b)
第2分割インシュレータ7bは、第1分割インシュレータ7aと同一形状に形成され、第1分割インシュレータ7aと180°反転させて使用される。従って、第2分割インシュレータ7bの各構成部分の詳細な説明は、図3から容易に理解できるため、第1分割インシュレータ7aの各構成部分の名称と符号を同じにして省略する。
(Second split insulator 7b)
The second divided insulator 7b is formed in the same shape as the first divided insulator 7a, and is used by being inverted by 180 ° from the first divided insulator 7a. Therefore, since the detailed description of each component of the second divided insulator 7b can be easily understood from FIG. 3, the names and symbols of the respective components of the first divided insulator 7a are the same and omitted.

このように第1及び第2分割インシュレータ7a,7bにて構成された第1インシュレータ7は、U相の巻線及びV相の巻線が巻回される分割コアCに装着される。
(第2インシュレータ8)
図4(a)、(b)に示すように、第2インシュレータ8は、絶縁性樹脂材料にて成形され、軸方向に2分割された同一形状の第3分割インシュレータ8aと第4分割インシュレータ8bから構成されている。第3分割インシュレータ8aは、第3巻線群G3が巻回される各分割コアCに対し軸方向一側から装着される。反対に、第4分割インシュレータ8bは、第3巻線群G3が巻回される各分割コアCに対し軸方向他側から装着される。
Thus, the 1st insulator 7 comprised by the 1st and 2nd division | segmentation insulators 7a and 7b is mounted | worn with the division | segmentation core C by which the winding of a U-phase and a V-phase is wound.
(Second insulator 8)
As shown in FIGS. 4A and 4B, the second insulator 8 is formed of an insulating resin material and divided into two in the axial direction, the third divided insulator 8a and the fourth divided insulator 8b having the same shape. It is composed of The third divided insulator 8a is attached to each divided core C around which the third winding group G3 is wound from one side in the axial direction. On the other hand, the fourth divided insulator 8b is attached from the other side in the axial direction to each divided core C around which the third winding group G3 is wound.

(第3分割インシュレータ8a)
第3分割インシュレータ8aは、ティース部Tにおける軸方向の一側半分の胴部(延出部分)を被覆するティース被覆部31と、分割環状部Caにおける軸方向の一側半分のティース部T側内側面と軸方向一側の外側面を被覆する環状部被覆部32を有している。
(Third divided insulator 8a)
The third divided insulator 8a includes a teeth covering portion 31 that covers a body half (extension portion) in one axial half of the tooth portion T, and a tooth portion T side in the axial half of the divided annular portion Ca. An annular portion covering portion 32 that covers the inner surface and the outer surface on one side in the axial direction is provided.

ティース被覆部31は、第1分割インシュレータ7aのティース被覆部11と同形状であって、第1〜第3被覆部11a〜11cに相当する第1〜第3被覆部31a〜31cを有するとともに、巻線保持壁11dに相当する巻線保持壁31dを有している。   The teeth covering portion 31 has the same shape as the teeth covering portion 11 of the first divided insulator 7a and includes first to third covering portions 31a to 31c corresponding to the first to third covering portions 11a to 11c, and A winding holding wall 31d corresponding to the winding holding wall 11d is provided.

また、ティース被覆部31は、第1分割インシュレータ7aの第1被覆部11aと第3被覆部11cで形成されるコーナ部及び第2被覆部11bと第3被覆部11cで形成されるコーナ部に形成した巻線ガイド溝11eに相当する巻線ガイド溝31eも形成されている。   Further, the teeth covering portion 31 is formed on a corner portion formed by the first covering portion 11a and the third covering portion 11c of the first divided insulator 7a and a corner portion formed by the second covering portion 11b and the third covering portion 11c. A winding guide groove 31e corresponding to the formed winding guide groove 11e is also formed.

一方、環状部被覆部32は、第1分割インシュレータ7aの環状部被覆部12において内壁13の形状が相異するのを除いて環状部被覆部12と同形状である。従って、環状部被覆部32は、第1分割インシュレータ7aの第1〜第3ヨーク被覆部12a〜12cに相当する第1〜第3ヨーク被覆部32a〜32cを有している。   On the other hand, the annular portion covering portion 32 has the same shape as the annular portion covering portion 12 except that the shape of the inner wall 13 is different in the annular portion covering portion 12 of the first divided insulator 7a. Therefore, the annular portion covering portion 32 has first to third yoke covering portions 32a to 32c corresponding to the first to third yoke covering portions 12a to 12c of the first divided insulator 7a.

そして、第3ヨーク被覆部32cには、そのティース部T側(径方向内側)であって円弧状の分割環状部Caに沿って延びる内壁33が軸方向一側方向に延出形成されている。内壁33は、周方向中間部に開口部34を形成し、開口部34を形成することによって周方向に2分割される。そして、内壁33が分割された両側部分を分割内壁33a,33bという。   The third yoke covering portion 32c is formed with an inner wall 33 extending in one axial direction on the tooth portion T side (inner side in the radial direction) and extending along the arc-shaped divided annular portion Ca. . The inner wall 33 is divided into two in the circumferential direction by forming an opening 34 in the middle in the circumferential direction and forming the opening 34. The both side portions where the inner wall 33 is divided are referred to as divided inner walls 33a and 33b.

この一対の分割内壁33a,33bにおいて周方向に互いに対向する面には、軸線方向に端末線案内溝35がそれぞれ形成されている。また、一対の分割内壁33a,33bの径方向内側面の開口部34側には、逃がし溝35aが端末線案内溝35に到達するまで径方向に凹設されている。   Terminal line guide grooves 35 are formed in the axial direction on surfaces of the pair of divided inner walls 33a and 33b that face each other in the circumferential direction. Further, the relief groove 35 a is recessed in the radial direction on the radially inner side surface of the pair of divided inner walls 33 a and 33 b until the escape groove 35 a reaches the terminal line guide groove 35.

また、第3ヨーク被覆部32cには、その反ティース部T側(径方向外側)であって分割内壁33a、33bと対向するように外壁36が軸方向一側方向にそれぞれ延出形成されている。   The third yoke covering portion 32c has an outer wall 36 extending in one axial direction so as to face the divided inner walls 33a and 33b on the side opposite to the tooth portion T (radially outside). Yes.

そして、外壁36は、分割内壁33a,33bと第3ヨーク被覆部32cとで、軸方向一側が開放された断面コ字状の第4渡り線案内溝36aが形成される。
そして、本実施形態では、第4渡り線案内溝36aには、第3ヨーク被覆部32cから軸方向一側方向へW相の渡り線Lw、V相の渡り線Lv、U相の渡り線Luの各端部が順に配置される。従って、これら各渡り線Lw,Lv,Luは、外壁36によって径方向外側に飛び出しにくくなっている。
The outer wall 36 is formed by the divided inner walls 33a and 33b and the third yoke covering portion 32c to form a fourth crossover guide groove 36a having a U-shaped cross section that is open on one side in the axial direction.
In the present embodiment, the fourth crossover guide groove 36a has a W-phase crossover line Lw, a V-phase crossover line Lv, and a U-phase crossover line Lu from the third yoke covering portion 32c in one axial direction. Are arranged in order. Therefore, these crossover lines Lw, Lv, and Lu are difficult to jump out radially outward by the outer wall 36.

(第4分割インシュレータ8b)
第4分割インシュレータ8bは、第3分割インシュレータ8aと同一形状に形成され、第3分割インシュレータ8aと180°反転させて使用される。従って、第4分割インシュレータ8bの各構成部分の詳細な説明は、図4から容易に理解できるため、第3分割インシュレータ8aの各構成部分の名称と符号を同じにして省略する。
(Fourth divided insulator 8b)
The fourth divided insulator 8b is formed in the same shape as the third divided insulator 8a, and is used by being inverted 180 ° from the third divided insulator 8a. Therefore, since the detailed description of each component of the fourth divided insulator 8b can be easily understood from FIG. 4, the names and symbols of the components of the third divided insulator 8a are the same and are omitted.

このように第3及び第4分割インシュレータ8a,8bにて構成された第2インシュレータ8は、W相の巻線が巻回される分割コアCに装着される。
次に、第1インシュレータ7を装着した第1及び第2巻線群G1,G2の各分割コアC、及び、第2インシュレータ8を装着した第3巻線群G3の各分割コアCに巻線を巻回する方法(巻線群作成工程)について説明する。
Thus, the second insulator 8 constituted by the third and fourth divided insulators 8a and 8b is mounted on the divided core C around which the W-phase winding is wound.
Next, winding is performed on each of the split cores C of the first and second winding groups G1 and G2 mounted with the first insulator 7 and on each of the split cores C of the third winding group G3 mounted with the second insulator 8. A method of winding (winding group creation step) will be described.

(第1巻線群G1の形成)
図5(a)に示すように、第1巻線群G1の第1、第4、第7、第10分割コアC1,C4,C7,C10は、互いに一定の間隔Dを開けつつ直線的に配置される。このとき、第1、第4、第7、第10分割コアC1,C4,C7,C10は、同一方向を向く姿勢で配置される。詳しくは、第1、第4、第7、第10分割コアC1,C4,C7,C10は、それらのティース部T1,T4,T7,T10が分割コア並設方向(図5において左右方向)と直交する同一方向を向くように配置される。そして、上記間隔Dは、2個の分割コアCが介在できる間隔である。なお、このとき第1、第4、第7、第10分割コアC1,C4,C7,C10には、第1インシュレータ7が装着されている。
(Formation of the first winding group G1)
As shown in FIG. 5A, the first, fourth, seventh, and tenth divided cores C1, C4, C7, and C10 of the first winding group G1 are linearly spaced apart from each other by a constant distance D. Be placed. At this time, the first, fourth, seventh, and tenth divided cores C1, C4, C7, and C10 are arranged in a posture facing the same direction. Specifically, the first, fourth, seventh, and tenth divided cores C1, C4, C7, and C10 have teeth portions T1, T4, T7, and T10 arranged in the direction in which the divided cores are juxtaposed (the left-right direction in FIG. 5). It arrange | positions so that it may face the same orthogonal direction. The interval D is an interval at which the two divided cores C can be interposed. At this time, the first insulator 7 is attached to the first, fourth, seventh, and tenth divided cores C1, C4, C7, and C10.

そして、第1分割コアC1→第4分割コアC4→第7分割コアC7→第10分割コアC10の順番で、巻き方向を同じにして1つの導線Lにて連続して巻回する。即ち、第1分割コアC1に巻線U1、第4分割コアC4に巻線U2、第7分割コアC7に巻線U3、第10分割コアC10に巻線U4が巻回される。   And it winds continuously with one conducting wire L by making the winding direction the same in the order of 1st division | segmentation core C1-> 4th division | segmentation core C4-> 7th division | segmentation core C7-> 10th division | segmentation core C10. That is, the winding U1 is wound around the first divided core C1, the winding U2 is wound around the fourth divided core C4, the winding U3 is wound around the seventh divided core C7, and the winding U4 is wound around the tenth divided core C10.

詳述すると、第1分割コアC1に巻線U1を形成するとき、導線Lは、基端から始端部LSuとなる部分の長さが確保されて第1分割コアC1に装着した第1分割インシュレータ7aの他方の分割内壁13bに形成した端末線案内溝15に軸方向一側から通される。そして、導線Lは、逃がし溝15aを介してティース被覆部11側へと通されるとともに、そのティース被覆部11の上から第1ティース部T1に巻回される。   More specifically, when the winding U1 is formed on the first split core C1, the conductor L is a first split insulator mounted on the first split core C1 with a length from the base end to the start end LSu. The terminal line guide groove 15 formed in the other divided inner wall 13b of 7a is passed from one side in the axial direction. And the conducting wire L is wound around the 1st teeth part T1 from the teeth coating | coated part 11 while being passed through the escape groove | channel 15a to the teeth coating | coated part 11 side.

そして、導線Lによる第1分割コアC1への巻回が終了し巻線U1が形成されると、導線Lは、分割内壁13a,13b間の開口部14から径方向外側に引き出される。引き出された導線Lは、他方の分割内壁13bに形成した第1渡り線案内溝16aに嵌合されて同第1渡り線案内溝16aに沿って周方向に案内された後、第1分割コアC1から周方向に第4分割コアC4に向かって一定の間隔Dだけ引き回される。   And when winding to the 1st division | segmentation core C1 by the conducting wire L is complete | finished and the coil | winding U1 is formed, the conducting wire L is pulled out to the radial direction outer side from the opening part 14 between the division | segmentation inner walls 13a and 13b. The drawn lead L is fitted into a first crossover guide groove 16a formed on the other split inner wall 13b and guided in the circumferential direction along the first crossover guide groove 16a, and then the first split core. A certain distance D is drawn from C1 toward the fourth divided core C4 in the circumferential direction.

第4分割コアC4に引き回された導線Lは、第4分割コアC4に装着した第1分割インシュレータ7aの一方の分割内壁13aに形成した第1渡り線案内溝16aに嵌合されて同第1渡り線案内溝16aに沿って周方向に案内される。   The conducting wire L routed around the fourth split core C4 is fitted into a first crossover guide groove 16a formed on one split inner wall 13a of the first split insulator 7a attached to the fourth split core C4. It is guided in the circumferential direction along the one crossover guide groove 16a.

第1渡り線案内溝16aに沿って周方向に案内された導線Lは、分割内壁13a,13b間の開口部14から径方向内側に引き入れられる。開口部14から径方向内側に引き入れられた導線Lは、第4分割コアC4(第4ティース部T4)に巻回される。   The conducting wire L guided in the circumferential direction along the first crossover guide groove 16a is drawn inward in the radial direction from the opening 14 between the divided inner walls 13a and 13b. The conducting wire L drawn inward in the radial direction from the opening 14 is wound around the fourth divided core C4 (fourth tooth portion T4).

そして、導線Lによる第4分割コアC4への巻回が終了し巻線U2が形成されると、導線Lは、分割内壁13a,13b間の開口部14から径方向外側に引き出される。引き出された導線Lは、他方の分割内壁13bに形成した第1渡り線案内溝16aに嵌合されて同第1渡り線案内溝16aに沿って周方向に案内された後、第4分割コアC4から周方向に第7分割コアC7に向かって一定の間隔Dだけ引き回される。   And when winding to the 4th division | segmentation core C4 by the conducting wire L is complete | finished and the coil | winding U2 is formed, the conducting wire L is pulled out to the radial direction outer side from the opening part 14 between the division | segmentation inner walls 13a and 13b. The drawn conductor L is fitted in the first crossover guide groove 16a formed on the other split inner wall 13b and guided in the circumferential direction along the first crossover guide groove 16a, and then the fourth split core. A certain distance D is drawn from C4 toward the seventh divided core C7 in the circumferential direction.

第7分割コアC7に引き回された導線Lは、第4分割コアC4の場合と同様に第7分割コアC7(第7ティース部T7)への巻回を行って巻線U3を形成した後、第4分割コアC4の場合と同様に周方向に第10分割コアC10に向かって一定の間隔Dだけ引き回される。   After the conducting wire L routed to the seventh divided core C7 is wound around the seventh divided core C7 (seventh tooth portion T7) as in the case of the fourth divided core C4, the winding U3 is formed. As in the case of the fourth divided core C4, the wire is drawn by a constant distance D toward the tenth divided core C10 in the circumferential direction.

第10分割コアC10に引き回された導線Lは、第10分割コアC10に装着した第1分割インシュレータ7aの一方の分割内壁13aに形成した第1渡り線案内溝16aに嵌合されて同第1渡り線案内溝16aに沿って周方向に案内される。   The conducting wire L routed around the tenth split core C10 is fitted into a first crossover guide groove 16a formed on one split inner wall 13a of the first split insulator 7a attached to the tenth split core C10. It is guided in the circumferential direction along the one crossover guide groove 16a.

第1渡り線案内溝16aに沿って周方向に案内された導線Lは、分割内壁13a,13b間の開口部14から径方向内側に引き入れられる。開口部14から径方向内側に引き入れられた導線Lは、第10分割コアC10(第10ティース部T10)に巻回されて巻線U4が形成される。   The conducting wire L guided in the circumferential direction along the first crossover guide groove 16a is drawn inward in the radial direction from the opening 14 between the divided inner walls 13a and 13b. The conducting wire L drawn inward in the radial direction from the opening 14 is wound around the tenth divided core C10 (tenth tooth portion T10) to form the winding U4.

