JP6273666B2 - Contaminated soil purification method and system in shield method - Google Patents

Contaminated soil purification method and system in shield method Download PDF

Info

Publication number
JP6273666B2
JP6273666B2 JP2012222440A JP2012222440A JP6273666B2 JP 6273666 B2 JP6273666 B2 JP 6273666B2 JP 2012222440 A JP2012222440 A JP 2012222440A JP 2012222440 A JP2012222440 A JP 2012222440A JP 6273666 B2 JP6273666 B2 JP 6273666B2
Authority
JP
Japan
Prior art keywords
muddy water
iron powder
mud
soil
shield
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012222440A
Other languages
Japanese (ja)
Other versions
JP2014073464A (en
Inventor
史顕 迫田
史顕 迫田
洋一 守屋
洋一 守屋
邦靖 足立
邦靖 足立
厚 武田
厚 武田
高田 尚哉
尚哉 高田
徹巳 日笠山
徹巳 日笠山
三浦 俊彦
俊彦 三浦
裕之 千野
裕之 千野
木村 勉
勉 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Obayashi Corp
Original Assignee
Obayashi Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Obayashi Corp filed Critical Obayashi Corp
Priority to JP2012222440A priority Critical patent/JP6273666B2/en
Publication of JP2014073464A publication Critical patent/JP2014073464A/en
Application granted granted Critical
Publication of JP6273666B2 publication Critical patent/JP6273666B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Treatment Of Sludge (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)
  • Processing Of Solid Wastes (AREA)

Description

本発明は、シールド工法における汚染土壌浄化方法に関するものであり、具体的には、シールド工法において、重金属を含む掘削土を効率的かつ確実に浄化し、掘削土の処分費用も低減可能とする技術に関する。   TECHNICAL FIELD The present invention relates to a contaminated soil purification method in a shield method, and specifically, a technique that efficiently and reliably purifies excavated soil containing heavy metals and can reduce disposal costs of excavated soil in the shield method. About.

道路や鉄道線路等を小さい土被り厚でアンダーパスしたり、様々な地盤状況に幅広く対応してトンネル掘削を施工できるシールド工法は、難しい施工条件が増えつつある現況で適用範囲を広げている。一方、そうしたシールド工法で掘削対象となる地盤に、重金属が含まれる地域もあり、その場合、必要に応じて掘削土と不溶化材を混合し、重金属が周囲に溶出しないよう対処することがある。不溶化材を用いた従来の汚染土壌処理技術としては、以下のようなものがある。   The shield method that can underpass roads and railroad tracks with a small cover thickness and can be used for tunnel excavation in a wide range of ground conditions is expanding its application range in the present situation where difficult construction conditions are increasing. On the other hand, there are areas where heavy metals are included in the ground to be excavated by such a shield method, and in that case, excavated soil and insolubilized material may be mixed as necessary to prevent heavy metals from eluting to the surroundings. Conventional contaminated soil treatment techniques using insolubilizing materials include the following.

例えば、重金属類( 砒素、シアン、水銀、六価クロム、鉛、カドミウム、ふっ素、ほう素) の汚染土壌領域に密閉型シールドトンネル工法を利用して管路を施工する際に、発生する掘削残土に含まれる重金属類を密閉型シールド機の切羽前面で不溶化する工法(特許文献1参照)などが提案されている。   For example, excavation residue generated when pipes are constructed using a sealed shield tunnel method in a contaminated soil area of heavy metals (arsenic, cyanide, mercury, hexavalent chromium, lead, cadmium, fluorine, boron) A method of insolubilizing heavy metals contained in the surface of the face of a hermetic shield machine (see Patent Document 1) has been proposed.

また、シールド切羽にて汚染土壌の浄化剤を地山に添加する工程と、シールド掘削機のチャンバ内に取り込まれる浄化剤を含む掘削土を、攪拌手段で攪拌混合する工程と、前記チャンバ内の攪拌済み掘削土をチャンバ外に搬送する工程と、を有する方法(特許文献2参照)なども提案されている。   Further, a step of adding a soil cleaner with a shield face to the ground, a step of stirring and mixing the excavation soil containing the cleaner taken into the chamber of the shield excavator with stirring means, There has also been proposed a method (see Patent Document 2) including a step of conveying agitated excavated soil out of the chamber.

また、泥水式シールド機が排出した排泥水から固体分を分離し、残りの泥水分を貯留している貯留槽から、泥水の一部を余剰泥水として排出し、これに不溶化剤を混和させる処理技術(特許文献3参照)なども提案されている。   In addition, the solid content is separated from the discharged mud water discharged by the muddy water shield machine, a part of the muddy water is discharged as surplus mud water from the storage tank storing the remaining mud water, and an insolubilizing agent is mixed with this. Technology (see Patent Document 3) has also been proposed.

特開2006−316599号公報JP 2006-316599 A 特開2012−120987号公報JP 2012-120987 A 特許第5001100号公報Japanese Patent No. 5001100

上述した不溶化を行うことで、重金属が溶出によって周囲環境へ拡散することは確かに抑制される。しかし、重金属は不溶化された状態ではあるが、依然として掘削土の中に存在していることから、掘削土を建設発生土として受け入れる自治体によっては、このように処理された掘削土を、建設発生土ではなく産業廃棄物と見なす場合も考えられる。この場合、掘削土の処分費が高額となり、トンネル工事全体のコスト増大にもつながる。また、地中のシールド掘削システムで生じた掘削土を、不溶化処理のために、地上の処理施設に搬出する場合、搬出用の装置やその作動エリアを確保する必要があり、施工コストや施工効率の悪化を招きやすい。更に、搬出途中での掘削土の飛散、拡散等が危惧され、効率的で確実な処理がなされない懸念もある。   By performing the insolubilization described above, the diffusion of heavy metals to the surrounding environment by elution is surely suppressed. However, although heavy metals are insolubilized, they are still present in the excavated soil, so depending on the local government that accepts the excavated soil as construction generated soil, the excavated soil treated in this way may be It may be considered as industrial waste instead. In this case, the disposal cost of excavated soil becomes high, leading to an increase in the cost of the entire tunnel construction. In addition, when excavating soil generated in the underground shield excavation system is to be transported to an above-ground processing facility for insolubilization, it is necessary to secure equipment and its operating area for carrying out, so that construction costs and construction efficiency It is easy to invite deterioration. Furthermore, there is a concern that the excavated soil may be scattered and diffused during the carry-out, and efficient and reliable treatment cannot be performed.

