JP6274561B2 - Rotary grinding wheel dressing apparatus and method - Google Patents
Rotary grinding wheel dressing apparatus and method Download PDFInfo
- Publication number
- JP6274561B2 JP6274561B2 JP2014010372A JP2014010372A JP6274561B2 JP 6274561 B2 JP6274561 B2 JP 6274561B2 JP 2014010372 A JP2014010372 A JP 2014010372A JP 2014010372 A JP2014010372 A JP 2014010372A JP 6274561 B2 JP6274561 B2 JP 6274561B2
- Authority
- JP
- Japan
- Prior art keywords
- grindstone
- dressing
- rotating grindstone
- rotating
- processing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Landscapes
- Grinding-Machine Dressing And Accessory Apparatuses (AREA)
Description
本発明は、軸心に対し線対称の加工面を有する回転砥石のドレッシング装置と方法に関する。 The present invention relates to a dressing apparatus and method for a rotating grindstone having a machining surface that is line-symmetric with respect to an axis.
例えば6軸を有する産業用ロボットで、回転砥石の根元に力センサを備え、ワークの形状に倣いながら加工(例えばバリ取り加工)をすることが行なわれる。このようなロボットでは、加工中の押付力の制御により、砥石の磨耗による変形や、ワークの設置位置誤差などを吸収でき、安定した加工が行える。 For example, in an industrial robot having six axes, a force sensor is provided at the base of the rotating grindstone, and machining (for example, deburring) is performed while following the shape of the workpiece. In such a robot, by controlling the pressing force during processing, it is possible to absorb deformation due to wear of the grindstone, an error in the installation position of the workpiece, and the like, and perform stable processing.
しかし、かかるバリ取り加工により、砥石は徐々に磨耗し、その加工面が凹凸に変化する。そのため、砥石の加工面をドレッシングする必要が生じる。 However, with this deburring process, the grindstone gradually wears, and the processed surface changes to unevenness. Therefore, it is necessary to dress the processed surface of the grindstone.
このようなロボットにおける砥石のドレッシングは、従来、例えば予め設定した除去量(ドレッシング量)だけ加工することで行っていた。この除去量は、表面形状のばらつきを考慮し、修正残しがないよう実際の磨耗量より多めに設定している。 Conventionally, dressing of a grindstone in such a robot has been performed by processing, for example, a preset removal amount (dressing amount). This removal amount is set to be larger than the actual wear amount so as not to leave a correction in consideration of variations in the surface shape.
また、その他に、砥石のドレッシング手段として、例えば特許文献1〜3が開示されている。
In addition, for example,
特許文献1の「力制御ロボットの砥石摩耗補正方法」は、加工の前後で基準面に砥石を押し付けて、接触した位置の比較から砥石の磨耗量を計算し、砥石中心位置(TCP)を修正するものである。
特許文献2の「自動研削装置」は、砥石の形状をカメラで撮影し、事前に撮影した砥石の画像と撮影した画像を比較して、砥石の磨耗量、砥石の破損の有無を判定する。また、撮影した画像から形状の変化に伴う砥石の中心位置(TCP)の補正も同時に行うものである。
特許文献3の「研削砥石のドレッシング装置」は、ドレッシングと同時に振動子の駆動電圧が検出され、駆動電圧の変動の大きさが所定の大きさ以下となるまでドレッシングを行うものである。
The “automatic grinding apparatus” of
The “grinding wheel dressing apparatus” of
上述した従来の砥石のドレッシング手段は、以下のような問題点があった。
従来の一般的なドレッシング手段では、必要以上に砥石を切削してしまうため砥石の寿命が短くなる。
特許文献1の手段では、砥石の磨耗形態に応じて計測方法を変える必要がある。
例えば、円筒砥石を使用したC面取り加工の場合、砥石の外面全体が一様に磨耗するのではなく、加工中に接触した箇所のみが部分的に磨耗により凹んでいる。この場合、円筒砥石の外面を基準面に押し付けるだけでは正確な磨耗量が計測できない。
特許文献2の手段は、カメラ及び画像処理装置を必要とするため、装置自体のコストが高くなる。
特許文献3の手段は、振動子の駆動電圧の変動の大きさでドレッシングの完了を判断するため、実際の除去量(ドレッシング量)が判断できない。
The conventional grinding stone dressing means described above has the following problems.
In the conventional general dressing means, the grindstone is cut more than necessary, so the life of the grindstone is shortened.
In the means of
For example, in the case of C-chamfering using a cylindrical grindstone, the entire outer surface of the grindstone is not worn uniformly, but only the portions that are in contact during machining are partially recessed due to wear. In this case, an accurate wear amount cannot be measured only by pressing the outer surface of the cylindrical grindstone against the reference surface.
Since the means of
Since the means of
本発明は、上述した問題点を解決するために創案されたものである。すなわち、本発明の目的は、同一の計測方法により、高価な機器を用いず、回転砥石の加工面が部分的に磨耗により凹んでいる場合でも元の加工面形状までドレッシングするのに必要な除去量(ドレッシング量)を正確に設定でき、必要以上に砥石を除去せずにドレッシングができる回転砥石のドレッシング装置と方法を提供することにある。 The present invention has been developed to solve the above-described problems. That is, the object of the present invention is to eliminate the need for dressing up to the original processing surface shape even when the processing surface of the rotating grindstone is partially dented due to wear by the same measurement method without using expensive equipment. An object of the present invention is to provide a dressing apparatus and method for a rotating grindstone that can accurately set the amount (dressing amount) and perform dressing without removing the grindstone more than necessary.
本発明によれば、軸心に対し線対称の加工面を有する回転砥石と、
前記回転砥石を前記軸心を中心に回転駆動する砥石回転用モータと、
前記回転砥石に作用する外力を検出する力センサと、
3次元空間内で前記回転砥石の位置と姿勢を移動可能なロボットアームと、
前記ロボットアームを制御するロボット制御装置と、を備えた加工ロボットにおける回転砥石のドレッシング装置であって、
前記加工面と接触可能な突出部を有する計測治具と、
前記回転砥石の前記加工面と接触可能なドレッサ面を有するドレッサ工具と、
ドレッシング制御部と、を備え、該ドレッシング制御部は、
前記回転砥石を軸心方向に送りながら前記回転砥石の前記加工面を前記計測治具の突出部に一定の押付力で半径方向に押付けて、前記加工面を前記計測治具で倣い、送り方向の変位Xと押付方向の変位Yとの関係を取得する磨耗計測部と、
前記関係における押付方向の最大変位と最小変位との差を前記加工面を磨耗前の形状までドレッシングにより除去するのに必要な除去量として設定する除去量設定部と、
前記回転砥石の前記加工面を前記ドレッサ工具のドレッサ面に押付けて、前記加工面の外形面から前記除去量を除去するドレッシング部と、を有する、ことを特徴とする回転砥石のドレッシング装置が提供される。
According to the present invention, a rotating grindstone having a machining surface that is line-symmetric with respect to an axis,
A grindstone rotating motor that rotationally drives the rotating grindstone around the axis;
A force sensor for detecting an external force acting on the rotating grindstone;
A robot arm capable of moving the position and posture of the rotating grindstone in a three-dimensional space;
A robot controller for controlling the robot arm, and a dressing device for a rotating grindstone in a processing robot comprising:
A measuring jig having a protrusion capable of contacting the processed surface;
A dresser tool with the machined surface contactable dresser surface of the grindstone,
A dressing control unit, the dressing control unit,
While the rotary whetstone is fed in the axial direction, the processing surface of the rotary whetstone is pressed against the projecting portion of the measuring jig in a radial direction with a constant pressing force, and the processing surface is copied by the measuring jig, and the feed direction A wear measuring unit for acquiring a relationship between the displacement X of the lens and the displacement Y in the pressing direction ;
A removal amount setting unit for setting a difference between the maximum displacement and the minimum displacement in the pressing direction in the relationship as a removal amount necessary for removing the processed surface by dressing to a shape before wear;
And pressing the working surface of the grinding wheel to the dresser surface of the dresser tool has a dressing unit for removing the removal amount from outer surface of the processing surface, the dressing apparatus to provide a grinding wheel, characterized in that Is done.
