JP6275434B2 - 電極電位マッピング - Google Patents

電極電位マッピング Download PDF

Info

Publication number
JP6275434B2
JP6275434B2 JP2013197927A JP2013197927A JP6275434B2 JP 6275434 B2 JP6275434 B2 JP 6275434B2 JP 2013197927 A JP2013197927 A JP 2013197927A JP 2013197927 A JP2013197927 A JP 2013197927A JP 6275434 B2 JP6275434 B2 JP 6275434B2
Authority
JP
Japan
Prior art keywords
mesh
instrument
potential
electrode
map
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013197927A
Other languages
English (en)
Other versions
JP2014064922A (ja
Inventor
ファディ・マサルワ
イド・イラン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Biosense Webster Israel Ltd
Original Assignee
Biosense Webster Israel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Biosense Webster Israel Ltd filed Critical Biosense Webster Israel Ltd
Publication of JP2014064922A publication Critical patent/JP2014064922A/ja
Application granted granted Critical
Publication of JP6275434B2 publication Critical patent/JP6275434B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • A61B5/0538Measuring electrical impedance or conductance of a portion of the body invasively, e.g. using a catheter
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0033Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room
    • A61B5/004Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part
    • A61B5/0044Features or image-related aspects of imaging apparatus classified in A61B5/00, e.g. for MRI, optical tomography or impedance tomography apparatus; arrangements of imaging apparatus in a room adapted for image acquisition of a particular organ or body part for the heart
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/367Electrophysiological study [EPS], e.g. electrical activation mapping or electro-anatomical mapping
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • A61B5/062Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body using magnetic field
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/06Devices, other than using radiation, for detecting or locating foreign bodies ; determining position of probes within or on the body of the patient
    • A61B5/061Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body
    • A61B5/063Determining position of a probe within the body employing means separate from the probe, e.g. sensing internal probe position employing impedance electrodes on the surface of the body using impedance measurements
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/327Generation of artificial ECG signals based on measured signals, e.g. to compensate for missing leads

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Cardiology (AREA)
  • Physiology (AREA)
  • Measurement And Recording Of Electrical Phenomena And Electrical Characteristics Of The Living Body (AREA)