そこで本発明では、シールド工法において、重金属を含む掘削土を効率的かつ確実に浄化し、掘削土の処分費用も低減可能とする技術の提供を目的とする。   Therefore, an object of the present invention is to provide a technique capable of efficiently and reliably purifying excavated soil containing heavy metals and reducing disposal costs of excavated soil in the shield method.

上記課題を解決する本発明のシールド工法における汚染土壌浄化方法は、泥水式シールド工法で発生した掘削土に、重金属を吸着する鉄粉を添加し、重金属を吸着した前記鉄粉を前記掘削土より分離する、シールド工法における汚染土壌浄化方法であって、泥水と掘削土を分離する泥水処理系統において、一次処理機にて泥水より建設発生土を分離した後、前記鉄粉を前記泥水に添加し、比重差を利用した分離装置にて重金属を吸着した前記鉄粉を前記泥水より分離することを特徴とする。 How contaminated soil remediation in shield method of the present invention for solving the above-mentioned problems, the excavated soil generated by mud water type shield tunneling, was added iron powder to adsorb heavy metals, the excavated soil the iron powder with adsorbed heavy metals In the muddy water treatment system that separates muddy water and excavated soil, after separating construction generated soil from muddy water in a primary treatment machine, the iron powder is added to the muddy water. And the said iron powder which adsorb | sucked the heavy metal is isolate | separated from the said muddy water with the separator using a specific gravity difference.

これによれば、重金属を吸着した吸着材を掘削土から分離することで、掘削土の無害化を図ることが可能となる。そのため、厳格な残土受け入れ基準が存在する状況にあっても、掘削土を一般残土として処分でき、その処分費も低廉なものとなる。また、シールド掘削システム中で一連の作業が実行されるため、外部環境への汚染土の飛散や拡散も発生しない。   According to this, it becomes possible to make the excavated soil harmless by separating the adsorbent adsorbing the heavy metal from the excavated soil. Therefore, even in the situation where there are strict standards for accepting residual soil, excavated soil can be disposed of as general residual soil, and the disposal cost is low. In addition, since a series of operations are performed in the shield excavation system, the contaminated soil is not scattered or diffused to the external environment.

また、本発明のシールド工法における汚染土壌浄化システムは、泥水式シールド工法で発生した掘削土に、重金属を吸着する鉄粉を添加する添加装置と、重金属を吸着した前記鉄粉を前記掘削土より分離する分離装置とを備える、シールド工法における汚染土壌浄化システムであって、前記添加装置は、泥水と掘削土を分離する泥水処理系統において、前記鉄粉を前記泥水に添加する装置であり、前記分離装置は、比重差を利用して、重金属を吸着した前記鉄粉を前記泥水より分離する装置であることを特徴とする Further, the contaminated soil purification system in the shield method of the present invention includes an addition device for adding iron powder that adsorbs heavy metals to the excavated soil generated by the muddy water type shield method, and the iron powder that adsorbs heavy metals from the excavated soil. A contaminated soil purification system in a shield method, comprising a separating device for separating, wherein the adding device is a device for adding the iron powder to the muddy water in a muddy water treatment system for separating muddy water and excavated soil, The separation device is a device that separates the iron powder having adsorbed heavy metal from the muddy water using a specific gravity difference .

本発明によれば、シールド工法において、重金属を含む掘削土を効率的かつ確実に浄化し、掘削土の処分費用の低減も図られる。   According to the present invention, in the shield method, excavated soil containing heavy metals can be purified efficiently and reliably, and the disposal cost of excavated soil can be reduced.

第1実施形態のシールド工法における汚染土壌浄化システムの例1を示す図である。It is a figure which shows Example 1 of the contaminated soil purification system in the shield construction method of 1st Embodiment. 第1本実施形態のシールド工法における汚染土壌浄化方法の手順例を示す図である。It is a figure which shows the example of a procedure of the contaminated soil purification method in the shield construction method of 1st this embodiment. 第1実施形態のシールド工法における汚染土壌浄化システムの例2を示す図である。It is a figure which shows Example 2 of the contaminated soil purification system in the shield construction method of 1st Embodiment. 第1実施形態のシールド工法における汚染土壌浄化システムの例3を示す図である。It is a figure which shows Example 3 of the contaminated soil purification system in the shield construction method of 1st Embodiment. 第2実施形態のシールド工法における汚染土壌浄化システムの例を示す図である。It is a figure which shows the example of the contaminated soil purification system in the shield construction method of 2nd Embodiment. 第2実施形態のシールド工法における汚染土壌浄化方法の手順例を示す図である。It is a figure which shows the example of a procedure of the contaminated soil purification method in the shield construction method of 2nd Embodiment. 第2実施形態のシールド工法における汚染土壌浄化システムの他の例を示す図である。It is a figure which shows the other example of the contaminated soil purification system in the shield construction method of 2nd Embodiment.

−−−第1実施形態−−−
以下に本発明の実施形態について図面を用いて詳細に説明する。図1は第1実施形態のシールド工法における汚染土壌浄化システムの例1を示す図であり、図2は第1実施形態のシールド工法における汚染土壌浄化方法の手順例を示す図である。ここでは、シールド工法の1つとして、泥水式シールド工法を採用した場合の、汚染土壌浄化方法およびシステムについて説明する。泥水式シールド工法は、シールドマシン10のチャンバ内を泥水で充満させ、この泥水の圧力をもって切羽土圧や地下水圧に対抗し、切羽面の安定を図るシールド工法である。チャンバ内の泥水圧を制御することにより、切羽土圧や地下水圧に柔軟に対抗することが可能であり、幅広い地質に対応して安定した状態で掘削ができる特徴がある。
--- First Embodiment ---
Embodiments of the present invention will be described below in detail with reference to the drawings. FIG. 1 is a diagram illustrating Example 1 of a contaminated soil purification system in the shield method according to the first embodiment, and FIG. 2 is a diagram illustrating a procedure example of the contaminated soil purification method in the shield method according to the first embodiment. Here, as one of the shield construction methods, a contaminated soil purification method and system when the muddy water shield construction method is adopted will be described. The muddy water type shield method is a shield method in which the inside of the chamber of the shield machine 10 is filled with muddy water, and the pressure of this muddy water opposes the face soil pressure and groundwater pressure to stabilize the face surface. By controlling the muddy water pressure in the chamber, it is possible to flexibly counter the face soil pressure and groundwater pressure and to excavate in a stable state corresponding to a wide range of geology.