また、本発明によれば、軸心に対し線対称の加工面を有する回転砥石と、
前記回転砥石を前記軸心を中心に回転駆動する砥石回転用モータと、
前記回転砥石に作用する外力を検出する力センサと、
3次元空間内で前記回転砥石の位置と姿勢を移動可能なロボットアームと、
前記ロボットアームを制御するロボット制御装置と、を備えた加工ロボットにおける回転砥石のドレッシング方法であって、
前記加工面と接触可能な突出部を有する計測治具と、
前記回転砥石の前記加工面と接触可能なドレッサ面を有するドレッサ工具と、を準備し、
(A)前記回転砥石を軸心方向に送りながら前記回転砥石の前記加工面を前記計測治具の突出部に一定の押付力で半径方向に押付けて、前記加工面を前記計測治具で倣い、送り方向の変位Xと押付方向の変位Yとの関係を取得し、
(B)前記関係における押付方向の最大変位と最小変位との差を前記加工面を磨耗前の形状までドレッシングにより除去するのに必要な除去量として設定し、
(C)前記回転砥石の前記加工面を前記ドレッサ工具のドレッサ面に押付けて、前記加工面の外形面から前記除去量を除去する、ことを特徴とする回転砥石のドレッシング方法が提供される。
Moreover, according to the present invention, a rotating grindstone having a machining surface line symmetrical with respect to the axis,
A grindstone rotating motor that rotationally drives the rotating grindstone around the axis;
A force sensor for detecting an external force acting on the rotating grindstone;
A robot arm capable of moving the position and posture of the rotating grindstone in a three-dimensional space;
A method for dressing a rotating grindstone in a processing robot provided with a robot controller for controlling the robot arm,
A measuring jig having a protrusion capable of contacting the processed surface;
Prepare a dresser tool with the machined surface contactable dresser surface of the grindstone,
(A) While feeding the rotary whetstone in the axial direction, the processing surface of the rotary whetstone is pressed against the protruding portion of the measuring jig in a radial direction with a constant pressing force, and the processing surface is copied with the measuring jig. The relationship between the displacement X in the feed direction and the displacement Y in the pressing direction is acquired ,
(B) The difference between the maximum displacement and the minimum displacement in the pressing direction in the relationship is set as a removal amount necessary for removing the processed surface by dressing up to the shape before wear,
The (C) the working surface of the grindstone is pressed against the dresser surface of the dresser tool, removing the removal amount from outer surface of the processing surface, the dressing method of the grinding wheel is provided, characterized in that.
また、本発明によれば、軸心に対し線対称の加工面を有する回転砥石と、
前記回転砥石を前記軸心を中心に回転駆動する砥石回転用モータと、
前記回転砥石に作用する外力を検出する力センサと、
3次元空間内で前記回転砥石の位置と姿勢を移動可能なロボットアームと、
前記ロボットアームを制御するロボット制御装置と、を備えた加工ロボットにおける回転砥石のドレッシング方法であって、
前記加工面と接触可能な突出部を有する計測治具と、
前記回転砥石の前記加工面と接触可能なドレッサ面を有するドレッサ工具と、を準備し、
(A)前記回転砥石を軸心方向に送りながら前記回転砥石の前記加工面を前記計測治具の突出部に一定の押付力で半径方向に押付けて、前記加工面を前記計測治具で倣い、送り方向の変位Xと押付方向の変位Yとの関係を示す複数のデータを抽出し、
(B1)前記各データに対してハフ変換を行ってρ−θ座標上の計測点に変換し、
(B2)前記計測点が近接する点群から、設定した閾値より多い計測点からなる点群を選出し、
(B3)選出した点群から代表となる代表点群を選出し、
(B4)前記代表点群に相当するX−Y座標上の直線を前記回転砥石の外形面を表す外形線として抽出し、
(B5)前記データと前記外形線との距離の最大値、またはこれに一定値を加算した値を前記加工面を磨耗前の形状までドレッシングにより除去するのに必要な除去量に設定し、
(C)前記回転砥石の前記加工面を前記ドレッサ工具のドレッサ面に押付けて、前記加工面の外形面から前記除去量を除去する、ことを特徴とする回転砥石のドレッシング方法が提供される。
Moreover, according to the present invention, a rotating grindstone having a machining surface line symmetrical with respect to the axis,
A grindstone rotating motor that rotationally drives the rotating grindstone around the axis;
A force sensor for detecting an external force acting on the rotating grindstone;
A robot arm capable of moving the position and posture of the rotating grindstone in a three-dimensional space;
A method for dressing a rotating grindstone in a processing robot provided with a robot controller for controlling the robot arm,
A measuring jig having a protrusion capable of contacting the processed surface;
Preparing a dresser tool having a dresser surface that can come into contact with the processing surface of the rotating grindstone,
(A) While feeding the rotary whetstone in the axial direction, the processing surface of the rotary whetstone is pressed against the protruding portion of the measuring jig in a radial direction with a constant pressing force, and the processing surface is copied with the measuring jig. Extracting a plurality of data indicating the relationship between the displacement X in the feed direction and the displacement Y in the pressing direction;
(B1) A Hough transform is performed on each of the data to convert it into measurement points on the ρ-θ coordinate,
(B2) A point group consisting of more measurement points than the set threshold value is selected from the point groups close to the measurement point,
(B3) A representative point cloud is selected from the selected point cloud,
(B4) A straight line on the XY coordinate corresponding to the representative point group is extracted as an outline representing the external surface of the rotating grindstone,
(B5) The maximum value of the distance between the data and the outline, or a value obtained by adding a constant value to the maximum value is set to a removal amount necessary for removing the processed surface by dressing up to the shape before wear ,
(C) The rotating grindstone dressing method is characterized in that the removal amount is removed from the outer surface of the processed surface by pressing the processed surface of the rotating grindstone against the dresser surface of the dresser tool.
前記(B3)において、点群を構成する計測点の数が最も多い点群を代表点群として選出する、ことが好ましい。 In (B3), it is preferable to select the point group having the largest number of measurement points constituting the point group as the representative point group.
前記(A)において、押付方向をロボットの動作座標系の1軸に設定する。 In (A), the pressing direction is set to one axis of the robot motion coordinate system.
前記(A)において、
押付方向を事前に算出し、ロボットの軌道を座標変換して前記押付方向の成分を導出する。
In (A) above,
The pressing direction is calculated in advance, and the trajectory of the robot is transformed to derive the component of the pressing direction.