そして、第10分割コアC10に巻線U4が形成されると、導線Lは、第10分割コアC10に装着した第1分割インシュレータ7aの他方の分割内壁13bに形成した逃がし溝15aを介して端末線案内溝15に嵌合されて同端末線案内溝15に沿って軸方向一側へ引き出される。軸方向一側へ引き出された導線Lは、終端部LEuの長さを確保して切断される。これによって、導線LによるU相の各巻線U1〜U4の形成は終了する。   And if the coil | winding U4 is formed in the 10th division | segmentation core C10, the conducting wire L will end via the relief groove 15a formed in the other division | segmentation inner wall 13b of the 1st division | segmentation insulator 7a with which the 10th division | segmentation core C10 was mounted | worn. It fits in the line guide groove 15 and is pulled out along the terminal line guide groove 15 to one side in the axial direction. The conducting wire L drawn to one side in the axial direction is cut while securing the length of the terminal end portion LEu. Thus, the formation of the U-phase windings U1 to U4 by the conducting wire L is completed.

そして、図5(a)に示すように、始端部LSuと終端部LEuとの間に、第1分割コアC1に巻線U1、第4分割コアC4に巻線U2、第7分割コアC7に巻線U3、第10分割コアC10に巻線U4がそれぞれ間隔Dを開けて1つの導線Lにて連なった吊るし柿状の第1巻線群G1が形成される。   Then, as shown in FIG. 5 (a), between the starting end LSu and the terminating end LEu, the first divided core C1 has a winding U1, the fourth divided core C4 has a winding U2, and the seventh divided core C7 has a A suspended hook-shaped first winding group G1 is formed in which the winding U4 and the tenth divided core C10 are connected by a single conducting wire L with a spacing D therebetween.

このとき、各分割コアC1,C4,C7,C10は互いに間隔Dだけ離間しているため、巻線U1,U2間、巻線U2,U3間、及び、巻線U3,U4間の導線Lが、間隔DのU相の渡り線Luとなる。   At this time, since the divided cores C1, C4, C7, and C10 are separated from each other by a distance D, the conductor L between the windings U1 and U2, between the windings U2 and U3, and between the windings U3 and U4 is provided. , A U-phase crossover line Lu with an interval D.

(第2巻線群G2の形成)
図5(b)に示すように、その第2巻線群G2の第2、第5、第8、第11分割コアC2,C5,C8,C11を、同じく間隔Dを開けて配置する。第2巻線群G2の第2、第5、第8、第11分割コアC2,C5,C8,C11には、第1インシュレータ7が装着されている。
(Formation of second winding group G2)
As shown in FIG. 5B, the second, fifth, eighth, and eleventh divided cores C2, C5, C8, and C11 of the second winding group G2 are similarly arranged with a gap D therebetween. A first insulator 7 is attached to the second, fifth, eighth, and eleventh split cores C2, C5, C8, and C11 of the second winding group G2.

そして、第2分割コアC2→第5分割コアC5→第8分割コアC8→第11分割コアC11の順番で、巻き方向を同じにして1つの導線Lにて連続して巻回する。即ち、第2分割コアC2に巻線V1、第5分割コアC5に巻線V2、第8分割コアC8に巻線V3、第11分割コアC11に巻線V4が巻回される。   And it winds continuously with one conducting wire L by making the winding direction the same in the order of 2nd division | segmentation core C2-> 5th division | segmentation core C5-> 8th division | segmentation core C8-> 11th division | segmentation core C11. That is, the winding V1 is wound around the second divided core C2, the winding V2 is wound around the fifth divided core C5, the winding V3 is wound around the eighth divided core C8, and the winding V4 is wound around the eleventh divided core C11.

この第2巻線群G2の各分割コアC2,C5,C8,C11は、第1巻線群G1の各分割コアC1,C4,C7,C10と同じ第1インシュレータ7を装着している。そのため、導線Lによる第2巻線群G2のV相の巻線V1〜V4の形成は、導線Lが第2渡り線案内溝16bに沿って周方向に案内されることを除いて第1巻線群G1のU相の巻線U1〜U4の形成と同じである。   Each divided core C2, C5, C8, C11 of this second winding group G2 is equipped with the same first insulator 7 as each of the divided cores C1, C4, C7, C10 of the first winding group G1. Therefore, the formation of the V-phase windings V1 to V4 of the second winding group G2 by the conducting wire L is the first winding except that the conducting wire L is guided in the circumferential direction along the second connecting wire guide groove 16b. This is the same as the formation of the U-phase windings U1 to U4 of the line group G1.

従って、図5(b)に示すように、始端部LSvと終端部LEvとの間に、第2分割コアC2に巻線V1、第5分割コアC5に巻線V2、第8分割コアC8に巻線V3、第11分割コアC11に巻線V4がそれぞれ間隔Dを開けて1つの導線Lにて連なった吊るし柿状の第2巻線群G2が形成される。   Therefore, as shown in FIG. 5B, between the start end LSv and the end LEv, the second divided core C2 has the winding V1, the fifth divided core C5 has the winding V2, and the eighth divided core C8 has the A suspended hook-shaped second winding group G2 is formed in which the winding V4 and the eleventh divided core C11 are connected by a single conducting wire L with a spacing D therebetween.

このとき、各分割コアC2,C5,C8,C11は互いに間隔Dだけ離間しているため、巻線V1,V2間、巻線V2,V3間、及び、巻線V3,V4間の導線Lが、間隔DのV相の渡り線Lvとなる。   At this time, since the divided cores C2, C5, C8, and C11 are separated from each other by a distance D, the conductor L between the windings V1 and V2, between the windings V2 and V3, and between the windings V3 and V4 is provided. , The V-phase crossover line Lv with the interval D.

(第3巻線群G3の形成)
図5(c)に示すように、その第3巻線群G3の第3、第6、第9、第12分割コアC3,C6,C9,C12を、同じく間隔Dを開けて配置する。第3巻線群G3の第3、第6、第9、第12分割コアC3,C6,C9,C1には、第2インシュレータ8が装着されている。
(Formation of third winding group G3)
As shown in FIG. 5 (c), the third, sixth, ninth, and twelfth divided cores C3, C6, C9, and C12 of the third winding group G3 are similarly arranged with an interval D therebetween. A second insulator 8 is attached to the third, sixth, ninth, and twelfth divided cores C3, C6, C9, and C1 of the third winding group G3.

そして、第3分割コアC3→第6分割コアC6→第9分割コアC9→第12分割コアC12の順番で、巻き方向を同じにして1つの導線Lにて連続して巻回する。即ち、第3分割コアC3に巻線W1、第6分割コアC6に巻線W2、第9分割コアC9に巻線W3、第12分割コアC12に巻線W4が巻回される。   And it winds continuously with one conducting wire L by making the winding direction the same in the order of the third divided core C3 → the sixth divided core C6 → the ninth divided core C9 → the twelfth divided core C12. That is, the winding W1 is wound around the third divided core C3, the winding W2 is wound around the sixth divided core C6, the winding W3 is wound around the ninth divided core C9, and the winding W4 is wound around the twelfth divided core C12.

詳述すると、第3分割コアC3に巻線W1を形成するとき、導線Lは、基端から始端部LSwとなる部分の長さが確保されて第3分割コアC3に装着した第3分割インシュレータ8aの他方の分割内壁33bに形成した端末線案内溝35に軸方向一側から通される。そして、導線Lは、逃がし溝15aを介して第3分割コアC3(第3ティース部T3)に巻回される。   More specifically, when the winding W1 is formed on the third divided core C3, the conductor L is secured to the length of the portion from the base end to the starting end LSW, and is attached to the third divided core C3. The terminal wire guide groove 35 formed in the other divided inner wall 33b of 8a is passed from one side in the axial direction. And the conducting wire L is wound around the 3rd division | segmentation core C3 (3rd teeth part T3) via the escape groove | channel 15a.

そして、導線Lによる第3分割コアC3への巻回が終了し巻線W1が形成されると、導線Lは、分割内壁33a,33b間の開口部34から径方向外側に引き出される。引き出された導線Lは、他方の分割内壁33bと他方の外壁36との間に形成された第4渡り線案内溝36aに嵌合されて同第4渡り線案内溝36aに沿って周方向に案内される。そして、周方向に案内された導線Lは、第3分割コアC3から周方向に第6分割コアC6に向かって一定の間隔Dだけ引き回される。   And when winding to the 3rd division | segmentation core C3 by the conducting wire L is complete | finished and the coil | winding W1 is formed, the conducting wire L is pulled out to the radial direction outer side from the opening part 34 between the division | segmentation inner walls 33a and 33b. The drawn lead wire L is fitted into a fourth crossover guide groove 36a formed between the other divided inner wall 33b and the other outer wall 36, and is circumferentially along the fourth crossover guide groove 36a. Guided. And the conducting wire L guided in the circumferential direction is routed by a constant distance D from the third divided core C3 toward the sixth divided core C6 in the circumferential direction.

第6分割コアC6に引き回された導線Lは、第6分割コアC6に装着した第3分割インシュレータ8aの一方の分割内壁33bと一方の外壁36との間に形成された第4渡り線案内溝36aに嵌合されて同第4渡り線案内溝36aに沿って周方向に案内される。   The lead L routed around the sixth divided core C6 is a fourth crossover guide formed between one divided inner wall 33b and one outer wall 36 of the third divided insulator 8a attached to the sixth divided core C6. It is fitted in the groove 36a and guided in the circumferential direction along the fourth crossover guide groove 36a.

第4渡り線案内溝36aに沿って周方向に案内された導線Lは、分割内壁33a,33b間の開口部34から径方向内側に引き入れられる。開口部34から径方向内側に引き入れられた導線Lは、第6分割コアC6(第6ティース部T6)に巻回される。   The conducting wire L guided in the circumferential direction along the fourth crossover guide groove 36a is drawn inward in the radial direction from the opening 34 between the divided inner walls 33a and 33b. The conducting wire L drawn inward in the radial direction from the opening 34 is wound around the sixth divided core C6 (sixth tooth portion T6).

そして、導線Lによる第6分割コアC6への巻回が終了し巻線W2が形成されると、導線Lは、分割内壁33a,33b間の開口部34から径方向外側に引き出される。引き出された導線Lは、他方の分割内壁33bと他方の外壁36との間に形成された第4渡り線案内溝36aに嵌合されて同第4渡り線案内溝36aに沿って周方向に案内される。そして、周方向に案内された導線Lは、第6分割コアC6から周方向に第9分割コアC9に向かって一定の間隔Dだけ引き回される。   And when winding to the 6th division | segmentation core C6 by the conducting wire L is complete | finished and the coil | winding W2 is formed, the conducting wire L is pulled out to the radial direction outer side from the opening part 34 between the division | segmentation inner walls 33a and 33b. The drawn lead wire L is fitted into a fourth crossover guide groove 36a formed between the other divided inner wall 33b and the other outer wall 36, and is circumferentially along the fourth crossover guide groove 36a. Guided. And the conducting wire L guided in the circumferential direction is routed by a constant distance D from the sixth divided core C6 toward the ninth divided core C9 in the circumferential direction.

第9分割コアC9に引き回された導線Lは、第9分割コアC9に装着した第3分割インシュレータ8aの一方の分割内壁33bと一方の外壁36の間に形成された第4渡り線案内溝36aに嵌合されて同第4渡り線案内溝36aに沿って周方向に案内される。   The lead L routed around the ninth divided core C9 is a fourth crossover guide groove formed between one divided inner wall 33b and one outer wall 36 of the third divided insulator 8a attached to the ninth divided core C9. 36a and is guided in the circumferential direction along the fourth crossover guide groove 36a.

第4渡り線案内溝36aに沿って周方向に案内された導線Lは、分割内壁33a,33b間の開口部34から径方向内側に引き入れられる。開口部34から径方向内側に引き入れられた導線Lは、第9分割コアC9(第9ティース部T9)に巻回される。   The conducting wire L guided in the circumferential direction along the fourth crossover guide groove 36a is drawn inward in the radial direction from the opening 34 between the divided inner walls 33a and 33b. The conducting wire L drawn inward in the radial direction from the opening 34 is wound around the ninth divided core C9 (the ninth tooth portion T9).

そして、導線Lによる第9分割コアC9への巻回が終了し巻線W3が形成されると、導線Lは、分割内壁33a,33b間の開口部34から径方向外側に引き出される。引き出された導線Lは、他方の分割内壁33bと他方の外壁36との間に形成された第4渡り線案内溝36aに嵌合されて同第4渡り線案内溝36aに沿って周方向に案内される。そして、周方向に案内された導線Lは、第9分割コアC9から周方向に第12分割コアC12に向かって一定の間隔Dだけ引き回される。   And when winding to the 9th division | segmentation core C9 by the conducting wire L is complete | finished and the coil | winding W3 is formed, the conducting wire L is pulled out to the radial direction outer side from the opening part 34 between the division | segmentation inner walls 33a and 33b. The drawn lead wire L is fitted into a fourth crossover guide groove 36a formed between the other divided inner wall 33b and the other outer wall 36, and is circumferentially along the fourth crossover guide groove 36a. Guided. And the conducting wire L guided in the circumferential direction is routed by a constant distance D from the ninth divided core C9 toward the twelfth divided core C12 in the circumferential direction.

第12分割コアC12に引き回された導線Lは、第12分割コアC12に装着した第3分割インシュレータ8aの一方の分割内壁33bと一方の外壁36との間に形成された第4渡り線案内溝36aに嵌合されて同第4渡り線案内溝36aに沿って周方向に案内される。   The conducting wire L routed around the twelfth divided core C12 is a fourth crossover guide formed between one divided inner wall 33b and one outer wall 36 of the third divided insulator 8a attached to the twelfth divided core C12. It is fitted in the groove 36a and guided in the circumferential direction along the fourth crossover guide groove 36a.

第4渡り線案内溝36aに沿って周方向に案内された導線Lは、分割内壁33a,33b間の開口部34から径方向内側に引き入れられる。開口部34から径方向内側に引き入れられた導線Lは、第12分割コアC12(第12ティース部T12)に巻回される。   The conducting wire L guided in the circumferential direction along the fourth crossover guide groove 36a is drawn inward in the radial direction from the opening 34 between the divided inner walls 33a and 33b. The conducting wire L drawn inward in the radial direction from the opening 34 is wound around the twelfth divided core C12 (the twelfth tooth portion T12).

そして、第12分割コアC12への巻線W4が形成されると、導線Lは、第12分割コアC12に装着した第3分割インシュレータ8aの他方の分割内壁33bに形成した逃がし溝15aを介して端末線案内溝35に嵌合されて同端末線案内溝35に沿って軸方向一側へ引き出される。軸方向一側へ引き出された導線Lは、終端部LEwの長さを確保して切断される。これによって、導線LによるW相の各巻線W1〜W4の形成は終了する。   When the winding W4 to the twelfth divided core C12 is formed, the conductive wire L passes through the relief groove 15a formed on the other divided inner wall 33b of the third divided insulator 8a attached to the twelfth divided core C12. It is fitted into the terminal line guide groove 35 and pulled out along the terminal line guide groove 35 to one side in the axial direction. The conducting wire L drawn to one side in the axial direction is cut while securing the length of the terminal end portion LEw. Thus, the formation of the W-phase windings W1 to W4 by the conducting wire L is completed.

そして、図5(c)に示すように、始端部LSwと終端部LEwとの間に、第3分割コアC3に巻線W1、第6分割コアC6に巻線W2、第9分割コアC9に巻線W3、第12分割コアC12に巻線W4がそれぞれ間隔Dを開けて1つの導線Lにて連なった吊るし柿状の第3巻線群G3が形成される。   Then, as shown in FIG. 5C, between the start end portion LSW and the end portion LEw, the third divided core C3 has a winding W1, the sixth divided core C6 has a winding W2, and the ninth divided core C9 has a A suspended hook-shaped third winding group G3 is formed in which the winding W4 and the twelfth divided core C12 are connected by a single conductor L with a spacing D therebetween.

このとき、各分割コアC3,C6,C9,C12は互いに間隔Dだけ離間しているため、巻線W1,W2間、巻線W2,W3間、及び、巻線W3,W4間の導線Lが、間隔DのW相の渡り線Lwとなる。   At this time, since the divided cores C3, C6, C9, and C12 are separated from each other by a distance D, the conductor L between the windings W1 and W2, between the windings W2 and W3, and between the windings W3 and W4 is set. , The crossover line Lw of the interval D with the W phase.