図1に例示する汚染土壌浄化システム100において、シールドマシン10は、カッタヘッド11を回転駆動させて切羽面の掘削を行い、カッタヘッド11により切削した切羽面の土砂すなわち掘削土を泥水と混合し、これを排泥ポンプ12により坑外に圧送する(s100)。汚染土壌浄化を行わない従来型のシールド掘削システムであれば、排泥ポンプ12によって後方に圧送する泥水は、そのまま排泥管等の泥水搬出系統14を介して、固液分離装置20へ送られる。この固液分離装置20は、泥水と掘削土を分離する泥水処理系統であって、上述の泥水を、振動ふるい等の一次処理機21、泥水を一旦貯留し成分調整する調整槽22、遠心分離器等の二次処理機23により、掘削土由来の建設発生土(一次処理機21にて抽出)や建設汚泥(二次処理機23にて抽出)と泥水とに分離する。また、固液分離装置20にて分離された泥水は送泥管や送泥ポンプ16等の泥水供給系統17を介して切羽に再度供給される。   In the contaminated soil remediation system 100 illustrated in FIG. 1, the shield machine 10 rotates the cutter head 11 to excavate the face, and mixes the sand and excavated soil cut by the cutter head 11 with mud water. This is pumped out of the mine by the mud pump 12 (s100). In the case of a conventional shield excavation system that does not purify contaminated soil, the muddy water pumped backward by the mud pump 12 is sent to the solid-liquid separator 20 as it is through the mud discharge system 14 such as a mud pipe. . This solid-liquid separator 20 is a muddy water treatment system that separates muddy water and excavated soil. The muddy water is treated with a primary treatment device 21 such as a vibrating screen, a muddy water is temporarily stored, and an adjustment tank 22 for adjusting components, and centrifugal separation. It is separated into construction generated soil derived from excavated soil (extracted by the primary processor 21), construction sludge (extracted by the secondary processor 23), and mud water by the secondary processor 23 such as a vessel. Further, the mud separated by the solid-liquid separator 20 is supplied again to the face through a mud supply system 17 such as a mud pipe or a mud pump 16.

一方、汚染土壌浄化を行う本実施形態の汚染土壌浄化システム100は、上述の泥水搬出系統14において、排泥ポンプ12の他、吸着材添加装置18を備えている。吸着材添加装置18は、重金属を吸着する吸着材を、排泥ポンプ12から供給される泥水に添加する(s101)。この吸着材添加装置18は、所定量の吸着材を格納するタンクと、このタンクから一定量の吸着材を連続的に取得して排泥する泥水に添加する混合装置とを具備している。   On the other hand, the contaminated soil purification system 100 according to the present embodiment for purifying the contaminated soil includes an adsorbent addition device 18 in addition to the mud pump 12 in the above-described mud discharge system 14. The adsorbent addition device 18 adds an adsorbent that adsorbs heavy metals to the mud supplied from the mud pump 12 (s101). The adsorbent addition device 18 includes a tank that stores a predetermined amount of adsorbent, and a mixing device that continuously acquires a predetermined amount of adsorbent from the tank and adds it to the mud drained.

なお、吸着材添加装置18が泥水に添加する吸着材としては、鉄粉があげられる。鉄粉は、ヒ素、セレン、六価クロム、カドミウム、鉛、シアンなどの重金属を効率良く吸着し、固定化する性状を有することが知られている。従って、この鉄粉を掘削土を含む泥水に添加、混合することで、泥水中の掘削土粒子に付着した重金属の微粒子が、鉄粉表面に吸着され、鉄粉に固定化されることになる。以降の説明においては、吸着材は鉄粉であるものとする。   In addition, iron powder is mention | raise | lifted as an adsorbent which the adsorbent addition apparatus 18 adds to muddy water. It is known that iron powder has the property of adsorbing and immobilizing heavy metals such as arsenic, selenium, hexavalent chromium, cadmium, lead, and cyan efficiently. Therefore, by adding and mixing this iron powder to the muddy water containing the excavated soil, the heavy metal fine particles adhering to the excavated soil particles in the muddy water are adsorbed on the iron powder surface and fixed to the iron powder. . In the following description, the adsorbent is assumed to be iron powder.

吸着材添加装置18により鉄粉が添加された泥水は、排泥管を通過する過程で排泥管内での流路や流速等の変化に伴って、鉄粉との混合が効率良く進む。つまり、撹拌手段等を別途設けずとも、泥水中の掘削土に付着した重金属粒子が鉄粉と十分に接触し、鉄粉表面に吸着されることになる。こうして鉄粉の添加がなされた泥水は、排泥管を介して磁選機19に供給される(s102)。泥水の供給を受けた磁選機19は、泥水中より鉄粉を分離する(s103)。   The muddy water to which the iron powder has been added by the adsorbent addition device 18 is efficiently mixed with the iron powder in accordance with changes in the flow path, flow velocity, etc. in the mud pipe while passing through the mud pipe. That is, even if a stirring means or the like is not separately provided, the heavy metal particles attached to the excavated soil in the muddy water are sufficiently in contact with the iron powder and adsorbed on the iron powder surface. The muddy water to which the iron powder has been added in this way is supplied to the magnetic separator 19 through the mud pipe (s102). The magnetic separator 19 supplied with the muddy water separates the iron powder from the muddy water (s103).

磁選機19は、泥水に所定強度の磁力を及ぼす永久磁石を内蔵した回転ドラムと、永久磁石の磁力により回転ドラム表面に付着していた鉄粉を回転ドラム表面から掻き取って回収するスクレーパとを少なくとも具備している。永久磁石ではなく電磁石を利用した構造の場合、磁選機19は、泥水に所定強度の磁力を一定サイクルで発生させる電磁石を内蔵した回転ドラムおよび電磁石の制御装置と、電磁石の磁力により回転ドラム表面に付着していた鉄粉を電磁石での磁力発生停止に合わせて掻き取って回収するスクレーパとを具備している。こうした磁選機16で回収された鉄粉は、重金属の粒子を吸着させた汚染鉄粉となる。   The magnetic separator 19 includes a rotating drum incorporating a permanent magnet that exerts a magnetic force with a predetermined strength on the muddy water, and a scraper that scrapes and collects iron powder adhering to the rotating drum surface from the rotating drum surface by the magnetic force of the permanent magnet. At least. In the case of a structure using an electromagnet instead of a permanent magnet, the magnetic separator 19 has a rotating drum and an electromagnet control device incorporating an electromagnet that generates a magnetic force of a predetermined strength in muddy water at a constant cycle, and the surface of the rotating drum by the magnetic force of the electromagnet. And a scraper that scrapes and collects the adhering iron powder in accordance with the stop of magnetic force generation by the electromagnet. The iron powder collected by the magnetic separator 16 becomes contaminated iron powder on which heavy metal particles are adsorbed.

なお、泥水から吸着材を分離する分離装置としては、上述の磁選機19の他に、泥水中の土砂と、重金属を吸着した吸着材との比重差を利用した分離装置を用いてもよい。また、鉄粉と重金属との吸着を解除する薬剤等を汚染鉄粉に添加し、この汚染鉄粉から重金属を分離させ、分離した重金属を資源として利用するとしてもよい。   In addition, as a separation apparatus which isolate | separates adsorbent from muddy water, you may use the separation apparatus using the specific gravity difference of the earth and sand in muddy water, and the adsorbent which adsorb | sucked the heavy metal other than the above-mentioned magnetic separator 19. FIG. Moreover, it is also possible to add a drug or the like that releases adsorption of iron powder and heavy metal to the contaminated iron powder, separate the heavy metal from the contaminated iron powder, and use the separated heavy metal as a resource.

その後、汚染鉄粉が分離され、無害化された泥水は、上述の固液分離装置20に供給される(s104)。固液分離装置20では、泥水の含む比較的大きな粒径の土砂を一次処理機21で取り出して建設発生土となし(s105)、小さな粒径の土砂のみを含むことになった泥水を調整槽22にて一旦貯留し、加水や加泥を適宜行って切羽供給用の泥水として必要な性状(比重等)に成分調整する(s106)。また、調整槽22で必要な性状に整えられた泥水は、泥水供給系統17を介して切羽に再度供給される(s107)。一方、調整槽22での余剰分となった泥水は二次処理機23に供給され、ごく小さな粒径の土砂のみ含むスライム状の建設汚泥と処理水とに分離される(s108)。調整槽22で分離された処理水は、作泥槽24に供給され、調整槽22に供給する泥水の作成用に利用される(s109)。なお、作泥槽24は、この処理水とベントナイト等とを混合して泥水の生成を行い、生成した泥水を必要に応じて調整槽22に供給する装置となる。調整槽22の泥水は、送泥ポンプ16によって泥水供給系統17の送泥管を介して切羽に供給され(s110)、上述の処理(ステップs100〜s109)を繰り返すことになる。   Thereafter, the contaminated iron powder is separated and detoxified, and the muddy water is supplied to the solid-liquid separator 20 (s104). In the solid-liquid separator 20, the soil having a relatively large particle size including muddy water is taken out by the primary processing machine 21 and is not generated as construction soil (s <b> 105), and the muddy water having only the small particle size is adjusted in the adjustment tank. The water is temporarily stored at 22, and the components are adjusted to the properties (specific gravity, etc.) necessary as mud water for supplying the face by appropriately adding water and mud (s106). The muddy water adjusted to the necessary properties in the adjustment tank 22 is supplied again to the face through the muddy water supply system 17 (s107). On the other hand, the surplus muddy water in the adjustment tank 22 is supplied to the secondary treatment machine 23 and separated into slime-like construction sludge containing only a very small particle size of soil and treated water (s108). The treated water separated in the adjustment tank 22 is supplied to the mud tank 24 and used for making mud water to be supplied to the adjustment tank 22 (s109). The mud tank 24 is a device that mixes the treated water with bentonite and the like to generate mud water and supplies the generated mud water to the adjustment tank 22 as necessary. The muddy water in the adjustment tank 22 is supplied to the face by the mud pump 16 via the mud pipe of the muddy water supply system 17 (s110), and the above processing (steps s100 to s109) is repeated.

上述した例では、吸着材添加装置18を泥水搬出系統14にて備えることとしたが、図3に示す汚染土壌浄化システム100のように、泥水供給系統17に吸着材添加装置18を備えるとしてもよい。この場合、送泥ポンプ16が調整槽22から泥水を吸い上げて、これを吸着材添加装置18Aに供給する構成となる。吸着材添加装置18Aは、上述の吸着材添加装置18と同様の構成を備え、送泥ポンプ16から供給される泥水に吸着材を添加する。吸着材が添加された泥水は、泥水供給系統17の送泥管を介して切羽に供給されることとなる。切羽に供給された泥水は、カッタヘッド11の回転を伴う切削動作と共に切羽面の土砂すなわち掘削土と混合され、排泥ポンプ12により後方に圧送される。以降の処理は、上述した磁選機19での処理(ステップs103)以降のものと同様となる。切羽へ供給する泥水に吸着材添加を行う場合、吸着材添加装置18Aと磁選機19との間の距離が、上述した吸着材添加装置18を泥水搬出系統14に備えた場合と比較して長くなり、すなわち吸着材と泥水との接触時間が長くなり、吸着材での重金属の吸着効率もより良好なものとなる。   In the example described above, the adsorbent addition device 18 is provided in the muddy water carrying-out system 14, but the adsorbent addition device 18 may be provided in the muddy water supply system 17 as in the contaminated soil purification system 100 shown in FIG. Good. In this case, the mud pump 16 sucks up the muddy water from the adjustment tank 22 and supplies it to the adsorbent adding device 18A. The adsorbent addition device 18A has the same configuration as the adsorbent addition device 18 described above, and adds the adsorbent to the muddy water supplied from the mud pump 16. The muddy water to which the adsorbent is added is supplied to the face via the mud pipe of the muddy water supply system 17. The muddy water supplied to the face is mixed with the earth and sand of the face, that is, excavated soil, together with the cutting operation accompanied by the rotation of the cutter head 11, and is pumped backward by the mud pump 12. The subsequent processing is the same as the processing after the processing (step s103) in the magnetic separator 19 described above. When adsorbent addition is performed on the muddy water supplied to the face, the distance between the adsorbent addition device 18A and the magnetic separator 19 is longer than when the adsorbent addition device 18 described above is provided in the mud discharge system 14. That is, the contact time between the adsorbent and the muddy water becomes longer, and the adsorption efficiency of heavy metals on the adsorbent becomes better.

なお、図4に例示するように、泥水処理系統たる固液分離装置20にて吸着材を添加し、これを回収するとしてもよい。この場合、吸着材添加装置18Bは、調整槽22の後方に配置され、この吸着材添加装置18と二次処理機23との間に磁選機19Bが配置される。従って、調整槽22での余剰分となった泥水が吸着材添加装置18Bに供給され、この泥水に対して吸着材の添加がなされる。吸着材の添加がなされた泥水は、磁選機19Bに送られ、磁選機19Bにて泥水からの鉄粉の分離処理が実行される。磁選機19Bにより汚染鉄粉が分離され、無害化された泥水は、二次処理機23に供給される。二次処理機23以降の処理については、上述のステップs108以降と同様である。このような形態とすれば、泥水搬出系統14、泥水供給系統17といった切羽用の泥水の循環系統への吸着材の混入が生じず、吸着材(鉄粉)による配管の摩耗を回避出来る。   In addition, as illustrated in FIG. 4, an adsorbent may be added and recovered by the solid-liquid separator 20 that is a muddy water treatment system. In this case, the adsorbent addition device 18 </ b> B is disposed behind the adjustment tank 22, and the magnetic separator 19 </ b> B is disposed between the adsorbent addition device 18 and the secondary processing device 23. Therefore, the surplus mud in the adjustment tank 22 is supplied to the adsorbent adding device 18B, and the adsorbent is added to the mud. The muddy water to which the adsorbent has been added is sent to the magnetic separator 19B, where the iron powder is separated from the muddy water by the magnetic separator 19B. The contaminated iron powder is separated and made harmless by the magnetic separator 19B, and supplied to the secondary processor 23. The processing after the secondary processor 23 is the same as that after step s108 described above. If it is set as such a form, admixture of adsorbents does not occur in the mud circulation system for working faces, such as the mud discharge system 14 and the mud supply system 17, and wear of the piping due to the adsorbent (iron powder) can be avoided.

また、吸着材添加装置を、泥水搬出系統14、泥水供給系統17、および固液分離装置20(泥水処理系統)の全て、或いはいずれか2系統に備えるとしてもよい。この場合、切羽面の地盤性状の変化に応じて、掘削土が粗い粒径や硬質である場合など吸着材と泥水とのより長い接触時間が必要な場合には、泥水供給系統17に備わる吸着材添加装置18Aを稼働させ、掘削土が細かい粒径や高粘度である場合など吸着材と泥水と接触時間が長時間でなくとも問題ない場合には、泥水搬出系統14に備わる吸着材添加装置18を稼働させ、処理する泥水の性状や量あるいは重金属の含有量によって、泥水搬出系統14や泥水供給系統17ではなく固液分離装置20での処理が好適と判断される場合には吸着材添加装置18B(および磁選機19B)を稼働させるといった、吸着材添加装置間の稼働切り替え制御を行うことが想定できる。また、磁選機も汚染土壌浄化システム100における複数箇所に設けるとしてよい。各磁選機が設置される箇所は、汚染土壌浄化システム100が含む配管経路中における、吸着材添加装置よりも所定距離以上の下流に位置し、吸着材添加装置による吸着材添加の後、泥水と吸着材とが所定の接触時間を確保できる箇所となる。また、吸着材の回収率を高める意図で、各箇所或いは何れかの箇所にて、複数の磁選機を直列に設けるとしてもよい。   Further, the adsorbent addition device may be provided in all or any two of the muddy water carry-out system 14, the muddy water supply system 17, and the solid-liquid separation device 20 (muddy water treatment system). In this case, if a longer contact time between the adsorbent and the muddy water is required, such as when the excavated soil has a coarse particle size or is hard, according to the change in the ground property of the face, the adsorption provided in the muddy water supply system 17 When the material addition device 18A is operated and there is no problem even if the contact time between the adsorbent and the mud is not long, such as when the excavated soil has a fine particle size or high viscosity, the adsorbent addition device provided in the mud discharge system 14 18 is operated and the adsorbent is added when it is determined that the treatment in the solid-liquid separation device 20 rather than the mud discharge system 14 or the mud supply system 17 is suitable depending on the properties and amount of the mud to be treated or the heavy metal content. It can be assumed that the operation switching control between the adsorbent addition devices, such as operating the device 18B (and the magnetic separator 19B), is performed. Magnetic separators may also be provided at a plurality of locations in the contaminated soil purification system 100. The location where each magnetic separator is installed is located in the piping path included in the contaminated soil purification system 100 downstream of the adsorbent addition device by a predetermined distance, and after adsorbent addition by the adsorbent addition device, mud water and This is where the adsorbent can secure a predetermined contact time. In addition, a plurality of magnetic separators may be provided in series at each location or at any location for the purpose of increasing the recovery rate of the adsorbent.