また、本発明によれば、軸心に対し線対称の加工面を有する回転砥石と、
前記回転砥石を前記軸心を中心に回転駆動する砥石回転用モータと、
前記回転砥石に作用する外力を検出する力センサと、
3次元空間内で前記回転砥石の位置と姿勢を移動可能なロボットアームと、
前記ロボットアームを制御するロボット制御装置と、を備えた加工ロボットにおける回転砥石のドレッシング方法であって、
前記加工面と接触可能な突出部を有する計測治具と、
前記回転砥石の前記加工面と接触可能なドレッサ面を有するドレッサ工具と、を準備し、
(A)前記加工面を前記計測治具の突出部に一定の押付力で押付けた状態で、前記加工面を前記計測治具で倣い、前記加工面の磨耗形状を計測し、
前記(A)において、
(A1)円形の前記計測治具の中心から一定半径の基準円を設定し、
(A2)前記回転砥石を回転させずにその軸心を前記基準円上に押付開始位置として位置決めし、前記押付開始位置から前記計測治具の突出部までの押付距離を計測し、
(A3)前記(A2)を複数の押付開始位置について実施し、
(A4)複数の前記押付距離から前記加工面に閾値より大きい欠けのある位置と方向を検出し、
(B)前記磨耗形状から前記加工面を磨耗前の形状までドレッシングにより除去するのに必要な除去量を設定し、
(C)前記回転砥石の前記加工面を前記ドレッサ工具のドレッサ面に押付けて、前記加工面の外形面から前記除去量を除去する、ことを特徴とする回転砥石のドレッシング方法が提供される。
Moreover, according to the present invention, a rotating grindstone having a machining surface line symmetrical with respect to the axis,
A grindstone rotating motor that rotationally drives the rotating grindstone around the axis;
A force sensor for detecting an external force acting on the rotating grindstone;
A robot arm capable of moving the position and posture of the rotating grindstone in a three-dimensional space;
A method for dressing a rotating grindstone in a processing robot provided with a robot controller for controlling the robot arm,
A measuring jig having a protrusion capable of contacting the processed surface;
Preparing a dresser tool having a dresser surface that can come into contact with the processing surface of the rotating grindstone,
(A) In a state where the processing surface is pressed against the protruding portion of the measuring jig with a constant pressing force, the processing surface is copied with the measuring jig, and the wear shape of the processing surface is measured.
In (A) above,
(A1) Set a reference circle with a constant radius from the center of the circular measuring jig,
(A2) without rotating the rotating grindstone, its axis is positioned as a pressing start position on the reference circle, and a pressing distance from the pressing start position to the protruding portion of the measuring jig is measured,
(A3) The above (A2) is performed for a plurality of pressing start positions,
(A4) Detecting a position and direction having a chip larger than a threshold on the processed surface from a plurality of the pressing distances ,
(B) Set a removal amount necessary for removing the processed surface from the wear shape to the shape before wear by dressing;
(C) The rotating grindstone dressing method is characterized in that the removal amount is removed from the outer surface of the processed surface by pressing the processed surface of the rotating grindstone against the dresser surface of the dresser tool.
前記(A)において、前記加工面に閾値より大きい欠けが検出された場合に、
前記(B)において、計測した前記加工面の磨耗形状から、前記欠けのある部分を除く前記加工面のドレッシングによる除去量を最小に設定する。
In (A), when a chip larger than a threshold is detected on the processed surface,
In (B), the removal amount by dressing of the processed surface excluding the portion having the chip is set to the minimum from the measured wear shape of the processed surface.
上記本発明の装置と方法によれば、回転砥石の加工面と接触可能な突出部を有する計測治具を備え、回転砥石の加工面を計測治具の突出部に一定の押付力で押付けた状態で、加工面を計測治具で倣い、加工面の磨耗形状を計測する。従って、回転砥石の磨耗の仕方に応じて計測方法を変える必要がなく、カメラや画像処理装置のような高価な機器を必要としない。
また、本発明によれば、回転砥石の加工面を計測治具の突出部で倣うので、回転砥石の加工面が部分的に磨耗により凹んでいる場合でも元の加工面形状までドレッシングするのに必要な除去量(ドレッシング量)を正確に設定でき、必要以上に砥石を除去せずにドレッシングができる。
According to the apparatus and method of the present invention, the measuring jig having the protruding portion that can come into contact with the processing surface of the rotating grindstone is provided, and the processing surface of the rotating grindstone is pressed against the protruding portion of the measuring jig with a constant pressing force. In this state, the processing surface is copied with a measuring jig, and the wear shape of the processing surface is measured. Therefore, there is no need to change the measurement method according to the way the rotating grindstone is worn, and expensive equipment such as a camera or an image processing apparatus is not required.
Further, according to the present invention, since the processing surface of the rotating grindstone is copied by the protruding portion of the measuring jig, even when the processing surface of the rotating grindstone is partially recessed due to wear, dressing to the original processing surface shape is possible. The required removal amount (dressing amount) can be set accurately, and dressing can be performed without removing the grindstone more than necessary.
従って、ドレッシングの際の除去量を最小限にすることが出来、回転砥石をより長く使うことが可能になり砥石交換頻度を下げ、砥石費を抑制することが出来る。
また、ドレッシング後に同様の計測を行うことで、整形の完了を確認できる。
さらに、計測治具は回転砥石の加工面と接触可能な突出部を有していればよく、特殊な装置を必要とせず、直方体ブロックなどの単純形状やテーブルの角などの既知形状であれば可能である。
Therefore, the removal amount at the time of dressing can be minimized, the rotating grindstone can be used for a longer time, the grindstone replacement frequency can be reduced, and the grindstone cost can be suppressed.
Moreover, the completion of shaping can be confirmed by performing the same measurement after dressing.
Furthermore, the measuring jig only needs to have a protruding portion that can come into contact with the processing surface of the rotating grindstone, does not require a special device, and is a simple shape such as a rectangular parallelepiped block or a known shape such as a corner of a table. Is possible.
以下、本発明の好ましい実施形態を添付図面に基づいて詳細に説明する。なお、各図において共通する部分には同一の符号を付し、重複した説明を省略する。 Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. In addition, the same code | symbol is attached | subjected to the common part in each figure, and the overlapping description is abbreviate | omitted.
図1は、本発明のドレッシング方法を実施するためのシステム構成図である。
この図において、加工ロボット10は、回転砥石1を備え、ワーク(図示せず)の形状を倣いながら、例えばバリ取り加工などの加工をするロボットである。
回転砥石1は、軸心Zに対し線対称の加工面1aを有する。この図において、加工面1aは円筒面であるが、円錐形、球形、その他の形状であってもよい。また、回転砥石1は砥石に限定されず、超硬バーなどでもよい。
FIG. 1 is a system configuration diagram for carrying out the dressing method of the present invention.