次に、上記のように成形した第1〜第3巻線群G1〜G3を合体させる巻線群合体工程について説明する。
(第1巻線群G1と第2巻線群G2の合体(第1合体工程))
図6に示すように、第1及び第2巻線群G1,G2の各分割コアCは、共に第1インシュレータ7が装着されるとともに、X矢印方向に連なって合体される。このとき、各分割コアCは、ティース部TがY矢印方向(X矢印方向に対して直交方向)を向くように配置されている。
Next, the winding group combining step for combining the first to third winding groups G1 to G3 formed as described above will be described.
(Combination of first winding group G1 and second winding group G2 (first combining step))
As shown in FIG. 6, the divided cores C of the first and second winding groups G1 and G2 are both combined with the first insulator 7 and connected in the X arrow direction. At this time, each divided core C is disposed such that the tooth portion T faces the Y arrow direction (a direction orthogonal to the X arrow direction).

そして、第1巻線群G1の各分割コアCは、第1分割インシュレータ7aに形成した第1渡り線案内溝16aに、U相の渡り線Luの端部が嵌合している。
また、第2巻線群G2の各分割コアCは、第1分割インシュレータ7aに形成した第2渡り線案内溝16bに、V相の渡り線Lvの端部が嵌合している。
In each divided core C of the first winding group G1, the end portion of the U-phase connecting wire Lu is fitted in the first connecting wire guide groove 16a formed in the first divided insulator 7a.
Further, in each divided core C of the second winding group G2, the end of the V-phase connecting line Lv is fitted in the second connecting line guide groove 16b formed in the first divided insulator 7a.

まず、図7(a)に示すように、第2巻線群G2の各分割コアCのそれぞれが、第1巻線群G1の各分割コアC間であってU相の渡り線Luの位置に配置されるようにX矢印方向に沿って並設される。   First, as shown in FIG. 7A, each of the split cores C of the second winding group G2 is located between the split cores C of the first winding group G1 and the position of the U-phase crossover line Lu. Are arranged side by side along the X arrow direction.

次に、図7(b)に示すように、第2巻線群の各分割コアCの姿勢を、渡り線Lvを回転中心として第1巻線群G1の各分割コアCに対してほぼ90°を傾ける。続いて、ほぼ90°傾けた状態で第2巻線群G2の各分割コアCを、Y矢印方向に移動させて第1巻線群G1の各分割コアC間(渡り線Luに対応する位置)に介在させる。   Next, as shown in FIG. 7B, the posture of each divided core C of the second winding group is approximately 90 with respect to each divided core C of the first winding group G1 with the connecting wire Lv as the rotation center. Tilt. Subsequently, each of the split cores C of the second winding group G2 is moved in the direction of the arrow Y in a state where it is tilted by approximately 90 °, and is located between the split cores C of the first winding group G1 (position corresponding to the crossover line Lu). ).

この介在させるとき、第2巻線群G2の各分割コアC間に形成したV相の渡り線Lvを、第1巻線群G1の分割コアCの第1分割インシュレータ7aに形成した第2渡り線案内溝16bに嵌合させる。   When intervening, the V-phase connecting wire Lv formed between the divided cores C of the second winding group G2 is formed on the first divided insulator 7a of the divided core C of the first winding group G1. It fits in the line guide groove 16b.

次に、第1巻線群G1の各分割コアC間にそれぞれ介在された第2巻線群G2の各分割コアCの姿勢を元の状態に戻す。つまり、第2巻線群G2の各分割コアCのティース部T先端がY矢印方向(第1巻線群G1のティース部Tと同一方向)を向くように、その第2巻線群G2の各分割コアCの姿勢を渡り線Lvを回転中心としてほぼ90°回転させる。   Next, the posture of each divided core C of the second winding group G2 interposed between each divided core C of the first winding group G1 is returned to the original state. That is, the tip of the tooth portion T of each divided core C of the second winding group G2 is oriented in the Y arrow direction (the same direction as the tooth portion T of the first winding group G1) of the second winding group G2. The posture of each divided core C is rotated by approximately 90 ° with the cross line Lv as the rotation center.

第2巻線群G2の各分割コアCの姿勢が元の状態に戻るとき、第1巻線群G1の各渡り線Luが第2巻線群G2の分割コアCの第1分割インシュレータ7aに形成した第1渡り線案内溝16aに嵌合する。そして、第1及び第2巻線群G1,G2の各分割コアCの第1分割インシュレータ7aに形成した第1及び第2渡り線案内溝16a,16bに、それぞれ渡り線Lu,Lvが嵌合した状態で、第1巻線群G1の各分割コアCと第2巻線群G2の各分割コアCとをそれぞれ隣接させる。   When the posture of each divided core C of the second winding group G2 returns to the original state, each crossover line Lu of the first winding group G1 is transferred to the first divided insulator 7a of the divided core C of the second winding group G2. It fits in the formed first crossover guide groove 16a. Then, the connecting wires Lu and Lv are fitted in the first and second connecting wire guide grooves 16a and 16b formed in the first divided insulator 7a of each divided core C of the first and second winding groups G1 and G2, respectively. In this state, the divided cores C of the first winding group G1 and the divided cores C of the second winding group G2 are adjacent to each other.

これによって、図6に示すように、第1巻線群G1の各分割コアCと第2巻線群G2の各分割コアCとが隣接して合体配置される。
第1巻線群G1の各分割コアCと第2巻線群G2の各分割コアCとが合体配置されたとき、渡り線Lu,Lvの長さ(間隔D)は分割コアC二個分の長さに設定されている。そのため、並設した2個の第1及び第2巻線群G1,G2の分割コアCと並設した2個の第1及び第2巻線群G1,G2の分割コアCとの間に分割コアC1個分の空間がそれぞれ形成される。
As a result, as shown in FIG. 6, the divided cores C of the first winding group G1 and the divided cores C of the second winding group G2 are adjacently combined.
When the divided cores C of the first winding group G1 and the divided cores C of the second winding group G2 are combined, the lengths (intervals D) of the crossover lines Lu and Lv are equal to the two divided cores C. Is set to the length of Therefore, it divides | segments between the division | segmentation core C of the two 1st and 2nd winding groups G1 and G2 and the division | segmentation core C of the two 1st and 2nd winding groups G1 and G2 arranged in parallel. Spaces for one core C are formed.

そして、図8に示すように、この1個分の各空間に第3巻線群G3の各分割コアCがそれぞれ配置される。
(第1及び第2巻線群G1,G2と第3巻線群G3との合体(第2合体工程))
第3巻線群G3の各分割コアCは、第2インシュレータ8が装着されるとともに、X矢印方向に連なっている。このとき、各分割コアCは、ティース部TがY矢印方向に向くように配置されている。
And as shown in FIG. 8, each division | segmentation core C of the 3rd winding group G3 is each arrange | positioned in each space for this one piece.
(Combination of first and second winding groups G1, G2 and third winding group G3 (second combining step))
Each divided core C of the third winding group G3 is connected with the second insulator 8 and is continuous in the X arrow direction. At this time, each divided core C is disposed such that the tooth portion T faces in the Y arrow direction.

そして、第3巻線群G3の各分割コアCは、第3分割インシュレータ8aに形成した第4渡り線案内溝36aに、W相の渡り線Lwの端部が嵌合している。
次に、図9に示すように、第3巻線群G3の各分割コアCを、合体した第1及び第2巻線群G1,G2の各分割コアCに対して、反Z矢印方向であって、前記各空間と対峙する位置に配置する。そして、第3巻線群の各分割コアCを、Z矢印方向に移動させて、前記各空間にそれぞれ介在させる。
In each divided core C of the third winding group G3, the end of the W-phase connecting line Lw is fitted in the fourth connecting line guide groove 36a formed in the third divided insulator 8a.
Next, as shown in FIG. 9, the divided cores C of the third winding group G3 are combined with the divided cores C of the first and second winding groups G1 and G2 in the anti-Z arrow direction. And it arrange | positions in the position which opposes each said space. Then, each divided core C of the third winding group is moved in the Z arrow direction and interposed in each space.

この介在させるとき、第1及び第2巻線群G1,G2の各分割コアC間に形成した渡り線Lu.Lvを、第3巻線群G3の各分割コアCの第3分割インシュレータ8aに形成した第4渡り線案内溝36aに嵌合させる。   When this interposition is performed, the connecting line Lu.sub.L formed between the divided cores C of the first and second winding groups G1, G2. Lv is fitted into a fourth crossover guide groove 36a formed in the third divided insulator 8a of each divided core C of the third winding group G3.

このとき、第3巻線群G3の各分割コアC間に形成されたW相の渡り線Lwは、第1及び第2巻線群G1,G2の分割コアCの第1分割インシュレータ7aにそれぞれ形成した第3渡り線案内溝16cに嵌合する。   At this time, the W-phase connecting wire Lw formed between the divided cores C of the third winding group G3 is respectively supplied to the first divided insulator 7a of the divided core C of the first and second winding groups G1 and G2. It fits in the formed third crossover guide groove 16c.

これによって、図8に示すように、合体配置された第1及び第2巻線群G1,G2の各分割コアCに対して、第3巻線群G3の各分割コアCのそれぞれが隣接して合体配置される。つまり、X矢印方向に、第1分割コアC1→第2分割コアC2→第3分割コアC3→第4分割コアC4→第5分割コアC5→第6分割コアC6→第7分割コアC7→第8分割コアC8→第9分割コアC9→第10分割コアC10→第11分割コアC11→第12分割コアC12の順の分割コアCが連接される。   As a result, as shown in FIG. 8, each of the split cores C of the third winding group G3 is adjacent to each of the split cores C of the first and second winding groups G1 and G2 arranged in combination. Are combined. That is, in the direction of the arrow X, the first divided core C1, the second divided core C2, the third divided core C3, the fourth divided core C4, the fifth divided core C5, the sixth divided core C6, the seventh divided core C7, The divided cores C in the order of the eight divided cores C8 → the ninth divided core C9 → the tenth divided core C10 → the eleventh divided core C11 → the twelfth divided core C12 are connected.

そして、X矢印方向に連接した12個の分割コアCを円環状化してステータ3を形成する(分割コア環状化工程)。即ち、各分割コアCのティース部Tが径方向内側に向くように、12個の分割コアCを環状化する。   Then, the 12 divided cores C connected in the direction of the arrow X are circularized to form the stator 3 (divided core circularization step). That is, the twelve divided cores C are circularized so that the tooth portions T of the divided cores C face radially inward.

環状化は、連接した12個の分割コアCを円筒支持体の円筒面の巻き付ける公知の方法で行われる。即ち、連接した12個の分割コアCを順番にそのティース部Tの先端面を、円筒支持体の外周面を周方向に当接させて行くことによって、ティース部Tが径方向内側に向くとともに12個の分割コアCが環状化する。   The circularization is performed by a known method in which the twelve divided cores C connected are wound around the cylindrical surface of the cylindrical support. That is, by twelve twelve divided cores C connected in sequence with the tip surface of the tooth portion T and the outer peripheral surface of the cylindrical support member in the circumferential direction, the tooth portion T faces radially inward. Twelve divided cores C are circularized.

この環状化によって、分割コアCの分割環状部Caの周方向両側面が隣接する分割コアCの分割環状部Caの周方向側面と当接するとともに、各ティース部Tが径方向内側に向いて配置された図1に示すステータ3が形成される。   By this circularization, both side surfaces in the circumferential direction of the divided annular portion Ca of the divided core C abut on the circumferential side surface of the divided annular portion Ca of the adjacent divided core C, and each tooth portion T is arranged inward in the radial direction. The stator 3 shown in FIG. 1 is formed.

このとき、U相の渡り線線Luは、第1及び第2巻線群G1,G2の分割コアCに設けた第1分割インシュレータ7aの第1渡り線案内溝16aと、第3巻線群G3の分割コアCに設けた第3分割インシュレータ8aの第4渡り線案内溝36aとにそれぞれ嵌合されている。   At this time, the U-phase connecting wire Lu is connected to the first connecting wire guide groove 16a of the first split insulator 7a provided in the split core C of the first and second winding groups G1 and G2, and the third winding group. The third split insulator 8a provided in the split core C of G3 is fitted into a fourth crossover guide groove 36a.

また、V相の渡り線線Lvは、第1及び第2巻線群G1,G2の分割コアCに設けた第1分割インシュレータ7aの第2渡り線案内溝16bと、第3巻線群G3の分割コアCに設けた第3分割インシュレータ8aの第4渡り線案内溝36aとにそれぞれ嵌合されている。   Further, the V-phase connecting wire Lv is connected to the second connecting wire guide groove 16b of the first divided insulator 7a provided in the divided core C of the first and second winding groups G1 and G2, and the third winding group G3. Are respectively fitted to the fourth crossover guide groove 36a of the third divided insulator 8a provided in the divided core C.

また、W相の渡り線線Lwは、第1及び第2巻線群G1,G2の分割コアCに設けた第1分割インシュレータ7aの第3渡り線案内溝16cと、第3巻線群G3の分割コアCに設けた第3分割インシュレータ8aの第4渡り線案内溝36aとにそれぞれ嵌合されている。   The W-phase connecting wire Lw is connected to the third connecting wire guide groove 16c of the first divided insulator 7a provided in the divided core C of the first and second winding groups G1 and G2, and the third winding group G3. Are respectively fitted to the fourth crossover guide groove 36a of the third divided insulator 8a provided in the divided core C.

そして、円環状に形成されたステータ3は、図1に示すようにハウジング2内に固設される。
次に、上記したブラシレスモータ1の作用について記載する。
The stator 3 formed in an annular shape is fixed in the housing 2 as shown in FIG.
Next, the operation of the brushless motor 1 will be described.

第1〜第3巻線群G1〜G3の各巻線U1〜U4,V1〜V4,W1〜W4は、12個全ての分割コアCが連接されていない状態、すなわち、分割コアCが互いに間隔Dだけ離された状態で、その分割コアCに対して導線Lを巻回することで形成される。そのため、巻回に際して邪魔になるものが近くにないことから、巻線U1〜U4,V1〜V4,W1〜W4を占積率を上げて形成することが可能となっている。   In each of the windings U1 to U4, V1 to V4, and W1 to W4 of the first to third winding groups G1 to G3, all the 12 divided cores C are not connected, that is, the divided cores C are spaced from each other by a distance D. It is formed by winding the conducting wire L around the split core C in a state where it is separated from the core. For this reason, since there are no obstacles in the vicinity in winding, the windings U1 to U4, V1 to V4, and W1 to W4 can be formed with an increased space factor.

また、第1〜第3巻線群G1〜G3の各分割コアCにおいて、渡り線Lu,Lv,Lwの長さ、即ち、それら隣り合う分割コアCとの間に一定の間隔Dをそれぞれ開けた。そして、その間隔Dは、他の2つの巻線群の分割コアCがそれぞれ1個ずつ介在する間隔とした。   Further, in each of the divided cores C of the first to third winding groups G1 to G3, the lengths of the crossover lines Lu, Lv, and Lw, that is, a certain distance D between the adjacent divided cores C are opened. It was. The interval D was an interval at which one split core C of the other two winding groups was interposed.

そして、巻線U1〜U4を巻回した各分割コアCからなる第1巻線群G1に対して、巻線V1〜V4を巻回した各分割コアCからなる第2巻線群G2を、第3巻線群G3の分割コアCが1個介在する隙間を残して合体させる。さらに、合体した第1及び第2巻線群G1,G2に対して、巻線W1〜W4を巻回した各分割コアCからなる第3巻線群G3を合体、即ち、第1及び第2巻線群G1,G2を合体させたときに生じる第3巻線群G3の分割コアCのための1個分の隙間に、第3巻線群G3の分割コアCをそれぞれ介在させる。   And with respect to the 1st winding group G1 which consists of each division | segmentation core C which wound winding U1-U4, 2nd winding group G2 which consists of each division | segmentation core C which wound windings V1-V4, The third winding group G3 is joined together leaving a gap in which one split core C is interposed. Further, the third winding group G3 composed of the divided cores C wound with the windings W1 to W4 is combined with the combined first and second winding groups G1 and G2, that is, the first and second winding groups G1 and G2 are combined. The split core C of the third winding group G3 is interposed in one gap for the split core C of the third winding group G3 that is generated when the winding groups G1 and G2 are combined.