−−−第2実施形態−−−
続いて、シールド工法の1つとして、土圧式シールド工法を採用した場合の、汚染土壌浄化方法およびシステムについて説明する。図5は、第2実施形態のシールド工法における汚染土壌浄化システムの例を示す図であり、図6は、第2実施形態のシールド工法における汚染土壌浄化方法の手順例を示す図である。土圧式シールド工法は、カッタヘッド31で掘削した土砂すなわち掘削土に適宜な作泥土材を添加して、不透水性と塑性流動性を持つ泥土とした上でチャンバ内およびスクリューコンベヤ内に充満させ、泥土圧を発生させることで切羽安定を図る工法である。
--- Second Embodiment ---
Then, the contaminated soil purification method and system at the time of employ | adopting the earth pressure type shield method as one of the shield methods are demonstrated. FIG. 5 is a diagram illustrating an example of a contaminated soil purification system in the shield method according to the second embodiment, and FIG. 6 is a diagram illustrating a procedure example of the contaminated soil purification method in the shield method according to the second embodiment. In the earth pressure shield method, an appropriate mud-making material is added to the earth and sand excavated by the cutter head 31 to form a mud having impermeability and plastic fluidity, and then filled in the chamber and screw conveyor. This is a construction method that stabilizes the face by generating mud pressure.

図5に例示する汚染土壌浄化システム200において、シールドマシン30は、カッタヘッド31を回転駆動させて切羽面の掘削を行い、カッタヘッド31により切削した切羽面の土砂すなわち掘削土に水または添加剤(作泥土材)を混合し、不透水性と塑性流動性を持つ泥土を生成し、チャンバ内およびスクリューコンベヤ内に充満させる(s200)。   In the contaminated soil purification system 200 illustrated in FIG. 5, the shield machine 30 rotates the cutter head 31 to excavate the face, and water or an additive is added to the sand or excavated soil cut by the cutter head 31. (Mud soil material) is mixed to generate a mud having impermeability and plastic fluidity and filled in the chamber and the screw conveyor (s200).

また、シールドマシン30は、スクリューコンベヤ32により、上述の泥土を泥土搬出系統33における流動化装置44に排出する。流動化装置44では、排出された泥土すなわち掘削土に水を加え、排泥ポンプ35で圧送可能なスラリー状の流動体を作成する(s201)。一方、吸着材添加装置34は、流動化装置44から排出される流動体に鉄粉を加える(s202)。吸着材添加装置34は、所定量の鉄粉を格納するタンクと、このタンクから一定量の鉄粉を連続的に取得して流動体に添加する混合装置とを具備している。   Further, the shield machine 30 discharges the mud described above to the fluidizing device 44 in the mud unloading system 33 by the screw conveyor 32. The fluidizing device 44 adds water to the discharged mud, that is, excavated soil, and creates a slurry-like fluid that can be pumped by the mud pump 35 (s201). On the other hand, the adsorbent adding device 34 adds iron powder to the fluid discharged from the fluidizing device 44 (s202). The adsorbent addition device 34 includes a tank that stores a predetermined amount of iron powder, and a mixing device that continuously acquires a certain amount of iron powder from the tank and adds it to the fluid.

吸着材添加装置34により生成した、鉄粉を含む流動体は、排泥管を通過する過程で排泥管内での流路や流速等の変化に伴って、鉄粉との混合が効率良く進む。つまり、撹拌手段等を別途設けずとも、泥水中の掘削土に付着した重金属粒子が鉄粉と十分に接触し、鉄粉表面に吸着されることになる。こうして鉄粉を含む泥水は、排泥管を介して磁選機37に供給される(s203)。泥水の供給を受けた磁選機37は、泥水中より鉄粉を分離、回収する(s204)。ここで回収された鉄粉は、重金属の粒子を吸着させた汚染鉄粉となる。   The fluid containing the iron powder generated by the adsorbent addition device 34 is efficiently mixed with the iron powder in accordance with changes in the flow path and flow velocity in the mud pipe in the process of passing through the mud pipe. . That is, even if a stirring means or the like is not separately provided, the heavy metal particles attached to the excavated soil in the muddy water are sufficiently in contact with the iron powder and adsorbed on the iron powder surface. Thus, the muddy water containing the iron powder is supplied to the magnetic separator 37 through the mud pipe (s203). The magnetic separator 37 that has received the supply of muddy water separates and collects iron powder from the muddy water (s204). The iron powder recovered here becomes contaminated iron powder on which heavy metal particles are adsorbed.

その後、汚染鉄粉が分離され、無害化された流動体は、含水比調整機38に供給される(s205)。含水比調整機38では、振動ふるいやフィルタープレス等による所定の脱水処理を実行し、高含水比であった泥水の含水比低下を図って建設発生土となす(s206)。含水比調整機38は、こうした含水比調整の処理で得られる処理水を、加泥材供給系統39および流動化装置44に供給する(s207)。   Thereafter, the contaminated iron powder is separated and detoxified, and the fluid is supplied to the water content ratio adjuster 38 (s205). The water content ratio adjuster 38 executes a predetermined dehydration process using a vibration sieve, a filter press or the like, and lowers the water content ratio of the muddy water, which has a high water content ratio, to form construction generated soil (s206). The water content ratio adjuster 38 supplies the treated water obtained by the process of adjusting the water content ratio to the humidified material supply system 39 and the fluidizing device 44 (s207).

加泥材供給系統39に供給された処理水は、作液槽40に搬送され、切羽に供給される加泥材の作成に利用される(s208)。作液槽40は、この処理水を適宜な薬剤等と混合して加泥材を生成し、圧送ポンプ41および圧送管42を介して切羽に供給する(s209)。以降、上述の処理(ステップs200〜s208)を繰り返すことになる。   The treated water supplied to the mud material supply system 39 is transported to the liquid producing tank 40 and used to create the mud material supplied to the face (s208). The liquid production tank 40 mixes this treated water with an appropriate chemical or the like to generate a mud material, and supplies it to the face via the pressure feed pump 41 and the pressure feed pipe 42 (s209). Thereafter, the above processing (steps s200 to s208) is repeated.

上述した例では、吸着材添加装置34を泥土搬出系統33にて備えることとしたが、図7に示すように、加泥材供給系統39に吸着材添加装置34を備えるとしてもよい。この場合、吸着材添加装置34Aが、作液槽40に鉄粉等の吸着材を添加する構成となる。吸着材添加装置34Aは、上述の吸着材添加装置34と同様の構成を備えている。吸着材が添加された加泥材は、加泥材供給系統39の圧送管42を介して切羽に供給されることとなる。切羽に供給された加泥材は、カッタヘッド31の回転を伴う切削動作と共に切羽面の土砂すなわち掘削土と良く混練され、排泥ポンプ35により後方に圧送される。したがって、カッタヘッド31の回転による上述の混練によって掘削土と鉄粉との混合が効率良く行われ、撹拌手段等を別途設ける必要は無い。以降の処理は、上述した磁選機37での処理(ステップs204)以降のものと同様となる。切羽へ供給する加泥材に吸着材添加を行う場合、吸着材添加装置34Aと磁選機37との間の距離が、上述した吸着材添加装置34を泥土搬出系統33に備えた場合と比較して長くなり、すなわち吸着材と泥土との接触時間が長くなり、吸着材での重金属の吸着効率もより良好なものとなる。また、吸着材添加装置を、泥土搬出系統33と加泥材供給系統39の両方に備えるとしてもよいこと、磁選機37を複数箇所に設置してもよいこと、および、複数の磁選機37を各箇所或いは何れかの箇所にて直列に設けてもよいことは上述の泥水式シールド工法の形態と同様である。さらに、吸着材添加装置34は、掘削土を流動化するために加える処理水の系統に組み入れることも考えられる。また、トンネル外、すなわち地上や、場合によっては汚染土壌浄化システム後方のトンネル完工区間等において、掘削土に吸着材を添加するとしてもよい。   In the above-described example, the adsorbent addition device 34 is provided in the mud unloading system 33. However, as shown in FIG. 7, the adsorbent addition device 34 may be provided in the mud supply material supply system 39. In this case, the adsorbent addition device 34 </ b> A is configured to add an adsorbent such as iron powder to the liquid production tank 40. The adsorbent addition device 34A has the same configuration as the adsorbent addition device 34 described above. The mud material to which the adsorbent is added is supplied to the face via the pressure feed pipe 42 of the mud material supply system 39. The mud material supplied to the face is well kneaded with the earth and sand of the face, that is, excavated soil, along with the cutting operation accompanied by the rotation of the cutter head 31, and is pumped backward by the mud pump 35. Therefore, the mixing of the excavated soil and the iron powder is efficiently performed by the above-described kneading by the rotation of the cutter head 31, and it is not necessary to separately provide a stirring means or the like. The subsequent processing is the same as the processing after the processing (step s204) in the magnetic separator 37 described above. When the adsorbent is added to the mud material supplied to the face, the distance between the adsorbent addition device 34A and the magnetic separator 37 is compared with the case where the above-described adsorbent addition device 34 is provided in the mud unloading system 33. In other words, the contact time between the adsorbent and the mud becomes longer, and the adsorption efficiency of heavy metals on the adsorbent becomes better. Moreover, it is good also as providing an adsorbent addition apparatus in both the mud unloading system | strain 33 and the mud material supply system | strain 39, that the magnetic separator 37 may be installed in several places, and the several magnetic separator 37 is provided. It is the same as that of the above-mentioned muddy water type shield construction method that it may be provided in series at each location or at any location. Further, it is conceivable that the adsorbent addition device 34 is incorporated in a system of treated water added to fluidize excavated soil. Further, an adsorbent may be added to the excavated soil outside the tunnel, that is, on the ground, or in some cases, in the tunnel completion section behind the contaminated soil purification system.

以上、本実施形態によれば、シールド工法において、重金属を含む掘削土を効率的かつ確実に浄化し、掘削土の処分費用の低減も図られる。   As described above, according to the present embodiment, excavated soil containing heavy metals can be efficiently and reliably purified in the shield method, and the disposal cost of excavated soil can be reduced.

以上、本発明の実施の形態について、その実施の形態に基づき具体的に説明したが、これに限定されるものではなく、その要旨を逸脱しない範囲で種々変更可能である。   As mentioned above, although embodiment of this invention was described concretely based on the embodiment, it is not limited to this and can be variously changed in the range which does not deviate from the summary.

10、30 シールドマシン
11、31 カッタヘッド
12 排泥ポンプ
14 泥水搬出系統
16 送泥ポンプ
17 泥水供給系統
18、18A、18B 吸着材添加装置
19、19B 磁選機
20 固液分離装置
21 一次処理機
22 調整槽
23 二次処理機
24 作泥槽
32 スクリューコンベア
33 泥土搬出系統
34、34A 吸着材添加装置
35 排泥ポンプ
37 磁選機
38 含水比調整機
39 加泥材供給系統
40 作液槽
41 圧送ポンプ
42 圧送管
44 流動化装置
100、200 汚染土壌浄化システム
DESCRIPTION OF SYMBOLS 10, 30 Shield machine 11, 31 Cutter head 12 Mud pump 14 Mud discharge system 16 Mud pump 17 Mud supply system 18, 18A, 18B Adsorbent addition device 19, 19B Magnetic separator 20 Solid-liquid separation device 21 Primary processor 22 Adjustment tank 23 Secondary processing machine 24 Mud tank 32 Screw conveyor 33 Mud carry-out system 34, 34A Adsorbent addition device 35 Mud pump 37 Magnetic separator 38 Moisture content adjustment machine 39 Additive material supply system 40 Fluid tank 41 Pressure feed pump 42 Pressure feed pipe 44 Fluidization apparatus 100, 200 Contaminated soil purification system

Claims (2)

泥水式シールド工法で発生した掘削土に、重金属を吸着する鉄粉を添加し、重金属を吸着した前記鉄粉を前記掘削土より分離する、シールド工法における汚染土壌浄化方法であって、
泥水と掘削土を分離する泥水処理系統において、一次処理機にて泥水より建設発生土を分離した後、前記鉄粉を前記泥水に添加し、比重差を利用した分離装置にて重金属を吸着した前記鉄粉を前記泥水より分離することを特徴とする、シールド工法における汚染土壌浄化方法。
A method for purifying contaminated soil in a shield method, wherein iron powder that adsorbs heavy metals is added to excavated soil generated by the muddy water shield method, and the iron powder that adsorbs heavy metals is separated from the excavated soil,
In a muddy water treatment system that separates muddy water and excavated soil, after separating construction generated soil from muddy water with a primary treatment machine, the iron powder was added to the muddy water, and heavy metals were adsorbed with a separation device using specific gravity difference A method for purifying contaminated soil in a shield method, wherein the iron powder is separated from the muddy water.
泥水式シールド工法で発生した掘削土に、重金属を吸着する鉄粉を添加する添加装置と、重金属を吸着した前記鉄粉を前記掘削土より分離する分離装置とを備える、シールド工法における汚染土壌浄化システムであって、
前記添加装置は、泥水と掘削土を分離する泥水処理系統において、前記鉄粉を前記泥水に添加する装置であり、
前記分離装置は、比重差を利用して、重金属を吸着した前記鉄粉を前記泥水より分離する装置であることを特徴とする、シールド工法における汚染土壌浄化システム。
Contaminated soil purification in the shield method, comprising an addition device for adding iron powder that adsorbs heavy metals to the excavated soil generated by the muddy water shield method, and a separation device for separating the iron powder adsorbed heavy metals from the excavated soil A system,
The addition device is a device for adding the iron powder to the muddy water in a muddy water treatment system for separating muddy water and excavated soil,
The said separation apparatus is an apparatus which isolate | separates the said iron powder which adsorb | sucked heavy metal from the said muddy water using a specific gravity difference, The contaminated soil purification system in a shield construction method characterized by the above-mentioned.
JP2012222440A 2012-10-04 2012-10-04 Contaminated soil purification method and system in shield method Active JP6273666B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012222440A JP6273666B2 (en) 2012-10-04 2012-10-04 Contaminated soil purification method and system in shield method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012222440A JP6273666B2 (en) 2012-10-04 2012-10-04 Contaminated soil purification method and system in shield method

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2017144646A Division JP6536633B2 (en) 2017-07-26 2017-07-26 Method and system for purifying contaminated soil in shield method

Publications (2)

Publication Number Publication Date
JP2014073464A JP2014073464A (en) 2014-04-24
JP6273666B2 true JP6273666B2 (en) 2018-02-07

Family

ID=50748069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012222440A Active JP6273666B2 (en) 2012-10-04 2012-10-04 Contaminated soil purification method and system in shield method

Country Status (1)

Country Link
JP (1) JP6273666B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6243171B2 (en) * 2013-09-10 2017-12-06 鹿島建設株式会社 Construction sludge treatment method
JP6463222B2 (en) * 2015-03-11 2019-01-30 鹿島建設株式会社 Processing method and processing system of excavated soil
JP6363969B2 (en) * 2015-04-16 2018-07-25 Jfeミネラル株式会社 Method and apparatus for treating heavy metal contaminated soil
JP6572135B2 (en) * 2016-01-13 2019-09-04 五洋建設株式会社 Method and system for treating contaminated mud water
JP6850634B2 (en) * 2017-03-01 2021-03-31 大成建設株式会社 How to purify mercury-contaminated soil
RU2666862C1 (en) * 2017-04-20 2018-09-12 ООО "СтройИнвестТопаз" Method of carrying out mechanically decreased sediments of sewage waters

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000051835A (en) * 1998-08-12 2000-02-22 Dowa Mining Co Ltd Method for cleaning soil by using iron powder
JP5001100B2 (en) * 2007-09-10 2012-08-15 鹿島建設株式会社 Construction sludge treatment soil preparation system and construction sludge treatment soil preparation method

Also Published As

Publication number Publication date
JP2014073464A (en) 2014-04-24

Similar Documents

Publication Publication Date Title
JP6273666B2 (en) Contaminated soil purification method and system in shield method
CN104475441B (en) A kind of Soil leaching repair system and method thereof concentrating design concept based on decrement
Ma et al. Multistage remediation of heavy metal contaminated river sediments in a mining region based on particle size
CN105598147A (en) Soil washing device and washing method thereof
JP6007144B2 (en) Contaminated soil purification method
CN102745872B (en) Treatment method and device for riverway and lake heavy metal pollution bottom sludge
CN103240266A (en) Mobile soil washing apparatus and method thereof
JP5647371B1 (en) Detoxification method for contaminated soil
JP2006316599A (en) Countermeasure method for polluted soil in closed type shield tunnel construction
JP6411909B2 (en) Detoxification system for arsenic contaminated soil
Rashid et al. Removal of dissolved cadmium ions from contaminated wastewater using raw scrap zero-valent iron and zero valent aluminum as locally available and inexpensive sorbent wastes
JP6463222B2 (en) Processing method and processing system of excavated soil
JP2017148760A (en) Detoxification treatment system of heavy metal contaminated soil
JP2017196620A (en) Contaminated soil purifying method and system in shield method
JP2012120987A (en) Method for purifying excavated soil when shield construction is performed in contaminated soil and shield excavator
JP2011038344A (en) Treatment method of slime-containing muddy water and treatment system therefor
JP4464075B2 (en) Purification method for contaminated soil
JP2018143917A (en) Method of purifying mercury-contaminated soil
JP2014133217A (en) Construction method for fixing contaminant in soil
EP3301078B1 (en) Method for treating dredged material or sludge
US10391532B2 (en) System and method for treatment of contaminated sediments or soils using free radical chemical reaction and phase separation processes
JP6425170B2 (en) Muddy water treatment system and muddy water treatment method
JP6243171B2 (en) Construction sludge treatment method
JP2007175585A (en) Treatment method of contaminated soil
Kim et al. Field study on application of soil washing system to arsenic-contaminated site adjacent to J. refinery in Korea

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150918

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160829

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160913

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170425

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170726

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171212

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171225

R150 Certificate of patent or registration of utility model

Ref document number: 6273666

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150