In this figure, a
The
加工ロボット10は、この例では、多関節ロボットであるが、本発明はこれに限定されず、その他のロボットであってもよい。
In this example, the
図1において、加工ロボット10は、砥石回転用モータ12、力センサ14、ロボットアーム16、及びロボット制御装置18を備える。
In FIG. 1, the
砥石回転用モータ12は、軸心Zを中心に回転砥石1を回転駆動する。
The
力センサ14は、例えば歪ゲージ、ロードセルなどであり、回転砥石1に作用する外力を検出する。
この例において、力センサ14は直交3軸方向の力(Fx,Fy,Fz)と各軸まわりのトルク(Tx,Ty,Tz)を計測可能な6軸センサである。力センサ14は、3次元的に移動可能なロボットアーム16に取り付けられ、これに作用する6自由度の外力(3方向の力Fx,Fy,Fzと、3軸まわりのトルクTx,Ty,Tz)を検出するようになっている。
なお、本発明はこれに限定されず、回転砥石1に作用する外力が検出できる限りで、その他の力センサであってもよい。
The
In this example, the
In addition, this invention is not limited to this, Other force sensors may be sufficient as long as the external force which acts on the
ロボットアーム16は、手先に砥石回転用モータ12と力センサ14を取付け、これを3次元空間内で位置と姿勢を移動可能に構成されている。
ロボットアーム16は、この例では、多関節ロボットのロボットアームであるが、本発明はこれに限定されず、その他のロボットアームであってもよい。
The
In this example, the
ロボット制御装置18は、例えば数値制御装置であり、力センサ14の値を計測し、指令信号によりロボットアーム16を6自由度(3次元位置と3軸まわりの回転)に制御するようになっている。また、ロボット制御装置18は、ロボットアーム16を制御して回転砥石1の複数の動作を順次実行する。
The
図1において、本発明による回転砥石1のドレッシング装置20は、計測治具22、ドレッサ工具24及びドレッシング制御部26を備える。計測治具22とドレッサ工具24は、予め所定の位置(この例では固定支持台25の上)に固定されている。
In FIG. 1, a dressing
計測治具22は、回転砥石1の加工面1aと接触可能な突出部22a(この例では直方体ブロックの角)を有する。計測治具22は回転砥石1の加工面1aと接触可能な突出部22aを有していればよく、特殊な装置を必要とせず、直方体ブロックなどの単純形状やテーブルの角などの既知形状であればよい。
なお計測治具22の突出部22aの形状は、回転砥石1の加工面1aの形状と計測精度によって変化する。例えば、加工面1aの鋭角の凹みを計測するには、突出部22aに加工面1aの凹みよりも小さい角度のエッジが必要になる。
突出部22aの位置は、ロボット制御装置18に記憶されている。
The measuring
The shape of the protruding
The position of the protruding
ドレッサ工具24は、回転砥石1の加工面1aと接触可能なドレッサ面24aを有し、回転させた回転砥石1の加工面1aを押し当てて整形する。ドレッサ面24aはこの例では平面であるが、その他の形状であってもよい。またドレッサ工具24は一般的なドレッサ装置又はやすりなどでも良い。
ドレッサ面24aの位置は、ロボット制御装置18に記憶されている。
The
The position of the
ドレッシング制御部26は、磨耗計測部26a、除去量設定部26b、及びドレッシング部26cを有し、ロボット制御装置18と共にロボットアーム16を制御する。ドレッシング制御部26は、ロボット制御装置18と一体であっても、別のコンピュータ(PC)で構成してもよい。
磨耗計測部26aは、加工面1aを計測治具22の突出部22aに一定の押付力で押付けた状態で、加工面1aを計測治具22で倣い、加工面1aの磨耗形状を計測する。
除去量設定部26bは、計測された磨耗形状から加工面1aを磨耗前の形状までドレッシングにより除去するのに必要な除去量Dを設定する。
ドレッシング部26cは、回転砥石1の加工面1aをドレッサ工具24のドレッサ面24aに押付けて、加工面1aの外形面から除去量Dを除去する。
The dressing
The
The removal amount setting unit 26b sets a removal amount D necessary to remove the processed
The dressing
図2は、本発明の回転砥石1のドレッシング方法の全体フロー図である。
本発明の回転砥石1のドレッシング方法は、上述した加工ロボット10とドレッシング装置20を準備し、S1〜S3の各ステップ(工程)を実行する。
FIG. 2 is an overall flowchart of the dressing method for the
The dressing method of the
計測ステップS1では、加工面1aを計測治具22の突出部22aに一定の押付力で押付けた状態で、加工面1aを計測治具22で倣い、加工面1aの磨耗形状を計測する。一定の押付力は、加工面1aを計測治具22で正確に倣える限りで、小さい値であるのがよい。
計測ステップS1では、回転砥石1を回転させない状態で計測治具22に押し当てて、一定の押付力で倣い動作をするのがよい。またこの倣い動作中の加工ロボット10の手先の位置(基準座標系からのTCPの位置と姿勢)を記録する。
In the measurement step S1, the
In the measurement step S1, it is preferable that the
設定ステップS2では、計測した加工面1aの磨耗形状から、加工面1aを磨耗前の形状までドレッシングにより除去するのに必要な除去量Dを設定する。磨耗前の形状とは、磨耗前の円筒面、円錐形、球形、その他の形状を意味する。
すなわち、計測ステップS1の倣い動作後、記録した回転砥石1の押付け方向の変位Yから、砥石形状の変動幅にもとづいてドレッシングの除去量Dを設定する。
In the setting step S2, a removal amount D necessary for removing the processed
That is, after the copying operation in the measurement step S1, the dressing removal amount D is set based on the fluctuation range of the grindstone shape from the recorded displacement Y in the pressing direction of the
ドレッシングステップS3では、回転砥石1の加工面1aをドレッサ工具24のドレッサ面24aに押付けて、加工面1aの外形面から除去量Dを除去する。
ドレッシングステップS3は、好ましくは回転砥石1を位置制御して、回転させた回転砥石1を一定の押付力が得られる位置まで押し付ける。
なお、回転砥石1は回転させなくてもよい。また、位置制御でなく力制御で回転砥石1を押し付けてドレッシングしてもよい。
この位置制御又は力制御により、設定ステップS2で設定した除去量Dまで回転砥石1をドレッサ工具24に押付けて除去する。
In the dressing step S3, the
The dressing step S3 preferably controls the position of the
The
By this position control or force control, the
ドレッシングステップS3において、ドレッシング中も反力の計測を行い、反力に異常値がある場合はドレッシングを停止することが好ましい。 In the dressing step S3, it is preferable to measure the reaction force even during the dressing and stop the dressing if the reaction force has an abnormal value.
ドレッシングステップS3のドレッシング後に、計測ステップS1に戻り、ドレッシング前と同様の形状計測を行い、回転砥石1の凹みが解消されたか否かを確認する。形状の変動幅が一定値以内であればドレッシングを完了する。
After dressing in the dressing step S3, the process returns to the measuring step S1, and the same shape measurement as before dressing is performed to check whether or not the dent of the
図3は、本発明の第1実施形態の計測ステップS1の説明図であり、図4は、本発明の第1実施形態の設定ステップS2の説明図である。 FIG. 3 is an explanatory diagram of the measurement step S1 of the first embodiment of the present invention, and FIG. 4 is an explanatory diagram of the setting step S2 of the first embodiment of the present invention.
第1実施形態の方法では、計測ステップS1において、図3(A)(B)に示すように、回転砥石1を軸心方向に送りながら回転砥石1を半径方向に押付けて、送り方向の変位Xと押付方向の変位Yとの関係を取得する。
図3において、(A)は磨耗が小さい場合、(B)は磨耗が大きい場合を示している。また図3(A)(B)の右上に拡大した押付方向の変位Yを示している。
In the method of the first embodiment, in the measurement step S1, as shown in FIGS. 3A and 3B, the
3A shows a case where the wear is small, and FIG. 3B shows a case where the wear is large. Moreover, the displacement Y of the pressing direction expanded to the upper right of FIG. 3 (A) (B) is shown.