これによって、第1〜第3巻線群G1〜G3の各分割コアCが予め定めた順番で交互に一方向に連接され、その連接された各分割コアCを円環状化すればステータ3が簡単に形成される。   Accordingly, the divided cores C of the first to third winding groups G1 to G3 are alternately connected in one direction in a predetermined order, and the stator 3 is formed by making the connected divided cores C into an annular shape. Easy to form.

また、第1及び第2巻線群G1,G2の各分割コアCに設けた第1分割インシュレータ7aに第1〜第3渡り線案内溝16a〜16cを形成するとともに、第3巻線群G3の各分割コアCに設けた第3分割インシュレータ8aに第4渡り線案内溝36aを形成した。   In addition, first to third crossover guide grooves 16a to 16c are formed in the first divided insulator 7a provided in each divided core C of the first and second winding groups G1 and G2, and the third winding group G3 is formed. A fourth crossover guide groove 36a was formed in the third divided insulator 8a provided in each of the divided cores C.

そして、U相の渡り線線Luを、第1分割インシュレータ7aの第1渡り線案内溝16aと、第3分割インシュレータ8aの第4渡り線案内溝36aとにそれぞれ嵌合させた。また、V相の渡り線線Lvを、第1分割インシュレータ7aの第2渡り線案内溝16bと、第3分割インシュレータ8aの第4渡り線案内溝36aとにそれぞれ嵌合させた。また、W相の渡り線線Lwを、第1分割インシュレータ7aの第3渡り線案内溝16cと、第3分割インシュレータ8aの第4渡り線案内溝36aとにそれぞれ嵌合させた。   Then, the U-phase connecting wire Lu was fitted into the first connecting wire guide groove 16a of the first divided insulator 7a and the fourth connecting wire guide groove 36a of the third divided insulator 8a, respectively. Further, the V-phase connecting wire Lv was fitted into the second connecting wire guide groove 16b of the first divided insulator 7a and the fourth connecting wire guide groove 36a of the third divided insulator 8a. Further, the W-phase connecting wire Lw was fitted into the third connecting wire guide groove 16c of the first divided insulator 7a and the fourth connecting wire guide groove 36a of the third divided insulator 8a, respectively.

これによって、各渡り線Lu,Lv,Lwは、各分割コアCを円環状化したときの弛みが防止される。しかも、各渡り線Lu,Lv,Lwは、対応する第1〜第3渡り線案内溝16a〜16cによってそれぞれ軸方向の移動が規制されるとともに、第4渡り線案内溝36aによってそれぞれ径方向の移動が規制される。従って、各渡り線Lu,Lv,Lwは、第1及び第2インシュレータ7,8にて安定に保持される。   As a result, the crossover lines Lu, Lv, and Lw are prevented from slackening when the divided cores C are formed into an annular shape. In addition, each of the crossover lines Lu, Lv, and Lw is restricted from moving in the axial direction by the corresponding first to third crossover guide grooves 16a to 16c, and each of the crossover lines Lu, Lv, and Lw is radially controlled by the fourth crossover guide groove 36a. Movement is restricted. Accordingly, the crossover lines Lu, Lv, and Lw are stably held by the first and second insulators 7 and 8.

さらに、U相の巻線U1〜U4を形成した各分割コアCの第1巻線群G1、V相の巻線U1〜U4を形成した各分割コアCの第2巻線群G2、そして、W相の巻線W1〜W4を形成した第3巻線群G3を、それぞれ事前に作っておく。そして、それらを合体させるだけで、各分割コアCが円環状に連接される前の、第1〜第3巻線群G1〜G3の各分割コアCを予め定めた順番で交互に一方向に連接させることができる。   Furthermore, the first winding group G1 of each split core C in which the U-phase windings U1 to U4 are formed, the second winding group G2 of each split core C in which the V-phase windings U1 to U4 are formed, and The third winding group G3 in which the W-phase windings W1 to W4 are formed is prepared in advance. And just by uniting them, the divided cores C of the first to third winding groups G1 to G3 before the divided cores C are connected in an annular shape are alternately arranged in one direction in a predetermined order. Can be articulated.

また、U相の第1巻線群G1とV相の第2巻線群G2を合体させるとき、第2巻線群G2の各分割コアCの姿勢を、渡り線Lvを回転中心として第1巻線群G1の各分割コアCに対してほぼ90°を傾ける。次に、ほぼ90°傾けた状態で第2巻線群G2の各分割コアCを、第1巻線群G1の各分割コアC間(渡り線Luに対応する位置)に介在させると同時に、V相の渡り線Lvを、第1巻線群G1の第1分割インシュレータ7aに形成した第2渡り線案内溝16bに嵌合させる。   In addition, when the U-phase first winding group G1 and the V-phase second winding group G2 are combined, the posture of each divided core C of the second winding group G2 is set to the first with the crossover Lv as the rotation center. Approximately 90 ° is inclined with respect to each divided core C of the winding group G1. Next, while each of the split cores C of the second winding group G2 is interposed between each of the split cores C of the first winding group G1 (position corresponding to the crossover line Lu) while being inclined by approximately 90 °, The V-phase connecting wire Lv is fitted into the second connecting wire guide groove 16b formed in the first split insulator 7a of the first winding group G1.

次に、第1巻線群G1の各分割コアC間にそれぞれ介在された第2巻線群G2の各分割コアCの姿勢を元の状態に戻すとき、第1巻線群G1の各分割コアC間に形成されたU相の渡り線Luを、第2巻線群G2の第1分割インシュレータ7aに形成した第1渡り線案内溝16aに嵌合させる。   Next, when the posture of each divided core C of the second winding group G2 interposed between each divided core C of the first winding group G1 is returned to the original state, each division of the first winding group G1 is performed. The U-phase connecting wire Lu formed between the cores C is fitted into the first connecting wire guide groove 16a formed in the first split insulator 7a of the second winding group G2.

つまり、第1巻線群G1の各分割コアCに対して、第2巻線群G2の各分割コアCの姿勢をほぼ90°傾け、そして、元の姿勢に戻すようにするだけで容易にU相の第1巻線群G1とV相の第2巻線群G2とを合体させることが可能となっている。   That is, it is easy only to tilt each divided core C of the second winding group G2 by about 90 ° with respect to each divided core C of the first winding group G1 and return to the original position. The U-phase first winding group G1 and the V-phase second winding group G2 can be combined.

また、合体した第1及び第2巻線群G1,G2に対してW相の第3巻線群G3を合体させるとき、合体した第1及び第2巻線群G1,G2の各分割コアCに対して、反Z矢印方向に位置に配置する。そして、第3巻線群G3の各分割コアCを、Z矢印方向に移動させて、第1及び第2巻線群G1,G2の渡り線Lu.Lvを、第3巻線群G3の第3分割インシュレータ8aに形成した第4渡り線案内溝36aに嵌合させる。このとき、第3巻線群G3のW相の渡り線Lを、第1及び第2巻線群G1,G2の第1分割インシュレータ7aにそれぞれ形成した第3渡り線案内溝16cに嵌合させる。   In addition, when the W-phase third winding group G3 is combined with the combined first and second winding groups G1 and G2, the divided cores C of the combined first and second winding groups G1 and G2 are combined. On the other hand, it is arranged at a position in the anti-Z arrow direction. Then, the divided cores C of the third winding group G3 are moved in the direction of the arrow Z, and the crossover line Lu.1 between the first and second winding groups G1, G2 is moved. Lv is fitted into the fourth crossover guide groove 36a formed in the third divided insulator 8a of the third winding group G3. At this time, the W-phase connecting wire L of the third winding group G3 is fitted into the third connecting wire guide grooves 16c formed in the first divided insulators 7a of the first and second winding groups G1 and G2, respectively. .

つまり、合体配置された第1及び第2巻線群G1,G2の各分割コアCに対して、第3巻線群G3の各分割コアCをZ矢印方向に移動させるだけで容易に合体させることが可能となっている。   That is, the divided cores C of the third winding group G3 can be easily combined with the divided cores C of the first and second winding groups G1 and G2 arranged in the combined manner by simply moving them in the Z arrow direction. It is possible.

そして、第1〜第3巻線群G1〜G3の各始端部LSu,LSv,LSwと各終端部LEu,LEv、LEwを軸線方向一側に引き出し、それぞれ対応するU相、V相、W相動力線にそれぞれ接続する。そして、第1巻線群G1の巻線U1〜U4にはU相の駆動電源を供給し、第2巻線群G2の巻線V1〜V4にはV相の駆動電源を供給し、第3巻線群G3の巻線W1〜W4にはW相の駆動電源を供給する。これによって、ステータ3に回転磁界が発生し、ロータ4を回転させる。   And each start end part LSu, LSv, Lsw and each end part LEu, LEv, LEw of the 1st-3rd coil groups G1-G3 are pulled out to the axial direction one side, and respectively correspond U phase, V phase, and W phase Connect to each power line. The U-phase driving power is supplied to the windings U1 to U4 of the first winding group G1, the V-phase driving power is supplied to the windings V1 to V4 of the second winding group G2, and the third W-phase drive power is supplied to the windings W1 to W4 of the winding group G3. As a result, a rotating magnetic field is generated in the stator 3 to rotate the rotor 4.

次に、上記実施形態の効果について記載する。
(1)各相の巻線U1〜U4,V1〜V4,W1〜W4を形成する分割コアCを、それぞれ相毎に分割コアCが一定の間隔Dを開けて連なる第1〜第3巻線群G1〜G3とした。そして、それら巻線群G1〜G3毎に、導線Lにて各相の巻線U1〜U4,V1〜V4,W1〜W4を形成したので、巻回に際して邪魔になるものが近くになく、巻線U1〜U4,V1〜V4,W1〜W4の占積率を上げることができる。
Next, effects of the above embodiment will be described.
(1) First to third windings in which divided cores C forming windings U1 to U4, V1 to V4, W1 to W4 of each phase are connected with a constant interval D for each phase. It was set as group G1-G3. And since winding U1-U4, V1-V4, W1-W4 of each phase was formed with conducting wire L for each of these winding groups G1-G3, there are no obstacles nearby when winding, The space factor of lines U1-U4, V1-V4, W1-W4 can be raised.

(2)第1〜第3巻線群G1〜G3において、渡り線Lu,Lv,Lwの長さ、即ち、それら隣り合う分割コアCの間に間隔Dをそれぞれ開けた。そして、その間隔Dは、他の2つの巻線群の分割コアCがそれぞれ1個ずつ介在する間隔とした。従って、第1〜第3巻線群G1〜G3の各分割コアCが予め定めた順番で交互に一方向に連接できる。そして、その連接された各分割コアCは、簡単かつ容易に円環状化できことから低コストでステータ3を作ることができる。   (2) In the first to third winding groups G1 to G3, the lengths of the crossover lines Lu, Lv, and Lw, that is, the gaps D between the adjacent divided cores C are opened. The interval D was an interval at which one split core C of the other two winding groups was interposed. Therefore, the divided cores C of the first to third winding groups G1 to G3 can be alternately connected in one direction in a predetermined order. Since each of the connected divided cores C can be easily and easily formed into an annular shape, the stator 3 can be manufactured at a low cost.

(3)U相の第1巻線群G1、V相の第2巻線群G2、W相の第3巻線群G3を、それぞれ事前に作っておき、それらを合体させ、円環状にするだけで、第1〜第3巻線群G1〜G3の各分割コアCを予め定めた順番で交互に一方向に連接したステータ3を容易かつ低コストで作ることができる。   (3) The U-phase first winding group G1, the V-phase second winding group G2, and the W-phase third winding group G3 are respectively prepared in advance, and are combined to form an annular shape. Thus, the stator 3 in which the divided cores C of the first to third winding groups G1 to G3 are alternately connected in one direction in a predetermined order can be manufactured easily and at low cost.

(4)渡り線Lu,Lv,Lwは、各分割コアCの分割環状部Ca上に形成された第1分割インシュレータ7aの第1〜第3渡り線案内溝16a〜16c及び第3分割インシュレータ8aの第4渡り線案内溝36aに沿って周方向に案内される。従って、渡り線Lu,Lv,Lwは、ともにステータコア6の環状部Rに沿って配置させることができる。   (4) The connecting lines Lu, Lv, and Lw are the first to third connecting line guide grooves 16a to 16c and the third divided insulator 8a of the first divided insulator 7a formed on the divided annular portion Ca of each divided core C. Is guided in the circumferential direction along the fourth crossover guide groove 36a. Accordingly, the crossover lines Lu, Lv, Lw can all be arranged along the annular portion R of the stator core 6.

(5)第1〜第3巻線群G1〜G3の各始端部LSu,LSv,LSwと各終端部LEu,LEv、LEwが引き出され、それぞれ対応するU相、V相、W相動力線にそれぞれ接続させることから、その溶着箇所が少なく、溶着作業が容易となる。   (5) The first end portions LSu, LSv, and Lsw and the end portions LEu, LEv, and LEw of the first to third winding groups G1 to G3 are drawn out to the corresponding U-phase, V-phase, and W-phase power lines, respectively. Since each is connected, there are few welding locations, and welding work becomes easy.

(6)各相の渡り線Lu,Lv,Lwは、第1分割インシュレータ7aに形成した第1〜第3渡り線案内溝16a〜16cにそれぞれ対応して嵌合されるとともに、第3分割インシュレータ8aの第4渡り線案内溝36aに嵌合される。従って、各分割コアCを円環状化したときの各渡り線Lu,Lv,Lwの弛みを防止することができるとともに、各渡り線Lu,Lv,Lwを安定に保持することができる。   (6) The connecting wires Lu, Lv, and Lw of each phase are fitted to the first to third connecting wire guide grooves 16a to 16c formed in the first divided insulator 7a, respectively, and the third divided insulator. 8a is fitted into the fourth crossover guide groove 36a. Accordingly, it is possible to prevent the crossover lines Lu, Lv, and Lw from slackening when the divided cores C are formed into an annular shape, and to stably hold the crossover lines Lu, Lv, and Lw.

(7)U相の第1巻線群G1とV相の第2巻線群G2を合体させるとき、第1巻線群G1の各分割コアCに対して、第2巻線群G2の各分割コアCの姿勢を90°傾け、そして、元の姿勢に戻すようにするだけで容易に合体させることができる。   (7) When the first winding group G1 of the U phase and the second winding group G2 of the V phase are merged, each of the second winding group G2 with respect to each divided core C of the first winding group G1 The split cores C can be easily combined by simply tilting the posture by 90 ° and returning it to the original posture.

(8)合体した第1及び第2巻線群G1,G2に対してW相の第3巻線群G3を合体させるとき、合体配置された第1及び第2巻線群G1,G2の各分割コアCに対して、第3巻線群G3の各分割コアCを、Z矢印方向に移動させるだけで容易に合体させることができる。   (8) When combining the W-phase third winding group G3 with the combined first and second winding groups G1 and G2, each of the first and second winding groups G1 and G2 arranged in combination The split cores C of the third winding group G3 can be easily combined with the split cores C simply by moving them in the Z arrow direction.

なお、本実施形態では、4個の分割コアCを連ねた第1〜第3巻線群G1〜G3をそれぞれ事前に形成した。
これを、第1巻線群G1について、4個の分割コアCに間隔Dを開けて巻線群を形成し、続いて、始端部LSuと終端部LEuの両長さ分の間隔を開けて、再び新たな4個の分割コアCに間隔Dを開けて巻線群を形成しこれを繰り返し多数の巻線群からなる集合体を形成する。
In the present embodiment, the first to third winding groups G1 to G3 each including four divided cores C are formed in advance.
With respect to the first winding group G1, a winding group is formed with a gap D between the four divided cores C, and then, the gaps corresponding to both the lengths of the start end portion LSu and the end end portion LEu are opened. Then, the winding group is formed again with a gap D between four new divided cores C, and this is repeated to form an assembly composed of a large number of winding groups.

つまり、4個の分割コアCを1組とした第1巻線群G1を始端部LSuと終端部LEuの両長さ分の間隔を開けて1本の導線Lにて連続して形成した多数の第1巻線群G1からなる集合体を形成する。   That is, a large number of first winding groups G1 each consisting of four divided cores C are continuously formed by one conducting wire L with an interval corresponding to both the lengths of the start end portion LSu and the end end portion LEu. Of the first winding group G1 is formed.

そして、多数の第1巻線群G1が連なった巻線群の集合体から、始端部LSuと終端部LEuの両長さ分の間隔が開いた巻線群と巻線群の間の中間部分を切断するようにして、1つの第1巻線群G1を事前に作るようにして実施してもよい。   Then, an intermediate portion between the winding group and the winding group in which a distance corresponding to both lengths of the start end portion LSu and the end end portion LEu is opened from the assembly of winding groups in which a large number of first winding groups G1 are connected. Alternatively, the first winding group G1 may be formed in advance so as to be cut.

同様に、第2巻線群G2について、4個の分割コアCを1組とした第2巻線群G2を始端部LSvと終端部LEvの両長さ分の間隔を開けて1本の導線Lにて連続して形成した多数の第2巻線群G2からなる集合体を形成する。   Similarly, with respect to the second winding group G2, the second winding group G2, which is a set of four divided cores C, is separated from the starting end portion LSv and the end portion LEv by a distance corresponding to both lengths. An assembly composed of a large number of second winding groups G2 formed continuously at L is formed.

そして、多数の第2巻線群G2が連なった巻線群の集合体から、始端部LSuと終端部LEuの両長さ分の間隔が開いた巻線群と巻線群の間の中間部分を切断するようにして、1つの第2巻線群G2を事前に作るようにして実施してもよい。   Then, an intermediate portion between the winding group and the winding group in which a distance corresponding to both the lengths of the starting end portion LSu and the terminating end portion LEu is opened from the winding group assembly in which a large number of second winding groups G2 are connected. The second winding group G2 may be formed in advance so as to be cut off.

同様に、第3巻線群G3について、4個の分割コアCを1組とした第3巻線群G3を始端部LSwと終端部LEwの両長さ分の間隔を開けて1本の導線Lにて連続して形成した多数の第3巻線群G3からなる集合体を形成する。   Similarly, for the third winding group G3, the third winding group G3, which is a set of four divided cores C, is separated by a distance corresponding to both the lengths of the start end portion LSW and the end portion LEw. An assembly composed of a large number of third winding groups G3 formed continuously at L is formed.

そして、多数の第3巻線群G3が連なった巻線群の集合体から、始端部LSwと終端部LEwの両長さ分の間隔が開いた巻線群と巻線群の間の中間部分を切断するようにして、1つの第3巻線群G3を事前に作るようにして実施してもよい。   Then, an intermediate portion between the winding group and the winding group in which a distance corresponding to both the lengths of the start end portion LSW and the end end portion LEw is opened from the winding group assembly in which a large number of third winding groups G3 are connected. Alternatively, the third winding group G3 may be formed in advance so as to be cut.

(第2実施形態)
次に、ブラシレスモータに備えたステータの第2実施形態を説明する。
本実施形態は、分割コアCに装着するインシュレータに特徴を有し、1種類のインシュレータが全ての分割コアCに装着される点に第1実施形態と相異する。従って、本実施形態では、説明の便宜上、特徴部分について詳細に説明し共通部分については符号を同じにして詳細な説明を省略する。
(Second Embodiment)
Next, a second embodiment of a stator provided in the brushless motor will be described.
The present embodiment is characterized by an insulator attached to the split core C, and is different from the first embodiment in that one type of insulator is attached to all the split cores C. Therefore, in the present embodiment, for convenience of explanation, the characteristic portions will be described in detail, and the common portions will be denoted by the same reference numerals and detailed description will be omitted.

本実施形態では、図10(a)〜(c)に示すように、第1実施形態で説明した第1及び第2分割インシュレータ7a,7bよりなる第1インシュレータ7が12個全ての分割コアCにそれぞれ装着されている。   In the present embodiment, as shown in FIGS. 10A to 10C, the first insulator 7 including the first and second divided insulators 7a and 7b described in the first embodiment includes all the divided cores C. Are attached to each.

そして、第1インシュレータ7を装着した第1及び第2巻線群G1,G2の各分割コアCに巻線を巻回する方法(巻線群作成工程)は、第1実施形態と同じである。また、第1インシュレータ7を装着した第3巻線群G3の各分割コアCに巻線を巻回する方法は、第3渡り線案内溝16cに対応する渡り線Lwを嵌合させる点を除いて他の巻線群と基本的に同じなので、説明の便宜上、省略する。   And the method (winding group creation process) which winds a coil | winding to each division | segmentation core C of 1st and 2nd winding group G1, G2 which mounted | wore with the 1st insulator 7 is the same as 1st Embodiment. . In addition, the method of winding the winding around each divided core C of the third winding group G3 to which the first insulator 7 is attached is except that the connecting wire Lw corresponding to the third connecting wire guide groove 16c is fitted. This is basically the same as other winding groups, and is omitted for convenience of explanation.

次に、第1〜第3巻線群G1〜G3を合体する巻線群合体工程について説明する。
(第1巻線群G1と第2巻線群G2の合体(第1合体工程))
第1巻線群G1と第2巻線群G2の合体は、第1実施形態と同様な方法で行われる(図6及び図7参照)。
Next, a winding group combining step for combining the first to third winding groups G1 to G3 will be described.
(Combination of first winding group G1 and second winding group G2 (first combining step))
The combination of the first winding group G1 and the second winding group G2 is performed by the same method as in the first embodiment (see FIGS. 6 and 7).

つまり、U相の第1巻線群G1とV相の第2巻線群G2を合体させるとき、第2巻線群G2の各分割コアCの姿勢を、渡り線Lvを回転中心として第1巻線群G1の各分割コアCに対してほぼ90°を傾ける。次に、ほぼ90°傾けた状態で第2巻線群G2の各分割コアCを、第1巻線群G1の各分割コアC間(渡り線Luに対応する位置)に介在させると同時に、V相の渡り線Lvを、第1巻線群G1の第1分割インシュレータ7aに形成した第2渡り線案内溝16bに嵌合させる。   That is, when the first winding group G1 of the U phase and the second winding group G2 of the V phase are combined, the posture of each of the divided cores C of the second winding group G2 is determined with the crossover Lv as the rotation center. Approximately 90 ° is inclined with respect to each divided core C of the winding group G1. Next, while each of the split cores C of the second winding group G2 is interposed between each of the split cores C of the first winding group G1 (position corresponding to the crossover line Lu) while being inclined by approximately 90 °, The V-phase connecting wire Lv is fitted into the second connecting wire guide groove 16b formed in the first split insulator 7a of the first winding group G1.

次に、第1巻線群G1の各分割コアC間にそれぞれ介在された第2巻線群G2の各分割コアCの姿勢を元の状態に戻す。このとき、第1巻線群G1の各分割コアC間に形成されたU相の渡り線Luを、第2巻線群G2の第1分割インシュレータ7aに形成した第1渡り線案内溝16aに嵌合させる。   Next, the posture of each divided core C of the second winding group G2 interposed between each divided core C of the first winding group G1 is returned to the original state. At this time, the U-phase connecting wire Lu formed between the divided cores C of the first winding group G1 is transferred to the first connecting wire guide groove 16a formed in the first divided insulator 7a of the second winding group G2. Fit.

このように、第1巻線群G1の各分割コアCに対して、第2巻線群G2の各分割コアCの姿勢をほぼ90°傾け、そして、元の姿勢に戻すようにするだけで容易にU相の第1巻線群G1とV相の第2巻線群G2を合体させることが可能となっている。   In this manner, the posture of each divided core C of the second winding group G2 is inclined by approximately 90 ° with respect to each divided core C of the first winding group G1, and then returned to the original posture. The U-phase first winding group G1 and the V-phase second winding group G2 can be easily combined.

(第1及び第2巻線群G1,G2と第3巻線群G3との合体(第2合体工程))
合体した第1及び第2巻線群G1,G2と第3巻線群G3との合体は、先の第1巻線群G1と第2巻線群G2との合体と同様な方法で行われる。
(Combination of first and second winding groups G1, G2 and third winding group G3 (second combining step))
The merged first and second winding groups G1, G2 and the third winding group G3 are performed in the same manner as the merge of the first winding group G1 and the second winding group G2. .

つまり、合体した第1及び第2巻線群G1,G2に第3巻線群G3を合体させるとき、第3巻線群G3の各分割コアCの姿勢を、渡り線Lwを回転中心として合体した第1及び第2巻線群G1,G2の各分割コアCに対してほぼ90°を傾ける。   That is, when the third winding group G3 is combined with the combined first and second winding groups G1 and G2, the postures of the split cores C of the third winding group G3 are combined with the connecting wire Lw as the rotation center. The first and second winding groups G1 and G2 are inclined at an angle of approximately 90 ° with respect to the divided cores C.

次に、図11に示すように、ほぼ90°傾けた状態で第3巻線群G3の各分割コアCを、第1及び第2巻線群G1,G2の分割コアCの間の空間(分割コアC1個分の空間)と対応する位置に配置する。このとき、W相の渡り線Lwを、第1及び第2巻線群G1,G2の第1分割インシュレータ7aに形成した第3渡り線案内溝16cにそれぞれ嵌合させる。   Next, as shown in FIG. 11, each split core C of the third winding group G3 is placed in a space between the split cores C of the first and second winding groups G1 and G2 in an inclined state of approximately 90 ° (see FIG. 11). It is arranged at a position corresponding to the space of one divided core C). At this time, the W-phase connecting wire Lw is fitted into the third connecting wire guide groove 16c formed in the first split insulator 7a of the first and second winding groups G1, G2.

次に、第1及び第2巻線群G1,G2の各分割コアC間にそれぞれ介在された第3巻線群G3の各分割コアCの姿勢を元の状態に戻す。このとき、第1及び第2巻線群G1,G2の各分割コアC間に形成されたU相、V相の渡り線Lu,Lvを、第3巻線群G3の第1分割インシュレータ7aに形成した対応する第1及び第2渡り線案内溝16a,16bにそれぞれ嵌合させる。   Next, the posture of each divided core C of the third winding group G3 interposed between the divided cores C of the first and second winding groups G1 and G2 is returned to the original state. At this time, the U-phase and V-phase connecting lines Lu and Lv formed between the divided cores C of the first and second winding groups G1 and G2 are supplied to the first divided insulator 7a of the third winding group G3. The formed first and second crossover guide grooves 16a and 16b are respectively fitted.

このように、合体した第1及び第2巻線群G1,G2の各分割コアCに対して、第3巻線群G3の各分割コアCの姿勢をほぼ90°傾け、そして、元の姿勢に戻すようにするだけで容易に第1〜第3巻線群G1〜G3を合体させることが可能となっている。   In this way, the posture of each divided core C of the third winding group G3 is inclined by approximately 90 ° with respect to the respective divided cores C of the first and second winding groups G1, G2, and the original posture It is possible to easily combine the first to third winding groups G1 to G3 by simply returning them to.

第1〜第3巻線群G1〜G3を合体させた後は、第1実施形態と同様に、環状化されてステータ3が形成される。
以上詳述したように、第2実施形態は、第1実施形態の記載した(1)〜(5)の効果とほぼ同様の効果を有する。また、それらに加えて、以下の効果を有する。
After combining the first to third winding groups G1 to G3, like the first embodiment, the stator 3 is formed in an annular shape.
As described above in detail, the second embodiment has substantially the same effects as the effects (1) to (5) described in the first embodiment. Moreover, in addition to these, it has the following effects.

(9)上記実施形態によれば、1種類の第1インシュレータ7だけを使ったので、部品数が少なくなり、製造コスト及び部品管理が容易となる。
(10)上記実施形態によれば、合体させる動作が、いずれも分割コアCの姿勢を回動させ、元の姿勢に戻す動作なので、合体させる動作が簡単となり製造システムを安価に構築することができる。
(9) According to the above embodiment, since only one type of first insulator 7 is used, the number of parts is reduced, and manufacturing costs and parts management are facilitated.
(10) According to the above-described embodiment, since the operations to be combined are all operations that rotate the posture of the split core C and return it to the original posture, the operation to be combined is simplified and the manufacturing system can be constructed at low cost. it can.

なお、上記各実施形態は、以下のように変更してもよい。
・上記第2実施形態おいて、第1実施形態で説明したように、1本の導線Lにて連続して形成した多数の巻線群からなる集合体を、各第1〜第3巻線群G1〜G3についてそれぞれ形成する。そして、各集合体から、1つの第1〜第3巻線群G1〜G3をそれぞれ事前に作るようにして実施してもよい。
In addition, you may change each said embodiment as follows.
-In the said 2nd Embodiment, as demonstrated in 1st Embodiment, the assembly which consists of many winding groups formed continuously with one conducting wire L is made into each 1st-3rd winding. It forms about group G1-G3, respectively. And you may implement so that one 1st-3rd winding group G1-G3 may each be made beforehand from each aggregate | assembly.

[他の合体方法]
・上記第2実施形態の巻線群合体工程では、まず第1合体工程で第1及び第2巻線群G1,G2を合体し、その後の第2合体工程で、合体した第1及び第2巻線群G1,G2と第3巻線群G3とを合体したが、この製造方法に特に限定されるものではなく、例えば図12〜図18に示す合体方法としてもよい。
[Other coalescing methods]
In the winding group combining step of the second embodiment, first and second winding groups G1 and G2 are first combined in the first combining step, and the first and second combined in the subsequent second combining step. Although winding group G1, G2 and 3rd winding group G3 were united, it is not specifically limited to this manufacturing method, For example, it is good also as the uniting method shown in FIGS.

(巻線群配置工程)
まず、第1〜第3巻線群G1〜G3を所定の位置関係で配置する巻線群配置工程を行う。この工程では、まず、第1〜第3巻線群G1〜G3を図12及び図13に示すように配置する。このとき、第1〜第3巻線群G1〜G3のそれぞれにおいて、各分割コアCは上記第2実施形態と同様に、互いに一定の間隔D(図10参照)を開けつつ直線的に並設される。
(Winding group placement process)
First, the winding group arrangement | positioning process which arrange | positions the 1st-3rd winding group G1-G3 by predetermined | prescribed positional relationship is performed. In this step, first, the first to third winding groups G1 to G3 are arranged as shown in FIGS. At this time, in each of the first to third winding groups G1 to G3, the divided cores C are arranged in a straight line with a certain distance D (see FIG. 10) from each other, as in the second embodiment. Is done.

第1及び第2巻線群G1,G2は、それらの分割コアCのティース部Tが互いに反対方向を向くように配置される。図13では、第1巻線群G1の分割コアCのティース部Tが下方を向き、第2巻線群G2の分割コアCのティース部Tが上方を向くように図示している。このとき、第1及び第2巻線群G1,G2の第1分割インシュレータ7aの第1渡り線案内溝16a同士が第1及び第2巻線群G1,G2のティース方向(図13において上下方向)に沿って対向するように、第1及び第2巻線群G1,G2が配置される。   The first and second winding groups G1, G2 are arranged so that the tooth portions T of the divided cores C face in opposite directions. In FIG. 13, the tooth portion T of the split core C of the first winding group G1 faces downward, and the tooth portion T of the split core C of the second winding group G2 faces upward. At this time, the first crossover guide grooves 16a of the first split insulators 7a of the first and second winding groups G1 and G2 are in the teeth direction of the first and second winding groups G1 and G2 (vertical direction in FIG. 13). ), The first and second winding groups G1, G2 are arranged so as to face each other.

第3巻線群G3は、第1巻線群G1の側方位置であって、図13における上下方向に第2巻線群G2と対向する位置に配置される。このとき、第3巻線群G3は、そのティース方向(第3巻線群G3のティース部Tが向く方向)が第1巻線群G1のティース方向と直交するように、第1巻線群G1の側方に配置される。またこのとき、互いに平行な直線状をなす第1巻線群G1のU相の渡り線Luと第3巻線群G3のW相の渡り線Lwとは、第3巻線群G3のティース方向に並び、それら渡り線Lu,Lwの間隔は、第1渡り線案内溝16aと第3渡り線案内溝16cとの間隔と等しくなっている。   The third winding group G3 is disposed at a position that is lateral to the first winding group G1 and that faces the second winding group G2 in the vertical direction in FIG. At this time, the third winding group G3 is arranged such that the tooth direction (the direction in which the tooth portion T of the third winding group G3 faces) is orthogonal to the tooth direction of the first winding group G1. Located on the side of G1. At this time, the U-phase connecting wire Lu of the first winding group G1 and the W-phase connecting wire Lw of the third winding group G3, which are linearly parallel to each other, are in the tooth direction of the third winding group G3. The distance between the connecting lines Lu and Lw is equal to the distance between the first connecting line guide groove 16a and the third connecting line guide groove 16c.

次に、上記の第1〜第3巻線群G1〜G3の配置から、第2巻線群G2を第1及び第3巻線群G1,G3に対する方向(第2巻線群G2の反ティース方向であって、図13における下方)に組み付ける。これにより、図14に示すように、第2巻線群G2の第1分割インシュレータ7aの第1及び第3渡り線案内溝16a,16cに、第1巻線群G1の渡り線Lu及び第3巻線群G3の渡り線Lwがそれぞれ嵌合される。   Next, from the arrangement of the first to third winding groups G1 to G3, the direction of the second winding group G2 with respect to the first and third winding groups G1 and G3 (the anti-teeth of the second winding group G2). It is a direction and is assembled in the lower part in FIG. As a result, as shown in FIG. 14, the first and third connecting wire guide grooves 16a and 16c of the first split insulator 7a of the second winding group G2 are connected to the connecting wire Lu and the third of the first winding group G1. The connecting wires Lw of the winding group G3 are respectively fitted.

上記のように、巻線群配置工程では、第2巻線群G2の分割コアCの向き(図13においてティース部Tが上方を向く向き)を基準として、第1巻線群G1の分割コアCは、U相の渡り線Luを中心に180°反転された状態とされる。そして、第3巻線群G3の分割コアCは、W相の渡り線Lwを中心に反第1巻線群方向(図14における時計回り方向)に90°回転された状態とされる。つまり、図14に示すように、第1〜第3巻線群G1〜G3の分割コアCが互いに、渡り線Lu,Lv,Lwの周囲の異なる位置に配置されるようになっている。   As described above, in the winding group arranging step, the divided core of the first winding group G1 is based on the direction of the divided core C of the second winding group G2 (the direction in which the tooth portion T faces upward in FIG. 13). C is in a state inverted by 180 ° around the U-phase crossover Lu. Then, the split core C of the third winding group G3 is rotated by 90 ° in the anti-first winding group direction (clockwise direction in FIG. 14) around the W-phase connecting line Lw. That is, as shown in FIG. 14, the split cores C of the first to third winding groups G1 to G3 are arranged at different positions around the crossover lines Lu, Lv, and Lw.

(巻線群回転工程)
次に、第1〜第3巻線群G1〜G3の各分割コアCをU相、V相、W相の順で一方向に一列に並べる巻線群回転工程を行う。この工程では、第1及び第3巻線群G1,G3の分割コアCがそれぞれ自身の渡り線Lu,Lwを中心として回転されることで、各巻線群G1〜G3の各分割コアCが一方向に一列に並べられる。
(Winding group rotation process)
Next, a winding group rotation process is performed in which the divided cores C of the first to third winding groups G1 to G3 are arranged in a line in one direction in the order of the U phase, the V phase, and the W phase. In this step, the divided cores C of the first and third winding groups G1 and G3 are rotated around their own crossover lines Lu and Lw, so that each of the divided cores C of the winding groups G1 to G3 is one. Lined up in a direction.

本例では、まず、図15及び図16に示すように、第1巻線群G1の各分割コアCをU相の渡り線Luを中心として、分割コアCの背面側(反ティース部側)に180°回転させる。このとき、第1巻線群G1の第1分割インシュレータ7aの第2及び第3渡り線案内溝16b,16cに、第2及び第3巻線群G2,G3の渡り線Lv,Lwをそれぞれ嵌合させる。これにより、図16に示すように、第1巻線群G1と第2巻線群G2とは、ティース部Tが同一方向を向く状態でそれらの分割コアCが一方向に並ぶように配置される。   In this example, first, as shown in FIG. 15 and FIG. 16, each split core C of the first winding group G1 is centered on the U-phase connecting line Lu, and the back surface side (counter teeth side) of the split core C. Rotate 180 °. At this time, the connecting lines Lv and Lw of the second and third winding groups G2 and G3 are fitted in the second and third connecting wire guide grooves 16b and 16c of the first divided insulator 7a of the first winding group G1, respectively. Combine. As a result, as shown in FIG. 16, the first winding group G1 and the second winding group G2 are arranged so that their divided cores C are aligned in one direction with the teeth portion T facing the same direction. The

その後、図17及び図18に示すように、第3巻線群G3の各分割コアCを、W相の渡り線Lwを中心に90°回転させる。このとき、第3巻線群G3の第1分割インシュレータ7aの第1及び第2渡り線案内溝16a,16bに、第1及び第2巻線群G1,G2の渡り線Lu,Lvをそれぞれ嵌合させる。これにより、図18に示すように、第1〜第3巻線群G1〜G3は、ティース部Tが同一方向を向く状態でそれらの分割コアCが一方向に一列に並ぶように配置される。   Then, as shown in FIGS. 17 and 18, each split core C of the third winding group G3 is rotated by 90 ° about the W-phase crossover Lw. At this time, the connecting wires Lu and Lv of the first and second winding groups G1 and G2 are fitted in the first and second connecting wire guide grooves 16a and 16b of the first divided insulator 7a of the third winding group G3, respectively. Combine. As a result, as shown in FIG. 18, the first to third winding groups G1 to G3 are arranged so that the divided cores C are arranged in a line in one direction with the teeth portion T facing the same direction. .

なお、第1及び第3巻線群G1,G3の回転順は上記の例に限定されるものではなく、第1巻線群G1の前に第3巻線群G3を回転させてもよく、また、それらを同時に回転させてもよい。   The rotation order of the first and third winding groups G1, G3 is not limited to the above example, and the third winding group G3 may be rotated before the first winding group G1, Moreover, you may rotate them simultaneously.

上記のような製造方法では、第2巻線群G2の各渡り線案内溝16a〜16cに渡り線Lu,Lv,Lwを嵌合させつつ、各巻線群G1〜G3の分割コアCを互いに渡り線Lu,Lv,Lwの周囲の異なる位置に配置する巻線群配置工程と、第2巻線群G2に対して第1及び第3巻線群G1,G3を回転させる巻線群回転工程とが分離されている。このため、巻線群配置工程で用いる組付治具に、分割コアCを回転させる機能を付加する必要がない。   In the manufacturing method as described above, the split cores C of the winding groups G1 to G3 are crossed with each other while the crossover lines Lu, Lv, and Lw are fitted in the crossover guide grooves 16a to 16c of the second winding group G2. A winding group arranging step for arranging the winding groups at different positions around the lines Lu, Lv, and Lw, and a winding group rotating step for rotating the first and third winding groups G1 and G3 with respect to the second winding group G2. Are separated. For this reason, it is not necessary to add the function to rotate the division | segmentation core C to the assembly jig | tool used at a coil group arrangement | positioning process.

これに対し、上記第2実施形態の製造方法では、第1合体工程と第2合体工程のそれぞれの工程において、渡り線を渡り線案内溝に嵌合させるべく巻線群をスライドさせて組み付けるスライド組み付けと、分割コアCの回転とが必要であり、それら両方を可能とする組付治具を用意しなければならない。   On the other hand, in the manufacturing method of the second embodiment, in each step of the first combining step and the second combining step, the winding group is slid and assembled in order to fit the connecting wire to the connecting wire guide groove. Assembly and rotation of the split core C are necessary, and an assembly jig that enables both of them must be prepared.

つまり、上記の図12〜図18に示す例によれば、巻線群のスライド組み付けと分割コアCの回転の両方を可能とする複雑な組付治具が不要となるため、より安価な製造システムを構築することが可能となり、また、製造設備の小型化にも寄与できる。   That is, according to the examples shown in FIGS. 12 to 18 described above, a complicated assembly jig that enables both the slide assembly of the winding group and the rotation of the split core C is not required, and therefore, a cheaper manufacturing is possible. It is possible to construct a system and contribute to the downsizing of manufacturing equipment.

また、上記の例によれば、第2渡り線案内溝16b(第1〜第3渡り線案内溝16a〜16cの真ん中の案内溝)に嵌合されるV相の渡り線Lvを有する第2巻線群G2の姿勢に合わせるように、第1及び第3巻線群G1,G3が回転される。このため、各相の巻線群G1〜G3の第1分割インシュレータ7aに形成された第1〜第3渡り線案内溝16a〜16cに各渡り線Lu,Lv,Lwを容易に嵌合させつつ、各相の巻線群G1〜G3を合体させることが可能となる。   Further, according to the above example, the second connecting line Lv having the V-phase connecting line Lv fitted into the second connecting line guide groove 16b (the guide groove in the middle of the first to third connecting line guide grooves 16a to 16c). The first and third winding groups G1, G3 are rotated so as to match the posture of the winding group G2. Therefore, the connecting wires Lu, Lv, and Lw are easily fitted in the first to third connecting wire guide grooves 16a to 16c formed in the first divided insulator 7a of the winding groups G1 to G3 of each phase. The winding groups G1 to G3 of the respective phases can be combined.

・上記第2実施形態では、第1インシュレータ7に第1〜第3渡り線案内溝16a〜16cを軸方向に並設し、各渡り線Lu,Lv,Lwを嵌合させた。
これを、図19(a)、(b)に示すように、第3ヨーク被覆部12cの軸方向外側面であってそれぞれの分割内壁13a,13bより径方向外側に、径方向に並ぶ3つの第1〜第3渡り線案内溝16a〜16cを分割環状部Caに沿って円弧状にそれぞれ形成する。そして、第1渡り線案内溝16aにはU相の渡り線Luを、第2渡り線案内溝16bにはV相の渡り線Lvを、第3渡り線案内溝16cにはW相の渡り線Lwをそれぞれ割り当てるようにして実施してもよい。
-In the said 2nd Embodiment, the 1st-3rd crossover guide groove 16a-16c was arranged in parallel with the 1st insulator 7 at the axial direction, and each crossover Lu, Lv, Lw was fitted.
As shown in FIGS. 19 (a) and 19 (b), the three yokes 12c are arranged on the outer surface in the axial direction and radially outward from the respective divided inner walls 13a and 13b. First to third crossover guide grooves 16a to 16c are formed in an arc shape along the divided annular portion Ca. The first connecting wire guide groove 16a has a U-phase connecting wire Lu, the second connecting wire guide groove 16b has a V-phase connecting wire Lv, and the third connecting wire guide groove 16c has a W-phase connecting wire. You may implement by assigning Lw, respectively.

この場合、図20に示すように、例えば、第1巻線群G1の各渡り線Luの両端部は、第1分割インシュレータ7aの第1渡り線案内溝16aに嵌合する。そして、始端部LSuと終端部LEuとの間に、第1分割コアC1に巻線U1、第4分割コアC4に巻線U2、第7分割コアC7に巻線U3、第10分割コアC10に巻線U4が一定の間隔Dを開けて1つの導線Lにて連なった第1巻線群G1が形成される。   In this case, as shown in FIG. 20, for example, both end portions of each crossover line Lu of the first winding group G1 are fitted in the first crossover guide groove 16a of the first split insulator 7a. And, between the start end portion LSu and the termination end portion LEu, the first divided core C1 has a winding U1, the fourth divided core C4 has a winding U2, the seventh divided core C7 has a winding U3, and the tenth divided core C10 has a A first winding group G1 is formed in which the windings U4 are connected by a single conducting wire L with a certain distance D therebetween.

・上記各実施形態では、第2分割インシュレータ7bは第1分割インシュレータ7aと同一形状に形成された。これを、第2分割インシュレータ7bにおいて、第1〜第3渡り線案内溝16a〜16cを形成した分割内壁13a,13bを省略した形状で実施してもよい。   In each of the above embodiments, the second divided insulator 7b is formed in the same shape as the first divided insulator 7a. You may implement this in the shape which abbreviate | omitted the division | segmentation inner walls 13a and 13b which formed the 1st-3rd crossover guide groove 16a-16c in the 2nd division | segmentation insulator 7b.

また同様に、第1実施形態の第4分割インシュレータ8bは第3分割インシュレータ8aと同一形状に形成されたが、第4分割インシュレータ8bにおいて、第4渡り線案内溝36aを形成した分割内壁33a,33b及び外壁36を省略した形状で実施してもよい。   Similarly, the fourth divided insulator 8b of the first embodiment is formed in the same shape as the third divided insulator 8a. However, in the fourth divided insulator 8b, the divided inner wall 33a formed with the fourth crossover guide groove 36a, You may implement in the shape which abbreviate | omitted 33b and the outer wall 36. FIG.

・上記各実施形態において、第1〜第3巻線群G1〜G3の渡り線Lu,Lv,Lwの中間に接続線を加工することで並列回路を構成することが可能となる。
例えば、図21(a)、(b)に示すように、第1巻線群G1において、巻線U2及び巻線U3の間の渡り線Luの中間にターミナル部材40を電気的に接続するとともに、始端部LSuと終端部LEuを互いに電気的に接続する。これにより、始端部LSu及び終端部LEuとターミナル部材40との間に、巻線U1,U2と巻線U3,U4との並列回路が構成される。
In each of the above embodiments, a parallel circuit can be configured by processing a connection line in the middle of the crossover lines Lu, Lv, and Lw of the first to third winding groups G1 to G3.
For example, as shown in FIGS. 21A and 21B, in the first winding group G1, the terminal member 40 is electrically connected to the middle of the connecting wire Lu between the winding U2 and the winding U3. The start end portion LSu and the end end portion LEu are electrically connected to each other. Thus, a parallel circuit of the windings U1 and U2 and the windings U3 and U4 is formed between the start end portion LSu and the termination end portion LEu and the terminal member 40.

また、例えば図22(a)、(b)に示すように、第1巻線群G1において、巻線U2及び巻線U3の間の渡り線Luの中間を折り返すことで折り返し部41を形成するとともに、始端部LSuと終端部LEuを互いに電気的に接続する。これにより、始端部LSu及び終端部LEuと折り返し部41との間に、巻線U1,U2と巻線U3,U4との並列回路が構成される。   For example, as shown in FIGS. 22A and 22B, in the first winding group G1, the folded portion 41 is formed by folding the intermediate portion of the connecting wire Lu between the winding U2 and the winding U3. At the same time, the start end portion LSu and the end end portion LEu are electrically connected to each other. Thus, a parallel circuit of the windings U1 and U2 and the windings U3 and U4 is configured between the start end portion LSu and the end end portion LEu and the turn-up portion 41.

なお、図21及び図22では、U相の第1巻線群G1を例にとって説明したが、勿論、第2及び第3巻線群G2,G3にも適用可能である。
また、例えば図23(a)、(b)に示すように、巻線群Gの分割コアCの個数を6個とし、それらの分割コアCに対して1本の導線Lを連続して巻回することで、U相の巻線Ua,Ub、V相の巻線Va,Vb、W相の巻線Wa,Wbを順に形成する。巻線Ubと巻線Vaとの間に形成される渡り線50a(導線L)の中間にターミナル部材51aを電気的に接続し、巻線Vbと巻線Waとの間に形成される渡り線50b(導線L)の中間にターミナル部材51bを電気的に接続する。そして、導線Lの巻き始めの始端部LSと巻き終わりの終端部LEとを電気的に接続する。これにより、巻線Ua,Ub,Va,Vb,Wa,Wbは、各相で2つの巻線が直列接続されたデルタ結線で構成される。なお、このような構成では、巻線群Gは異相の巻線Ua,Ub,Va,Vb,Wa,Wbを備えた構成となっている。
21 and 22, the U-phase first winding group G1 has been described as an example, but the present invention can of course be applied to the second and third winding groups G2 and G3.
Further, for example, as shown in FIGS. 23A and 23B, the number of the split cores C of the winding group G is six, and one conductive wire L is wound around the split cores C continuously. By turning, U-phase windings Ua and Ub, V-phase windings Va and Vb, and W-phase windings Wa and Wb are formed in this order. A terminal member 51a is electrically connected in the middle of the connecting wire 50a (conductive wire L) formed between the winding Ub and the winding Va, and the connecting wire formed between the winding Vb and the winding Wa. The terminal member 51b is electrically connected to the middle of 50b (conductive wire L). Then, the winding start start end LS and winding end termination LE are electrically connected. Thereby, winding Ua, Ub, Va, Vb, Wa, Wb is comprised by the delta connection by which two windings were connected in series in each phase. In such a configuration, the winding group G has a configuration including different-phase windings Ua, Ub, Va, Vb, Wa, Wb.

・上記各実施形態では、分割コアCを電磁鋼板(板状のコア片)の積層構造としたが、これ以外に例えば、圧粉体コアや、鍛造(冷間鍛造)や切削等で成形した一体ブロックとしてもよい。   In each of the above embodiments, the split core C has a laminated structure of electromagnetic steel plates (plate-shaped core pieces), but other than this, for example, a green compact core, forging (cold forging), cutting, or the like is formed. It may be an integral block.

・上記各実施形態の第1インシュレータ7において、各渡り線案内溝16a〜16cの形状を、図24〜図26に示すように変更してもよい。
図24に示すように、各渡り線案内溝16a〜16cは、周方向中央部側(開口部14側)に形成された直線部61と、その直線部61と周方向外側で連続して繋がる円弧部62とを有している。直線部61は、平面視(ステータ3の軸方向視)において、径方向(ティース被覆部11の延出方向)と直交する直線状をなす。円弧部62は、平面視において、ステータ3の中心軸線を中心とする円弧状をなす。つまり、各渡り線案内溝16a〜16cは、周方向中央よりの部位が直線状をなし、それ以外の周方向外側付近の部位が円弧状をなしている。
-In the 1st insulator 7 of each said embodiment, you may change the shape of each crossover guide groove 16a-16c as shown in FIGS. 24-26.
As shown in FIG. 24, each of the connecting wire guide grooves 16a to 16c is continuously connected to the straight portion 61 formed on the circumferential center portion side (opening portion 14 side) and the straight portion 61 on the circumferential direction outer side. And an arc portion 62. The straight portion 61 has a linear shape orthogonal to the radial direction (extending direction of the teeth covering portion 11) in plan view (viewed in the axial direction of the stator 3). The arc portion 62 has an arc shape centered on the central axis of the stator 3 in plan view. That is, in each of the crossover guide grooves 16a to 16c, the part from the center in the circumferential direction is linear, and the other parts near the outside in the circumferential direction are arcuate.

図25(a)に示すように、直線部61は、その径方向開口部に形成された突出部61aによって開口幅が狭まっている。これにより、直線部61に嵌め込まれた渡り線Lu,Lv,Lwが突出部61aと径方向に係止され、渡り線Lu,Lv,Lwが直線部61から径方向に抜けにくくなっている。   As shown in FIG. 25A, the opening width of the linear portion 61 is narrowed by the protruding portion 61a formed in the radial opening portion. As a result, the crossover lines Lu, Lv, and Lw fitted in the straight portion 61 are locked in the radial direction with the protruding portion 61 a, and the crossover wires Lu, Lv, and Lw are difficult to come out from the straight portion 61 in the radial direction.

一方、図25(b)に示すように、円弧部62には、直線部61の突出部61aのような突起が形成されておらず、開口幅が狭まっていない形状となっている。
図26には、図24の第1インシュレータ7を装着した第1巻線群G1を一例として示す。第1巻線群G1の各渡り線Luが直線状となる状態(分割コア環状化工程の前の状態)において、渡り線Luは、渡り線案内溝16aの直線部61に奥まで嵌め込まれるとともに、円弧部62に対しては径方向に間隔を空けた状態(浮いた状態)で部分的に入り込んでいる。
On the other hand, as shown in FIG. 25 (b), the arc portion 62 is not formed with a projection like the protruding portion 61a of the linear portion 61, and has a shape in which the opening width is not narrowed.
FIG. 26 shows an example of the first winding group G1 to which the first insulator 7 of FIG. 24 is attached. In a state where each crossover line Lu of the first winding group G1 is linear (a state before the split core annular forming step), the crossover line Lu is fitted into the straight line portion 61 of the crossover guide groove 16a to the back. The arc portion 62 partially enters in a state of being spaced apart (floating) in the radial direction.

そして、分割コア環状化工程によって渡り線Lu,Lv,Lwは円弧部62にも奥まで入り込む。円弧部62は上記のように開口幅が狭まっていない形状であるため、渡り線Lu,Lv,Lwは各渡り線案内溝16a〜16cの円弧部62にスムーズに入り込むようになっている。   Then, the crossover lines Lu, Lv, and Lw also enter the arc portion 62 as far as possible through the split core annular process. Since the circular arc part 62 has a shape in which the opening width is not narrow as described above, the crossover lines Lu, Lv, and Lw smoothly enter the circular arc part 62 of each of the crossover guide grooves 16a to 16c.

このような構成によれば、上記実施形態のように渡り線案内溝16a〜16cが周方向全体に亘って円弧状である構成と比較して、渡り線Lu,Lv,Lwが直線状となる状態で渡り線Lu,Lv,Lwが渡り線案内溝16a〜16cに入り込む量が直線部61によって増える。これにより、渡り線案内溝16a〜16cによる渡り線Lu,Lv,Lwの保持がより安定し、その後の分割コア環状化工程が容易となる。更に、直線部61が突出部61aを備えることで、渡り線案内溝16a〜16cによる渡り線Lu,Lv,Lwの保持がより強固となる。また、渡り線案内溝16a〜16cが直線部61を有していることから、渡り線案内溝16a〜16cの部位の金型成形が容易となる。   According to such a configuration, the crossover lines Lu, Lv, and Lw are linear compared to the configuration in which the crossover guide grooves 16a to 16c are arcuate over the entire circumferential direction as in the above embodiment. In the state, the amount of the crossover lines Lu, Lv, Lw entering the crossover guide grooves 16 a to 16 c is increased by the linear portion 61. Thereby, holding | maintenance of the crossover lines Lu, Lv, and Lw by the crossover guide grooves 16a-16c becomes more stable, and the subsequent division | segmentation core circularization process becomes easy. Furthermore, since the linear part 61 is provided with the protrusion part 61a, holding | maintenance of the crossover lines Lu, Lv, and Lw by the crossover guide grooves 16a-16c becomes firmer. In addition, since the crossover guide grooves 16a to 16c have the straight portions 61, it is easy to mold the portions of the crossover guide grooves 16a to 16c.

なお、上記実施形態の第1インシュレータ7の各渡り線案内溝16a〜16cにおいて、図25(a)に示すような突出部を形成してもよい。
・上記各実施形態では、ステータ3は12個のティース部Tを備えたが、ティース部Tの数が11個以下であったり、13個以上であったりしてもよい。
In addition, you may form a protrusion part as shown to Fig.25 (a) in each crossover guide groove 16a-16c of the 1st insulator 7 of the said embodiment.
In each of the above embodiments, the stator 3 includes twelve teeth T. However, the number of the teeth T may be 11 or less, or 13 or more.

・上記各実施形態では、3相のブラシレスモータ1のステータ3に具体化したが、例えば2相のモータに応用してもよい。   In each of the above embodiments, the stator 3 of the three-phase brushless motor 1 is embodied, but may be applied to a two-phase motor, for example.

1…ブラシレスモータ、2…ハウジング、3…ステータ、4…ロータ、5…回転軸、6…ステータコア、7,8…第1及び第2インシュレータ、7a,7b…第1及び第2分割インシュレータ、8a,8b…第3及び第4分割インシュレータ、11…ティース被覆部、11a〜11c…第1〜第3被覆部、11d…巻線保持壁、11e…巻線ガイド溝、12…環状部被覆部、12a〜12c…第1〜第3ヨーク被覆部、13…内壁、13a,13b…分割内壁、14…開口部、15…端末線案内溝、16a〜16c…第1〜第3渡り線案内溝、31…ティース被覆部、31a〜31c…第1〜第3被覆部、31d…巻線保持壁、31e…巻線ガイド溝、32…環状部被覆部、32a〜32c…第1〜第3ヨーク被覆部、33…内壁、33a,33b…分割内壁、34…開口部、35…端末線案内溝、36…外壁、36a…第4渡り線案内溝(ガイド溝)、R…環状部、T…ティース部、T1〜T12…第1〜第12ティース部、O…中心軸、U1〜U4,V1〜V4,W1〜W4…巻線、C…分割コア、Ca…分割環状部、C1〜C12…第1〜第12分割コア、G1〜G3…第1〜第3巻線群、L…導線、Lu,Lv,Lw…渡り線、LSu,LSv,LSw…始端部、LEu,LEv,LEw…終端部、D…間隔、G…巻線群、Ua,Ub,Va,Vb,Wa,Wb…巻線、50a,50b…渡り線。   DESCRIPTION OF SYMBOLS 1 ... Brushless motor, 2 ... Housing, 3 ... Stator, 4 ... Rotor, 5 ... Rotating shaft, 6 ... Stator core, 7, 8 ... 1st and 2nd insulator, 7a, 7b ... 1st and 2nd division | segmentation insulator, 8a , 8b ... the third and fourth divided insulators, 11 ... the teeth covering portion, 11a-11c ... the first to third covering portions, 11d ... the winding holding wall, 11e ... the winding guide groove, 12 ... the annular portion covering portion, 12a-12c ... 1st-3rd yoke coating | coated part, 13 ... Inner wall, 13a, 13b ... Divided inner wall, 14 ... Opening part, 15 ... Terminal wire guide groove, 16a-16c ... 1st-3rd crossover guide groove, 31 ... Teeth covering part, 31a-31c ... 1st-3rd covering part, 31d ... Winding holding wall, 31e ... Winding guide groove, 32 ... Annular part covering part, 32a-32c ... 1st-3rd yoke covering Part, 33 ... inner wall, 33a, 3b: Divided inner wall, 34: Opening portion, 35 ... Terminal line guide groove, 36 ... Outer wall, 36a ... Fourth crossover guide groove (guide groove), R ... Ring portion, T ... Teeth portion, T1-T12 ... First -12th teeth part, O ... central axis, U1-U4, V1-V4, W1-W4 ... winding, C ... split core, Ca ... split annular part, C1-C12 ... 1st-12th split core, G1 ˜G3: First to third winding groups, L: Conductor, Lu, Lv, Lw: Crossover, LSu, LSv, Lsw ... Start end, LEu, LEv, LEw ... Terminal, D ... Interval, G ... Wind Wire group, Ua, Ub, Va, Vb, Wa, Wb... Winding, 50a, 50b.

Claims (4)

分割環状部と、その分割環状部の周方向中間部分から径方向内側に延出したティース部とからなる分割コアにインシュレータを装着し、そのインシュレータを装着した複数個の分割コアを1組とし、その組を複数有し、その各組の各分割コアをそれぞれ予め定めた順序で連接して、円環状に形成するとともに、前記インシュレータを装着した各分割コアにおいて、自身の組の各分割コアのティース部に巻回される自身の組の巻線間が渡り線で繋いでなるステータの製造方法であって、
1つの導線にて連続して巻線が巻回されるとともに、前記渡り線のために巻線と巻線の間が予め定めた間隔に開けられて連なるように連結された巻線群を、前記複数の組毎に用意する巻線群作成工程と、
それぞれ自身巻線群の各分割コアを、他の巻線群の連なる分割コア間に配置して、各巻線群の各分割コアをそれぞれ予め定めた順序に一方向に一列に並べる巻線群合体工程と、
予め定めた順序に一方向に一列に並んだ各巻線群の各分割コアを環状化する分割コア環状化工程とを有しており、
各巻線群の各分割コアに装着された前記インシュレータは、その前記ティース部基端側の分割環状部の軸方向外側面に、内壁が前記分割環状部に沿って周方向に形成され、
前記内壁の周方向中間部に径方向には、貫通する開口部が形成され、
前記開口部にて周方向に2分された前記内壁の各径方向外側には、自身の巻線群の各分割コアのティース部に巻回される自身の巻線群の巻線間を繋ぐ渡り線と、他の巻線群の各分割コアのティース部に巻回される他の巻線群の巻線間を繋ぐ渡り線とを、周方向に案内する案内部が形成されており、
前記巻線群は、モータの相毎に用意されるものであり、
前記モータの相数は、U相、V相及びW相の3相であり、
前記予め定めた間隔は、分割コアの2個分以上の間隔であり、
前記インシュレータの前記案内部は、周方向に2分された前記内壁の各径方向外側面に凹設され、周方向に案内される前記渡り線を軸方向に移動不能に支持する渡り線案内溝であり、
前記巻線群合体工程は、第1合体工程と第2合体工程とを有し、
前記第1合体工程では、U相の巻線群の各分割コアに対して、V相の巻線群の各分割コアの姿勢をV相の渡り線を回転中心に回転させて、V相の渡り線をU相の巻線群の各分割コアのインシュレータに形成した前記渡り線案内溝にそれぞれ嵌合させた後に、V相の巻線群の各分割コアの姿勢を元の姿勢に戻して、U相の渡り線をV相の巻線群の各分割コアのインシュレータに形成した前記渡り線案内溝にそれぞれ嵌合させ、
その後の前記第2合体工程では、合体したU相及びV相の巻線群の各分割コアに対して、W相の巻線群の各分割コアの姿勢をW相の渡り線を回転中心に回転させて、W相の渡り線をU相及びV相の巻線群の各分割コアのインシュレータに形成した前記渡り線案内溝にそれぞれ嵌合させた後に、W相の巻線群の各分割コアの姿勢を元の姿勢に戻して、U相及びV相の渡り線をW相の巻線群の各分割コアの前記インシュレータに形成した前記渡り線案内溝にそれぞれ嵌合させることを特徴とするステータの製造方法。
An insulator is attached to a split core composed of a split annular portion and a teeth portion extending radially inward from a circumferential intermediate portion of the split annular portion, and a plurality of split cores attached with the insulator are made into one set, There are a plurality of sets, and each divided core of each set is connected in a predetermined order to form an annular shape, and in each divided core equipped with the insulator, A manufacturing method of a stator in which the windings of its own set wound around a tooth portion are connected by a jumper,
A winding group that is continuously wound with one conducting wire, and that is connected so as to be continuous with a predetermined interval between the windings for the connecting wire, A winding group creating step prepared for each of the plurality of sets;
Winding group combination in which each divided core of its own winding group is arranged between divided cores of other winding groups, and each divided core of each winding group is aligned in one direction in a predetermined order. Process,
A split core annularization step of annularly forming each split core of each winding group arranged in a line in one direction in a predetermined order ;
The insulator attached to each split core of each winding group has an inner wall formed in the circumferential direction along the split annular portion on the axially outer surface of the split annular portion on the base end side of the tooth portion.
An opening that penetrates the inner wall in the circumferential direction in the circumferential direction is formed,
On the radially outer side of the inner wall divided into two in the circumferential direction at the opening, the windings of the winding group wound around the teeth part of each split core of the winding group are connected. A guide portion is formed that guides the crossover wire and the crossover wire that connects between the windings of the other winding group wound around the teeth portion of each split core of the other winding group,
The winding group is prepared for each phase of the motor,
The number of phases of the motor is three phases of U phase, V phase and W phase,
The predetermined interval is an interval of two or more divided cores,
The guide portion of the insulator is recessed on each radially outer side surface of the inner wall divided into two in the circumferential direction, and a jumper guide groove that supports the jumper wire guided in the circumferential direction so as not to move in the axial direction. And
The winding group combining step has a first combining step and a second combining step,
In the first merging step, the posture of each divided core of the V-phase winding group is rotated around the V-phase crossover with respect to each divided core of the U-phase winding group. After the connecting wire is fitted into the connecting wire guide groove formed in the insulator of each divided core of the U-phase winding group, the posture of each divided core of the V-phase winding group is returned to the original posture. , The U-phase connecting wire is respectively fitted into the connecting wire guide groove formed in the insulator of each split core of the V-phase winding group,
Thereafter, in the second merging step, the posture of each divided core of the W-phase winding group with respect to the divided cores of the combined U-phase and V-phase winding groups, with the W-phase crossover as the center of rotation. After rotating and fitting the W-phase crossover wires in the crossover guide grooves formed in the insulators of the respective split cores of the U-phase and V-phase winding groups, each division of the W-phase winding group The core posture is returned to the original posture, and the U-phase and V-phase crossover wires are respectively fitted into the crossover guide grooves formed in the insulator of each split core of the W-phase winding group. A method for manufacturing a stator.
分割環状部と、その分割環状部の周方向中間部分から径方向内側に延出したティース部とからなる分割コアにインシュレータを装着し、そのインシュレータを装着した複数個の分割コアを1組とし、その組を複数有し、その各組の各分割コアをそれぞれ予め定めた順序で連接して、円環状に形成するとともに、前記インシュレータを装着した各分割コアにおいて、自身の組の各分割コアのティース部に巻回される自身の組の巻線間が渡り線で繋いでなるステータの製造方法であって、
1つの導線にて連続して巻線が巻回されるとともに、前記渡り線のために巻線と巻線の間が予め定めた間隔に開けられて連なるように連結された巻線群を、前記複数の組毎に用意する巻線群作成工程と、
それぞれ自身巻線群の各分割コアを、他の巻線群の連なる分割コア間に配置して、各巻線群の各分割コアをそれぞれ予め定めた順序に一方向に一列に並べる巻線群合体工程と、
予め定めた順序に一方向に一列に並んだ各巻線群の各分割コアを環状化する分割コア環状化工程とを有しており、
各巻線群の各分割コアに装着された前記インシュレータは、その前記ティース部基端側の分割環状部の軸方向外側面に、内壁が前記分割環状部に沿って周方向に形成され、
前記内壁の周方向中間部に径方向には、貫通する開口部が形成され、
前記開口部にて周方向に2分された前記内壁の各径方向外側には、自身の巻線群の各分割コアのティース部に巻回される自身の巻線群の巻線間を繋ぐ渡り線と、他の巻線群の各分割コアのティース部に巻回される他の巻線群の巻線間を繋ぐ渡り線とを、周方向に案内する案内部が形成されており、
前記巻線群は、モータの相毎に用意されるものであり、
前記モータの相数は、U相、V相及びW相の3相であり、
前記予め定めた間隔は、分割コアの2個分以上の間隔であり、
前記インシュレータは、U相及びV相の各分割コアにそれぞれ装着される第1インシュレータと、W相の各分割コアにそれぞれ装着される第2インシュレータとからなり、
前記第1インシュレータの前記案内部は、周方向に2分された前記内壁の各径方向外側面に凹設され、周方向に案内される前記渡り線を軸方向に移動不能に支持する渡り線案内溝を有し、
前記第2インシュレータの前記案内部は、周方向に2分された前記内壁の各径方向外側面と径方向に対峙した外壁を軸方向に延出し、その外壁と前記内壁との間に、周方向に案内される前記渡り線を径方向外側に移動不能に支持するガイド溝を有したものであり、
前記巻線群合体工程は、第1合体工程と第2合体工程とを有し、
前記第1合体工程では、U相の巻線群の各分割コアに対して、V相の巻線群の各分割コアの姿勢をV相の渡り線を回転中心に回転させて、V相の渡り線をU相の巻線群の各分割コアのインシュレータに形成した前記渡り線案内溝にそれぞれ嵌合させた後に、V相の巻線群の各分割コアの姿勢を元の姿勢に戻して、U相の渡り線をV相の巻線群の各分割コアのインシュレータに形成した前記渡り線案内溝にそれぞれ嵌合させ、
その後の前記第2合体工程では、合体したU相及びV相の巻線群の各分割コアに対して、W相の巻線群の各分割コアを軸方向に対峙するU相及びV相の渡り線に向かって移動させ、U相及びV相の渡り線をW相の巻線群の各分割コアの前記第2インシュレータに形成した前記ガイド溝に嵌合させるとともに、W相の渡り線をU相及びV相の巻線群の各分割コアの前記第1インシュレータに形成した前記渡り線案内溝にそれぞれ嵌合させることを特徴とするステータの製造方法。
An insulator is attached to a split core composed of a split annular portion and a teeth portion extending radially inward from a circumferential intermediate portion of the split annular portion, and a plurality of split cores attached with the insulator are made into one set, There are a plurality of sets, and each divided core of each set is connected in a predetermined order to form an annular shape, and in each divided core equipped with the insulator, A manufacturing method of a stator in which the windings of its own set wound around a tooth portion are connected by a jumper,
A winding group that is continuously wound with one conducting wire, and that is connected so as to be continuous with a predetermined interval between the windings for the connecting wire, A winding group creating step prepared for each of the plurality of sets;
Winding group combination in which each divided core of its own winding group is arranged between divided cores of other winding groups, and each divided core of each winding group is aligned in one direction in a predetermined order. Process,
A split core annularization step of annularly forming each split core of each winding group arranged in a line in one direction in a predetermined order;
The insulator attached to each split core of each winding group has an inner wall formed in the circumferential direction along the split annular portion on the axially outer surface of the split annular portion on the base end side of the tooth portion.
An opening that penetrates the inner wall in the circumferential direction in the circumferential direction is formed,
On the radially outer side of the inner wall divided into two in the circumferential direction at the opening, the windings of the winding group wound around the teeth part of each split core of the winding group are connected. A guide portion is formed that guides the crossover wire and the crossover wire that connects between the windings of the other winding group wound around the teeth portion of each split core of the other winding group,
The winding group is prepared for each phase of the motor,
The number of phases of the motor is three phases of U phase, V phase and W phase,
The predetermined interval is an interval of two or more divided cores,
The insulator includes a first insulator attached to each of the U-phase and V-phase split cores and a second insulator attached to each of the W-phase split cores,
The said guide part of a said 1st insulator is recessedly provided in each radial direction outer surface of the said inner wall divided into 2 in the circumferential direction, and the said crossing wire guided in the circumferential direction is supported in the axial direction so that a movement is impossible Having a guide groove,
The guide portion of the second insulator extends in the axial direction from the radially outer surface of the inner wall divided into two in the circumferential direction and an outer wall facing the radial direction, and between the outer wall and the inner wall, Having a guide groove that supports the crossover wire guided in the direction so as not to move radially outward.
The winding group combining step has a first combining step and a second combining step,
In the first merging step, the posture of each divided core of the V-phase winding group is rotated around the V-phase crossover with respect to each divided core of the U-phase winding group. After the connecting wire is fitted in the connecting wire guide groove formed in the insulator of each divided core of the U-phase winding group, the posture of each divided core of the V-phase winding group is returned to the original posture. , The U-phase connecting wire is respectively fitted into the connecting wire guide groove formed in the insulator of each split core of the V-phase winding group,
Thereafter, in the second combining step, the U-phase and V-phases that face each divided core of the W-phase winding group in the axial direction with respect to each divided core of the combined U-phase and V-phase winding groups. The U-phase and V-phase crossover wires are moved toward the crossover wires, and the W-phase crossover wires are fitted into the guide grooves formed in the second insulators of the split cores of the W-phase winding group. A method of manufacturing a stator, wherein each of the split cores of a U-phase and V-phase winding group is fitted into the crossover guide groove formed in the first insulator.
分割環状部と、その分割環状部の周方向中間部分から径方向内側に延出したティース部とからなる分割コアにインシュレータを装着し、そのインシュレータを装着した複数個の分割コアを1組とし、その組を複数有し、その各組の各分割コアをそれぞれ予め定めた順序で連接して、円環状に形成するとともに、前記インシュレータを装着した各分割コアにおいて、自身の組の各分割コアのティース部に巻回される自身の組の巻線間が渡り線で繋いでなるステータの製造方法であって、
1つの導線にて連続して巻線が巻回されるとともに、前記渡り線のために巻線と巻線の間が予め定めた間隔に開けられて連なるように連結された巻線群を、前記複数の組毎に用意する巻線群作成工程と、
それぞれ自身巻線群の各分割コアを、他の巻線群の連なる分割コア間に配置して、各巻線群の各分割コアをそれぞれ予め定めた順序に一方向に一列に並べる巻線群合体工程と、
予め定めた順序に一方向に一列に並んだ各巻線群の各分割コアを環状化する分割コア環状化工程とを有しており、
各巻線群の各分割コアに装着された前記インシュレータは、その前記ティース部基端側の分割環状部の軸方向外側面に、内壁が前記分割環状部に沿って周方向に形成され、
前記内壁の周方向中間部に径方向には、貫通する開口部が形成され、
前記開口部にて周方向に2分された前記内壁の各径方向外側には、自身の巻線群の各分割コアのティース部に巻回される自身の巻線群の巻線間を繋ぐ渡り線と、他の巻線群の各分割コアのティース部に巻回される他の巻線群の巻線間を繋ぐ渡り線とを、周方向に案内する案内部が形成されており、
前記巻線群は、モータの相毎に用意されるものであり、
前記モータの相数は、U相、V相及びW相の3相であり、
前記予め定めた間隔は、分割コアの2個分以上の間隔であり、
前記インシュレータの前記案内部は、周方向に2分された前記内壁の各径方向外側面に凹設され、周方向に案内される前記渡り線を軸方向に移動不能に支持する渡り線案内溝であり、
前記巻線群合体工程は、
U相、V相及びW相の前記巻線群のうちの1つの巻線群の前記インシュレータの渡り線案内溝に他の2相の巻線群の渡り線が嵌合されるとともに、各相の前記分割コアが渡り線の周囲の異なる位置に配置されるように各相の巻線群を配置する巻線群配置工程と、
前記巻線群配置工程の後、前記他の2相の巻線群の各分割コアの姿勢をそれらの渡り線を回転中心に回転させることで、前記各ティース部が同一方向を向くように前記各巻線群の各分割コアをそれぞれ予め定めた順序に一方向に一列に並べる巻線群回転工程とを有することを特徴とするステータの製造方法。
An insulator is attached to a split core composed of a split annular portion and a teeth portion extending radially inward from a circumferential intermediate portion of the split annular portion, and a plurality of split cores attached with the insulator are made into one set, There are a plurality of sets, and each divided core of each set is connected in a predetermined order to form an annular shape, and in each divided core equipped with the insulator, A manufacturing method of a stator in which the windings of its own set wound around a tooth portion are connected by a jumper,
A winding group that is continuously wound with one conducting wire, and that is connected so as to be continuous with a predetermined interval between the windings for the connecting wire, A winding group creating step prepared for each of the plurality of sets;
Winding group combination in which each divided core of its own winding group is arranged between divided cores of other winding groups, and each divided core of each winding group is aligned in one direction in a predetermined order. Process,
A split core annularization step of annularly forming each split core of each winding group arranged in a line in one direction in a predetermined order;
The insulator attached to each split core of each winding group has an inner wall formed in the circumferential direction along the split annular portion on the axially outer surface of the split annular portion on the base end side of the tooth portion.
An opening that penetrates the inner wall in the circumferential direction in the circumferential direction is formed,
On the radially outer side of the inner wall divided into two in the circumferential direction at the opening, the windings of the winding group wound around the teeth part of each split core of the winding group are connected. A guide portion is formed that guides the crossover wire and the crossover wire that connects between the windings of the other winding group wound around the teeth portion of each split core of the other winding group,
The winding group is prepared for each phase of the motor,
The number of phases of the motor is three phases of U phase, V phase and W phase,
The predetermined interval is an interval of two or more divided cores,
The guide portion of the insulator is recessed on each radially outer side surface of the inner wall divided into two in the circumferential direction, and a jumper guide groove that supports the jumper wire guided in the circumferential direction so as not to move in the axial direction. And
The winding group combining step
The connecting wire of the other two-phase winding group is fitted in the connecting wire guide groove of the insulator of one winding group of the U-phase, V-phase, and W-phase winding groups, and each phase A winding group arranging step of arranging the winding groups of each phase so that the divided cores are arranged at different positions around the crossover line;
After the winding group placement step, by rotating the postures of the divided cores of the other two-phase winding groups around their crossovers, the teeth portions are directed in the same direction. And a winding group rotating step in which the divided cores of each winding group are arranged in a line in one direction in a predetermined order.
請求項に記載のステータの製造方法において、
前記渡り線案内溝は、U相の渡り線が嵌合される第1渡り線案内溝と、V相の渡り線が嵌合される第2渡り線案内溝と、W相の渡り線が嵌合される第3渡り線案内溝とが軸方向に沿って順に形成されてなり、
前記巻線群配置工程では、V相の巻線群の前記インシュレータの前記第1及び第3渡り線案内溝にU相及びW相の渡り線を嵌合するとともに、各相の前記分割コアを渡り線の周囲の異なる位置に配置し、
前記巻線群回転工程では、V相の巻線群の分割コアの向きに合わせるように、U相及びW相の巻線群の各分割コアを回転させることを特徴とするステータの製造方法。
In the manufacturing method of the stator according to claim 3 ,
The connecting wire guide groove is fitted with a first connecting wire guide groove into which a U-phase connecting wire is fitted, a second connecting wire guide groove into which a V-phase connecting wire is fitted, and a W-phase connecting wire. The third crossover guide groove to be joined is formed in order along the axial direction,
In the winding group arranging step, U-phase and W-phase connecting wires are fitted into the first and third connecting wire guide grooves of the insulator of the V-phase winding group, and the divided cores of each phase are arranged. Place them at different locations around the crossover,
In the winding group rotation step, each divided core of the U-phase and W-phase winding groups is rotated so as to match the direction of the divided core of the V-phase winding group.
JP2014003534A 2014-01-10 2014-01-10 Stator manufacturing method Active JP6276035B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014003534A JP6276035B2 (en) 2014-01-10 2014-01-10 Stator manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014003534A JP6276035B2 (en) 2014-01-10 2014-01-10 Stator manufacturing method

Publications (2)

Publication Number Publication Date
JP2015133809A JP2015133809A (en) 2015-07-23
JP6276035B2 true JP6276035B2 (en) 2018-02-07

Family

ID=53900626

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014003534A Active JP6276035B2 (en) 2014-01-10 2014-01-10 Stator manufacturing method

Country Status (1)

Country Link
JP (1) JP6276035B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107508391B (en) 2016-06-14 2022-02-01 德昌电机(深圳)有限公司 Brushless DC motor, stator component and winding method thereof
DE102021105062A1 (en) 2021-03-03 2022-09-08 Minebea Mitsumi Inc. Method for winding a stator for an electrical machine and a stator and an electrical machine with such a stator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3692698B2 (en) * 1997-03-28 2005-09-07 松下電器産業株式会社 Manufacturing method of motor stator
JP3680482B2 (en) * 1997-03-28 2005-08-10 松下電器産業株式会社 Electric motor stator constituent member, electric motor stator, electric motor manufacturing method
JP4514171B2 (en) * 2000-07-14 2010-07-28 株式会社小田原エンジニアリング Stator manufacturing method and manufacturing apparatus
JP3722712B2 (en) * 2001-03-22 2005-11-30 山洋電気株式会社 Stator for rotating electrical machine
JP4085698B2 (en) * 2002-05-30 2008-05-14 日産自動車株式会社 Winding method and winding device
JP5656436B2 (en) * 2010-03-31 2015-01-21 国産電機株式会社 Stator coils, rotating electrical machines and automobiles

Also Published As

Publication number Publication date
JP2015133809A (en) 2015-07-23

Similar Documents

Publication Publication Date Title
JP2015133808A (en) Insulator and stator
JP5896250B2 (en) Rotating electric machine stator
US7944109B2 (en) Stator of motor having an insulator with lead out guide portions
US7408281B2 (en) Stator and brushless motor
JP5768323B2 (en) Rotating electric machine stator
US11063482B2 (en) Stator and motor having the same
WO2014192350A1 (en) Rotary electric machine, and manufacturing method therefor
US10116179B2 (en) Three-phase alternating current motor
US9837869B2 (en) Stator with bus bar portion embedded between adjacent lane change portions and connected to terminal portion
US20150123503A1 (en) Stator
TWI511421B (en) Rotary electric machine
JP2012200101A (en) Rotating electric machine stator and method of manufacturing rotating electric machine stator
JP5626758B2 (en) Stator
US20190013710A1 (en) Rotary Electric Machine
JP6276035B2 (en) Stator manufacturing method
JPWO2018167853A1 (en) Stator for rotating electrical machine
CN116195172A (en) Stator and motor
JP5502131B2 (en) Stator, brushless motor, and stator manufacturing method
US11095177B2 (en) Coil
KR102339538B1 (en) Stator and motor having the same
JP4483241B2 (en) 3-phase motor
WO2014157621A1 (en) Stator structure
JP2020150753A (en) Stator and brushless motor
JP6582973B2 (en) Rotating electric machine and manufacturing method thereof
JP2015019452A (en) Coil and coil formation method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180111

R150 Certificate of patent or registration of utility model

Ref document number: 6276035

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250