Description

本発明は全般にグラフィックディスプレイに関するものであり、特に、電気生理データをマップで表示することに関する。
心臓などの器官に対する医療処置中に、器官の電気活性をマップすることが重要となる場合がある。マッピングの精度を向上させるシステムがあれば有利であろう。
本発明の一実施形態は、電極電位マップを形成するための方法を提供すし、該方法は、
人体器官の表面上の点の位置を測定することと、
点のサブセットの電気的ポテンシャルを測定することと、
点どうしを結合する線分にそれぞれの抵抗を割り当ててレジスタメッシュを定義することと、
測定された電気的ポテンシャルに応答してレジスタメッシュに調和関数を適用して、表面の電極電位マップを生成することと、を含む。
人体器官は典型的にヒト被検者の心臓から構成され、電極電位マップには心臓の局所興奮時間と関連したそれぞれのポテンシャルのマップが包含される。
開示された実施形態において、位置を測定することが、人体器官にプローブを挿入することと、表面に接触するプローブの遠位端を追跡することと、を含む。遠位端はその場所に位置するトラッキングコイルを含んでいてもよく、遠位端を追跡することが、トラッキングコイルからの信号を受信し分析することを含んでいてもよい。別の方法として又は付加的に、遠位端がその場所に接続された電極を有し、電気的ポテンシャルを測定することが、電極を使用して電気的ポテンシャルを測定することを含む。遠位端を追跡することが、電極と、人体器官を有するヒト被験者の皮膚に接続された電極との間のインピーダンスを測定することを含む。
更に開示された実施形態において、この方法は、線分を三角形メッシュとして形成することを含む。
更に他の開示された実施形態において、それぞれの抵抗を割り当てることは、それぞれの抵抗をそれぞれの長さに正比例するように割り当てることを含む。
代替実施形態において、調和関数を適用することは、レジスタメッシュにキルヒホッフの回路法則を適用することを含み得る。キルヒホッフの回路法則は典型的に、キルヒホッフの電流法則から構成される。電極電位マップを生成することは、キルヒホッフの回路法則を使用して、サブセット内に存在しない表面上の電気的ポテンシャルを定量することを含む。
本発明の一実施形態に従って電極電位マップを形成するための器具が、更に提供され、該期間が、
人体器官の表面上の点の位置を測定して、
点のサブセットの電気的ポテンシャルを測定するように構成されたプローブと、
点どうしを結合する線分にそれぞれの抵抗を割り当ててレジスタメッシュを定義して、
測定された電気的ポテンシャルに応答してレジスタメッシュに調和関数を適用して、表面の電極電位マップを生成するように構成されたプロセッサと、を具備する。
本開示は、以下のより詳細な実施形態と、その図面の記述により、より完全に理解され得る。
本発明の実施形態による、電気生理学的マッピングシステムの概略図。 本発明の実施形態による、心臓における位置及びポテンシャルの測定から導き出された初期中間マップのセクションの概略図。 本発明の一実施形態による、メッシュサブセクションの拡大概略図。 本発明の一実施形態による、レジスタメッシュの一部の模式図。 本発明の一実施形態による、電気生理学的マップを生成するための手順で実行される工程のフローチャート。
概論
本発明の一実施形態は、人体器官の表面の、典型的には、ヒト被検者の心臓の、電極電位マップを形成する。マップを形成するために、典型的にはカテーテルプローブの遠位端を用いて点の表面に接触するという手順で、器官の表面上の点の座標を判別する。加えて、典型的には手順の間に、遠位端の電極は、点のサブセットの電気的ポテンシャルを測定する。
プロセッサは、点をメッシュ(典型的には、点どうしを結合した線分からなる三角形メッシュ)の形状にする。プロセッサはメッシュを小さいコンポーネントに細分化できる。例えば、メッシュが三角形メッシュである場合、その三角形を小さい三角形に分割すると、それに応じて、短尺化された線分によってより小さい三角形が形成され得る。プロセッサは、典型的には線分の長さに直接(正)比例するそれぞれの抵抗を各線分に割り当てて、レジスタメッシュを形成する。レジスタメッシュは、プロセッサで生成されたメッシュ(即ち、細分されたメッシュ)と1対1に対応する。
プロセッサは、レジスタメッシュに調和関数を適用する。調和関数を適用することは通常、少なくとも1つのキルヒホッフの回路法則(典型的には電流法則)をレジスタメッシュに適用することを含む。プロセッサはアプリケーションを使用することによって、座標が測定された点(ただし、ポテンシャルが測定された点を含んだサブセットの一部でない点)に対応するレジスタ頂点のポテンシャルを評価できる。プロセッサは、定量されたポテンシャル及び測定されたポテンシャルを併用して、器官の表面の電極電位マップを生成する。プロセッサは典型的に、ポテンシャルどうしの間を補間し、最終的なマップを形成する。
本明細書に記載されているように、調和関数を適用すれば(例えば、キルヒホッフの回路法則を適用すれば)電極電位マップを形成することが、先行技術マッピングシステムによって形成される電極電位マップよりも高精度なマップが得られると、発明者は考えている。
システムの説明
本発明の実施形態による電気生理学的マッピングシステム20の概略図である、図1を参照する。本明細書に記載されているシステム20によってマップされるパラメータの例は、心臓内心電図(ECG)のポテンシャルと時間の関係から導出される局所興奮時間(LAT)と関連した電極電位を含むものと想定される。LAT及びその関連するポテンシャルの測定及び使用は電気生理学の技術分野において周知であり、本明細書中ではLATに関連するポテンシャルに記号VLATを割り当てている。ただし、システム20は、あらゆるヒトもしくは動物性器官に対して、実質的にあらゆる電極電位パラメータ、又はそのようなパラメータの組み合わせをマップするように構成でき、システムはマッピングVLATに制限されない。
簡素化及び明確化のために、以下の説明は、特に明記する場合を除き、システム20がプローブ24を使用して、本明細書では心臓を含むと考えられる、人体器官34からの電気信号を感知する、調査的処置を想定する。プローブの遠位端32は、信号を感知するための遠位端に接続された電極22を有すると想定される。当業者であれば、この記述を、1つ以上の電極を有し得る複数のプローブ、もしくは複数の電極を有する1つのプローブに関して、並びに、心臓以外の臓器によって生成される信号に関して、適応させることが可能であろう。
プローブ24は典型的には、システム20のユーザー28がマッピング手順を実行している間にヒト被験者26の体内に挿入される、カテーテルを具備する。本明細書の説明において、ユーザー28は、一例として、医療専門家であると想定される。手技の間、被験者26は接地電極23に接続されると想定される。加えて、電極29が、心臓34の領域にて被験者26の皮膚に取り付けられると想定される。
システム20は、システムプロセッサ40によって制御されてもよく、システムプロセッサ40は、メモリ44と通信する処理装置42を具備している。プロセッサ40は通常、制御卓46内に搭載されており、制御卓46は、通常はマウス又はトラックボールなどのポインティングデバイス39を有する操作制御部38を備え、専門家28はこの操作制御部38を使用してプロセッサと相互作用する。プロセッサ40によって実施された演算の結果が、専門家に向けて画面48上に提示され、この画面は3次元(3D)電気生理学的マップ50を表示する。本明細書においてマップ50は結果マップ50とも呼ばれ、以下に詳述されている中間マップ又はメッシュとは区別され、そのプロセッサ40はマップ50の生成に使用できる。結果マップ50は、本明細書に記載されている実施例において、基準座標系(frame of reference)58を基準に描画された心臓34の電気生理学的パラメータ(即ち、VLAT)の値を示す。典型的には、専門家28によって使用されるカテーテルの位置等、心臓が検査されている間、心臓に関する補助情報の他の項目52が画面に表示される。
専門家28は、ポインティングデバイス39を使用して、基準座標系のパラメータを変動させ、選択された方向かつ/又は選択された拡大倍率で結果マップを表示できる。
画面48はまた典型的に、ユーザーに対するグラフィックユーザーインターフェースであり、及び/又は電極22によって感知されたECG信号の視覚的表示でもある。
プロセッサ40は、メモリ44内に格納される、プローブ経路指定モジュール30及びECGモジュール36を含むソフトウェアを使用して、システム20を動作させる。ソフトウェアは、例えばネットワークを通して電子形式でプロセッサ40にダウンロードされてもよいし、あるいは代替的又は追加的に、磁気、光学、又は電子的メモリ等の持続的な有形媒体に提供及び/又は格納されてもよい。
ECGモジュール36は電極22及び電極29からの電気信号を受信するよう連結されている。このモジュールは、信号を解析するように構成され、画面48上に、標準的なECG形式で、典型的には、時間と共に変動する図形表現で、解析の結果を提示することができる。
プローブ追跡モジュール30は、プローブが被験者26の体内にある間にプローブ24の各区間を追跡する。追跡モジュールは通常、被験者26の心臓内における、プローブ24の遠位端部32の位置と向きの両方を追跡する。いくつかの実施形態において、モジュール30はプローブの他の区間を追跡する。追跡モジュールは、当該技術分野において既知であるいずれのプローブ追跡方法を用いてもよい。例えば、磁場発信器からの磁場が、追跡対象の遠位端32などのプローブの各区間内に配置された追跡コイルと相互作用するように、被験者の付近でモジュール30が磁場発信器を作動できる。磁場と相互作用するコイルは、モジュールに伝送される信号を生成し、モジュールはその信号を解析して、コイルの位置及び向きを決定する。(簡潔にするため、そのようなコイル及び発信器は図1には示されていない。)Biosense Webster(Diamond Bar,CA)により生産されるCarto(登録商標)システムはこのような追跡方法を用いている。あるいは、又はそれに加えて、追跡モジュール30は、電極23、電極29、及び電極22の間のインピーダンス、並びに、プローブ上に配置することができる他の電極に対するインピーダンスを測定することによって、プローブ24を追跡することができる。(この場合には、電極22及び/又は電極29は、ECG信号及び追跡信号の双方を提供することができる。)Biosense Websterにより生産されるCarto3(登録商標)システムは、磁界伝送器及びインピーダンス測定器の両方を追跡に用いている。
プロセッサ40は、追跡モジュール30を使用して、遠位端32の位置を測定することができ、マップ50を構築するための基準座標系58中における位置の位置座標を形成することができる。位置座標は、マッピングモジュール56に保存されると想定される。加えて、マッピングモジュール56は、心臓34に関する補助情報、及び心臓に対して実施されている手順に関する補助情報の項目52の位置座標を保存すると想定される。
プロセッサ40の他のモジュールは、特定の項目52に付随する補助情報を測定する。簡潔性及び明瞭性のために、補助情報を測定する他のモジュール(力、温度、灌流速度、エネルギー流量モジュールなど)は、図1には示されていない。
図2は、本発明の実施形態による、心臓34における位置及びポテンシャルの測定から導き出された初期中間マップ100のセクション98の概略図である。中間マップ100を準備する場合は一般的に、ユーザー28はカテーテル24の遠位端を動かして、心臓34内の別々の心臓壁点102を触診する。点102はまた、本明細書において位置決め点102と呼ばれる。プロセッサ40は、トラッカーモジュール30を使用して、位置決め点の位置座標を評価する。位置座標の変動は典型的には心拍に起因するため、プロセッサはまたECGモジュール36を使用して、位置座標をゲート制御する(即ち、心拍の所定時点において心臓壁上の与えられた位置決め点102の位置を判別する)。
また、中間マップの位置決め点102に加えて、ユーザー28はカテーテル遠位チップを使用して、本明細書に記載されている実施例における位置座標及びポテンシャルの両方(即ち、本明細書において心臓壁上のポテンシャル104と呼ばれる、他方の点104のVLAT)を測定する。上述した通り、位置座標及びポテンシャルの両方がゲート制御される。
いったんプロセッサ40の登録及び保管を終えた後、位置決め点及びポテンシャル点の位置座標は、点どうしを結合する線分108(本明細書においては辺108とも呼ばれる)を具備した、粗メッシュ106を構成する。メッシュを形成する場合、プロセッサは、当該技術分野において公知の何らかの便宜的な方法を使用できる。一例として、位置決め点102及びポテンシャル点104に対応する頂点を有する複数の三角形110を備えるデローネ三角網を生成する場合、本明細書に記載されている実施形態で用いられる方法が想定される。三角網の三角形は、点102及び点104の周りに形成されるボロノイ図(Voronoi diagram)をベースとすることができる。デローネ三角網を生成するための方法については、後述する。
必要に応じて、本明細書中の説明における同様の要素は、要素の数字を識別する英字を付加することによって、相互に区別される。例えば、三角形110Aは、ポテンシャル点104A、並びに位置決め点102A及び102Bを含んで構成される頂点を有し、かつ辺108A、108B及び108Cから形成される。
図2において、メッシュ106はメッシュサブセクション120を備え、その周囲は太線で描画されている。メッシュサブセクション120については、以下に詳述する。
図3は、本発明の一実施形態によるメッシュサブセクション120の拡大概略図である。サブセクション120は、頂点としてポテンシャル点104D、位置決め点102E、位置決め点102F、ポテンシャル点104B、位置決め点102C、及び位置決め点102Dを有する多角形である。
典型的には、いったんプロセッサ40が粗メッシュ106を生成した後は、ポテンシャル点及び位置決め点に基づいてメッシュを細分し、粗メッシュ106よりも細かい中間メッシュ122を生成する。以下に例証として挙げた再分割の説明は、サブセクション120の三角形110B、110C、110D、110E及び110Fに再分割が適用されるにもかかわらず三角形110G、110H、110Iは細分されないことを前提としている。例えば、再分割で細分された三角形の各辺は、例として、3つの同等なセグメントに切断され、対応するセグメントの端点は、三角形の辺に並立する線分を介して接続される。図に示すように、この種の再分割によって、与えられた細分対象の三角形に対して9つの合同三角形124が生成され、その各々は与えられた三角形と類似する。よって、三角形110Bは互いに合同な9つの三角形124Aを形成し、三角形110Dは互いに合同な9つの三角形124Bを形成する。(三角形110B及び110Cが合同でない場合、三角形124A及び124Bは合同でないことが了解されよう。)
上記の再分割は、プロセッサ40によって適用され得る粗メッシュ106の再分割の一例であり、プロセッサは何らかの便宜的な再分割を実行できる。例えば、粗メッシュにおいて三角形の辺を3つの同等なセグメントに切断するよりはむしろ、辺を他の任意の正の整数(2つ以上)のセグメントに切断することもできる。一部の実施形態においては、再分割の際に元の三角形が保持されない場合がある。
プロセッサ40は、上記に例証された再分割、又は別の種類の再分割を、メッシュ106内の三角形110の一部又は全部に適用できる。再分割の適用によって一連の三角形124が生成される。細分されない三角形110は、未分割の三角形110として維持される。この適用により、結果として、他の三角形を取り囲まない一連の三角形が生成される。この種の三角形(即ち、他の三角形を取り囲まない一連の三角形)は円に対して位相同形であり、本明細書中では単純三角形126と呼ばれる。与えられた単純三角形はいずれも3つの頂点128を有し、3つの直線セグメント130を介して接続されている。図3において単純三角形126は、三角形124のほか、三角形110G、110H、及び110Iを具備している。図3において例示的な単純三角形126Aは、特定の三角形124Bのコールアウトとして示されており、頂点128A、128B(ポテンシャル点104Dに対応する)、及び128Cを有し、直線セグメント130A、130B及び130Cを介して接続されている。
よって、中間メッシュ122は、少なくとも1つの共通の頂点128を有する一連の単純三角形126を具備する。与えられた単純三角形126は典型的に、別の単純三角形126と共通の線分130を少なくとも1つ有する。
図3に図示したように、上記のサブセクション120の再分割によって生成された中間メッシュ122のセクションは、以下に中間メッシュの一部140と呼ばれている。
図4は、本発明の一実施形態によるレジスタメッシュ150の一部152の模式図である。プロセッサ40は、プロセッサによって中間メッシュが生成されていない場合、中間メッシュ122又はメッシュ106を、レジスタ154を具備するレジスタメッシュ150に変換する。また、本明細書においてレジスタ154は、数字接尾辞の付いた文字Rを使用することによっても識別される。本明細書中の説明において、与えられたレジスタ154はいずれも、2つの端点156を有するものと想定される。わかりやすいように、以下の説明は、プロセッサが粗メッシュ106を細分することによって中間メッシュ122を生成する(上掲の図3を参照)ことを想定しているが、当業者であれば、粗メッシュを別の方法で細分する場合又は粗メッシュを細分しない場合に応じて、必要な変更を加え、記述を適応させることができるであろう。
中間メッシュからレジスタメッシュへの変換には1対1の対応を使用するため、各頂点128はレジスタ154の端点156に対応し、各レジスタ154は線分130に対応する。わかりやすいように、図4にはレジスタメッシュ150の部分152のみが図示されており、部分152は中間メッシュ部分140の陰影付きセクション158に対応する。
陰影付きセクション158は24本の線分で結合された14個の頂点を含み、対応するレジスタメッシュ部分152は、14個のレジスタ端点において結合されている24個のレジスタ、R1、R2、...R24を具備する。
方程式(1A):
Figure 0006275434
(式中、ρはレジスタの材料の抵抗力であり、
Lはレジスタの長さであり、
Aはレジスタの断面面積である)によって、レジスタの抵抗Rが与えられる。
式(1A)は次のように書き換えることができる。
Figure 0006275434
式中、kはパラメータである。
本発明の実施形態においてプロセッサ40は、方程式(1A)を使用して、レジスタの対応する線分の長さに応じて、レジスタメッシュ150の与えられたレジスタにそれぞれ抵抗値を割り当てる。全ての線分は典型的に、同じ一定の断面面積を有するものと想定される。同様に、全ての線分は典型的に、同じ抵抗力を有するものと想定される。一部の実施形態において抵抗力は、人体器官における線分の位置に応じて変動し得る。簡潔にするため、下記の説明においては方程式(1A)を使用することを前提とし、全てのレジスタに割り当てられた抵抗力が、心筋の近似の抵抗力に対応する5.6Ωmに等しいことを想定する。
本発明の代替実施形態においてプロセッサは、方程式(1B)を使用して、レジスタの対応する線分の長さに応じて、レジスタメッシュ150の与えられたレジスタにそれぞれ抵抗値を割り当てことができる。方程式(1B)が使用されている場合、ユーザー28がkの値を代入できる。
レジスタメッシュ150内の特定の抵抗どうしは、線分の長さに依存するため、値が等しい。例えば、部分152においては方程式(2)が当てはまる。
R2=R5=R8=R10=R11;R1=R4=R7;
かつR3=R6=R9である。 (2)
上述したように、プロセッサ40は、方程式(1A)又は方程式(1B)、及び方程式(2)などの方程式を中間メッシュ122に適用することによって、完全なレジスタメッシュ150を構成する。
レジスタメッシュ150の内部で、レジスタ端点156のサブセットはポテンシャル点104に対応する。これらのレジスタ端点に対して、プロセッサはポテンシャル点について定量されたLATポテンシャルを割り当てる。よって、部分152において値VLAT(104D)、VLAT(104C)、及びVLAT(104B)はそれぞれ端点156A、156B、及び156Cに割り当てられる。
その後、プロセッサ40はレジスタメッシュ150を、その公知の割り当て済みポテンシャルによって解析し、不明なレジスタ端点156のポテンシャルを評価する。不明なレジスタ端点は、位置点102だけでなく、粗メッシュ106の再分割によって生成されている頂点128にも対応している。プロセッサは、評価されたポテンシャルを中間メッシュ122の頂点に適用する。換言すれば、プロセッサはレジスタメッシュを解析し、中間メッシュにおいてポテンシャル点104以外の点の電極電位を見つける(そのポテンシャルが既にわかっている場合)。
レジスタメッシュを解析するため、プロセッサ40はメッシュに調和関数を適用する。ここで、メッシュの頂点が、頂点への外部電流を有さない内部頂点、及び外部電流を有し得る境界頂点の2種類に分類できることを前提として、調和関数の適用が、少なくとも1つのキルヒホッフの回路法則適用に対応しているものと想定している。
内部頂点iのいずれに対しても、頂点に対する電流の代数和はゼロであるため、キルヒホッフの電流法則は次のように記述し得る。
Figure 0006275434
式中、Neigh(i)は頂点i(即ち、それは、レジスタ経由で頂点iに直接接続している頂点)に隣接する一連の頂点であり、jは隣接する頂点のインデックスであり、Iijは頂点iと頂点jとの間の電流である。
式(3)は次のように書き換えることができる。
Figure 0006275434
即ち、
Figure 0006275434
式中、vは頂点iにおけるポテンシャルであり、
は頂点jにおけるポテンシャルであり、
ijは頂点iと頂点jとの間のレジスタの抵抗である。
方程式(3)及び(4)は、内部頂点に対して適用される。境界頂点に関して、vは既知であり、方程式は方程式(4)に類似するが、境界頂点への考えられる外部電流を許可する。
Figure 0006275434
変数は方程式(4)に対して定義されており、Iは頂点iへの電流である。
N個の頂点を有するレジスタメッシュに対しては、方程式(4)及び(5)を組み合わせて使用して一連のN線形方程式を定義し、次のような行列形式で書き直すことができる。
Figure 0006275434
式中、KはN×N平方行列(別称:キルヒホッフ行列)であり、
vは頂点1、2、...Nにおける電圧のベクトルであり、
Iは頂点への電流のベクトルである。
行列Kの要素は、以下のように定義される。
Figure 0006275434
電圧ベクトルvは、境界頂点におけるポテンシャルの値(即ち、ポテンシャル点104において測定されたVLAT)を含み、ベクトルvbとして書き直すことができる。ベクトルvbはNb値、即ち、Nbは、数値で測定されたポテンシャル位置104を有するものと想定される。
ベクトルvはまた、内部頂点におけるポテンシャルの値(即ち、位置点102におけるVLATの値)を含み、ベクトルviとして書き直すことができる。ベクトルviは、N値を有するものと想定される。Nは、ポテンシャル点でない頂点128を備えるメッシュの内部頂点の数である(頂点128は位置点102を含む)。
よって、電圧ベクトルvは以下のように書き直すことができる。
Figure 0006275434
電流ベクトルIは以下のように書き直すことができる。
Figure 0006275434
式中、境界頂点への電流はベクトルIであり、N値を有する。定義上、内部頂点への電流はゼロであり、ベクトル0はN値を有し、全て0に等しい。
方程式(8)及び(9)を使用して、方程式(6)を以下のように書き直すことができる。
Figure 0006275434
行列Kは、部分行列の行列として書き直すことができる。
Figure 0006275434
式中、AはN×N正方部分行列であり、DはN×N正方部分行列であり、BはN×N部分行列であり、CはN×N部分行列である。第1のN頂点(即ち、行列の第1の行、及び第1の列)は境界頂点に対応し、第2のN頂点は内部頂点に対応する。
式(11)を式(10)に代入することにより、次式が与えられる。
Figure 0006275434
方程式(12)の展開によって(とりわけ)次式が与えられる。
Cv+Dv=0。この式は、次のように再編成される。
=−D−1Cv (13)
方程式(13)を調べることによって、方程式の右辺における全数量は既知であるか、それとも既知の数量から計算され得るかが、明らかになる。特に、vは測定されたポテンシャル点104のベクトルであり、Cは方程式(1A)又は方程式(1B)から計算できる値の行列、かつ逆行列であり、また方程式(1A)又は(1B)から計算できる値である。したがって、プロセッサ40(図1)は、ベクトルv(即ち、中間メッシュ122の内部頂点におけるポテンシャル)を評価できる。後述するように、プロセッサはこの評価を使用して、結果マップ50を生成する。
図5は、本発明の一実施形態による、結果マップ50(図1)を生成するための手順で実行される工程のフローチャート200である。初期マッピング工程202において、ユーザー28はプローブ24を人体器官34に嵌入し、プローブの遠位端を使用してマップする、即ち、器官の表面上の点の3D座標を生成する(上掲の図1を参照)。工程202においてマップされた点は、上記で参照された位置決め点102に対応する。プロセッサ40は、マップされた位置決め点の座標をメモリ44に保存する。
ポテンシャル測定工程204では、ユーザーがプローブ24を使用してポテンシャルを測量し、器官34の表面上の位置の座標をマップする。工程204は、工程202と実質的に同時に実行できる。別の方法として、2つの工程を別々の時点で実行してもよい。工程204において記録された点は、上記で参照されたポテンシャル点104に対応する。プロセッサ40は、マップされたポテンシャル位置の座標及び測定されたポテンシャルをメモリ44に保存する。
メッシュ生成工程206で、プロセッサは工程202及び204で記録された点を線分の粗メッシュとして接続する。メッシュは典型的に、ドローネ三角網として形成される。ドローネ三角網は、任意の三角網から始めて、典型的にはポテンシャル位置及び位置決め点からボロノイ図を構築することに基づいて生成できる。任意の三角網において、共通の端を共有する三角形の各対は、共通の端を反転させて、2つの三角形で共有される端のラプラシアン又はコタンジェント重量が負でなくなるようにする。そのようなドローネ三角網の生成方法は当該技術分野において周知である。
ただし、粗メッシュがドローネ三角網の形態である必要はないため、プロセッサ40は別のタイプの三角網を使用して、又は点を接続する便利な方法で、当該技術で知られている三角網を必ずしも使用せずに、点どうしを接続できる。
細分工程208では、工程206で生成された粗メッシュが、細かい中間メッシュに細分される。フローチャート200において破線の周囲で描画される工程の矩形で示されるように、工程208は任意選択であるが、簡素化するために、フローチャートの残りの記述では工程208を実行すべきものと想定している。当業者であれば、その記述を工程208を実行しない事例に適応させることができるであろう。中間メッシュ122(図3)の生成に関しては、例えば上記の方法を用いるなどの便利なやり方で、粗メッシュをプロセッサで細分できる。一部の実施態様においてプロセッサ40は、再分割、及びその手順の後続工程に必要な時間又は計算リソースの量に応じて、適応的に、細かな再分割を実現できる。
レジスタメッシュ工程210においてプロセッサは、工程208で生成された細かい中間メッシュの各線分がレジスタであると想定する。プロセッサは、与えられた線分に割り当てられた抵抗値が、線分の長さに正比例するように、方程式(1A)又は方程式(1B)に従って、対応する線分の長さを用い、各レジスタの抵抗値を計算する。プロセッサは、工程208で生成された細かい中間メッシュの接続に従って、レジスタメッシュの、頂点とレジスタとの間に、及び中間メッシュの、頂点と線分との間に、1対1の対応が存在するように、レジスタどうしを接続する。
計算工程212において、プロセッサは典型的には、キルヒホッフの電流法則を適用することによって、調和関数をレジスタメッシュに適用し、ポテンシャル位置104にはない中間メッシュの頂点に対応するレジスタメッシュの頂点におけるポテンシャルを計算する。法則の適用及び計算は、方程式(13)に従う。
最終工程214では、プロセッサが工程212で計算される頂点ポテンシャルのほか、ポテンシャル位置104の測定されたポテンシャルを使用して、電気生理学的パラメータ(即ち、本明細書に記載されている実施例におけるVLAT)の結果マップ50の値を生成する。マップの色は典型的に、VLATの値に従っている。プロセッサは典型的に、ポテンシャル間に補間を適用して結果マップ50を生成する。
本明細書に概説されている方法は、調和関数を適用して、器官(上記では心臓の例を挙げて説明されている)の表面上の点において未測定のポテンシャルを生成する。発明者らが考えるに、本方法は、適用可能な物理法則、例えばキルヒホッフの法則を使用するため、当該技術で公知のポテンシャルを生成する方法よりも高精度な値を生成する。加えて、本明細書に記載されている方法を用いれば、正確なポテンシャル値を生成するのに必要な測定済みの点が、当該技術で公知の方法に必要とされるよりも少数で済むようになると、発明者らは考えている。
上述した実施形態は一例として記載されたものであり、本発明は、本明細書において上に具体的に図示及び説明した内容に限定されないことが明らかとなろう。むしろ本発明の範囲には、上記に述べた様々な特徴の組み合わせ及び下位の組み合わせ、並びに当業者であれば上記の説明文を読むことで想到されるであろう、先行技術に開示されていないそれらの変更及び改変が含まれるものである。
〔実施の態様〕
(1) 電極電位マップを形成するための方法であって、
人体器官の表面上の点の位置を測定することと、
前記点のサブセットの電気的ポテンシャルを測定することと、
前記点どうしを結合する線分にそれぞれの抵抗を割り当ててレジスタメッシュ(resistor mesh)を定義することと、
前記測定された電気的ポテンシャルに応答して前記レジスタメッシュに調和関数を適用して、前記表面の電極電位マップを生成することと、
を含む、電極電位マップの形成方法。
(2) 前記人体器官がヒト被験者の心臓を含む、実施態様1に記載の方法。
(3) 前記電極電位マップが、前記心臓の局所興奮時間と関連したそれぞれのポテンシャルのマップを含む、実施態様2に記載の方法。
(4) 前記位置を測定することが、前記人体器官にプローブを挿入することと、前記表面に接触する前記プローブの遠位端を追跡することと、を含む、実施態様1に記載の方法。
(5) 前記遠位端がその場所に位置するトラッキングコイルを含み、前記遠位端を追跡することが、前記トラッキングコイルからの信号を受信し分析することを含む、実施態様4に記載の方法。
(6) 前記遠位端がその場所に接続された電極を含み、前記電気的ポテンシャルを測定することが、前記電極を使用して前記電気的ポテンシャルを測定することを含む、実施態様4に記載の方法。
(7) 前記遠位端を追跡することが、前記電極と、前記人体器官を有するヒト被験者の皮膚に接続された電極との間のインピーダンスを測定することを含む、実施態様6に記載の方法。
(8) 前記線分を三角形メッシュとして形成することを含む、実施態様1に記載の方法。
(9) 前記線分がそれぞれの長さを有し、前記それぞれの抵抗を割り当てることが、前記それぞれの長さに正比例する前記それぞれの抵抗を割り当てることを含む、実施態様1に記載の方法。
(10) 前記調和関数を適用することが、前記レジスタメッシュにキルヒホッフの回路法則を適用することを含む、実施態様1に記載の方法。
(11) 前記キルヒホッフの回路法則がキルヒホッフの電流法則を含む、実施態様10に記載の方法。
(12) 前記電極電位マップを生成することが、前記キルヒホッフの回路法則を使用して、前記サブセット内に存在しない前記表面上の前記点の電気的ポテンシャルを定量することを含む、実施態様10に記載の方法。
(13) 電極電位マップを形成するための器具であって、
人体器官の表面上の点の位置を測定し、前記点のサブセットの電気的ポテンシャルを測定するように構成されたプローブと、
前記点どうしを結合する線分にそれぞれの抵抗を割り当ててレジスタメッシュを定義し、前記測定された電気的ポテンシャルに応答して前記レジスタメッシュに調和関数を適用することによって前記表面の電極電位マップを生成するように構成されたプロセッサと、
を具備する、電極電位マップを形成するための器具。
(14) 前記人体器官がヒト被験者の心臓を含む、実施態様13に記載の器具。
(15) 前記電極電位マップが、前記心臓の局所興奮時間と関連したそれぞれのポテンシャルのマップを含む、実施態様14に記載の器具。
(16) 前記プロセッサが、前記人体器官に挿入されかつ前記表面に接触している前記プローブの遠位端を追跡するように構成されている、実施態様13に記載の器具。
(17) 前記遠位端がその場所に位置するトラッキングコイルを含み、前記遠位端を追跡することが、前記トラッキングコイルからの信号を受信し分析することを含む、実施態様16に記載の器具。
(18) 前記遠位端がその場所に接続された電極を含み、前記電気的ポテンシャルを測定することが、前記電極を使用して前記電気的ポテンシャルを測定することを含む、実施態様16に記載の器具。
(19) 前記遠位端を追跡することが、前記電極と、前記人体器官を有するヒト被験者の皮膚に接続された電極との間のインピーダンスを測定することを含む、実施態様18に記載の器具。
(20) 前記線分を三角形メッシュとして形成することを含む、実施態様13に記載の器具。
(21) 前記線分がそれぞれの長さを有し、前記それぞれの抵抗を割り当てることが、前記それぞれの長さに正比例する前記それぞれの抵抗を割り当てることを含む、実施態様13に記載の器具。
(22) 前記調和関数を適用することが、前記レジスタメッシュにキルヒホッフの回路法則を適用することを含む、実施態様13に記載の器具。
(23) 前記キルヒホッフの回路法則がキルヒホッフの電流法則を含む、実施態様22に記載の器具。
(24) 前記電極電位マップを生成することが、前記キルヒホッフの回路法則を使用して、前記サブセット内に存在しない前記表面上の前記点の電気的ポテンシャルを定量することを含む、実施態様22に記載の器具。

Claims (10)

  1. 電極電位マップを形成するための器具であって、
    ヒト被験者の心臓の表面上の点の位置を測定し、前記点のサブセットの局所興奮時間と関連した電気的ポテンシャルを測定するように構成されたプローブと、
    ECGモジュールと、
    前記ECGモジュールを使用して前記点の位置の測定値をゲート制御し、前記点どうしを結合する線分にそれぞれの抵抗を割り当ててレジスタメッシュを定義し、前記測定された電気的ポテンシャルに応答して前記レジスタメッシュに調和関数を適用することによって前記表面の電極電位マップを生成するように構成されたプロセッサと、
    を具備し、
    前記線分を三角形メッシュとして形成することを含み、
    前記プロセッサは、前記三角形メッシュを小さい三角形に細分化するように構成されている、電極電位マップを形成するための器具。
  2. 前記電極電位マップが、前記心臓の局所興奮時間と関連したそれぞれのポテンシャルのマップを含む、請求項に記載の器具。
  3. 前記プロセッサが、前記心臓に挿入されかつ前記表面に接触している前記プローブの遠位端を追跡するように構成されている、請求項1に記載の器具。
  4. 前記遠位端がその場所に位置するトラッキングコイルを含み、前記遠位端を追跡することが、前記トラッキングコイルからの信号を受信し分析することを含む、請求項に記載の器具。
  5. 前記遠位端がその場所に接続された電極を含み、前記電気的ポテンシャルを測定することが、前記電極を使用して前記電気的ポテンシャルを測定することを含む、請求項に記載の器具。
  6. 前記遠位端を追跡することが、前記電極と、前記ヒト被験者の皮膚に接続された電極との間のインピーダンスを測定することを含む、請求項に記載の器具。
  7. 前記線分がそれぞれの長さを有し、前記それぞれの抵抗を割り当てることが、前記それぞれの長さに正比例する前記それぞれの抵抗を割り当てることを含む、請求項1に記載の器具。
  8. 前記調和関数を適用することが、前記レジスタメッシュにキルヒホッフの回路法則を適用することを含む、請求項1に記載の器具。
  9. 前記キルヒホッフの回路法則がキルヒホッフの電流法則を含む、請求項に記載の器具。
  10. 前記電極電位マップを生成することが、前記キルヒホッフの回路法則を使用して、前記サブセット内に存在しない前記表面上の前記点の電気的ポテンシャルを定量することを含む、請求項に記載の器具。
JP2013197927A 2012-09-26 2013-09-25 電極電位マッピング Active JP6275434B2 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US13/626,959 2012-09-26
US13/626,959 US9895079B2 (en) 2012-09-26 2012-09-26 Electropotential mapping