計測ステップS1における回転砥石1の押付方向は、加工ロボット10の動作座標系の1軸(例えばx軸)に設定することが好ましい。この方法により、加工ロボット10の動作座標系の1軸の変化から押付方向の変位Yを容易に求めることができる。
The pressing direction of the
なお計測ステップS1における回転砥石1の押付方向を、事前に算出し、加工ロボット10の軌道を座標変換して押付方向の成分を導出してもよい。この方法により、押付方向を加工ロボット10の動作座標系の1軸に制約することなく、任意の方向に設定して、押付方向の変位Yを求めることができる。
Note that the pressing direction of the
第1実施形態の方法では、設定ステップS2において、図4に示すように、送り方向の変位Xと押付方向の変位Yとの関係における押付方向の最大変位と最小変位との差を除去量Dとして設定する。
図4において、(A)は、図3(B)における送り方向と押付方向を示している。また(B)は、取得した送り方向の変位Xと押付方向の変位Yとの関係図である。
In the method of the first embodiment, in the setting step S2, as shown in FIG. 4, the difference D between the maximum displacement and the minimum displacement in the pressing direction in the relationship between the displacement X in the feeding direction and the displacement Y in the pressing direction is removed. Set as.
4A shows a feeding direction and a pressing direction in FIG. 3B. Further, (B) is a relationship diagram between the acquired displacement X in the feeding direction and displacement Y in the pressing direction.
図5は、本発明の第2実施形態を示す図である。
第2実施形態の方法では、計測ステップS1において、回転砥石1を軸心方向に送りながら回転砥石1を半径方向に押付けて、図5(A)に示す、送り方向の変位Xと押付方向の変位Yとの関係を示す複数のデータを抽出する。
FIG. 5 is a diagram showing a second embodiment of the present invention.
In the method of the second embodiment, in the measurement step S1, the
次いで、設定ステップS2において、各データに対してハフ変換を行ってρ−θ座標上の計測点に変換する。図5(B)は、変換後のρ−θ座標上の計測点を示している。
次いで、図5(B)の計測点が近接する点群2から、設定した閾値より多い計測点からなる点群2を選出し、選出した点群2から代表となる代表点群3を選出する。
次に、代表点群3に相当するX−Y座標上の直線を回転砥石1の外形面を表す外形線4として抽出し、データと外形線4との距離の最大値、またはこれに一定値を加算した値を除去量Dに設定する。一定値は、データのばらつきから予め設定する。
Next, in setting step S2, Hough transform is performed on each data to convert it into measurement points on the ρ-θ coordinate. FIG. 5B shows the measurement points on the ρ-θ coordinate after conversion.
Next, a
Next, a straight line on the XY coordinates corresponding to the
代表となる代表点群3の選出は、例えば点群2を構成する計測点の数が最も多い点群を選出する。
The representative
上述した第2実施形態の方法によれば、回転砥石1のキャリブレーション誤差に問題がある場合でも、その影響を軽減できる。
According to the method of the second embodiment described above, even when there is a problem with the calibration error of the
以下、ハフ変換による直線抽出について説明する。
図6のような座標系における直線y=ax+bに原点から垂線をおろし、垂線の長さをρ、x軸とのなす角をθとするとρは以下の式(1)で表せる。
ρ=xcosθ+ysinθ・・・(1)
これより、極座標系では一点(ρ,θ)が分かれば1つの直線が分かる。
この点(ρ,θ)をy=ax+bの「ハフ変換」という。
Hereinafter, straight line extraction by Hough transform will be described.
Assuming that a perpendicular line is drawn from the origin to a straight line y = ax + b in the coordinate system as shown in FIG. 6, the length of the perpendicular line is ρ, and the angle formed with the x axis is θ, ρ can be expressed by the following equation (1).
ρ = x cos θ + ysin θ (1)
From this, in the polar coordinate system, if one point (ρ, θ) is known, one straight line can be known.
This point (ρ, θ) is referred to as “Hough transform” where y = ax + b.
また、x−y座標上の点(x0,y0)を通る直線群は以下の式(2)で表すことができる。
ρ=x0cosθ+y0sinθ・・・(2)
A group of straight lines passing through the point (x 0 , y 0 ) on the xy coordinate can be expressed by the following equation (2).
ρ = x 0 cos θ + y 0 sin θ (2)
式(2)に従ってX−Y上の点、P1(x1,y1)、P2(x2,y2)、P3(x3,y3)をρ−θ座標上で表すと図7のようになる。
このとき各点を通る直線群の軌跡が同じ点で交わる場合、3点が同一直線上に位置することになり、3点を通る直線を求めることができる。
When the points on XY, P1 (x 1 , y 1 ), P2 (x 2 , y 2 ), and P3 (x 3 , y 3 ) are represented on the ρ-θ coordinate according to the equation ( 2 ), FIG. It becomes like this.
At this time, when the trajectories of the straight line groups passing through each point intersect at the same point, the three points are located on the same straight line, and a straight line passing through the three points can be obtained.
式(1)から,(ρ,θ)より直線y=ax+bを導出する計算は以下のようになる。
a=−cosθ/sinθ=cotθ・・・(3)
b=ρ/sinθ・・・(4)
この(ρ,θ)から(a,b)を導出するプロセスを「逆ハフ変換」と呼ぶ。
From equation (1), the calculation for deriving the straight line y = ax + b from (ρ, θ) is as follows.
a = −cos θ / sin θ = cot θ (3)
b = ρ / sin θ (4)
The process of deriving (a, b) from this (ρ, θ) is called “inverse Hough transform”.
本発明の第2実施形態では、上述したハフ変換を用い、ロボット制御装置18で記録した計測動作中の加工ロボット10の手先の軌道データより、図8に示すような押付方向の変位Yと送り方向の変位Xの複数のデータ(図中に矩形で示す)を抽出する。
次いで、押付方向の変位Yと送り方向の変位Xに対して上記のハフ変換を行い、ρ−θ座標上に変換する。変換した各点を通る直線群の軌跡から、設定した閾値より多い個数の点を通る直線(ρ,θ)を選出する。選出した結果は図9に示すような点群2になる。
In the second embodiment of the present invention, the displacement Y in the pressing direction and the feed as shown in FIG. 8 are obtained from the trajectory data of the hand of the
Next, the above-mentioned Hough transform is performed on the displacement Y in the pressing direction and the displacement X in the feed direction to convert them onto the ρ-θ coordinates. A straight line (ρ, θ) passing through a larger number of points than the set threshold is selected from the trajectory of the straight line group passing through each converted point. The selected result is a
同一直線上に位置する点の数が閾値以上となる点は、ある直線の近傍で複数存在する。そのため複数の点群2から代表点群3に相当する直線(ρ,θ)を選出する。
代表点群3の選出は、例えば各直線を表す点群2をラベリング処理によって分類し、それぞれを2次元平面上の連結成分とみなし、連結成分の重心がこの直線を表す点のピークとして、重心を求めることで代表点群3を選出する。
なお単純に、同一直線上に位置する点の数が最も多い直線を代表点群3としても良い。
There are a plurality of points in the vicinity of a certain straight line where the number of points located on the same straight line is equal to or greater than the threshold. Therefore, a straight line (ρ, θ) corresponding to the
The
Note that a straight line having the largest number of points located on the same straight line may be simply used as the
上述した処理により、図10に示すように、回転砥石1の加工面1a(外形面)を表す直線(外形線4)を抽出し、各計測点と加工面1aを表す外形線4との距離の最大値を凹みの深さとし、凹みの深さに相当する値、もしくはその値に計測値のばらつきの半分に相当する値を加算した値をドレッシングの除去量Dに設定する。
As shown in FIG. 10, a straight line (outline 4) representing the
図11は、本発明の第3実施形態を示す図である。
第3実施形態では、計測治具22として円形の円板を用いる。この場合、計測治具22の突出部22aは、円板の外周面である。計測治具22の中心(円板の中心)から一定半径Rの基準円4を予め設定する。
計測ステップS1において、初めに(A)のように、回転砥石1を回転させずにその軸心Zを基準円上の任意の位置に押付開始位置として位置決めし、押付開始位置から計測治具22の突出部22aまでの押付距離X1を計測する。
次いで、この計測を複数の押付開始位置について実施し、押付距離X2、X3を計測する。
次いで、(B)に示すように、計測した複数の押付距離X1、X2、X3から回転砥石1の加工面1aの半径R1と、加工面1aに所定の閾値より大きい欠け1bがある位置と方向を検出する。
FIG. 11 is a diagram showing a third embodiment of the present invention.
