JP6275666B2 - Thermal storage type combustion deodorization apparatus and its operation method - Google Patents

Thermal storage type combustion deodorization apparatus and its operation method Download PDF

Info

Publication number
JP6275666B2
JP6275666B2 JP2015102639A JP2015102639A JP6275666B2 JP 6275666 B2 JP6275666 B2 JP 6275666B2 JP 2015102639 A JP2015102639 A JP 2015102639A JP 2015102639 A JP2015102639 A JP 2015102639A JP 6275666 B2 JP6275666 B2 JP 6275666B2
Authority
JP
Japan
Prior art keywords
gas
heat storage
treated
combustion
oxygen concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2015102639A
Other languages
Japanese (ja)
Other versions
JP2016217620A (en
Inventor
俊博 村元
俊博 村元
俊彦 森川
俊彦 森川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chugai Ro Co Ltd
Original Assignee
Chugai Ro Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chugai Ro Co Ltd filed Critical Chugai Ro Co Ltd
Priority to JP2015102639A priority Critical patent/JP6275666B2/en
Publication of JP2016217620A publication Critical patent/JP2016217620A/en
Application granted granted Critical
Publication of JP6275666B2 publication Critical patent/JP6275666B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Incineration Of Waste (AREA)

Description

本発明は、揮発性有機化合物(Volatile Organic Compounds:以下、「VOC」と称する。)含有の排ガスを燃焼処理し、VOCを除去した浄化ガスを大気中に排出する蓄熱式燃焼脱臭装置、及びその操業方法に関する。   The present invention relates to a regenerative combustion deodorization apparatus that burns exhaust gas containing volatile organic compounds (hereinafter referred to as “VOC”) and discharges purified gas from which VOC has been removed to the atmosphere, and its It relates to the operation method.

自動車の塗装工場、金属洗浄、印刷工場、粘着・接着紙製造工場等からは例えば、トルエン(CCH)、キシレン(C10)等を代表とするVOCを含んだ排ガスが発生する。VOCを含んだ排ガスは、公害防止の観点から直接大気中に排出できないため、無害化処理を施して大気中に排出する必要がある。 Exhaust gas containing VOCs such as toluene (C 6 H 5 CH 3 ), xylene (C 8 H 10 ), etc. from automobile paint factories, metal washing, printing factories, adhesive / adhesive paper manufacturing factories, etc. Occur. Since exhaust gas containing VOC cannot be discharged directly into the atmosphere from the viewpoint of pollution prevention, it must be detoxified and discharged into the atmosphere.

従来、VOCを含んだ排ガス(以下、「被処理ガス」と称する。)の主な処理方法としては、燃焼法、吸着法、オゾン酸化法、微生物分解法等がある。これらの中で、特にトルエン、キシレン類等のVOCについては、コストと処理効率の点から燃焼法が最適である。   Conventionally, main methods for treating exhaust gas containing VOC (hereinafter referred to as “treated gas”) include a combustion method, an adsorption method, an ozone oxidation method, a microbial decomposition method, and the like. Among these, especially for VOCs such as toluene and xylenes, the combustion method is optimal from the viewpoint of cost and processing efficiency.

燃焼法には、さらに直接燃焼法、触媒燃焼法、及び蓄熱燃焼法等がある。それらのうち、蓄熱燃焼法は熱回収効率が85%以上得られるという利点を有することから、上述の工場では、蓄熱式燃焼脱臭装置(Regenerative Thermal Oxidizer:RTO)が普及している。蓄熱式燃焼脱臭装置には特許文献1、2に開示されている3塔式(多塔式)のものや、特許文献3に開示されている2塔式のものがある。以下の説明では、3塔式の蓄熱式燃焼脱臭装置1´を例示して説明する。   The combustion method further includes a direct combustion method, a catalytic combustion method, a heat storage combustion method, and the like. Among them, the regenerative thermal oxidizer (RTO) is widely used in the above-mentioned factories because the regenerative combustion method has the advantage that the heat recovery efficiency is 85% or more. Thermal storage type combustion deodorization apparatuses include a three-column type (multi-column type) disclosed in Patent Documents 1 and 2 and a two-column type disclosed in Patent Document 3. In the following description, a three-column heat storage type combustion deodorization apparatus 1 'will be described as an example.

図3に示すように、蓄熱式燃焼脱臭装置1´は、バーナ2を備えた燃焼室3と、この燃焼室3にそれぞれ連通すると共に蓄熱体4をそれぞれ内蔵した3つの蓄熱室(5A,5B,5C)と、ファン6と連通し、不図示の被処理ガス供給源から供給される被処理ガスをいずれかの蓄熱室、例えば5Aに通して燃焼室3へ供給する被処理ガス供給管7(被処理ガス供給流路)と、燃焼室3で加熱分解(酸化分解)処理された処理済みガスを他の蓄熱室、例えば5Bに通して排気する処理済みガス排気管8(処理済みガス排気流路)と、燃焼完了後の処理済みガスの一部をパージガスとして前工程で被処理ガスが通過した蓄熱室、例えば5Cに通してファン6の上流側に還流させるパージガス抽出管9(パージガス流路)とからなる。   As shown in FIG. 3, the regenerative combustion deodorizer 1 ′ includes a combustion chamber 3 having a burner 2, and three heat storage chambers (5 </ b> A, 5 </ b> B) respectively communicating with the combustion chamber 3 and incorporating a heat storage body 4. , 5C) and the fan 6, the gas to be processed 7 that supplies the gas to be processed supplied from the gas supply source to be processed (not shown) to any one of the heat storage chambers, for example, 5A, to the combustion chamber 3. (Processed gas supply flow path) and a processed gas exhaust pipe 8 (processed gas exhaust) for exhausting the processed gas that has been subjected to thermal decomposition (oxidative decomposition) in the combustion chamber 3 through another heat storage chamber, for example, 5B And a purge gas extraction pipe 9 (purge gas flow) for returning to the upstream side of the fan 6 through a heat storage chamber, for example, 5C, through which the gas to be treated has passed in the previous step, using a part of the treated gas after completion of combustion as purge gas. Road).

被処理ガス供給管7には第1開閉弁10A,10B,10Cが介設されている。処理済みガス排気管8には第2開閉弁11A,11B,11Cが介設されている。パージガス抽出管9には第3開閉弁12A,12B,12Cが介設されている。なお、パージガス抽出管9には、パージガスの流量が一定になるように弁開度が調節された調節弁13が設けられている。また、ファン6の吸い込み側に接続されている被処理ガス導入流路14とパージガス抽出管9との合流点の上流側には被処理ガス供給弁15が設けられている。   The gas supply pipe 7 to be processed is provided with first on-off valves 10A, 10B, 10C. Second on-off valves 11A, 11B, and 11C are interposed in the treated gas exhaust pipe 8. The purge gas extraction pipe 9 is provided with third on-off valves 12A, 12B, 12C. The purge gas extraction pipe 9 is provided with a control valve 13 whose valve opening is adjusted so that the flow rate of the purge gas is constant. Further, a gas supply valve 15 to be processed is provided on the upstream side of the merging point between the gas supply flow path 14 to be processed connected to the suction side of the fan 6 and the purge gas extraction pipe 9.

次に、上述の蓄熱式燃焼脱臭装置1´の操業について、図3、図4を参照して説明する。以下の説明では、VOCとしてトルエンを例示して説明する。先ず、不図示の被処理ガス供給源から供給された被処理ガスは、被処理ガス供給弁15を介してファン6の吸い込み側に導入される。そして、ファン6から供給された被処理ガスは、被処理ガス供給管7から3つの蓄熱室5A,5B,5Cのうち前工程で蓄熱されている蓄熱室、例えば5Aに供給された後、当該蓄熱室5Aの蓄熱体4との熱交換により予熱されて燃焼室3に導入される(被処理ガス供給工程)。   Next, operation of the above-described regenerative combustion deodorizer 1 ′ will be described with reference to FIGS. In the following description, toluene will be described as an example of VOC. First, the gas to be processed supplied from the gas supply source to be processed (not shown) is introduced to the suction side of the fan 6 through the gas supply valve 15 to be processed. And the to-be-processed gas supplied from the fan 6 is supplied from the to-be-processed gas supply pipe 7 to the heat storage chamber, for example, 5A, in which heat is stored in the previous process among the three heat storage chambers 5A, 5B, 5C. Preheated by heat exchange with the heat storage body 4 of the heat storage chamber 5A and introduced into the combustion chamber 3 (processed gas supply step).

続いて、被処理ガス中のトルエン(CCH)は、燃焼室3において下式のように被処理ガス中に含まれる酸素(O)との燃焼反応により二酸化炭素(CO)と水(HO)に酸化分解されて例えば、約800℃の処理済みガスとなる。図4(a)に示すように、処理済みガス中には酸化分解反応で余った余剰の酸素が残存する。図4(a)において、点線より上側は被処理ガス中の成分、下側は処理済みガス中の成分を示している。なお、これらは説明上のものであり、それぞれを示した枠の幅については含有する気体成分の割合とは関係がない。 Subsequently, toluene (C 6 H 5 CH 3 ) in the gas to be treated is carbon dioxide (CO 2 ) by a combustion reaction with oxygen (O 2 ) contained in the gas to be treated in the combustion chamber 3 as shown in the following equation. ) And water (H 2 O), for example, to a treated gas of about 800 ° C. As shown in FIG. 4A, surplus oxygen remaining from the oxidative decomposition reaction remains in the treated gas. In FIG. 4 (a), the upper side from the dotted line shows the component in the gas to be processed, and the lower side shows the component in the processed gas. In addition, these are for explanatory purposes, and the width of the frame showing each has nothing to do with the ratio of the gas component to be contained.

[数1]
CH+9O→7CO+4H
[Equation 1]
C 6 H 5 CH 3 + 9O 2 → 7CO 2 + 4H 2 O

その後、高温の処理済みガスは、前工程で被処理ガスとの熱交換により降温し、後述するパージ工程が完了した蓄熱室、例えば5Bを通過し、当該蓄熱室5Bの蓄熱体4と熱交換してその蓄熱体4を約800℃に加熱しながら100℃〜150℃に降温した後、処理済みガス排気管8から大気に放散される(処理済みガス排気工程)。   Thereafter, the high-temperature treated gas is cooled by heat exchange with the gas to be treated in the previous step, passes through a heat storage chamber, for example, 5B, in which a purge step described later is completed, and exchanges heat with the heat storage body 4 in the heat storage chamber 5B. Then, the temperature of the heat storage body 4 is lowered to 100 ° C. to 150 ° C. while being heated to about 800 ° C., and then diffused into the atmosphere from the processed gas exhaust pipe 8 (processed gas exhaust process).

また、燃焼室3で生成された処理済みガスの一部は、パージガスとして前工程で被処理ガスが通過した蓄熱室、例えば5Cの蓄熱体4に供給され、当該蓄熱体4の内部に残留している有機化合物を含む被処理ガスを除去した後、パージガスはパージガス抽出管9を介して被処理ガス導入流路14に環流される(パージ工程)。   Further, a part of the processed gas generated in the combustion chamber 3 is supplied as a purge gas to the heat storage chamber through which the gas to be processed has passed in the previous step, for example, the 5 C heat storage body 4, and remains inside the heat storage body 4. After removing the processing gas containing the organic compound, the purge gas is circulated through the purge gas extraction pipe 9 to the processing gas introduction flow path 14 (purge process).

そして、第1開閉弁10A,10B,10C、第2開閉弁11A,11B,11C、第3開閉弁12A,12B,12Cは、所定時間毎に切り換わる。即ち、所定時間(例えば1分)が経過すると、第1開閉弁10A、第2開閉弁11B、及び第3開閉弁12Cは開から閉、第1開閉弁10B、第2開閉弁11C、及び第3開閉弁12Aが閉から開となり、前工程で処理済みガスにより加熱された蓄熱室5Bの蓄熱体4に被処理ガスが被処理ガス供給管7から供給され、蓄熱体4との熱交換により予熱された後、燃焼室3内で加熱分解(酸化分解)処理され、その処理済みガスは前工程でパージされた蓄熱室5Cから第2開閉弁11C及び処理済みガス排気管8を介して大気中に排出される。なお、残りの第1開閉弁10C、第2開閉弁11A、第3開閉弁12Bは閉状態を保持する。   Then, the first on-off valves 10A, 10B, 10C, the second on-off valves 11A, 11B, 11C, and the third on-off valves 12A, 12B, 12C are switched every predetermined time. That is, when a predetermined time (for example, 1 minute) elapses, the first on-off valve 10A, the second on-off valve 11B, and the third on-off valve 12C are closed from the open, the first on-off valve 10B, the second on-off valve 11C, 3 The on-off valve 12A is opened from the closed state, and the gas to be processed is supplied from the gas to be processed supply pipe 7 to the heat storage body 4 of the heat storage chamber 5B heated by the processed gas in the previous process, and heat exchange with the heat storage body 4 is performed. After being preheated, heat decomposition (oxidative decomposition) is performed in the combustion chamber 3, and the processed gas passes through the second open / close valve 11 </ b> C and the processed gas exhaust pipe 8 from the heat storage chamber 5 </ b> C purged in the previous step. Discharged inside. The remaining first on-off valve 10C, second on-off valve 11A, and third on-off valve 12B are kept closed.

一方、蓄熱室5Aには、燃焼室3で生成された処理済みガスの一部がパージガスとして供給される。パージガスは、第1開閉弁10Aが開から閉になった時に蓄熱体5Aの蓄熱体4内に残留した有機化合物を含む被処理ガスを除去した後、第3開閉弁12A及びパージガス抽出管9を介して被処理ガス導入流路14に環流される。このようにして、蓄熱室5Bは被処理ガス供給工程、蓄熱室5Cは処理済みガス排気工程、蓄熱室5Aはパージ工程となる。続いて、所定時間経過後に各開閉弁を切り換えて蓄熱室5Cで被処理ガス供給工程、蓄熱室5Aで処理済みガス排気工程、第2蓄熱室5Bでパージ工程をそれぞれ行う。このように蓄熱式燃焼脱臭装置1´の操業中は、各蓄熱室5A,5B,5C間で被処理ガス供給工程、処理済みガス排気工程、及びパージ工程が所定時間毎に順次切り換わる動作が所定時間継続する。   On the other hand, a part of the processed gas generated in the combustion chamber 3 is supplied to the heat storage chamber 5A as a purge gas. The purge gas removes the gas to be treated including the organic compound remaining in the heat storage body 4 of the heat storage body 5A when the first on-off valve 10A is closed from the open state, and then the third on-off valve 12A and the purge gas extraction pipe 9 are removed. And is recirculated to the gas introduction flow path 14 to be processed. In this way, the heat storage chamber 5B is a gas to be processed supply process, the heat storage chamber 5C is a processed gas exhaust process, and the heat storage chamber 5A is a purge process. Subsequently, after a predetermined time elapses, the respective on-off valves are switched, and the gas storage process 5C is performed in the heat storage chamber 5C, the gas exhaust process processed in the heat storage chamber 5A, and the purge process is performed in the second heat storage chamber 5B. As described above, during operation of the regenerative combustion deodorization apparatus 1 ′, the operation of sequentially switching the gas to be treated process, the treated gas exhaust process, and the purge process between the heat storage chambers 5A, 5B, and 5C every predetermined time. Continue for a predetermined time.

特開2011−102664号公報JP 2011-102664 A 特開平10−47636号公報Japanese Patent Laid-Open No. 10-47636 特開2001−324121号公報JP 2001-324121 A

ところで、被処理ガスには、例えば印刷工場から発生するVOCが空気に混合された被処理ガスや、例えば化学工場の原料タンクや製品タンクから排気されるVOC濃度が非常に高い被処理ガスがある。近年、後者の被処理ガスを蓄熱式燃焼脱臭装置で浄化処理したいという要望が高まりつつある。上述したVOC濃度が非常に高い被処理ガスは通常、爆発防止の観点から、タンク内を窒素ガス等の不活性ガスでパージした状態で当該タンク内に貯留されている。   By the way, the gas to be processed includes, for example, a gas to be processed in which VOC generated from a printing factory is mixed with air, or a gas to be processed having a very high VOC concentration exhausted from a raw material tank or a product tank of a chemical factory, for example. . In recent years, there is an increasing demand for purifying the latter gas to be treated with a regenerative combustion deodorizer. The gas to be processed having a very high VOC concentration is usually stored in the tank in a state where the tank is purged with an inert gas such as nitrogen gas from the viewpoint of preventing explosion.

ここで、図3に示した従来の蓄熱式燃焼脱臭装置1´を用いて上述の被処理ガスを浄化処理することを以下に検討する。従来の蓄熱式燃焼脱臭装置1´は、図4(a)に示すようにVOCが空気に混合された被処理ガスの浄化処理を目的とした構成である。一方、図4(b)に示すように、化学工場の原料タンクや製品タンクから排気されるVOC濃度が非常に高い被処理ガスには、安全上、酸素が殆ど含まれていない(厳密には微量の酸素が残存すると考えられるが、図4(b)ではゼロと見做して例示している。)。実際には、上述のような微量の酸素が含まれている被処理ガスのほか、酸素が全く含まれていない高濃度のVOCからなる被処理ガスも存在する。このような被処理ガスを蓄熱式燃焼脱臭装置1´の燃焼室3内に供給した場合、燃焼室3内に残留する酸素(バーナ2が燃焼した後の余剰の酸素)では、当該被処理ガスの燃焼反応が十分に進行せず、VOCを含有した処理済みガスを大気に放出させてしまうという課題を有する。   Here, the purification process of the above-described gas to be treated using the conventional heat storage type combustion deodorization apparatus 1 ′ shown in FIG. 3 will be examined below. The conventional regenerative combustion deodorization apparatus 1 'has a configuration for purifying a gas to be treated in which VOC is mixed with air as shown in FIG. 4 (a). On the other hand, as shown in FIG. 4B, the gas to be treated having a very high VOC concentration exhausted from the raw material tank or product tank of the chemical factory contains almost no oxygen for safety (strictly speaking, Although a trace amount of oxygen is considered to remain, it is illustrated as being zero in FIG. 4B). Actually, in addition to the gas to be processed containing a small amount of oxygen as described above, there is also a gas to be processed made of a high concentration VOC that does not contain any oxygen. When such a gas to be treated is supplied into the combustion chamber 3 of the regenerative combustion deodorizing apparatus 1 ′, oxygen remaining in the combustion chamber 3 (excess oxygen after the burner 2 burns) is the gas to be treated. The combustion reaction does not proceed sufficiently, and there is a problem that the treated gas containing VOC is released to the atmosphere.

そこで、本発明は、高濃度のVOC及び微量の酸素を含む被処理ガス、又は酸素が全く含まれていない高濃度のVOCからなる被処理ガスを酸化分解させて完全に浄化できる蓄熱式燃焼脱臭装置、及びその操業方法を提供することを目的とする。   Therefore, the present invention provides a regenerative combustion deodorization capable of completely purifying a gas to be treated containing a high concentration VOC and a gas to be treated containing a very small amount of oxygen, or a gas to be treated comprising a high concentration VOC containing no oxygen at all. An object is to provide an apparatus and an operation method thereof.

本発明の蓄熱式燃焼脱臭装置は、バーナを備えた燃焼室と、前記燃焼室にそれぞれ連通すると共に、蓄熱体をそれぞれ配置した少なくとも2つ以上の蓄熱室と、流体供給源から供給される被処理ガスを前記蓄熱室のうち前工程で蓄熱されている蓄熱室に通過させて当該蓄熱室の蓄熱体との熱交換により予熱し、前記燃焼室へ供給する被処理ガス供給流路と、前記燃焼室で加熱分解処理された処理済みガスを前記蓄熱室のうち前工程で前記被処理ガスとの熱交換により降温した蓄熱室に通過させて当該蓄熱室の蓄熱体との熱交換により降温させて排気する処理済みガス排気流路と、前記各蓄熱室間で前記被処理ガスの供給、前記処理済みガスの排気を順次切り換える流路切り換え機構とを備えた蓄熱式燃焼脱臭装置において、前記処理済みガス排気流路に設けられ、前記処理済みガス中の残留酸素濃度を計測する酸素濃度計測手段と、前記被処理ガスの燃焼を促進するための酸化性ガスを前記燃焼室内に供給する酸化性ガス供給手段と、前記酸素濃度計測手段により計測された前記処理済みガス中の残留酸素濃度と、予め定められた基準値との比較結果に基づき、前記残留酸素濃度が前記基準値内となるよう前記酸化性ガス供給手段を制御する制御手段とを備え、前記酸化性ガス供給手段は前記各蓄熱室に対応して設けられており、前記制御手段は、前記被処理ガスが前記燃焼室へ供給される被処理ガス供給工程を実行中の蓄熱室側に設けられた前記酸化性ガス供給手段を制御する。なお、本発明において、蓄熱体を配置した蓄熱室とは、それぞれが壁で囲まれて独立した空間のみを意図するものではなく、蓄熱体自体の構造によって少なくとも2つ以上に区分された空間(ガスの流路)であってもよい。 The regenerative combustion deodorization apparatus of the present invention includes a combustion chamber provided with a burner, at least two heat storage chambers each communicating with the combustion chamber, each having a heat storage body, and a target supplied from a fluid supply source. A gas to be treated that is supplied to the combustion chamber by passing the processing gas through the heat storage chamber that has been stored in the previous step in the heat storage chamber, preheated by heat exchange with the heat storage body of the heat storage chamber, and The treated gas pyrolyzed in the combustion chamber is passed through the heat storage chamber of the heat storage chamber which has been cooled by heat exchange with the gas to be processed in the previous step, and the temperature is lowered by heat exchange with the heat storage body of the heat storage chamber. In the regenerative combustion deodorization apparatus, the treated gas exhaust passage for exhausting the exhaust gas and the flow path switching mechanism for sequentially switching the supply of the gas to be treated and the exhaust of the treated gas between the heat storage chambers. Spent gas An oxygen concentration measuring means for measuring a residual oxygen concentration in the treated gas, and an oxidizing gas supply means for supplying an oxidizing gas for accelerating combustion of the gas to be treated into the combustion chamber. And based on a comparison result between a residual oxygen concentration in the treated gas measured by the oxygen concentration measuring means and a predetermined reference value, the oxidizing property is adjusted so that the residual oxygen concentration is within the reference value. Control means for controlling the gas supply means, and the oxidizing gas supply means is provided corresponding to each of the heat storage chambers, and the control means is provided with the gas to be treated supplied to the combustion chamber. The oxidizing gas supply means provided on the heat storage chamber side that is executing the process gas supply step is controlled . In addition, in this invention, the heat storage chamber which has arrange | positioned the heat storage body does not intend only each independent space enclosed by the wall, but the space (at least divided into two or more by the structure of the heat storage body itself ( Gas flow path).

前記酸素濃度計測手段に代えて、前記処理済みガス中のVOC濃度を計測するVOC濃度計測手段を備えてもよい。   Instead of the oxygen concentration measuring means, a VOC concentration measuring means for measuring the VOC concentration in the processed gas may be provided.

前記酸化性ガスは、前記被処理ガスが前記燃焼室へ供給される被処理ガス供給工程を実行中の蓄熱室に配置されている前記蓄熱体の上方空間に供給されることが好ましい。   It is preferable that the oxidizing gas is supplied to an upper space of the heat storage body arranged in a heat storage chamber in which a gas to be processed is supplied to the combustion chamber.

前記酸化性ガス供給手段を前記各蓄熱室の被処理ガス供給流路に接続し、被処理ガス供給工程を実行中の蓄熱室の被処理ガス供給流路内に前記酸化性ガスを供給してもよい。   The oxidizing gas supply means is connected to the gas supply flow path of each heat storage chamber, and the oxidizing gas is supplied into the gas supply flow path of the heat storage chamber performing the gas supply process. Also good.

前記酸化性ガスは、前記バーナの燃焼用空気供給経路から前記バーナを介して供給される燃焼用空気であることが好ましい。   The oxidizing gas is preferably combustion air supplied from the combustion air supply path of the burner via the burner.

また、蓄熱式燃焼脱臭装置の操業方法は、バーナを備えた燃焼室と、前記燃焼室にそれぞれ連通すると共に、蓄熱体をそれぞれ配置した少なくとも2つ以上の蓄熱室と、流体供給源から供給される被処理ガスを前記蓄熱室のうち前工程で蓄熱されている蓄熱室に通過させて当該蓄熱室の蓄熱体との熱交換により予熱し、前記燃焼室へ供給する被処理ガス供給流路と、前記燃焼室で加熱分解処理された処理済みガスを前記蓄熱室のうち前工程で前記被処理ガスとの熱交換により降温した蓄熱室に通過させて当該蓄熱室の蓄熱体との熱交換により降温させて排気する処理済みガス排気流路と、前記各蓄熱室間で前記被処理ガスの供給、前記処理済みガスの排気を順次切り換える流路切り換え機構と、前記各蓄熱室に対応して設けられ、前記被処理ガスの燃焼を促進するための酸化性ガスを前記燃焼室内に供給する酸化性ガス供給手段とを備えた蓄熱式燃焼脱臭装置の操業方法であって、前記酸素濃度計測手段により前記処理済みガス中の残留酸素濃度を計測するステップと、前記ステップで計測された前記処理済みガス中の残留酸素濃度と予め定められた基準値とを比較するステップと、前記ステップでの比較結果に基づき、前記残留酸素濃度が前記基準値内となるよう前記酸化性ガス供給手段による前記酸化性ガスの供給を制御するステップと、前記被処理ガスが前記燃焼室へ供給される被処理ガス供給工程を実行中の蓄熱室側に設けられた前記酸化性ガス供給手段を制御するステップとを含んでいる。 Further, the operation method of the heat storage type combustion deodorization apparatus is supplied from a fluid supply source, a combustion chamber provided with a burner, at least two heat storage chambers each communicating with the combustion chamber, and each having a heat storage body disposed therein. A gas to be treated that is preheated by heat exchange with the heat storage body of the heat storage chamber, and is supplied to the combustion chamber. By passing the processed gas that has been thermally decomposed in the combustion chamber through the heat storage chamber that has been cooled down by heat exchange with the gas to be processed in the previous step in the heat storage chamber, and by heat exchange with the heat storage body of the heat storage chamber the processed gas exhaust passage for exhausting by cooling, supply of the gas to be treated between the individual heat storage chambers, and sequentially switching the flow path switching mechanism to exhaust the processed gas, provided corresponding to the respective heat storage chambers is, the object to be processed And an oxidizing gas supply means for supplying an oxidizing gas for promoting the combustion of gas into the combustion chamber, wherein the oxygen concentration measuring means Measuring the residual oxygen concentration of the gas, comparing the residual oxygen concentration in the treated gas measured in the step with a predetermined reference value, and based on the comparison result in the step, A step of controlling the supply of the oxidizing gas by the oxidizing gas supply means so that the oxygen concentration is within the reference value; and a process gas supply step in which the gas to be processed is supplied to the combustion chamber. Controlling the oxidizing gas supply means provided on the heat storage chamber side .

前記酸素濃度計測手段により前記処理済みガス中の残留酸素濃度を計測するステップに代えて、VOC濃度計測手段により前記処理済みガス中のVOC濃度を計測するステップを有していてもよい。   Instead of the step of measuring the residual oxygen concentration in the treated gas by the oxygen concentration measuring means, a step of measuring the VOC concentration in the treated gas by the VOC concentration measuring means may be included.

本発明によれば、高濃度のVOC及び微量の酸素を含む被処理ガス、又は酸素が全く含まれていない高濃度のVOCからなる被処理ガスを酸化分解させて完全に浄化できる蓄熱式燃焼脱臭装置、及びその操業方法を提供できる。   According to the present invention, a regenerative combustion deodorization that can be completely purified by oxidizing and decomposing a gas to be treated containing a high concentration VOC and a small amount of oxygen, or a gas to be treated consisting of a high concentration VOC containing no oxygen at all. A device and a method for operating the device can be provided.

本発明の実施の形態に係る蓄熱式燃焼脱臭装置の概略構成図である。It is a schematic block diagram of the thermal storage type combustion deodorizing apparatus which concerns on embodiment of this invention. 本発明の実施の形態に係る蓄熱式燃焼脱臭装置の変形例を示す概略構成図である。It is a schematic block diagram which shows the modification of the thermal storage type combustion deodorizing apparatus which concerns on embodiment of this invention. 従来の蓄熱式燃焼脱臭装置の概略構成図である。It is a schematic block diagram of the conventional heat storage type combustion deodorizing apparatus. (a)はVOC(トルエン)が空気に混合された被処理ガスの酸化分解反応を示す模式図、(b)は高濃度のVOCを含有する被処理ガスを従来の蓄熱式燃焼脱臭装置で処理した場合の問題点を説明する模式図、(c)は高濃度のVOCを含有する被処理ガスを浄化できる本発明を説明する模式図である。(A) is a schematic diagram showing an oxidative decomposition reaction of a gas to be treated in which VOC (toluene) is mixed with air, and (b) is a gas to be treated containing a high concentration of VOC treated with a conventional heat storage combustion deodorizer. (C) is a schematic diagram explaining this invention which can purify the to-be-processed gas containing a high concentration VOC.

以下、本発明の実施の形態に係る蓄熱式燃焼脱臭装置、及びその操業方法について、添付図面に従って説明する。なお、以下の説明は、本発明の一形態の例示に過ぎず、本発明、その適用物或いはその用途を制限することを意図するものではない。   Hereinafter, a heat storage type combustion deodorization apparatus and an operation method thereof according to embodiments of the present invention will be described with reference to the accompanying drawings. Note that the following description is merely an example of one embodiment of the present invention, and is not intended to limit the present invention, its application, or its use.

本明細書において「酸化性ガス」とは、処理ガス中のVOCを二酸化炭素と水に酸化分解できるガスであり、酸素富化空気、純酸素ガス等を用いることができる。好ましくは大気中に豊富に存在する空気を用いることが望ましい。以下の実施の形態の説明では、酸化性ガスを「補助空気」と記して説明する。   In this specification, the “oxidizing gas” is a gas that can oxidatively decompose VOC in the processing gas into carbon dioxide and water, and oxygen-enriched air, pure oxygen gas, or the like can be used. It is preferable to use air that is abundant in the atmosphere. In the following description of the embodiment, the oxidizing gas is described as “auxiliary air”.

図1は、本実施の形態の蓄熱式燃焼脱臭装置1の概略構成を示す。この蓄熱式燃焼脱臭装置1は、被処理ガスをバーナ2で加熱して該被処理ガス中に含有するVOCを加熱分解(酸化分解)処理する燃焼室3と、該燃焼室3によって加熱された被処理ガスとの熱の授受を行う蓄熱体4が収容されてなる3つの蓄熱室5A,5B,5Cとを備えており、所謂、3塔式の蓄熱式燃焼脱臭装置として構成されている。蓄熱式燃焼脱臭装置1は被処理ガス導入流路14を介して生産プロセス50(例えば化学工場の原料タンクや製品タンク)と連通している。   FIG. 1 shows a schematic configuration of a regenerative combustion deodorizer 1 according to the present embodiment. This regenerative combustion deodorization apparatus 1 is heated by a combustion chamber 3 that heats a gas to be treated by a burner 2 and thermally decomposes (oxidizes and decomposes) VOC contained in the gas to be treated. It is provided with three heat storage chambers 5A, 5B, and 5C in which a heat storage body 4 that transfers heat to and from the gas to be treated is accommodated, and is configured as a so-called three-column heat storage type combustion deodorization apparatus. The regenerative combustion deodorization apparatus 1 communicates with a production process 50 (for example, a raw material tank or a product tank in a chemical factory) via a gas introduction flow path 14 to be processed.

図示するように、本実施の形態の蓄熱式燃焼脱臭装置1の基本構造は、図3で説明した蓄熱式燃焼脱臭装置1´と同じであるので、同一構成部分には同一符号を付して説明を省略する。   As shown in the figure, the basic structure of the regenerative combustion deodorization apparatus 1 of the present embodiment is the same as that of the regenerative combustion deodorization apparatus 1 ′ described in FIG. Description is omitted.

図1に示すように、蓄熱式燃焼脱臭装置1の燃焼室3には、該燃焼室3内の温度を計測する温度計30が備えられている。温度計30は不図示の温度調節計と電気的に接続され、不図示の温度調節計はバーナ2と電気的に接続されている(本図ではこれらの電気的接続を省略している。)。これにより、温度計30にて検出された実測値と不図示の温度調節計に予め設定された上限・下限設定値との偏差に基づいてバーナ2がON/OFF又はターンダウンすることにより燃焼容量が制御され、燃焼室3内の温度が所定温度に保持される。   As shown in FIG. 1, the combustion chamber 3 of the regenerative combustion deodorizer 1 is provided with a thermometer 30 that measures the temperature in the combustion chamber 3. The thermometer 30 is electrically connected to a temperature controller (not shown), and the temperature controller (not shown) is electrically connected to the burner 2 (in the drawing, these electrical connections are omitted). . As a result, the burner 2 is turned on / off or turned down based on the deviation between the actually measured value detected by the thermometer 30 and the upper limit / lower limit set values set in advance in a temperature controller (not shown). Is controlled, and the temperature in the combustion chamber 3 is maintained at a predetermined temperature.

燃焼室3の温度は被処理ガスに含有する溶剤熱量によって次第に上昇する。この状態が続くと、燃焼室3の温度が更に上昇し、蓄熱体4、処理済みガス排気管8、及び第2開閉弁11A,11B,11Cが熱損傷する虞がある。このため、燃焼室3の上部には、当該燃焼室3内の高温の燃焼ガスの一部を大気に放散させるホットバイパス弁34が設けられている。   The temperature of the combustion chamber 3 gradually increases with the amount of solvent heat contained in the gas to be treated. If this state continues, the temperature of the combustion chamber 3 further rises, and the heat storage body 4, the treated gas exhaust pipe 8, and the second on-off valves 11A, 11B, 11C may be thermally damaged. For this reason, a hot bypass valve 34 that dissipates a part of the high-temperature combustion gas in the combustion chamber 3 to the atmosphere is provided in the upper part of the combustion chamber 3.

図示するように、ホットバイパス弁34は処理済みガス排気管8の末端側8´の近傍に設けられており、当該処理済みガス排気管8と連通している。ホットバイパス弁34は、燃焼室3の温度が被処理ガスに含有する溶剤熱量によって燃焼室3の温度が例えば、880℃以上に上昇した場合、ホットバイパス弁34を開き、高温の燃焼ガスの一部を放出口32から処理済みガス排気管8の末端側8´を通じて大気へ放出させ、燃焼室3の温度が過上昇するのを防止する。   As shown in the figure, the hot bypass valve 34 is provided in the vicinity of the terminal side 8 ′ of the treated gas exhaust pipe 8 and communicates with the treated gas exhaust pipe 8. The hot bypass valve 34 opens the hot bypass valve 34 when the temperature of the combustion chamber 3 rises to, for example, 880 ° C. or higher due to the amount of solvent heat contained in the gas to be treated. The portion is discharged from the discharge port 32 to the atmosphere through the end side 8 ′ of the treated gas exhaust pipe 8 to prevent the temperature of the combustion chamber 3 from excessively rising.

次に、本発明の実施の形態に係る蓄熱式燃焼脱臭装置1の特徴について以下に説明する。図1に示すように、蓄熱式燃焼脱臭装置1は、処理済みガス中の残留酸素濃度(燃焼室3内の残留酸素濃度と同義。)を計測するための酸素濃度計(酸素濃度計測手段)40と、VOCの酸化分解に必要な補助空気(酸化性ガス)を燃焼室3内に供給するための給気ノズル(酸化性ガス供給手段)42A,42B,42Cと、給気ノズル42A,42B,42Cから燃焼室3内への補助空気の供給を制御する制御部(制御手段)44を有する。   Next, the features of the regenerative combustion deodorizer 1 according to the embodiment of the present invention will be described below. As shown in FIG. 1, the regenerative combustion deodorization apparatus 1 is an oxygen concentration meter (oxygen concentration measuring means) for measuring the residual oxygen concentration in the treated gas (synonymous with the residual oxygen concentration in the combustion chamber 3). 40, air supply nozzles (oxidizing gas supply means) 42A, 42B, 42C for supplying auxiliary air (oxidizing gas) necessary for oxidative decomposition of VOC into the combustion chamber 3, and air supply nozzles 42A, 42B , 42 </ b> C has a control unit (control means) 44 that controls the supply of auxiliary air into the combustion chamber 3.

酸素濃度計40は例えば、公知のジルコニア式酸素濃度計が用いられる。実施の形態において酸素濃度計40は処理済みガス排気管8の経路に設けられる。酸素濃度計40を設ける位置としては、ホットバイパス弁34の下流側が好ましい。この位置に設けることでホットバイパス弁34が開状態の時に燃焼室3内の残留酸素濃度の挙動(VOC濃度の挙動)も検出でき、実際に大気に放出される処理済みガスの酸素濃度に応じて補助空気の供給量を制御できる。   As the oxygen concentration meter 40, for example, a known zirconia oxygen concentration meter is used. In the embodiment, the oxygen concentration meter 40 is provided in the path of the treated gas exhaust pipe 8. The position where the oxygen concentration meter 40 is provided is preferably on the downstream side of the hot bypass valve 34. By providing at this position, the behavior of the residual oxygen concentration in the combustion chamber 3 (the behavior of the VOC concentration) can also be detected when the hot bypass valve 34 is open, and according to the oxygen concentration of the processed gas that is actually released to the atmosphere. Thus, the supply amount of auxiliary air can be controlled.

給気ノズル42A,42B,42Cはそれぞれ、蓄熱室5A,5B,5Cに対応して蓄熱式燃焼脱臭装置1の周壁部にそれぞれ貫通して設けられている。給気ノズル42A,42B,42Cには給気管45が接続されており、別途設けられた給気ファン46と連通している。給気管45には当該給気管45の流路を開閉可能な開閉弁48A,48B,48Cが介設されている。   The air supply nozzles 42A, 42B, and 42C are respectively provided through the peripheral wall portions of the heat storage combustion deodorizer 1 corresponding to the heat storage chambers 5A, 5B, and 5C. An air supply pipe 45 is connected to the air supply nozzles 42A, 42B, and 42C, and communicates with an air supply fan 46 provided separately. The supply pipe 45 is provided with on-off valves 48A, 48B, and 48C that can open and close the flow path of the supply pipe 45.

なお、給気ノズル42A,42B,42Cのいずれかから燃焼室3内に供給される補助空気は、各蓄熱室5A,5B,5Cに配置された蓄熱体4の直上(即ち、蓄熱式燃焼脱臭装置1の被処理ガス供給工程において、被処理ガスが蓄熱体4を通過した直後の上方空間。)に供給することでVOCの酸化分解反応を確実にできる。   The auxiliary air supplied into the combustion chamber 3 from any one of the supply nozzles 42A, 42B, and 42C is directly above the heat storage body 4 disposed in each of the heat storage chambers 5A, 5B, and 5C (that is, the heat storage type combustion deodorization). In the process gas supply process of the apparatus 1, the VOC oxidative decomposition reaction can be ensured by supplying the process gas to the upper space immediately after the heat storage body 4 passes through.

[発明が解決しようとする課題]で述べたように、高濃度のVOC及び微量の酸素を含む被処理ガス、又は酸素が全く含まれていない高濃度のVOCからなる被処理ガスを従来のように蓄熱式燃焼脱臭装置1の燃焼室3内に供給しても、当該被処理ガスの燃焼反応が十分に進行せず、VOCを含有した処理済みガスを大気に放出させてしまう。このため、本発明の実施の形態に係る蓄熱式燃焼脱臭装置1では、図4(c)に示すように、VOCが酸化分解反応するに必要な酸素、即ち、補助空気を外部から燃焼室3内に供給する構成を有している。補助空気の供給制御は制御部44が実行する。   As described in [Problems to be Solved by the Invention], a gas to be processed including a high concentration VOC and a gas to be processed containing a small amount of oxygen, or a gas to be processed consisting of a high concentration VOC containing no oxygen at all is conventionally used. Even if it is supplied into the combustion chamber 3 of the regenerative combustion deodorizer 1, the combustion reaction of the gas to be treated does not proceed sufficiently, and the treated gas containing VOC is released to the atmosphere. For this reason, in the regenerative combustion deodorization apparatus 1 according to the embodiment of the present invention, as shown in FIG. 4 (c), oxygen necessary for the VOC to undergo an oxidative decomposition reaction, that is, auxiliary air is externally supplied to the combustion chamber 3. It has the structure which supplies in. The control unit 44 executes auxiliary air supply control.

図示するように、制御部44は酸素濃度計40、及び各開閉弁48A,48B,48Cとそれぞれ電気的に接続されている。制御部44は、酸素濃度計40から出力される処理ガス中の酸素濃度を示す信号と後述する制御基準とを比較し、この比較結果に基づいて、各蓄熱室5A,5B,5Cのうち被処理ガス供給工程を実行中のいずれかの蓄熱室側に配置された給気ノズル42A,42B,42Cのうちのいずれかに対応する開閉弁48A,48B,48Cの弁開度を制御する。   As shown in the figure, the control unit 44 is electrically connected to the oximeter 40 and the on-off valves 48A, 48B, and 48C. The control unit 44 compares a signal indicating the oxygen concentration in the processing gas output from the oxygen concentration meter 40 with a control reference to be described later, and based on the comparison result, the heat storage chambers 5A, 5B, 5C are covered. The valve opening degree of the on-off valves 48A, 48B, and 48C corresponding to any one of the air supply nozzles 42A, 42B, and 42C disposed on the side of any one of the heat storage chambers that are executing the processing gas supply process is controlled.

制御部44は、主にCPU、記憶手段等のハードウェア部分と、各開閉弁48A,48B,48Cの弁開度を制御するプログラム等のソフトウェア部分とで構成されている。制御部44には、処理済みガス中の残留酸素濃度を所定濃度範囲に制御するため、制御目標値の上下に予め設定された幅を有する残留酸素濃度の下限値と上限値が設けられた制御基準が予め記憶されている。   The control unit 44 mainly includes hardware parts such as a CPU and storage means, and software parts such as a program for controlling the valve opening degree of each of the on-off valves 48A, 48B, and 48C. The control unit 44 is provided with a lower limit value and an upper limit value of the residual oxygen concentration having a preset width above and below the control target value in order to control the residual oxygen concentration in the processed gas within a predetermined concentration range. The reference is stored in advance.

具体的に、制御基準には、制御目標値として「残留酸素濃度5%」が設定されており、下限値として「残留酸素濃度3%」が、上限値として「残留酸素濃度7%」が設定されている。即ち、処理済みガス中の残留酸素濃度が5%±2%の範囲内に入るよう補助空気の供給を制御する。なお、上述の制御目標値、下限値、及び上限値は一例であり、処理すべき被処理ガスの組成や蓄熱式燃焼脱臭装置1の操業条件に応じて適宜に設定変更できるが、下限値は3%以上の値に設定することが好ましい。なお、処理済みガス中のVOC濃度を測定し、VOCを検出した後に補助空気の供給を実行する方法も考えられるが、この場合、補助空気を供給するまでにVOCが大気に放散されてしまう。このため、処理済みガス中のVOC濃度を測定する場合は、燃焼室3にVOC濃度計測ポートを設けてVOCをサンプリングする形態が好ましい。よって、本実施の形態では、処理済みガス中に酸素が残存していることをもって(図4(c)のXで示した部分)VOCが全量酸化分解したものと見做し、補助空気の供給制御で下限値を設定することで余裕を持たせている(残留酸素濃度が3%を下回ると処理済みガス中にVOCが残存している可能性があることを経験的に知見している。)。このように、本実施の形態では処理済みガス中にVOCが残存しないようにしている。   Specifically, in the control standard, “residual oxygen concentration 5%” is set as the control target value, “residual oxygen concentration 3%” is set as the lower limit value, and “residual oxygen concentration 7%” is set as the upper limit value. Has been. That is, the supply of auxiliary air is controlled so that the residual oxygen concentration in the treated gas falls within the range of 5% ± 2%. The control target value, the lower limit value, and the upper limit value described above are examples, and can be appropriately changed according to the composition of the gas to be treated and the operating conditions of the regenerative combustion deodorizer 1, but the lower limit value is It is preferable to set the value to 3% or more. In addition, although the method of measuring the VOC density | concentration in processed gas and performing supply of auxiliary air after detecting VOC is also considered, VOC will be diffused to air | atmosphere by the time of supplying auxiliary air in this case. For this reason, when measuring the VOC concentration in the treated gas, it is preferable to provide a VOC concentration measurement port in the combustion chamber 3 and sample the VOC. Therefore, in the present embodiment, it is assumed that oxygen remains in the treated gas (portion indicated by X in FIG. 4 (c)) that the VOC has been oxidatively decomposed and the supply of auxiliary air A margin is provided by setting a lower limit value in the control (it has been empirically found that there is a possibility that VOC may remain in the treated gas when the residual oxygen concentration falls below 3%. ). Thus, in this embodiment, VOC is not left in the processed gas.

制御部44は、処理済みガス中の残留酸素濃度の変化に応じて以下のような制御を実行する。
(a)酸素濃度計40の指示値が例えば下限値の3%を下回った場合、開閉弁48A〜48Cのうち該当する開閉弁を制御して該当する給気ノズルから燃焼室3内に補助空気を供給し、処理済みガス中の残留酸素濃度が5%±2%の範囲内に入るよう制御する。
(b)また、例えば、処理済みガス中の残留酸素濃度が5%±2%の範囲内に入った場合や、酸素濃度計40の指示値が例えば上限値の7%を上回った場合、開閉弁48A〜48Cのうち該当する開閉弁を閉止して補助空気の供給を停止、又は該当する開閉弁の弁開度を絞って補助空気の供給量を少なくする。また、上限値は下限値のように余裕を持たせても補助空気の給気管45や給気ファン46が大型化するため10%以下の設定値にするのが好ましい(経験上、処理済みガス中の残留酸素濃度が10%あれば処理済みガス中にVOCが残存している可能性はない。)。
The control unit 44 executes the following control according to the change in the residual oxygen concentration in the treated gas.
(A) When the indicated value of the oxygen concentration meter 40 falls below, for example, 3% of the lower limit value, the corresponding on-off valve among the on-off valves 48A to 48C is controlled to enter the auxiliary air into the combustion chamber 3 from the corresponding supply nozzle. And the residual oxygen concentration in the treated gas is controlled to fall within the range of 5% ± 2%.
(B) Also, for example, when the residual oxygen concentration in the treated gas falls within a range of 5% ± 2%, or when the indicated value of the oxygen concentration meter 40 exceeds, for example, 7% of the upper limit value, the opening / closing is performed. Of the valves 48A to 48C, the corresponding opening / closing valve is closed to stop the supply of auxiliary air, or the opening amount of the corresponding opening / closing valve is reduced to reduce the supply amount of auxiliary air. Further, the upper limit value is preferably set to 10% or less because the auxiliary air supply pipe 45 and the supply fan 46 are enlarged even if there is a margin like the lower limit value (experienced gas has been treated. If the residual oxygen concentration is 10%, there is no possibility that VOC remains in the treated gas.)

なお、被処理ガスは可燃性ガスであるため、被処理ガス供給ファン52、及びファン6は防爆型を用いることが好ましい。   Since the gas to be treated is a combustible gas, it is preferable to use explosion-proof types for the gas to be treated supply fan 52 and the fan 6.

続いて、本発明の実施の形態に係る蓄熱式燃焼脱臭装置1の操業について図1、図4(c)を参照して説明する。なお、本操業例は被処理ガス供給工程、及び処理済みガス排気工程に着目したものであり、蓄熱式燃焼脱臭装置1の「パージ工程」は、図3で説明した蓄熱式燃焼脱臭装置1´と同じであるので、ここでの再度の説明は省略する。また、本操業例では、被処理ガスの一例として、高濃度のVOC及び微量の酸素を含む被処理ガスを例示して説明する。   Subsequently, the operation of the regenerative combustion deodorization apparatus 1 according to the embodiment of the present invention will be described with reference to FIG. 1 and FIG. Note that this operation example focuses on the process gas supply process and the processed gas exhaust process, and the “purge process” of the regenerative combustion deodorization apparatus 1 is the regenerative combustion deodorization apparatus 1 ′ described in FIG. Therefore, the re-explanation here is omitted. In this operation example, as an example of the gas to be processed, a gas to be processed containing a high concentration VOC and a small amount of oxygen will be described as an example.

先ず、蓄熱式燃焼脱臭装置1の燃焼室3がバーナ2により所定温度に昇温されており、しかも、処理すべき被処理ガス量が蓄熱式燃焼脱臭装置1の定格処理量であるとする。   First, it is assumed that the combustion chamber 3 of the regenerative combustion deodorizing apparatus 1 is heated to a predetermined temperature by the burner 2 and the amount of gas to be processed is the rated processing amount of the regenerative combustion deodorizing apparatus 1.

生産プロセス50(例えば化学工場の原料タンクや製品タンク)から供給され、酸素が殆ど含まれていない高濃度のVOC(例えば高濃度のトルエン)を含有する被処理ガスは、被処理ガス供給ファン52から被処理ガス供給弁15を介してファン6の吸い込み側に導入される。そして、ファン6から供給された被処理ガスは、被処理ガス供給管7から3つの蓄熱室5A,5B,5Cのうち前工程で蓄熱されている蓄熱室、例えば5Aに供給された後、当該蓄熱室5Aの蓄熱体4との熱交換により予熱されて燃焼室3に導入される。   A gas to be processed which is supplied from a production process 50 (for example, a raw material tank or a product tank of a chemical factory) and contains a high concentration VOC (for example, a high concentration toluene) containing almost no oxygen is a gas to be processed supply fan 52. To the suction side of the fan 6 through the gas supply valve 15 to be processed. And the to-be-processed gas supplied from the fan 6 is supplied from the to-be-processed gas supply pipe 7 to the heat storage chamber, for example, 5A, in which heat is stored in the previous process among the three heat storage chambers 5A, 5B, 5C. Preheated by heat exchange with the heat storage body 4 of the heat storage chamber 5 </ b> A and introduced into the combustion chamber 3.

そして、燃焼室3で処理され、蓄熱室5Bから処理済みガス排気管8に排気された処理済みガス中の残留酸素濃度が酸素濃度計40で計測される。ここで、酸素濃度計40の指示値が制御基準の下限値である3%を下回っている場合、制御部44は、開閉弁48A〜48Cのうち、例えば開閉弁48Aを制御して給気ノズル42Aから燃焼室3内に補助空気を供給する。   Then, the oxygen concentration meter 40 measures the residual oxygen concentration in the treated gas that has been treated in the combustion chamber 3 and exhausted from the heat storage chamber 5 </ b> B to the treated gas exhaust pipe 8. Here, when the indicated value of the oxygen concentration meter 40 is lower than 3% which is the lower limit value of the control reference, the control unit 44 controls, for example, the on-off valve 48A among the on-off valves 48A to 48C to supply the air supply nozzle. Auxiliary air is supplied into the combustion chamber 3 from 42A.

補助空気の供給により上述の被処理ガス供給工程で燃焼室3に導入された被処理ガス中の高濃度のVOCは、燃焼室3において二酸化炭素と水に酸化分解されて例えば、800℃の処理ガスとなる(図4(c)参照)。   The high-concentration VOC in the gas to be processed introduced into the combustion chamber 3 in the above-mentioned gas supply process by supplying auxiliary air is oxidatively decomposed into carbon dioxide and water in the combustion chamber 3 and processed at, for example, 800 ° C. It becomes gas (see FIG. 4C).

その後、高温の処理ガスは、前工程で被処理ガスとの熱交換により降温し、パージ工程が完了した蓄熱室、例えば5Bを通過し、当該蓄熱室5Bの蓄熱体4と熱交換し、蓄熱体4を約800℃に加熱しながら100℃〜150℃に降温した後、処理済みガス排気管8から大気に放散される。その際、処理済みガス中の残留酸素濃度が酸素濃度計40で計測され、処理済みガス中の残留酸素濃度が制御基準の5%±2%の範囲内に入っていれば、制御部44は、開閉弁48A〜48Cのうち該当する開閉弁を閉止して補助空気の供給を停止する。又は該当する開閉弁の弁開度を絞って補助空気の供給量を少なくする制御を実行する。また、仮に、酸素濃度計40の指示値が制御基準の上限値である7%を上回った場合、制御部44は、開閉弁48A〜48Cのうち該当する開閉弁を閉止して補助空気の供給を停止する。以降、上述の補助空気の供給制御を被処理ガス供給工程が切り換わる毎に実行される。   Thereafter, the high-temperature processing gas is cooled by heat exchange with the gas to be processed in the previous process, passes through the heat storage chamber, for example, 5B, in which the purge process is completed, exchanges heat with the heat storage body 4 of the heat storage chamber 5B, and stores the heat. The temperature of the body 4 is lowered to 100 ° C. to 150 ° C. while being heated to about 800 ° C., and then released from the treated gas exhaust pipe 8 to the atmosphere. At that time, if the residual oxygen concentration in the treated gas is measured by the oxygen concentration meter 40 and the residual oxygen concentration in the treated gas is within the range of 5% ± 2% of the control reference, the control unit 44 Then, the corresponding on-off valves among the on-off valves 48A to 48C are closed to stop the supply of auxiliary air. Or the control which reduces the supply amount of auxiliary air by restricting the valve opening degree of a corresponding on-off valve is executed. In addition, if the indicated value of the oximeter 40 exceeds 7%, which is the upper limit value of the control reference, the control unit 44 closes the corresponding on / off valve among the on / off valves 48A to 48C and supplies auxiliary air. To stop. Thereafter, the above-described auxiliary air supply control is performed every time the process gas supply process is switched.

このように、本発明の実施の形態に係る蓄熱式燃焼脱臭装置1は、酸素が殆ど含まれていない高濃度のVOCを含有する被処理ガスを燃焼処理(酸化分解)することを目的に、補助空気(即ち、VOCが酸化分解反応するに必要な酸素)を外部から燃焼室3内に供給する構成を有している。これにより、高濃度のVOCを含有した被処理ガスを完全に浄化できる。また、処理済みガス排気管8に酸素濃度計40(又はVOC分析計)を設けて処理済みガス中の残留酸素濃度(即ち、VOCの濃度)を計測し、残留酸素濃度が例えば5%±2%の範囲内に入るよう補助空気の供給を制御している。このため、VOCの濃度が変動してもその濃度変化に追随して補助空気を供給でき、VOCの酸化分解を確実にできる。   As described above, the regenerative combustion deodorization apparatus 1 according to the embodiment of the present invention is for the purpose of subjecting a gas to be treated containing high-concentration VOC containing almost no oxygen to combustion treatment (oxidative decomposition). Auxiliary air (that is, oxygen necessary for the VOC to undergo an oxidative decomposition reaction) is supplied from the outside into the combustion chamber 3. Thereby, the to-be-processed gas containing the high concentration VOC can be completely purified. Further, an oxygen concentration meter 40 (or a VOC analyzer) is provided in the treated gas exhaust pipe 8 to measure the residual oxygen concentration (that is, the concentration of VOC) in the treated gas, and the residual oxygen concentration is, for example, 5% ± 2 The supply of auxiliary air is controlled so as to be within the range of%. For this reason, even if the concentration of the VOC fluctuates, the auxiliary air can be supplied following the concentration change, and the oxidative decomposition of the VOC can be ensured.

また、本発明の実施の形態に係る蓄熱式燃焼脱臭装置1は、VOCの酸化分解に必要な補助空気を蓄熱式燃焼脱臭装置1の燃焼室3内に直接投入するので、被処理ガスに大気を混合(被処理ガスを大気で希釈)した後、蓄熱式燃焼脱臭装置1に導入する形態と比較すると、設備全体が大型化することなくファン6の容量も小さくでき、イニシャルコスト及びランニングコストを低減できる。   In addition, the regenerative combustion deodorization apparatus 1 according to the embodiment of the present invention directly inputs auxiliary air necessary for the oxidative decomposition of VOCs into the combustion chamber 3 of the regenerative combustion deodorization apparatus 1, so Compared with the configuration in which the gas is mixed (diluted gas to be treated in the atmosphere) and then introduced into the regenerative combustion deodorizer 1, the capacity of the fan 6 can be reduced without increasing the size of the entire facility, and the initial cost and running cost can be reduced. Can be reduced.

さらに、補助空気は、各蓄熱室5A,5B,5Cのうち被処理ガス供給工程を実行中のいずれかの蓄熱室の上方空間に供給されるため、燃焼室3内全体に補助空気を供給する形態と比較すると、VOCの酸化分解反応の促進が確実になる。   Further, since the auxiliary air is supplied to the upper space of any one of the heat storage chambers 5A, 5B, and 5C that is performing the process gas supply process, the auxiliary air is supplied to the entire combustion chamber 3. Compared with the form, the promotion of the oxidative decomposition reaction of VOC is ensured.

上述した本発明の実施の形態に係る蓄熱式燃焼脱臭装置1では、蓄熱室5A,5B,5Cに対応する蓄熱式燃焼脱臭装置1の周壁部に給気ノズル42A,42B,42C貫通して設け、当該給気ノズル42A,42B,42Cから補助空気を蓄熱式燃焼脱臭装置1の燃焼室3内に供給する形態を例示したが、本発明はこのような形態に限るものでない。例えば、給気ノズル42A,42B,42Cを削除し、給気管45の末端(給気管45の流れ方向下流側端部)を、被処理ガス供給管7における第1開閉弁10A,10B,10Cの下流側に接続して補助空気を供給してもよい。   In the heat storage type combustion deodorization apparatus 1 according to the embodiment of the present invention described above, the supply nozzles 42A, 42B, 42C are provided through the peripheral wall portion of the heat storage type combustion deodorization apparatus 1 corresponding to the heat storage chambers 5A, 5B, 5C. In the above embodiment, the auxiliary air is supplied from the supply nozzles 42A, 42B, and 42C into the combustion chamber 3 of the regenerative combustion deodorizer 1. However, the present invention is not limited to such a configuration. For example, the supply nozzles 42A, 42B, 42C are deleted, and the end of the supply pipe 45 (the downstream end in the flow direction of the supply pipe 45) is connected to the first on-off valves 10A, 10B, 10C in the gas supply pipe 7 to be processed. Auxiliary air may be supplied by connecting to the downstream side.

また、図2に示すように、給気ノズル42A,42B,42Cに代えてバーナ2を用い、バーナ2の燃焼用空気供給源22から燃焼用空気供給経路24を介して供給される燃焼用空気を補助空気として燃焼室3内に供給することも可能である。即ち、この変形例の場合、蓄熱式燃焼脱臭装置1の被処理ガス供給工程では、燃焼室3内が所定温度に昇温してバーナ2は稼働していないため、当該バーナ2を給気ノズル42A,42B,42Cとして、また、バーナ2の燃焼用空気供給源22を補助空気の供給源として転用でき、制御部44を設けて開閉弁20A〜20Cの弁開度を制御する構成以外は既存の蓄熱式燃焼脱臭装置1の機器を用いることができる。また、常温の補助空気を燃焼室3内に供給した際、燃焼室3内の温度保持に影響が出る場合は、補助空気を予熱する手段を別途設けてもよい。   Further, as shown in FIG. 2, combustion air supplied from the combustion air supply source 22 of the burner 2 via the combustion air supply path 24 using the burner 2 instead of the supply nozzles 42A, 42B, 42C. Can also be supplied into the combustion chamber 3 as auxiliary air. That is, in the case of this modification, in the process gas supply process of the regenerative combustion deodorizer 1, the temperature in the combustion chamber 3 is raised to a predetermined temperature and the burner 2 is not operating. 42A, 42B, and 42C, and the combustion air supply source 22 of the burner 2 can be diverted as an auxiliary air supply source, and the control unit 44 is provided to control the valve openings of the on-off valves 20A to 20C. The apparatus of the heat storage type combustion deodorizing apparatus 1 can be used. In addition, when normal temperature auxiliary air is supplied into the combustion chamber 3, if the temperature maintenance in the combustion chamber 3 is affected, a means for preheating the auxiliary air may be separately provided.

本実施の形態では、酸素濃度計40を処理済みガス排気管8の経路に設けて処理済みガス中の残留酸素濃度を計測する形態を例示したが、これに限らず、酸素濃度計40に代えてVOC分析計を設けて処理済みガス中のVOC濃度を計測して燃焼室3内に補助空気を供給してもよい。また、本実施の形態では、酸素濃度計40(又はVOC分析計)を処理済みガス排気管8の経路に設けて処理済みガス中の残留酸素濃度(即ち、VOCの濃度)を計測する形態を例示したが、処理済みガス排気管8の経路に代えて、燃焼室3に酸素濃度計測ポートを設けてVOCが酸化分解した後のガスをサンプリングする形態でも本発明を実施できる。   In the present embodiment, the oxygen concentration meter 40 is provided in the path of the processed gas exhaust pipe 8 to measure the residual oxygen concentration in the processed gas. However, the present invention is not limited to this, and the oxygen concentration meter 40 is used instead. A VOC analyzer may be provided to measure the VOC concentration in the treated gas and supply auxiliary air into the combustion chamber 3. In the present embodiment, an oxygen concentration meter 40 (or VOC analyzer) is provided in the route of the treated gas exhaust pipe 8 to measure the residual oxygen concentration in the treated gas (that is, the concentration of VOC). Although exemplified, the present invention can also be implemented in the form of sampling the gas after the VOC is oxidatively decomposed by providing an oxygen concentration measurement port in the combustion chamber 3 instead of the route of the treated gas exhaust pipe 8.

本実施の形態では、高濃度のVOC及び微量の酸素を含む被処理ガス、又は酸素が全く含まれていない高濃度のVOCからなる被処理ガスを燃焼処理(酸化分解)するため、前工程で被処理ガスが通過した蓄熱体4にパージガスを供給し、当該蓄熱体の内部に残留している有機化合物を含む被処理ガスを除去することが望ましいが、このパージの機構自体は必須の構成ではない。   In the present embodiment, a gas to be processed containing a high concentration VOC and a very small amount of oxygen, or a gas to be processed consisting of a high concentration VOC containing no oxygen at all is subjected to combustion treatment (oxidative decomposition). It is desirable to supply a purge gas to the heat storage body 4 through which the gas to be processed has passed and to remove the gas to be processed including the organic compound remaining in the heat storage body. However, the purge mechanism itself is an essential configuration. Absent.

なお、本実施の形態においては、3塔式の蓄熱式燃焼脱臭装置を例示して説明したが、本発明はこれに限定されるものではなく、2つの蓄熱室を有する2塔式の蓄熱式燃焼脱臭装置にも適用可能である。また、本実施の形態のように、必ずしも各蓄熱室毎に複数の開閉弁を設ける必要はなく、例えば、1つの回転式の切り換え弁(分配弁)で複数の蓄熱室から所望の蓄熱室に接続を切り換える回転切り換え弁タイプの蓄熱式燃焼脱臭装置にも適用可能である。また、本実施の形態では、被処理ガスの一例として「高濃度のVOC及び微量の酸素を含む被処理ガス」、又は「酸素が全く含まれていない高濃度のVOCからなる被処理ガス」を例示した。本発明は、上述した自己燃焼が不可能な被処理ガスのほか、例えば何らかの要因で一酸化炭素を含有する被処理ガスや、燃焼したとしても処理済みガス中の残留酸素濃度が3%を下回るような被処理ガスであっても燃焼処理(酸化分解)することが可能である。   In the present embodiment, a three-column heat storage type combustion deodorization apparatus has been described as an example. However, the present invention is not limited to this, and a two-column type heat storage type having two heat storage chambers. It can also be applied to a combustion deodorization apparatus. In addition, as in the present embodiment, it is not always necessary to provide a plurality of on-off valves for each heat storage chamber. For example, from a plurality of heat storage chambers to a desired heat storage chamber with one rotary switching valve (distribution valve). The present invention can also be applied to a rotation switching valve type regenerative combustion deodorization device that switches connections. In the present embodiment, as an example of the gas to be processed, “a gas to be processed containing a high concentration VOC and a small amount of oxygen” or “a gas to be processed consisting of a high concentration VOC that does not contain any oxygen” is used. Illustrated. In the present invention, in addition to the above-mentioned gas to be processed that cannot be self-combusted, for example, the gas to be processed containing carbon monoxide for some reason, or even if burned, the residual oxygen concentration in the processed gas is less than 3%. Even such a gas to be treated can be subjected to combustion treatment (oxidative decomposition).

1 蓄熱式燃焼脱臭装置、2 バーナ、3 燃焼室、4 蓄熱体、5A〜5C 蓄熱室、6 ファン、7 被処理ガス供給管、8 処理済みガス排気管、8´ (処理済みガス排気管8の)末端側、9 パージガス抽出管、14 被処理ガス導入流路、20A〜20C 開閉弁、22 燃焼用空気供給源、24 燃焼用空気供給経路、40 酸素濃度計(酸素濃度計測手段)、42A〜42C 給気ノズル(酸化性ガス供給手段)、44 制御部(制御手段)、45 給気管、46 給気ファン、48A〜48C 開閉弁(酸化性ガス供給手段の一部)   DESCRIPTION OF SYMBOLS 1 Thermal storage combustion deodorizing device, 2 burner, 3 combustion chamber, 4 thermal storage body, 5A-5C thermal storage chamber, 6 fan, 7 to-be-processed gas supply pipe, 8 processed gas exhaust pipe, 8 '(processed gas exhaust pipe 8 ) Terminal side, 9 Purge gas extraction pipe, 14 Processed gas introduction flow path, 20A-20C on-off valve, 22 Combustion air supply source, 24 Combustion air supply path, 40 Oxygen concentration meter (oxygen concentration measurement means), 42A ˜42C Air supply nozzle (oxidizing gas supply means), 44 Control unit (control means), 45 Air supply pipe, 46 Air supply fan, 48A to 48C Open / close valve (part of oxidizing gas supply means)

Claims (7)

バーナを備えた燃焼室と、
前記燃焼室にそれぞれ連通すると共に、蓄熱体をそれぞれ配置した少なくとも2つ以上の蓄熱室と、
流体供給源から供給される被処理ガスを前記蓄熱室のうち前工程で蓄熱されている蓄熱室に通過させて当該蓄熱室の蓄熱体との熱交換により予熱し、前記燃焼室へ供給する被処理ガス供給流路と、
前記燃焼室で加熱分解処理された処理済みガスを前記蓄熱室のうち前工程で前記被処理ガスとの熱交換により降温した蓄熱室に通過させて当該蓄熱室の蓄熱体との熱交換により降温させて排気する処理済みガス排気流路と、
前記各蓄熱室間で前記被処理ガスの供給、前記処理済みガスの排気を順次切り換える流路切り換え機構とを備えた蓄熱式燃焼脱臭装置において、
前記処理済みガス排気流路に設けられ、前記処理済みガス中の残留酸素濃度を計測する酸素濃度計測手段と、
前記被処理ガスの燃焼を促進するための酸化性ガスを前記燃焼室内に供給する酸化性ガス供給手段と、
前記酸素濃度計測手段により計測された前記処理済みガス中の残留酸素濃度と、予め定められた基準値との比較結果に基づき、前記残留酸素濃度が前記基準値内となるよう前記酸化性ガス供給手段を制御する制御手段とを備え
前記酸化性ガス供給手段は前記各蓄熱室に対応して設けられており、
前記制御手段は、前記被処理ガスが前記燃焼室へ供給される被処理ガス供給工程を実行中の蓄熱室側に設けられた前記酸化性ガス供給手段を制御することを特徴とする蓄熱式燃焼脱臭装置。
A combustion chamber with a burner;
And at least two or more heat storage chambers each communicating with the combustion chamber and each having a heat storage body disposed therein;
A gas to be treated supplied from a fluid supply source is passed through the heat storage chamber of the heat storage chamber where heat is stored in the previous step, preheated by heat exchange with the heat storage body of the heat storage chamber, and supplied to the combustion chamber. A processing gas supply channel;
The treated gas that has been thermally decomposed in the combustion chamber is passed through the heat storage chamber that has been cooled by heat exchange with the gas to be treated in the previous step in the heat storage chamber, and the temperature is decreased by heat exchange with the heat storage body of the heat storage chamber. A treated gas exhaust passage for exhausting
In the regenerative combustion deodorization apparatus comprising a flow path switching mechanism for sequentially switching between supply of the gas to be treated and exhaust of the treated gas between the heat storage chambers,
An oxygen concentration measuring means provided in the treated gas exhaust passage for measuring a residual oxygen concentration in the treated gas;
An oxidizing gas supply means for supplying an oxidizing gas for accelerating combustion of the gas to be treated into the combustion chamber;
Based on the comparison result between the residual oxygen concentration in the treated gas measured by the oxygen concentration measuring means and a predetermined reference value, the oxidizing gas supply is performed so that the residual oxygen concentration is within the reference value. Control means for controlling the means ,
The oxidizing gas supply means is provided corresponding to each of the heat storage chambers,
The control means controls the oxidizing gas supply means provided on the side of the heat storage chamber that is executing the process gas supply process in which the gas to be processed is supplied to the combustion chamber. Deodorizing device.
前記酸素濃度計測手段に代えて、前記処理済みガス中のVOC濃度を計測するVOC濃度計測手段を備える請求項1に記載の蓄熱式燃焼脱臭装置。   The regenerative combustion deodorization apparatus according to claim 1, further comprising a VOC concentration measuring unit that measures a VOC concentration in the treated gas instead of the oxygen concentration measuring unit. 前記酸化性ガスは、前記被処理ガスが前記燃焼室へ供給される被処理ガス供給工程を実行中の蓄熱室に配置されている前記蓄熱体の上方空間に供給される請求項1又は請求項2に記載の蓄熱式燃焼脱臭装置。The said oxidizing gas is supplied to the upper space of the said thermal storage body arrange | positioned in the thermal storage chamber which is performing the to-be-processed gas supply process by which the said to-be-processed gas is supplied to the said combustion chamber. 2. The regenerative combustion deodorization apparatus according to 2. 前記酸化性ガス供給手段を前記各蓄熱室の被処理ガス供給流路に接続し、被処理ガス供給工程を実行中の蓄熱室の被処理ガス供給流路内に前記酸化性ガスを供給する請求項1又は請求項2に記載の蓄熱式燃焼脱臭装置。The oxidant gas supply means is connected to the gas supply flow path of each heat storage chamber, and the oxidant gas is supplied into the gas supply flow path of the heat storage chamber performing the gas supply process. The regenerative combustion deodorizer according to claim 1 or 2. 前記酸化性ガスは、前記バーナの燃焼用空気供給経路から前記バーナを介して供給される燃焼用空気である請求項1又は請求項2に記載の蓄熱式燃焼脱臭装置。The regenerative combustion deodorization apparatus according to claim 1 or 2, wherein the oxidizing gas is combustion air supplied from a combustion air supply path of the burner via the burner. バーナを備えた燃焼室と、A combustion chamber with a burner;
前記燃焼室にそれぞれ連通すると共に、蓄熱体をそれぞれ配置した少なくとも2つ以上の蓄熱室と、And at least two or more heat storage chambers each communicating with the combustion chamber and each having a heat storage body disposed therein;
流体供給源から供給される被処理ガスを前記蓄熱室のうち前工程で蓄熱されている蓄熱室に通過させて当該蓄熱室の蓄熱体との熱交換により予熱し、前記燃焼室へ供給する被処理ガス供給流路と、A gas to be treated supplied from a fluid supply source is passed through the heat storage chamber of the heat storage chamber where heat is stored in the previous step, preheated by heat exchange with the heat storage body of the heat storage chamber, and supplied to the combustion chamber. A processing gas supply channel;
前記燃焼室で加熱分解処理された処理済みガスを前記蓄熱室のうち前工程で前記被処理ガスとの熱交換により降温した蓄熱室に通過させて当該蓄熱室の蓄熱体との熱交換により降温させて排気する処理済みガス排気流路と、The treated gas that has been thermally decomposed in the combustion chamber is passed through the heat storage chamber that has been cooled by heat exchange with the gas to be treated in the previous step in the heat storage chamber, and the temperature is decreased by heat exchange with the heat storage body of the heat storage chamber. A treated gas exhaust passage for exhausting
前記各蓄熱室間で前記被処理ガスの供給、前記処理済みガスの排気を順次切り換える流路切り換え機構と、A flow path switching mechanism for sequentially switching between supply of the gas to be processed and exhaust of the processed gas between the heat storage chambers;
前記各蓄熱室に対応して設けられ、前記被処理ガスの燃焼を促進するための酸化性ガスを前記燃焼室内に供給する酸化性ガス供給手段とを備えた蓄熱式燃焼脱臭装置の操業方法であって、An operation method of a regenerative combustion deodorization apparatus provided corresponding to each heat storage chamber and provided with an oxidizing gas supply means for supplying an oxidizing gas for promoting combustion of the gas to be treated into the combustion chamber. There,
前記酸素濃度計測手段により前記処理済みガス中の残留酸素濃度を計測するステップと、Measuring the residual oxygen concentration in the treated gas by the oxygen concentration measuring means;
前記ステップで計測された前記処理済みガス中の残留酸素濃度と予め定められた基準値とを比較するステップと、Comparing the residual oxygen concentration in the treated gas measured in the step with a predetermined reference value;
前記ステップでの比較結果に基づき、前記残留酸素濃度が前記基準値内となるよう前記酸化性ガス供給手段による前記酸化性ガスの供給を制御するステップと、Controlling the supply of the oxidizing gas by the oxidizing gas supply means so that the residual oxygen concentration is within the reference value based on the comparison result in the step;
前記被処理ガスが前記燃焼室へ供給される被処理ガス供給工程を実行中の蓄熱室側に設けられた前記酸化性ガス供給手段を制御するステップとを含む蓄熱式燃焼脱臭装置の操業方法。And a step of controlling the oxidizing gas supply means provided on the side of the heat storage chamber that is performing the process gas supply step in which the gas to be processed is supplied to the combustion chamber.
前記酸素濃度計測手段により前記処理済みガス中の残留酸素濃度を計測するステップに代えて、VOC濃度計測手段により前記処理済みガス中のVOC濃度を計測するステップを有する請求項6に記載の蓄熱式燃焼脱臭装置の操業方法。The heat storage type according to claim 6, further comprising a step of measuring a VOC concentration in the treated gas by a VOC concentration measuring means instead of a step of measuring a residual oxygen concentration in the treated gas by the oxygen concentration measuring means. Operation method of combustion deodorization device.
JP2015102639A 2015-05-20 2015-05-20 Thermal storage type combustion deodorization apparatus and its operation method Active JP6275666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015102639A JP6275666B2 (en) 2015-05-20 2015-05-20 Thermal storage type combustion deodorization apparatus and its operation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015102639A JP6275666B2 (en) 2015-05-20 2015-05-20 Thermal storage type combustion deodorization apparatus and its operation method

Publications (2)

Publication Number Publication Date
JP2016217620A JP2016217620A (en) 2016-12-22
JP6275666B2 true JP6275666B2 (en) 2018-02-07

Family

ID=57580754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015102639A Active JP6275666B2 (en) 2015-05-20 2015-05-20 Thermal storage type combustion deodorization apparatus and its operation method

Country Status (1)

Country Link
JP (1) JP6275666B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107642789B (en) * 2017-09-26 2023-07-14 江苏中圣高科技产业有限公司 Graded air distribution type heat accumulating incinerator
JP7034366B1 (en) * 2021-10-25 2022-03-11 中外炉工業株式会社 Thermal storage type combustion deodorizer

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2719447B2 (en) * 1991-02-12 1998-02-25 株式会社神戸製鋼所 Supply method of secondary combustion air to refuse incinerator in refuse incineration equipment
JPH1047636A (en) * 1996-07-29 1998-02-20 Chugai Ro Co Ltd Heat storage type deodorizer
JP2001201030A (en) * 2000-01-17 2001-07-27 Fuji Kikai Kk Incinerator and its operation method
JP3842948B2 (en) * 2000-03-27 2006-11-08 三菱重工業株式会社 Waste decomposition equipment
JP2002286217A (en) * 2001-03-28 2002-10-03 Fuji Kikai Kk Incinerator
JP2003336821A (en) * 2002-05-15 2003-11-28 Kubota Corp Melting facility
JP2007283182A (en) * 2006-04-14 2007-11-01 Fujimori Kogyo Co Ltd Device and method for treating volatile organic compound
JP5350977B2 (en) * 2009-10-29 2013-11-27 中外炉工業株式会社 Multi-component volatile organic solvent combustion detoxification method and apparatus
JP5468359B2 (en) * 2009-11-10 2014-04-09 中外炉工業株式会社 Thermal storage combustion deodorizer
JP2013092280A (en) * 2011-10-25 2013-05-16 Fujimori Kogyo Co Ltd Heat utilization device for voc treatment device

Also Published As

Publication number Publication date
JP2016217620A (en) 2016-12-22

Similar Documents

Publication Publication Date Title
KR20070090000A (en) Fuel cell heating device and method for operating said fuel cell heating device
JP6275666B2 (en) Thermal storage type combustion deodorization apparatus and its operation method
JP2018013316A (en) Exhaust gas treatment facility and exhaust gas treatment method
JP2007099927A (en) Tar cracking system and cracking method
JP5478007B2 (en) Heat treatment system
CZ363398A3 (en) Regenerative oxidation apparatus
JPH07204883A (en) Device for purifying soldering atmosphere
JP4919781B2 (en) Purification device and purification method
JP5767204B2 (en) Detoxification treatment apparatus and detoxification treatment method
CN104411808A (en) Coal deactivation processing device
JP2009154091A (en) Exhaust gas treatment apparatus, exhaust gas treating method, and thin film forming device
KR20120124092A (en) Highly Effective Regenerative Catalyst Oxidizer Including Auxiliary Catalyst
JP3961441B2 (en) Soil treatment method and apparatus
JP2008105892A (en) Stopping method for fuel reformer
JP3844569B2 (en) Operation method of dry exhaust gas treatment equipment
JP5647776B2 (en) Gas carburizing equipment
JP2003139316A (en) Heat storage type volatile organic compound treatment device and treatment method
JP2001349534A (en) Method of operating regenerative combustion type exhaust gas treating device
CN114272751B (en) Processing system for low-concentration VOCs in sealed space and processing method based on system
JP2000035210A (en) Heat storage combustion type gas treating device
KR20040096884A (en) Regenerative thermal oxidizer with different number of in/out bed
US20240096649A1 (en) Semiconductor process system and gas treatment method
KR101324203B1 (en) Highly Effective Regenerative Thermal Oxidizer with Flow Balance
JP4914748B2 (en) Thermal storage deodorizer
JP2003336823A (en) Detoxifying device and its evaluating method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170209

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171128

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171130

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180110

R150 Certificate of patent or registration of utility model

Ref document number: 6275666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250