Publications (2)

Publication Number Publication Date
JP2014064922A JP2014064922A (ja) 2014-04-17
JP6275434B2 true JP6275434B2 (ja) 2018-02-07

Family

ID=49328322

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013197927A Active JP6275434B2 (ja) 2012-09-26 2013-09-25 電極電位マッピング

Country Status (7)

Country Link
US (1) US9895079B2 (ja)
EP (1) EP2712543B1 (ja)
JP (1) JP6275434B2 (ja)
CN (1) CN103654765B (ja)
AU (1) AU2013231218B2 (ja)
CA (1) CA2828461A1 (ja)
IL (1) IL228525A0 (ja)

Families Citing this family (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11389232B2 (en) 2006-06-28 2022-07-19 Kardium Inc. Apparatus and method for intra-cardiac mapping and ablation
US9119633B2 (en) 2006-06-28 2015-09-01 Kardium Inc. Apparatus and method for intra-cardiac mapping and ablation
US8906011B2 (en) 2007-11-16 2014-12-09 Kardium Inc. Medical device for use in bodily lumens, for example an atrium
US9017320B2 (en) 2012-05-21 2015-04-28 Kardium, Inc. Systems and methods for activating transducers
US9198592B2 (en) 2012-05-21 2015-12-01 Kardium Inc. Systems and methods for activating transducers
US10827977B2 (en) 2012-05-21 2020-11-10 Kardium Inc. Systems and methods for activating transducers
JP6288676B2 (ja) * 2014-05-29 2018-03-07 富士通株式会社 可視化装置、可視化方法、および可視化プログラム
US10722184B2 (en) 2014-11-17 2020-07-28 Kardium Inc. Systems and methods for selecting, activating, or selecting and activating transducers
US10368936B2 (en) 2014-11-17 2019-08-06 Kardium Inc. Systems and methods for selecting, activating, or selecting and activating transducers
JP6423964B2 (ja) * 2014-11-18 2018-11-14 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド 幾何学的構造のパッチ表面モデルを生成するための方法およびシステム
US10828106B2 (en) 2015-05-12 2020-11-10 Navix International Limited Fiducial marking for image-electromagnetic field registration
WO2016205807A1 (en) 2015-06-19 2016-12-22 St. Jude Medical, Cardiology Division, Inc. Electromagnetic dynamic registration for device navigation
JP6656271B2 (ja) 2015-06-19 2020-03-04 セント・ジュード・メディカル,カーディオロジー・ディヴィジョン,インコーポレイテッド インピーダンス・シフトおよびドリフトの検出および補正
EP3344134B9 (en) * 2015-10-12 2019-10-09 St. Jude Medical, Cardiology Division, Inc. Multi-layer body surface electrodes
WO2018011757A1 (en) 2016-07-14 2018-01-18 Navix International Limited Characteristic track catheter navigation
WO2018092071A1 (en) 2016-11-16 2018-05-24 Navix International Limited Estimators for ablation effectiveness
US11010983B2 (en) 2016-11-16 2021-05-18 Navix International Limited Tissue model dynamic visual rendering
CN110072449B (zh) 2016-11-16 2023-02-24 纳维斯国际有限公司 通过电标测进行的食道位置检测
US10709507B2 (en) 2016-11-16 2020-07-14 Navix International Limited Real-time display of treatment-related tissue changes using virtual material
US11284813B2 (en) 2016-11-16 2022-03-29 Navix International Limited Real-time display of tissue deformation by interactions with an intra-body probe
US10176630B2 (en) * 2016-12-06 2019-01-08 Biosense Webster (Israel) Ltd. Updating an electroanatomical map
US10321878B2 (en) 2016-12-22 2019-06-18 Biosense Webster (Israel) Ltd. Pulmonary vein display in two dimensions
US11282191B2 (en) 2017-01-12 2022-03-22 Navix International Limited Flattened view for intra-lumenal navigation
US11842456B2 (en) 2017-01-12 2023-12-12 Navix International Limited Flattened view for intra-lumenal navigation
US10665338B2 (en) * 2018-02-22 2020-05-26 Biosense Webster (Israel) Ltd. Automatic identification of multiple activation pathways
US11918334B2 (en) * 2018-11-07 2024-03-05 St Jude Medical International Holding, Sa.R.L. Impedance transformation model for estimating catheter locations
US11445935B2 (en) * 2018-11-26 2022-09-20 Biosense Webster (Israel) Ltd. Finding the origin of an arrythmia
US20220175295A1 (en) * 2020-12-08 2022-06-09 Biosense Webster (Israel) Ltd. Signal processing of velocity streams of a signal flow for coherent mapping of an anatomical structure

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IL67815A (en) * 1982-02-12 1988-01-31 Sanz Ernst Method and apparatus for cardiogonometry
US4961428A (en) * 1988-05-02 1990-10-09 Northeastern University Non-invasive method and apparatus for describing the electrical activity of the surface of an interior organ
USRE41334E1 (en) 1992-09-23 2010-05-11 St. Jude Medical, Atrial Fibrillation Division, Inc. Endocardial mapping system
US7930012B2 (en) * 1992-09-23 2011-04-19 St. Jude Medical, Atrial Fibrillation Division, Inc. Chamber location method
CA2447239C (en) * 1992-09-23 2010-10-19 Endocardial Therapeutics, Inc. Endocardial mapping system
IL116699A (en) * 1996-01-08 2001-09-13 Biosense Ltd Method of building a heart map
CA2197986C (en) * 1994-08-19 2008-03-18 Shlomo Ben-Haim Medical diagnosis, treatment and imaging systems
EP0818016B1 (en) 1995-02-09 1999-05-26 Gordon Ewbank Dower Apparatus and method for monitoring activity of the human heart
US5803084A (en) * 1996-12-05 1998-09-08 Olson; Charles Three dimensional vector cardiographic display and method for displaying same
US6226542B1 (en) * 1998-07-24 2001-05-01 Biosense, Inc. Three-dimensional reconstruction of intrabody organs
US6505067B1 (en) 2000-11-22 2003-01-07 Medtronic, Inc. System and method for deriving a virtual ECG or EGM signal
US6895267B2 (en) * 2001-10-24 2005-05-17 Scimed Life Systems, Inc. Systems and methods for guiding and locating functional elements on medical devices positioned in a body
US7684850B2 (en) * 2005-01-07 2010-03-23 Biosense Webster, Inc. Reference catheter for impedance calibration
US8355801B2 (en) * 2005-09-26 2013-01-15 Biosense Webster, Inc. System and method for measuring esophagus proximity
US9629567B2 (en) * 2006-01-12 2017-04-25 Biosense Webster, Inc. Mapping of complex fractionated atrial electrogram
EP2020914B1 (en) * 2006-05-10 2017-03-01 Regents of the University of Minnesota Methods and apparatus of three dimensional cardiac electrophysiological imaging
US7729752B2 (en) * 2006-06-13 2010-06-01 Rhythmia Medical, Inc. Non-contact cardiac mapping, including resolution map
US20090048528A1 (en) * 2007-08-16 2009-02-19 Bruce Hopenfeld System and methods for detecting ischemia with a limited extracardiac lead set
CN101896120B (zh) * 2007-12-12 2012-10-10 皇家飞利浦电子股份有限公司 睡眠体位的检测
US8137343B2 (en) 2008-10-27 2012-03-20 Rhythmia Medical, Inc. Tracking system using field mapping
US9610118B2 (en) * 2008-12-31 2017-04-04 St. Jude Medical, Atrial Fibrillation Division, Inc. Method and apparatus for the cancellation of motion artifacts in medical interventional navigation
CN101836862B (zh) * 2009-03-16 2014-03-26 上海微创医疗器械(集团)有限公司 人体腔室内壁三维标测方法及其设备和系统
US8478388B2 (en) * 2009-04-07 2013-07-02 Pacesetter, Inc. Cardiac coordinate system for motion analysis
US9398862B2 (en) * 2009-04-23 2016-07-26 Rhythmia Medical, Inc. Multi-electrode mapping system
US9763587B2 (en) * 2010-06-10 2017-09-19 Biosense Webster (Israel), Ltd. Operator-controlled map point density
WO2013006713A2 (en) * 2011-07-05 2013-01-10 Cardioinsight Technologies, Inc. Localization for electrocardiographic mapping
US8577450B1 (en) * 2012-07-23 2013-11-05 Biosense Webster (Israel) Ltd. Graphic interface for multi-spine probe

Also Published As

Publication number Publication date
US20140088447A1 (en) 2014-03-27
EP2712543A1 (en) 2014-04-02
EP2712543B1 (en) 2020-12-30
US9895079B2 (en) 2018-02-20
CA2828461A1 (en) 2014-03-26
CN103654765A (zh) 2014-03-26
AU2013231218B2 (en) 2018-04-05
CN103654765B (zh) 2017-12-12
IL228525A0 (en) 2014-03-31
JP2014064922A (ja) 2014-04-17
AU2013231218A1 (en) 2014-04-10

Similar Documents

Publication Publication Date Title
JP6275434B2 (ja) 電極電位マッピング
JP6837847B2 (ja) 心腔の高解像度着色
JP6336245B2 (ja) 選択的に透明な電気生理マップ
JP6639821B2 (ja) アブレーションパラメータに基づく波面分析
US20180177552A1 (en) Interactive anatomical mapping and estimation of anatomical mapping quality
JP2018526107A (ja) 心臓活性化波面を特定しマッピングする方法およびシステム
CN112006672B (zh) 确定心脏组织区域中局灶和/或转子致心律失常性活动的发生
CN112617842A (zh) 3d心内活动演示
CN109276315B (zh) 使用散布内插改善基于阻抗的定位跟踪性能
US11819331B2 (en) Visualization of epicardial and endocardial electroanatomical maps
CN111345810B (zh) 电生理波纹标测可视化方法
US11478182B2 (en) Incorporating a confidence level into an electrophysiological (EP) map
US20230020372A1 (en) Layered multi-activation local activation times (lat) mapping
JP2023038932A (ja) シグモイド曲線を用いて投影された電気生理学的波速度の重み付け
KR20210020765A (ko) 드래그가능 측지 오버레이를 갖는 혼합된 전기해부학적 맵 채색 도구
UA143614U (uk) Спосіб оцінки контакту електрода з тканиною міокарда при радіочастотній катетерній абляції аритмогенних зон серця

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160712

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170428

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180110

R150 Certificate of patent or registration of utility model

Ref document number: 6275434

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250