In the third embodiment, a circular disk is used as the
In the measurement step S1, first, as shown in (A), the axis Z is positioned as a pressing start position at an arbitrary position on the reference circle without rotating the
Next, this measurement is performed for a plurality of pressing start positions, and the pressing distances X2 and X3 are measured.
Next, as shown in (B), from the measured pressing distances X1, X2, and X3, the radius R1 of the
すなわち、第3実施形態では、回転砥石1を回転させずに、回転砥石1を円板状の計測治具22に複数の方向から押し付けて倣わせ、加工ロボット10の手先の軌道を記録する。記録した軌道の押付方向の変位Yから、回転砥石1の外径を計測し、回転砥石1の加工面1aに所定の閾値より大きい欠け1bがある位置と方向を検出する。
この方法により、加工面1aに所定の閾値より大きい欠け1bがある場合に、その位置と方向を検出することができる。
That is, in the third embodiment, without rotating the
By this method, when there is a
図12は、本発明の第4実施形態を示す図である。
第4実施形態は、加工面1aに所定の閾値より大きい欠け1b(又は凹み)が検出された場合に、その欠け1bがなくなるまで加工面1aをドレッシングすると、回転砥石1の寿命が短くなりすぎる場合を想定している。
そのため第4実施形態では、加工面1aに所定の閾値より大きい欠け1bが検出された場合に、その欠け1bのある部分はドレッシングの対象とせずに、計測した加工面1aの磨耗形状から、欠け1bのある部分を除く加工面1aのドレッシングによる除去量Dを最小に設定する。
この方法により、(A)のように、第3実施形態の方法で回転砥石1の形状を計測し、回転砥石1の外面に欠け1bや凹凸がない部分を検出する。次いで、(B)のように欠け1bや凹凸がない部分(使用箇所1c)が当たるようにTCPの位置を補正してワークを加工する。使用箇所1cがワークの加工で磨耗したら、同様に欠け1bや凹凸がない部分を探し、新たな使用箇所1cとすることができる。
なお、回転砥石1の全面が磨耗し、欠け1bや凹凸がない部分が検出できなくなった場合には、上記の方法によりドレッシングを行う。
FIG. 12 is a diagram showing a fourth embodiment of the present invention.
In the fourth embodiment, when a
Therefore, in the fourth embodiment, when a
By this method, as shown in (A), the shape of the
In addition, when the entire surface of the
上述した本発明の装置と方法によれば、回転砥石1の加工面1aと接触可能な突出部22aを有する計測治具22を備え、回転砥石1の加工面1aを計測治具22の突出部22aに一定の押付力で押付けた状態で、加工面1aを計測治具22で倣い、加工面1aの磨耗形状を計測する。従って、回転砥石1の磨耗の仕方に応じて計測方法を変える必要がなく、カメラや画像処理装置のような高価な機器を必要としない。
また、本発明によれば、回転砥石1の加工面1aを計測治具22の突出部22aで倣うので、回転砥石1の加工面1aが部分的に磨耗により凹んでいる場合でも元の加工面形状までドレッシングするのに必要な除去量D(ドレッシング量)を正確に設定でき、必要以上に砥石を除去せずにドレッシングができる。
According to the apparatus and method of the present invention described above, the measuring
In addition, according to the present invention, since the
従って、ドレッシングの際の除去量Dを最小限にすることが出来、回転砥石1をより長く使うことが可能になり砥石交換頻度を下げ、砥石費を抑制することが出来る。
また、ドレッシング後に同様の計測を行うことで、整形の完了を確認できる。
さらに、計測治具22は回転砥石1の加工面1aと接触可能な突出部22aを有していればよく、特殊な装置を必要とせず、直方体ブロックなどの単純形状やテーブルの角などの既知形状であれば可能である。
Accordingly, the removal amount D at the time of dressing can be minimized, the
Moreover, the completion of shaping can be confirmed by performing the same measurement after dressing.
Furthermore, the measuring
なお、本発明は上述した実施形態に限定されず、特許請求の範囲の記載によって示され、さらに特許請求の範囲の記載と均等の意味および範囲内でのすべての変更を含むものである。 In addition, this invention is not limited to embodiment mentioned above, is shown by description of a claim, and also includes all the changes within the meaning and range equivalent to description of a claim.
D 除去量(ドレッシング量)、X 送り方向の変位、
Y 押付方向の変位、Z 軸心、1 回転砥石、1a 加工面、
1b 欠け(凹み)、1c 使用箇所、2 点群、3 代表点群、
4 基準円、10 加工ロボット、12 砥石回転用モータ、
14 力センサ、16 ロボットアーム、18 ロボット制御装置、
20 ドレッシング装置、22 計測治具、22a 突出部、
24 ドレッサ工具、24a ドレッサ面、25 固定支持台、
26 ドレッシング制御部、26a 磨耗計測部、
26b 除去量設定部、26c ドレッシング部
D removal amount (dressing amount), displacement in X feed direction,
Y displacement in the pressing direction, Z axis, 1 rotating grindstone, 1a machined surface,
1b chipping (dent), 1c used place, 2 point group, 3 representative point group,
4 reference circle, 10 processing robot, 12 grinding wheel rotation motor,
14 force sensor, 16 robot arm, 18 robot controller,
20 dressing device, 22 measuring jig, 22a protrusion,
24 dresser tool, 24a dresser surface, 25 fixed support base,
26 dressing control unit, 26a wear measurement unit,
26b removal amount setting unit, 26c dressing unit
Claims (6)
前記回転砥石を前記軸心を中心に回転駆動する砥石回転用モータと、
前記回転砥石に作用する外力を検出する力センサと、
3次元空間内で前記回転砥石の位置と姿勢を移動可能なロボットアームと、
前記ロボットアームを制御するロボット制御装置と、を備えた加工ロボットにおける回転砥石のドレッシング装置であって、
前記加工面と接触可能な突出部を有する計測治具と、
前記回転砥石の前記加工面と接触可能なドレッサ面を有するドレッサ工具と、
ドレッシング制御部と、を備え、該ドレッシング制御部は、
前記回転砥石を軸心方向に送りながら前記回転砥石の前記加工面を前記計測治具の突出部に一定の押付力で半径方向に押付けて、前記加工面を前記計測治具で倣い、送り方向の変位Xと押付方向の変位Yとの関係を取得する磨耗計測部と、
前記関係における押付方向の最大変位と最小変位との差を前記加工面を磨耗前の形状までドレッシングにより除去するのに必要な除去量として設定する除去量設定部と、
前記回転砥石の前記加工面を前記ドレッサ工具のドレッサ面に押付けて、前記加工面の外形面から前記除去量を除去するドレッシング部と、を有する、ことを特徴とする回転砥石のドレッシング装置。 A rotating whetstone having a machining surface line symmetrical with respect to the axis;
A grindstone rotating motor that rotationally drives the rotating grindstone around the axis;
A force sensor for detecting an external force acting on the rotating grindstone;
A robot arm capable of moving the position and posture of the rotating grindstone in a three-dimensional space;
A robot controller for controlling the robot arm, and a dressing device for a rotating grindstone in a processing robot comprising:
A measuring jig having a protrusion capable of contacting the processed surface;
A dresser tool with the machined surface contactable dresser surface of the grindstone,
A dressing control unit, the dressing control unit,
While the rotary whetstone is fed in the axial direction, the processing surface of the rotary whetstone is pressed against the projecting portion of the measuring jig in a radial direction with a constant pressing force, and the processing surface is copied by the measuring jig, and the feed direction A wear measuring unit for acquiring a relationship between the displacement X of the lens and the displacement Y in the pressing direction ;
A removal amount setting unit for setting a difference between the maximum displacement and the minimum displacement in the pressing direction in the relationship as a removal amount necessary for removing the processed surface by dressing to a shape before wear;
Wherein the working surface of the grindstone is pressed against the dresser surface of the dresser tool has a dressing unit for removing the removal amount from outer surface of the processing surface, the dressing apparatus of grinding wheel, characterized in that.
前記回転砥石を前記軸心を中心に回転駆動する砥石回転用モータと、
前記回転砥石に作用する外力を検出する力センサと、
3次元空間内で前記回転砥石の位置と姿勢を移動可能なロボットアームと、
前記ロボットアームを制御するロボット制御装置と、を備えた加工ロボットにおける回転砥石のドレッシング方法であって、
前記加工面と接触可能な突出部を有する計測治具と、
前記回転砥石の前記加工面と接触可能なドレッサ面を有するドレッサ工具と、を準備し、
(A)前記回転砥石を軸心方向に送りながら前記回転砥石の前記加工面を前記計測治具の突出部に一定の押付力で半径方向に押付けて、前記加工面を前記計測治具で倣い、送り方向の変位Xと押付方向の変位Yとの関係を取得し、
(B)前記関係における押付方向の最大変位と最小変位との差を前記加工面を磨耗前の形状までドレッシングにより除去するのに必要な除去量として設定し、
(C)前記回転砥石の前記加工面を前記ドレッサ工具のドレッサ面に押付けて、前記加工面の外形面から前記除去量を除去する、ことを特徴とする回転砥石のドレッシング方法。 A rotating whetstone having a machining surface line symmetrical with respect to the axis;
A grindstone rotating motor that rotationally drives the rotating grindstone around the axis;
A force sensor for detecting an external force acting on the rotating grindstone;
A robot arm capable of moving the position and posture of the rotating grindstone in a three-dimensional space;
A method for dressing a rotating grindstone in a processing robot provided with a robot controller for controlling the robot arm,
A measuring jig having a protrusion capable of contacting the processed surface;
Prepare a dresser tool with the machined surface contactable dresser surface of the grindstone,
(A) While feeding the rotary whetstone in the axial direction, the processing surface of the rotary whetstone is pressed against the protruding portion of the measuring jig in a radial direction with a constant pressing force, and the processing surface is copied with the measuring jig. The relationship between the displacement X in the feed direction and the displacement Y in the pressing direction is acquired,
(B) The difference between the maximum displacement and the minimum displacement in the pressing direction in the relationship is set as a removal amount necessary for removing the processed surface by dressing up to the shape before wear,
(C) the said working surface of the grindstone is pressed against the dresser surface of the dresser tool, removing the removal amount from outer surface of the processing surface, the dressing method of the grinding wheel, characterized in that.
前記回転砥石を前記軸心を中心に回転駆動する砥石回転用モータと、
前記回転砥石に作用する外力を検出する力センサと、
3次元空間内で前記回転砥石の位置と姿勢を移動可能なロボットアームと、
前記ロボットアームを制御するロボット制御装置と、を備えた加工ロボットにおける回転砥石のドレッシング方法であって、
前記加工面と接触可能な突出部を有する計測治具と、
前記回転砥石の前記加工面と接触可能なドレッサ面を有するドレッサ工具と、を準備し、
(A)前記回転砥石を軸心方向に送りながら前記回転砥石の前記加工面を前記計測治具の突出部に一定の押付力で半径方向に押付けて、前記加工面を前記計測治具で倣い、送り方向の変位Xと押付方向の変位Yとの関係を示す複数のデータを抽出し、
(B1)前記各データに対してハフ変換を行ってρ−θ座標上の計測点に変換し、
(B2)前記計測点が近接する点群から、設定した閾値より多い計測点からなる点群を選出し、
(B3)選出した点群から代表となる代表点群を選出し、
(B4)前記代表点群に相当するX−Y座標上の直線を前記回転砥石の外形面を表す外形線として抽出し、
(B5)前記データと前記外形線との距離の最大値、またはこれに一定値を加算した値を前記加工面を磨耗前の形状までドレッシングにより除去するのに必要な除去量に設定し、
(C)前記回転砥石の前記加工面を前記ドレッサ工具のドレッサ面に押付けて、前記加工面の外形面から前記除去量を除去する、ことを特徴とする回転砥石のドレッシング方法。 A rotating whetstone having a machining surface line symmetrical with respect to the axis;
A grindstone rotating motor that rotationally drives the rotating grindstone around the axis;
A force sensor for detecting an external force acting on the rotating grindstone;
A robot arm capable of moving the position and posture of the rotating grindstone in a three-dimensional space;
A method for dressing a rotating grindstone in a processing robot provided with a robot controller for controlling the robot arm,
A measuring jig having a protrusion capable of contacting the processed surface;
Preparing a dresser tool having a dresser surface that can come into contact with the processing surface of the rotating grindstone,
(A) While feeding the rotary whetstone in the axial direction, the processing surface of the rotary whetstone is pressed against the protruding portion of the measuring jig in a radial direction with a constant pressing force, and the processing surface is copied with the measuring jig. Extracting a plurality of data indicating the relationship between the displacement X in the feed direction and the displacement Y in the pressing direction;
(B1) A Hough transform is performed on each of the data to convert it into measurement points on the ρ-θ coordinate,
(B2) A point group consisting of more measurement points than the set threshold value is selected from the point groups close to the measurement point,
(B3) A representative point cloud is selected from the selected point cloud,
(B4) A straight line on the XY coordinate corresponding to the representative point group is extracted as an outline representing the external surface of the rotating grindstone,
(B5) The maximum value of the distance between the data and the outline, or a value obtained by adding a constant value to the maximum value is set to a removal amount necessary for removing the processed surface by dressing up to the shape before wear ,
(C) A method for dressing a rotating grindstone, wherein the removal amount is removed from an outer surface of the processing surface by pressing the processing surface of the rotating grindstone against a dresser surface of the dresser tool.
前記回転砥石を前記軸心を中心に回転駆動する砥石回転用モータと、
前記回転砥石に作用する外力を検出する力センサと、
3次元空間内で前記回転砥石の位置と姿勢を移動可能なロボットアームと、
前記ロボットアームを制御するロボット制御装置と、を備えた加工ロボットにおける回転砥石のドレッシング方法であって、
前記加工面と接触可能な突出部を有する計測治具と、
前記回転砥石の前記加工面と接触可能なドレッサ面を有するドレッサ工具と、を準備し、
(A)前記加工面を前記計測治具の突出部に一定の押付力で押付けた状態で、前記加工面を前記計測治具で倣い、前記加工面の磨耗形状を計測し、
前記(A)において、
(A1)円形の前記計測治具の中心から一定半径の基準円を設定し、
(A2)前記回転砥石を回転させずにその軸心を前記基準円上に押付開始位置として位置決めし、前記押付開始位置から前記計測治具の突出部までの押付距離を計測し、
(A3)前記(A2)を複数の押付開始位置について実施し、
(A4)複数の前記押付距離から前記加工面に閾値より大きい欠けのある位置と方向を検出し、
(B)前記磨耗形状から前記加工面を磨耗前の形状までドレッシングにより除去するのに必要な除去量を設定し、
(C)前記回転砥石の前記加工面を前記ドレッサ工具のドレッサ面に押付けて、前記加工面の外形面から前記除去量を除去する、ことを特徴とする回転砥石のドレッシング方法。 A rotating whetstone having a machining surface line symmetrical with respect to the axis;
A grindstone rotating motor that rotationally drives the rotating grindstone around the axis;
A force sensor for detecting an external force acting on the rotating grindstone;
A robot arm capable of moving the position and posture of the rotating grindstone in a three-dimensional space;
A method for dressing a rotating grindstone in a processing robot provided with a robot controller for controlling the robot arm,
A measuring jig having a protrusion capable of contacting the processed surface;
Preparing a dresser tool having a dresser surface that can come into contact with the processing surface of the rotating grindstone,
(A) In a state where the processing surface is pressed against the protruding portion of the measuring jig with a constant pressing force, the processing surface is copied with the measuring jig, and the wear shape of the processing surface is measured.
In (A) above,
(A1) Set a reference circle with a constant radius from the center of the circular measuring jig,
(A2) without rotating the rotating grindstone, its axis is positioned as a pressing start position on the reference circle, and a pressing distance from the pressing start position to the protruding portion of the measuring jig is measured,
(A3) The above (A2) is performed for a plurality of pressing start positions,
(A4) Detecting a position and direction having a chip larger than a threshold on the processed surface from a plurality of the pressing distances,
(B) Set a removal amount necessary for removing the processed surface from the wear shape to the shape before wear by dressing;
(C) A method for dressing a rotating grindstone, wherein the removal amount is removed from an outer surface of the processing surface by pressing the processing surface of the rotating grindstone against a dresser surface of the dresser tool.
前記(B)において、計測した前記加工面の磨耗形状から、前記欠けのある部分を除く前記加工面のドレッシングによる除去量を最小に設定する、ことを特徴とする請求項5に記載の回転砥石のドレッシング方法。
In (A), when a chip larger than a threshold is detected on the processed surface,
6. The rotating grindstone according to claim 5 , wherein in (B), the removal amount by dressing of the processed surface excluding the chipped portion is set to the minimum from the measured wear shape of the processed surface. Dressing method.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014010372A JP6274561B2 (en) | 2014-01-23 | 2014-01-23 | Rotary grinding wheel dressing apparatus and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014010372A JP6274561B2 (en) | 2014-01-23 | 2014-01-23 | Rotary grinding wheel dressing apparatus and method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015136771A JP2015136771A (en) | 2015-07-30 |
JP6274561B2 true JP6274561B2 (en) | 2018-02-07 |
Family
ID=53768139
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014010372A Active JP6274561B2 (en) | 2014-01-23 | 2014-01-23 | Rotary grinding wheel dressing apparatus and method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6274561B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2017064823A (en) * | 2015-09-29 | 2017-04-06 | 株式会社Ihi | Working apparatus |
CN107876904B (en) * | 2017-12-18 | 2023-10-27 | 唐山师范学院 | Chamfering polishing manipulator for gear end face and polishing method thereof |
CN109540720B (en) * | 2018-12-20 | 2024-03-01 | 蚌埠学院 | Detection method of grinding wheel abrasion detection device |
CN111468989B (en) * | 2020-03-30 | 2021-08-24 | 黄河水利职业技术学院 | Five-axis linkage numerical control manipulator polishing control system and method |
CN111516132A (en) * | 2020-04-10 | 2020-08-11 | 上海持云工程技术有限公司 | Automatic die distributing mechanism and die distributing method thereof |
CN115026660B (en) * | 2022-08-11 | 2023-04-07 | 昆山市恒达精密机械工业有限公司 | CCD-based grinding process intelligent control method and system |
CN117283459B (en) * | 2023-09-15 | 2024-05-17 | 广东豪特曼机床股份有限公司 | Shaping grinding wheel dressing equipment for piston ring grinding processing and dressing method thereof |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS63229264A (en) * | 1986-10-24 | 1988-09-26 | Nippei Toyama Corp | Complex processing machine tool |
EP0461255B1 (en) * | 1989-12-28 | 1994-08-17 | Nissei Plastic Industrial Co., Ltd. | Assembly for dressing a conductive grinding wheel |
JPH07205022A (en) * | 1993-12-30 | 1995-08-08 | Hitachi Constr Mach Co Ltd | Correcting method for grinding wheel wear in force control robot |
JPH11216670A (en) * | 1998-01-30 | 1999-08-10 | Toshiba Mach Co Ltd | Grinding wheel forming system and grinding wheel forming device |
JP2002018712A (en) * | 2000-07-07 | 2002-01-22 | Amada Machinics Co Ltd | Truing device, and method of measuring partial wear of rotary grinding wheel |
-
2014
- 2014-01-23 JP JP2014010372A patent/JP6274561B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015136771A (en) | 2015-07-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6274561B2 (en) | Rotary grinding wheel dressing apparatus and method | |
JP5962242B2 (en) | Grinding equipment | |
JP6862764B2 (en) | Grinding device and method of manufacturing rolling bearings using it | |
CN109968127B (en) | Grinding device | |
JP6252270B2 (en) | Truing method for grinding wheel of grinding machine and grinding machine | |
JP6405098B2 (en) | Method for identifying topography deviation of dressing tool of polishing machine and CNC control machine configured accordingly | |
JP2012115912A (en) | Machining robot and gravity compensation method thereof | |
CN112912211A (en) | Indirect force control system and method for robotic paint repair | |
JP6674426B2 (en) | Centerless grinding apparatus and grinding state monitoring method for workpiece | |
JP5549330B2 (en) | Machining robot and its machining control method | |
WO2013005590A1 (en) | Grinding disc and grinding method | |
JP2011216050A (en) | Machining robot and machining control method therefor | |
JP6323744B2 (en) | Polishing robot and its control method | |
JP2016129927A (en) | Method for compensating temperature-induced deviations in grinding machine, and machine corresponding to said method | |
JP2011189417A (en) | Processing robot and gravity compensating method thereof | |
JP7172636B2 (en) | Machine tool maintenance support device and machine tool system | |
JP6089731B2 (en) | Molding control device, molding control method, and program | |
JP6347399B2 (en) | Polishing robot and its trajectory generation method | |
JP6270463B2 (en) | Grinding method and grinding apparatus | |
JP7365318B2 (en) | Processing method of workpiece | |
JP7342617B2 (en) | Deburring device | |
JP6977640B2 (en) | Processing equipment and processing method | |
JP2019111589A (en) | Dressing determination device, dressing determination system, processing system and dressing determination method | |
JP7052292B2 (en) | Grinding device and grinding method | |
JP6620401B2 (en) | Robot tool maintenance judgment device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20161124 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170825 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170830 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171013 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20171215 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20171228 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 6274561 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |