JP6269912B2 - Catalyst for ethanol decomposition reaction - Google Patents

Catalyst for ethanol decomposition reaction Download PDF

Info

Publication number
JP6269912B2
JP6269912B2 JP2013035963A JP2013035963A JP6269912B2 JP 6269912 B2 JP6269912 B2 JP 6269912B2 JP 2013035963 A JP2013035963 A JP 2013035963A JP 2013035963 A JP2013035963 A JP 2013035963A JP 6269912 B2 JP6269912 B2 JP 6269912B2
Authority
JP
Japan
Prior art keywords
ferroelectric
fine particles
metal
catalyst
carrier
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013035963A
Other languages
Japanese (ja)
Other versions
JP2014161811A (en
Inventor
旬 狩野
旬 狩野
直 池田
直 池田
美穗 太田
美穗 太田
知宏 三津井
知宏 三津井
中島 昭
昭 中島
小松 通郎
通郎 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okayama University NUC
JGC Catalysts and Chemicals Ltd
Original Assignee
Okayama University NUC
JGC Catalysts and Chemicals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okayama University NUC, JGC Catalysts and Chemicals Ltd filed Critical Okayama University NUC
Priority to JP2013035963A priority Critical patent/JP6269912B2/en
Priority to PCT/JP2014/054771 priority patent/WO2014133045A1/en
Publication of JP2014161811A publication Critical patent/JP2014161811A/en
Application granted granted Critical
Publication of JP6269912B2 publication Critical patent/JP6269912B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/56Platinum group metals
    • B01J23/58Platinum group metals with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)

Description

本発明は、低温活性に優れた強誘電体担体触媒に関する。さらに詳しくは、担体である強誘電体のキュリー点が低く、このため低温で分極揺らぎが生じるためか、低温活性に優れた強誘電体担体触媒に関する。   The present invention relates to a ferroelectric carrier catalyst having excellent low-temperature activity. More specifically, the present invention relates to a ferroelectric support catalyst that is excellent in low-temperature activity because the ferroelectric Curie point as a support has a low Curie point and polarization fluctuations occur at low temperatures.

従来、担体に金属を担持した触媒が酸化還元触媒として各種反応に用いられている。
しかしながら、強誘電体を担体として用いることは必ずしも広く知られてない。
本発明者の一人は、強誘電体であるチタン酸鉛(PbSr1−xTiO)の表面に析出した鉛が酸化せず、金属の状態となっていることを発見し、新規な触媒として提案をしている。また、チタン酸鉛(PbSr1−xTiO)は、共沈法で作成した触媒が好適であることを開示している。(特許文献1:特開2009−207977号公報、特許文献2:特開2009−207978号公報、特許文献3:特開2009−207979号公報)
Conventionally, a catalyst in which a metal is supported on a carrier is used as an oxidation-reduction catalyst in various reactions.
However, the use of ferroelectrics as carriers is not always widely known.
One of the present inventors discovered that lead deposited on the surface of lead titanate (Pb x Sr 1-x TiO 3 ), which is a ferroelectric material, is not oxidized and is in a metal state. Proposed as a catalyst. Moreover, lead titanate (Pb x Sr 1-x TiO 3 ) discloses that a catalyst prepared by a coprecipitation method is suitable. (Patent Document 1: JP 2009-209777 A, Patent Document 2: JP 2009-207978 A, Patent Document 3: JP 2009-207979 A)

しかしながら、共沈法で強誘電体を作製する場合は、共沈法が利用できる金属の組み合わせでしか強誘電体を作製できず、加えて強誘電体の収量がわずかであるために製造効率が低く、経済性の点で問題があった。
そこで、さらに検討した結果、粉末状とした強誘電体と粉末状とした金属との混合物を撹拌しながら焼成することによって強誘電体の表面に金属を担持した触媒で、金属の強誘電体の表面から金属表面までの距離が10nm以下(すなわち、金属の粒子径が10nm以下)とした触媒を開示している。(特許文献4:特開2012−161751号公報)
However, when producing a ferroelectric by the coprecipitation method, the ferroelectric can be produced only by a combination of metals for which the coprecipitation method can be used. In addition, since the yield of the ferroelectric is small, the production efficiency is low. It was low and there was a problem in terms of economy.
Therefore, as a result of further investigation, a catalyst in which a metal is supported on the surface of a ferroelectric by firing a mixture of the powdered ferroelectric and the powdered metal while stirring is used. A catalyst in which the distance from the surface to the metal surface is 10 nm or less (that is, the metal particle diameter is 10 nm or less) is disclosed. (Patent Document 4: JP 2012-161751 A)

特開2009−207977号公報JP 2009-209777 A 特開2009−207978号公報JP 2009-207978 A 特開2009−207979号公報JP 2009-207979 A 特開2012−161751号公報JP 2012-161751 A

本発明者らは、さらに検討した結果、キュリー点(T)の低い強誘電体担体に、貴金属を担持すると、キュリー点(T)近辺の極めて反応温度が低い場合であっても、高い触媒活性を発現することを見出して本発明を完成するに到った。
本発明は、金属微粒子および/または金属酸化物微粒子を担持した強誘電体を担体とする低温活性に優れた触媒を提供することを目的としている。
The present inventors have further studied a result, the lower ferroelectric carrier Curie point (T C), when a noble metal, even very reactive temperature close Curie point (T C) is a case low, high The inventors have found that the catalyst activity is expressed and have completed the present invention.
An object of the present invention is to provide a catalyst having excellent low-temperature activity using a ferroelectric material carrying metal fine particles and / or metal oxide fine particles as a carrier.

本発明に係る強誘電体担体触媒は、金属微粒子および/または金属酸化物微粒子を強誘電体微粒子担体に担持してなる強誘電体担体触媒であって、該強誘電体のキュリー点(T)が0〜200℃の範囲にあり、強誘電体微粒子の平均粒子径が10〜200nmの範囲にあり、金属微粒子および/または金属酸化物微粒子の担持量が、強誘電体担体の酸化物としての100質量部に対して金属に換算して1〜30質量部の範囲にあることを特徴としている。 Ferroelectric supported catalyst according to the present invention is a ferroelectric supported catalyst obtained by supporting a metal fine particle and / or metal oxide fine particles to ferroelectric particulate carrier, the Curie point of the ferroelectric (T C ) Is in the range of 0 to 200 ° C., the average particle size of the ferroelectric fine particles is in the range of 10 to 200 nm, and the loading amount of the metal fine particles and / or metal oxide fine particles is the oxide of the ferroelectric carrier. It is characterized by being in the range of 1 to 30 parts by mass in terms of metal with respect to 100 parts by mass.

前記強誘電体のバンドギャップが3.2〜4.0eVの範囲にあることが好ましい。
前記強誘電体微粒子の結晶子径が5〜100nmの範囲にあることが好ましい。
The ferroelectric material preferably has a band gap in the range of 3.2 to 4.0 eV.
The crystallite diameter of the ferroelectric fine particles is preferably in the range of 5 to 100 nm.

前記強誘電体がABOで表されるペロブスカイト型結晶構造(酸素八面体構造)を有する結晶であることが好ましい。
前記BがTiまたは、Nb、Fe、Mn、Ta、ZrおよびLaから選ばれる少なくとも1種の元素とTiであることが好ましい。
前記AがBaまたは、Ca、Sr、Li、K、Na、Ag、La、およびTmから選ばれる少なくとも1種の元素とBaであることが好ましい。
The ferroelectric is preferably a crystal having a perovskite crystal structure (oxygen octahedral structure) represented by ABO 3 .
It is preferable that B is Ti or at least one element selected from Nb, Fe, Mn, Ta, Zr and La and Ti.
The A is preferably Ba or Ba and at least one element selected from Ca, Sr, Li, K, Na, Ag, La, and Tm.

前記金属の仕事関数が4.5〜6eVの範囲にあることが好ましい。
前記金属がPd、Rh、Au、Ru、Ni、Pt、Cu、Fe、Agから選ばれる少なくとも1種であることが好ましい。
前記金属微粒子および/または金属酸化物微粒子の平均粒子径が1〜20nmの範囲にあることが好ましい。
The metal work function is preferably in the range of 4.5 to 6 eV.
The metal is preferably at least one selected from Pd, Rh, Au, Ru, Ni, Pt, Cu, Fe, and Ag.
The average particle diameter of the metal fine particles and / or metal oxide fine particles is preferably in the range of 1 to 20 nm.

本発明に係る強誘電体担体触媒は低温活性に優れており、各種の触媒反応に用いることができる。
The ferroelectric carrier catalyst according to the present invention is excellent in low-temperature activity and can be used for various catalytic reactions.

強誘電体担体触媒
以下、本発明に係る強誘電体担体触媒について説明する。
本発明に係る強誘電体担体触媒は、金属微粒子および/または金属酸化物微粒子を強誘電体微粒子担体に担持してなる強誘電体担体触媒である。
Ferroelectric Support Catalyst Hereinafter, the ferroelectric support catalyst according to the present invention will be described.
The ferroelectric carrier catalyst according to the present invention is a ferroelectric carrier catalyst in which metal fine particles and / or metal oxide fine particles are supported on a ferroelectric fine particle carrier.

強誘電体担体
強誘電体とは、一般的に外部に電場がなくても電気双極子が整列しており、かつ電気双極子の方向が電場によって変化できる物質である。
本発明に用いる強誘電体としては、後述する分極揺らぎが生じる物質であれば特に制限はないが、ABOで表されるペロブスカイト型結晶構造(酸素八面体構造)を有する結晶であるものが好ましい。
A ferroelectric carrier ferroelectric is a substance in which electric dipoles are generally aligned without an external electric field, and the direction of the electric dipole can be changed by the electric field.
The ferroelectric used in the present invention is not particularly limited as long as it is a substance that causes polarization fluctuation described later, but is preferably a crystal having a perovskite crystal structure (oxygen octahedral structure) represented by ABO 3. .

前記BがTiまたは、Nb、Fe、Mn、Ta、ZrおよびLaから選ばれる少なくとも1種の元素とTiであることが好ましい。Nb、Fe、Mn、Ta、ZrおよびLaから選ばれる少なくとも1種の元素とTiである場合、Tiの元素の割合が50%以上であることが好ましい。これらの元素からなるペロブスカイト型結晶構造であるとキュリー点(T)が低く、低温活性に優れた触媒を得ることができる。 It is preferable that B is Ti or at least one element selected from Nb, Fe, Mn, Ta, Zr and La and Ti. In the case of Ti and at least one element selected from Nb, Fe, Mn, Ta, Zr and La, the proportion of the Ti element is preferably 50% or more. When a perovskite type crystal structure consisting of elements Curie point (T C) is low, it is possible to obtain an excellent catalyst activity at low temperature.

前記AがBaまたは、Ca、Sr、Li、K、Na、Ag、LaおよびTmから選ばれる少なくとも1種の元素とBaであることが好ましい。
元素Aがこれらの元素であると、前記元素BがTiまたは、Tiを主としこれにNb、Fe、Mn、Ta、ZrおよびLaから選ばれる少なくとも1種の元素が配合したペロブスカイト型結晶構造である強誘電体である場合に、結晶性に優れたペロブスカイト型結晶が得られ、キュリー点(T)が低く、低温活性に優れた触媒を得ることができる。
The A is preferably Ba or Ba and at least one element selected from Ca, Sr, Li, K, Na, Ag, La and Tm.
When the element A is any of these elements, the element B has a perovskite crystal structure in which the element B is mainly Ti or Ti and at least one element selected from Nb, Fe, Mn, Ta, Zr and La is blended. If a certain ferroelectric excellent perovskite type crystal crystallinity is obtained, the Curie point (T C) is low, it is possible to obtain an excellent catalyst activity at low temperature.

また、本発明に用いる強誘電体のキュリー点(T)は0〜200℃、さらには20℃〜180℃の範囲にあることが好ましい。ここで、キュリー点(Tc)とは、強誘電体が常誘電体に転移する温度を意味している。
強誘電体のキュリー点(T)が前記範囲にあると、後述するキュリー点(T)近辺での分極揺らぎによる活性向上効果により、反応温度が低い場合でも活性に優れた触媒を得ることができる。
強誘電体のキュリー点(T)が0℃未満のものは得ることが困難であり、キュリー点(T)が200℃を超えると、前記分極揺らぎは反応温度が200℃を超える温度域で生じることになるが、このような高温では分極揺らぎのないアルミナ、酸化チタン等の常誘電体(非強誘電体)を担体として用いた場合と同様、温度に依存した活性の向上も加わり、分極揺らぎによる活性向上効果は小さい。
The Curie point (T C ) of the ferroelectric used in the present invention is preferably in the range of 0 to 200 ° C., more preferably 20 to 180 ° C. Here, the Curie point (Tc) means the temperature at which the ferroelectric material transitions to the paraelectric material.
When ferroelectric Curie point (T C) is in the above range, the activity enhancing effect due to the polarization fluctuation in the vicinity of the Curie point, which will be described later (T C), the reaction temperature is obtained an excellent catalyst activity even when low Can do.
It is difficult to obtain a ferroelectric having a Curie point (T C ) of less than 0 ° C. When the Curie point (T C ) exceeds 200 ° C., the polarization fluctuation is a temperature range in which the reaction temperature exceeds 200 ° C. However, as with the case of using a paraelectric material (non-ferroelectric material) such as alumina or titanium oxide that does not have polarization fluctuation at such a high temperature as a support, an improvement in activity depending on temperature is added, The activity improvement effect by polarization fluctuation is small.

この点をさらに詳述する。
本願発明者等の一人は、特許文献4:特開2012−161751号公報において、強誘電体で分極揺らぎが出現することを報告している。
この「分極揺らぎ」とは、電荷の分布が変化することによって正または負に帯電した微小領域が生じ、1組の正に帯電した微小領域と負に帯電した微小領域とで電気双極子モーメントを生じる。この電気双極子モーメントは、外部に電場が存在すれば、その電場の向きに整列する一方で、外部に電場が存在しなければエネルギー的に安定する任意の向きを向くものである。ここで、任意の方向を向いた電気双極子モーメントは、常に一定の向きを向いているのではなく、熱エネルギー等に起因した強誘電体における電荷の分布の変動によって、電気双極子モーメントの向き、および電気双極子モーメントの大きさは揺らいでいる。
This point will be described in further detail.
One of the inventors of the present application reports that polarization fluctuations appear in a ferroelectric material in Patent Document 4: Japanese Patent Application Laid-Open No. 2012-161751.
This “polarization fluctuation” is a change in the distribution of electric charge, resulting in a positive or negative charged micro-region, and an electric dipole moment between a pair of positively charged micro-regions and a negatively charged micro-region. Arise. This electric dipole moment is aligned in the direction of the electric field if an electric field is present outside, while it is in an arbitrary direction that is stable in terms of energy if there is no electric field outside. Here, the electric dipole moment in any direction is not always in a fixed direction, but the direction of the electric dipole moment is caused by fluctuations in the charge distribution in the ferroelectric due to thermal energy, etc. And the magnitude of the electric dipole moment is fluctuating.

この電気双極子モーメントの配向の時空間的な揺らぎは「分極揺らぎ」とも呼ばれ、この分極揺らぎがピコ秒単位の変動(揺らぎ)となっていることにより、分極揺らぎに起因して強誘電体の表面にピコ秒単位で電子−正孔対を出現させ、この電子または正孔と反応物とが接触することにより触媒活性を発現すると考えられる。
そして、強誘電体のキュリー点(T)が前記範囲で低い場合、低温で発生する分極揺らぎに伴い低温で高い活性を発現すると理解される。
本発明では、キュリー点(T)は、公知の値を用いた。
This spatiotemporal fluctuation of the orientation of the electric dipole moment is also called “polarization fluctuation”, and this polarization fluctuation is a fluctuation (fluctuation) in picosecond units. It is considered that an electron-hole pair appears on the surface of the substrate in picosecond units, and catalytic activity is expressed by contacting the electron or hole with a reactant.
When the Curie point (T C ) of the ferroelectric substance is low in the above range, it is understood that high activity is exhibited at low temperatures due to polarization fluctuations generated at low temperatures.
In the present invention, a known value is used for the Curie point (T C ).

つぎに、本発明に用いる強誘電体のバンドギャップは3.2〜4.0eV、さらには3.5〜4.0eVの範囲にあることが好ましい。
バンドギャップが前記範囲にあると、強誘電体担体に酸素欠損あるいは不純物が無いか少ないことを意味し(バンドギャップが指標)、分極揺らぎにより、低温で活性の高い触媒を得ることができる。このとき、バンドギャップが4.0eVを超えるものは得ることが困難である。
Next, the band gap of the ferroelectric used in the present invention is preferably in the range of 3.2 to 4.0 eV, and more preferably in the range of 3.5 to 4.0 eV.
When the band gap is in the above range, it means that the ferroelectric carrier has no or few oxygen vacancies or impurities (band gap is an index), and a highly active catalyst at low temperature can be obtained by polarization fluctuation. At this time, it is difficult to obtain one having a band gap exceeding 4.0 eV.

本発明では、バンドギャップは島津製分光光度計V-550に積分球ユニット(ISN-470)を組み込んだ装置を用いて反射スペクトルを測定することにより、その反射スペクトルの吸収端からバンドギャップを算出した。本来なら透過スペクトルを測定するのが望ましいが、用いた強誘電体は微粒子粉末体のため検出光を透過させることができない。そのため、粉末試料用ホルダーPSH-001を利用した。ホルダー内部の25mm口径のセルに厚さ1〜2mmになるように均等に敷き、石英ガラス窓で押さえつけて固定し光を入射して反射したスペクトルから反射率を求める形式を採用した。分光光度計により得られるスペクトルは縦軸が反射率(%R)、横軸が波長(nm)となる。高エネルギー側(低波長側)に現れる吸収端(反射率が0に漸近する波長領域)を確認し、1240÷吸収端波長=バンドギャップとした。   In the present invention, the band gap is calculated from the absorption edge of the reflection spectrum by measuring the reflection spectrum using a device incorporating an integrating sphere unit (ISN-470) in the Shimadzu spectrophotometer V-550. did. Originally, it is desirable to measure a transmission spectrum, but the ferroelectric material used cannot transmit detection light because it is a fine particle powder. Therefore, a powder sample holder PSH-001 was used. A format was adopted in which the cells were evenly laid to a thickness of 1 to 2 mm in a 25 mm aperture cell inside the holder, and fixed by pressing with a quartz glass window, and the reflectance was obtained from the spectrum reflected by the incident light. The spectrum obtained by the spectrophotometer has the reflectance (% R) on the vertical axis and the wavelength (nm) on the horizontal axis. The absorption edge (wavelength region where the reflectance asymptotically approaches 0) appearing on the high energy side (low wavelength side) was confirmed, and 1240 ÷ absorption edge wavelength = band gap.

本発明に用いる強誘電体は微粒子を用いるが、この強誘電体微粒子の平均粒子径は10〜200nm、さらには10〜100nmの範囲にあることが好ましい。
強誘電体微粒子の平均粒子径が10nm未満の場合は、分極揺らぎが極端に小さくなり、充分な活性が得られない場合がある。
強誘電体微粒子の平均粒子径が200nmを超えると、担持した金属微粒子あるいは金属酸化物微粒子の担持量によっても異なるが、担持した微粒子の平均粒子径が大きくなる傾向にあり、活性が不充分となる場合がある。
The ferroelectric used in the present invention uses fine particles. The average particle size of the ferroelectric fine particles is preferably in the range of 10 to 200 nm, more preferably 10 to 100 nm.
When the average particle size of the ferroelectric fine particles is less than 10 nm, the polarization fluctuation becomes extremely small and sufficient activity may not be obtained.
When the average particle size of the ferroelectric fine particles exceeds 200 nm, the average particle size of the supported fine particles tends to increase, although the amount varies depending on the amount of the supported metal fine particles or metal oxide fine particles, and the activity is insufficient. There is a case.

このような強誘電体微粒子の平均粒子径の測定方法は、走査透過型電子顕微鏡(STEM)(日立製作所:機種S−5500)もしくは電解放出形電子顕微鏡(フィールドエミッションTEM)(日本電子:JEM-2100F)を用いて撮影し、50個の粒子について粒子径を測定し、その平均値とした。   The measurement method of the average particle size of such ferroelectric fine particles is as follows: scanning transmission electron microscope (STEM) (Hitachi, Ltd .: model S-5500) or field emission electron microscope (field emission TEM) (JEOL: JEM- 2100F), the particle diameter was measured for 50 particles, and the average value was obtained.

また、強誘電体微粒子の結晶子径は5〜100nm、さらには7〜50nmの範囲にあることが好ましい。
強誘電体微粒子の結晶子径が5nm未満の場合は、強誘電体微粒子の結晶性が低いことを意味しており、このため、前記強誘電体微粒子担体の表面に担持された金属微粒子および/または金属酸化物微粒子が強誘電体担体の分極揺らぎに揺動されず充分な活性が得られない場合がある。
強誘電体微粒子の結晶子径が100nmを超えるものは得ることが困難であり、得られたとしても平均粒子径も大きくなり、担持した金属微粒子あるいは金属酸化物微粒子の平均粒子径が大きくなる傾向にあり、活性が不充分となる場合がある。
The crystallite diameter of the ferroelectric fine particles is preferably in the range of 5 to 100 nm, more preferably 7 to 50 nm.
When the crystallite diameter of the ferroelectric fine particles is less than 5 nm, it means that the crystallinity of the ferroelectric fine particles is low. For this reason, the metal fine particles supported on the surface of the ferroelectric fine particle carrier and / or Alternatively, the metal oxide fine particles may not be oscillated by the polarization fluctuation of the ferroelectric carrier and sufficient activity may not be obtained.
Ferroelectric fine particles having a crystallite diameter exceeding 100 nm are difficult to obtain, and even if they are obtained, the average particle size also increases, and the average particle size of the supported metal fine particles or metal oxide fine particles tends to increase. And the activity may be insufficient.

本発明で、結晶子径は、X線回折測定装置で、2θ=31.5度付近の(110)面のピークの半価幅を測定し、下記Scherrerの式により計算して求めた。
D=Kλ/βcosθ
D:結晶子径(オングストローム)、K:Scherrer定数、λ:X線波長(1.7889オングストローム Cuランプ)、β:半価幅(rad)、θ:反射角。
In the present invention, the crystallite diameter was determined by measuring the half width of the peak on the (110) plane near 2θ = 31.5 degrees with an X-ray diffractometer, and calculating by the following Scherrer equation.
D = Kλ / βcosθ
D: crystallite diameter (angstrom), K: Scherrer constant, λ: X-ray wavelength (1.7889 angstrom Cu lamp), β: half width (rad), θ: reflection angle.

金属微粒子および/または金属酸化物微粒子
本発明の強誘電体担体触媒には、前記強誘電体微粒子を担体とし、その表面に金属微粒子および/または金属酸化物微粒子が担持されている。
金属としては、金属の仕事関数が4.5〜6.0eV、さらには5.0〜6.0eVの範囲にある金属を用いることが好ましい。
仕事関数が4.5〜6eVの金属を強誘電体に担持させるとショットキー接合し、生成させたいガスの酸化還元準位と強誘電体の伝導帯もしくは価電子帯の裾が階段上に架橋される。その結果、キュリー点(TC)近辺で強誘電体担体の分極揺らぎに揺動される形で同じ時間スケールでの金属の電位ポテンシャルの変動が起こり、金属微粒子あるいは金属酸化物微粒子内の電子の揺らぎが生じ、外部から拡散してきた炭化水素ガス等の反応物との電子の授受が促進され、低温で高い活性を発現すると考えられる。
Metal Fine Particles and / or Metal Oxide Fine Particles In the ferroelectric carrier catalyst of the present invention, the ferroelectric fine particles are used as a carrier, and metal fine particles and / or metal oxide fine particles are supported on the surface thereof.
As the metal, it is preferable to use a metal having a work function of 4.5 to 6.0 eV, more preferably 5.0 to 6.0 eV.
When a metal with a work function of 4.5 to 6 eV is supported on a ferroelectric material, it forms a Schottky junction, and the redox level of the gas to be generated and the bottom of the conduction band or valence band of the ferroelectric bridge on the staircase Is done. As a result, the potential potential of the metal fluctuates on the same time scale in the form oscillated by the polarization fluctuation of the ferroelectric carrier in the vicinity of the Curie point (T C ), and the electrons in the metal fine particles or metal oxide fine particles change. It is thought that fluctuations occur and the exchange of electrons with reactants such as hydrocarbon gas diffused from the outside is promoted, and high activity is exhibited at low temperatures.

一方、仕事関数の小さい金属の場合、強誘電体の伝導帯付近で金属のフェルミ準位とオーミック接合する。この場合、強誘電体の分極揺らぎによる金属の電位ポテンシャルは十分に揺動されず活性が不充分となる傾向にある。反対に大きい金属では強誘電体の価電子帯付近でショットキー接合する。この場合強誘電体のp型特性が顕著に現れ、金属の電位ポテンシャル揺動は限定され活性が不充分となる傾向にある。   On the other hand, in the case of a metal having a small work function, it is in ohmic contact with the Fermi level of the metal near the conduction band of the ferroelectric. In this case, the potential potential of the metal due to the polarization fluctuation of the ferroelectric does not sufficiently oscillate, and the activity tends to be insufficient. On the other hand, for large metals, Schottky junctions occur near the valence band of the ferroelectric. In this case, the p-type characteristics of the ferroelectric material are prominent, the potential potential fluctuation of the metal is limited, and the activity tends to be insufficient.

金属としては、Pd、Rh、Au、Ru、Ni、Pt、Cu、Fe、Agから選ばれる少なくとも1種が用いられ、これらの金属微粒子および/または金属酸化物微粒子が担持されていることが好ましい。
これらの金属微粒子および/または金属酸化物微粒子は、金属の仕事関数が前記範囲にあり、強誘電体の分極揺らぎによる金属の電位ポテンシャルが十分に揺動され、低温で高い活性を発現すると考えられる。
As the metal, at least one selected from Pd, Rh, Au, Ru, Ni, Pt, Cu, Fe, and Ag is used, and it is preferable that these metal fine particles and / or metal oxide fine particles are supported. .
These metal fine particles and / or metal oxide fine particles have a metal work function in the above range, and the potential potential of the metal due to the polarization fluctuation of the ferroelectric is sufficiently fluctuated, and it is considered that high activity is exhibited at a low temperature. .

前記金属微粒子および/または金属酸化物微粒子の平均粒子径は1〜20nm、さらには2〜15nmの範囲にあることが好ましい。
金属微粒子および/または金属酸化物微粒子の平均粒子径が1nm未満のものは得ることが困難である。
金属微粒子および/または金属酸化物微粒子の平均粒子径が20nmを超えると、金属の種類によらず、また、後述する担持量によらず、充分な活性が得られない場合がある。
The average particle diameter of the metal fine particles and / or metal oxide fine particles is preferably 1 to 20 nm, more preferably 2 to 15 nm.
It is difficult to obtain metal fine particles and / or metal oxide fine particles having an average particle size of less than 1 nm.
If the average particle diameter of the metal fine particles and / or metal oxide fine particles exceeds 20 nm, sufficient activity may not be obtained regardless of the type of metal and the supported amount described later.

このような金属微粒子、金属酸化物微粒子の平均粒子径の測定方法はCO吸着量から算出した。
CO吸着量は、触媒分析装置(日本ベル株式会社製:BEL−CAT)を用い、前処理は触媒学会参照触媒委員会の「参照触媒を用いた測定法の標準化」を参考に測定した。
なお、CO吸着からの金属の平均粒子は、担持した金属の割合より担持金属の平均原子量および平均原子半径を算出し、触媒分析装置(BEL−CAT)取扱説明書に記載されている計算式を用いて算出することができる。
The measurement method of the average particle diameter of such metal fine particles and metal oxide fine particles was calculated from the CO adsorption amount.
The amount of CO adsorption was measured using a catalyst analyzer (BEL-CAT, manufactured by Nippon Bell Co., Ltd.), and the pretreatment was measured with reference to “standardization of measurement method using reference catalyst” of the Reference Catalyst Committee of the Catalysis Society of Japan.
For the average particle of metal from CO adsorption, the average atomic weight and average atomic radius of the supported metal are calculated from the ratio of the supported metal, and the calculation formula described in the instruction manual for the catalyst analyzer (BEL-CAT) is used. Can be used to calculate.

また、金属微粒子および/または金属酸化物微粒子の担持量は、強誘電体担体の酸化物(ABO)としての100質量部に対して、金属に換算して1〜30質量部、さらには1.5〜20質量部の範囲にあることが好ましい。
金属微粒子および/または金属酸化物微粒子の担持量が、金属に換算して1質量部未満の場合は、充分な活性が得られない場合がある。
金属微粒子および/または金属酸化物微粒子の担持量が、金属に換算して30質量部を超えると、金属微粒子および/または金属酸化物微粒子の粒子径が大きくなり過ぎて、充分な活性が得られない場合がある。
Further, the supported amount of the metal fine particles and / or metal oxide fine particles is 1 to 30 parts by mass in terms of metal with respect to 100 parts by mass as the oxide (ABO 3 ) of the ferroelectric carrier, and further 1 It is preferable that it exists in the range of 0.5-20 mass parts.
If the supported amount of metal fine particles and / or metal oxide fine particles is less than 1 part by mass in terms of metal, sufficient activity may not be obtained.
If the supported amount of the metal fine particles and / or metal oxide fine particles exceeds 30 parts by mass in terms of metal, the particle diameter of the metal fine particles and / or metal oxide fine particles becomes too large and sufficient activity is obtained. There may not be.

強誘電体担体触媒の製造方法
このような、本発明に係る強誘電体担体触媒の製造方法は、前記した触媒が得られれば特に制限はないが、例えば、以下の含浸・吸着工程、乾燥工程および加熱処理工程からなる製造方法が例示される。
Method for Producing Ferroelectric Support Catalyst Such a method for producing a ferroelectric support catalyst according to the present invention is not particularly limited as long as the above-described catalyst is obtained. For example, the following impregnation / adsorption step, drying step And the manufacturing method which consists of a heat processing process is illustrated.

(含浸・吸着工程)
予め、所定量の強誘電体微粒子粉体に水を滴下し、概ねペースト状になるまでに滴下した水の量(吸水量)を求める。
ついで、滴下した水の量と同量の金属塩水溶液を調製し、これに強誘電体微粒子粉体を混合して、金属塩水溶液を吸収させる。
(Impregnation / adsorption process)
In advance, water is dripped onto a predetermined amount of the ferroelectric fine particle powder, and the amount of water dripped until it becomes almost paste-like (water absorption amount) is obtained.
Next, an aqueous metal salt solution having the same amount as the amount of dropped water is prepared, and the ferroelectric fine particle powder is mixed with the aqueous metal salt solution to absorb the aqueous metal salt solution.

(乾燥工程)
ついで、金属塩を吸収した強誘電体微粒子粉体を乾燥する。
乾燥方法は、水分を概ね除去できれば特に制限は無く、従来公知の方法を採用することができる。
乾燥温度は、概ね80〜200℃、好ましくは100〜180℃である。
乾燥時間は乾燥温度によっても異なるが、概ね1〜48時間である。
(Drying process)
Next, the ferroelectric fine particle powder having absorbed the metal salt is dried.
The drying method is not particularly limited as long as moisture can be substantially removed, and a conventionally known method can be employed.
The drying temperature is generally 80 to 200 ° C, preferably 100 to 180 ° C.
The drying time varies depending on the drying temperature, but is generally 1 to 48 hours.

(加熱処理工程)
ついで、空気、酸素等の酸化雰囲気下、N、He、Ar等の不活性ガス雰囲気下、あるいはH等の還元ガス雰囲気下で加熱処理する。
加熱処理する際の雰囲気の選択は反応の種類、触媒反応の種類、強誘電体の種類等によって適宜選択することができる。
加熱処理温度は活性が充分に高くなる温度を選択するが、200〜600℃、さらには250〜550℃の範囲にあることが好ましい。
(Heat treatment process)
Next, heat treatment is performed in an oxidizing atmosphere such as air or oxygen, an inert gas atmosphere such as N 2 , He, or Ar, or a reducing gas atmosphere such as H 2 .
The selection of the atmosphere during the heat treatment can be appropriately selected depending on the type of reaction, the type of catalytic reaction, the type of ferroelectric, and the like.
A temperature at which the activity is sufficiently high is selected as the heat treatment temperature, but it is preferably in the range of 200 to 600 ° C., more preferably 250 to 550 ° C.

以下、実施例により説明するが、本発明はこれらの実施例により限定されるものではない。   Hereinafter, although an example explains, the present invention is not limited by these examples.

[実施例1]
強誘電体担体触媒(1)の調製
硝酸パラジウム水溶液(硝酸パラジウム濃度=4.347質量%)46gに強誘電体微粒子としてBaTiO(関東電化工業(株)製:平均粒子径=50nm、結晶子径=25.3nm)100gを撹拌しながら添加し、ついで、室温で3時間静置した。
ついで、150℃で24時間乾燥した後、空気雰囲気下、400℃で3時間加熱処理して強誘電体担体触媒(1)を調製した。
得られた強誘電体担体触媒(1)について、金属微粒子の担持量を原料の使用量からの計算値で示し、また平均粒子径を測定し、結果を表に示す。
[Example 1]
Preparation of Ferroelectric Support Catalyst (1) 46 g of palladium nitrate aqueous solution (palladium nitrate concentration = 4.347% by mass) as ferroelectric fine particles BaTiO 3 (manufactured by Kanto Denka Kogyo Co., Ltd .: average particle diameter = 50 nm, crystallite) (Diameter = 25.3 nm) was added with stirring, and then allowed to stand at room temperature for 3 hours.
Then, after drying at 150 ° C. for 24 hours, a ferroelectric carrier catalyst (1) was prepared by heat treatment at 400 ° C. for 3 hours in an air atmosphere.
With respect to the obtained ferroelectric carrier catalyst (1), the amount of metal fine particles supported is represented by a calculated value from the amount of raw material used, the average particle size was measured, and the results are shown in the table.

エタノール分解反応
粉末状の強誘電体担体触媒(1)をプレスし、(解砕し、ついで)整粒して粒子径が335−710μmの顆粒サンプルを調製し、これを反応器に0.05g充填して反応に供した。
反応は、パルス法にてエタノールをパルスサイズ1μL導入し、反応温度を140, 170, 200, 230, 260及び290℃と変更して実施した。
生成ガスはガスクロマトグラフ(島津製作所製:GC-8A)を用いて定量した。このとき、検出器は熱伝導検出(Thermal Conductivity Detector, TCD)、キャピラリーカラムにはPEG 6000 Shimarite 10% TPA 60〜80meshを使用した。キャリアガスにはヘリウムを用い、流量は50mL/minとした。
分解率は、以下の式によって求め、各温度での分解率を表に示す。
分解率(%)=(導入エタノール量−未反応エタノール量)/導入エタノール量×100
The ethanol-decomposed reaction powdered ferroelectric-supported catalyst (1) is pressed and pulverized and then granulated to prepare a granule sample with a particle size of 335-710 μm. Filled and subjected to reaction.
The reaction was carried out by introducing ethanol with a pulse size of 1 μL by the pulse method and changing the reaction temperature to 140, 170, 200, 230, 260 and 290 ° C.
The product gas was quantified using a gas chromatograph (manufactured by Shimadzu Corporation: GC-8A). At this time, thermal detector (Thermal Conductivity Detector, TCD) was used as a detector, and PEG 6000 Shimarite 10% TPA 60-80 mesh was used as a capillary column. Helium was used as the carrier gas, and the flow rate was 50 mL / min.
The decomposition rate is determined by the following equation, and the decomposition rate at each temperature is shown in the table.
Decomposition rate (%) = (Introduced ethanol amount−Unreacted ethanol amount) / Introduced ethanol amount × 100

[実施例2]
強誘電体担体触媒(2)の調製
実施例1において、硝酸パラジウム水溶液(硝酸パラジウム濃度=10.868質量%)46gを用いた以外は同様にして強誘電体担体触媒(2)を調製した。
得られた強誘電体担体触媒(2)について、金属微粒子の担持量と、平均粒子径を測定し、結果を表に示す。また、エタノール分解活性を評価し、結果を表に示す。
[Example 2]
Preparation of Ferroelectric Support Catalyst (2) A ferroelectric support catalyst (2) was prepared in the same manner as in Example 1 except that 46 g of an aqueous palladium nitrate solution (palladium nitrate concentration = 10.868% by mass) was used.
With respect to the obtained ferroelectric carrier catalyst (2), the amount of metal fine particles supported and the average particle diameter were measured, and the results are shown in the table. Moreover, ethanol decomposition activity was evaluated and the results are shown in the table.

[実施例3]
強誘電体担体触媒(3)の調製
実施例1において、強誘電体微粒子としてBaTiO(戸田工業(株)製:平均粒子径=20nm、結晶子径=22.5nm)100gを用いた以外は同様にして強誘電体担体触媒(3)を調製した。
得られた強誘電体担体触媒(3)について、金属微粒子の担持量と、平均粒子径を測定し、結果を表に示す。また、エタノール分解活性を評価し、結果を表に示す。
[Example 3]
Preparation of Ferroelectric Support Catalyst (3) In Example 1, except that 100 g of BaTiO 3 (manufactured by Toda Kogyo Co., Ltd .: average particle size = 20 nm, crystallite size = 22.5 nm) was used as the ferroelectric fine particles. Similarly, a ferroelectric carrier catalyst (3) was prepared.
With respect to the obtained ferroelectric carrier catalyst (3), the amount of metal fine particles supported and the average particle diameter were measured, and the results are shown in the table. Moreover, ethanol decomposition activity was evaluated and the results are shown in the table.

[実施例4]
強誘電体担体触媒(4)の調製
特許文献1−3における手法により、強誘電体微粒子としてBaSrTiO調製した。得られたBaSrTiOの平均粒子径および結晶子径を測定し、結果を表に示す。
ついで、実施例1において、BaSrTiO粒子100gを用いた以外は同様にして強誘電体担体触媒(4)を調製した。
得られた強誘電体担体触媒(4)について、金属微粒子の担持量と、平均粒子径を測定し、結果を表に示す。また、エタノール分解活性を評価し、結果を表に示す。
[Example 4]
Preparation of Ferroelectric Support Catalyst (4) BaSrTiO 3 was prepared as ferroelectric fine particles by the method in Patent Documents 1-3. The average particle diameter and crystallite diameter of the obtained BaSrTiO 3 were measured, and the results are shown in the table.
Next, a ferroelectric carrier catalyst (4) was prepared in the same manner as in Example 1 except that 100 g of BaSrTiO 3 particles were used.
With respect to the obtained ferroelectric carrier catalyst (4), the amount of metal fine particles supported and the average particle diameter were measured, and the results are shown in the table. Moreover, ethanol decomposition activity was evaluated and the results are shown in the table.

[比較例1]
強誘電体担体触媒(R1)の調製
実施例1において、硝酸パラジウム水溶液(硝酸パラジウム濃度=1.085質量%)46gを用いた以外は同様にして強誘電体担体触媒(R1)を調製した。
得られた強誘電体担体触媒(R1)について、金属微粒子の担持量と、平均粒子径を測定し、結果を表に示す。また、エタノール分解活性を評価し、結果を表に示す。
[Comparative Example 1]
Preparation of Ferroelectric Support Catalyst (R1) A ferroelectric support catalyst (R1) was prepared in the same manner as in Example 1 except that 46 g of an aqueous palladium nitrate solution (palladium nitrate concentration = 1.085% by mass) was used.
With respect to the obtained ferroelectric carrier catalyst (R1), the amount of metal fine particles supported and the average particle diameter were measured, and the results are shown in the table. Moreover, ethanol decomposition activity was evaluated and the results are shown in the table.

[比較例2]
強誘電体担体触媒(R2)の調製
実施例1において、強誘電体微粒子としてBaTiO((株)高純度科学研究所製:平均粒子径=1000nm、結晶子径=36.4nm)100gを用いた以外は同様にして強誘電体担体触媒(R2)を調製した。
得られた強誘電体担体触媒(R2)について、金属微粒子の担持量と、平均粒子径を測定し、結果を表に示す。また、エタノール分解活性を評価し、結果を表に示す。
[Comparative Example 2]
Preparation of Ferroelectric Support Catalyst (R2) In Example 1, 100 g of BaTiO 3 (manufactured by High Purity Science Laboratory Co., Ltd .: average particle size = 1000 nm, crystallite size = 36.4 nm) is used as the ferroelectric fine particles. A ferroelectric carrier catalyst (R2) was prepared in the same manner except that
With respect to the obtained ferroelectric carrier catalyst (R2), the amount of metal fine particles supported and the average particle diameter were measured, and the results are shown in the table. Moreover, ethanol decomposition activity was evaluated and the results are shown in the table.

[比較例3]
非強誘電体(常誘電体)担体触媒(R3)の調製
実施例1において、非強誘電体(常誘電体)微粒子としてα−Al(日本軽金属(株)製:粒子径分布15〜100nm)100gを用いた以外は同様にして非強誘電体(常誘電体)触媒(R3)を調製した。
得られた非強誘電体(常誘電体)担体触媒(R3)について、金属微粒子の担持量と、平均粒子径を測定し、結果を表に示す。また、エタノール分解活性を評価し、結果を表に示す。
[Comparative Example 3]
Preparation of non-ferroelectric (paraelectric) supported catalyst (R3) In Example 1, α-Al 2 O 3 (manufactured by Nippon Light Metal Co., Ltd .: particle size distribution 15) as non-ferroelectric (paraelectric) fine particles A non-ferroelectric (paraelectric) catalyst (R3) was prepared in the same manner except that 100 g) was used.
With respect to the obtained non-ferroelectric (paraelectric) supported catalyst (R3), the amount of metal fine particles supported and the average particle diameter were measured, and the results are shown in the table. Moreover, ethanol decomposition activity was evaluated and the results are shown in the table.

[比較例4]
非強誘電体(常誘電体)担体触媒(R4)の調製
実施例1において、非強誘電体(常誘電体)微粒子としてTiO(日揮触媒化成(株)製:HPW−60R、平均粒子径=60nm、結晶形アナターゼ)100gを用いた以外は同様にして非強誘電体(常誘電体)触媒(R4)を調製した。
得られた非強誘電体(常誘電体)担体触媒(R4)について、金属微粒子の担持量と、平均粒子径を測定し、結果を表に示す。また、エタノール分解活性を評価し、結果を表に示す。
[Comparative Example 4]
Preparation of non-ferroelectric (paraelectric) carrier catalyst (R4) In Example 1, TiO 2 (manufactured by JGC Catalysts & Chemicals, Inc .: HPW-60R, average particle diameter) as non-ferroelectric (paraelectric) fine particles = 60 nm, crystalline anatase) A non-ferroelectric (paraelectric) catalyst (R4) was prepared in the same manner except that 100 g was used.
With respect to the obtained non-ferroelectric (paraelectric) carrier catalyst (R4), the amount of metal fine particles supported and the average particle diameter were measured, and the results are shown in the table. Moreover, ethanol decomposition activity was evaluated and the results are shown in the table.

Figure 0006269912
Figure 0006269912

Claims (4)

金属微粒子および/または金属酸化物微粒子と強誘電体微粒子担体とからなり、該金属微粒子および/または金属酸化物微粒子を該強誘電体微粒子担体に担持してなる強誘電体担体触媒であって、該強誘電体のキュリー点(T)が0〜200℃の範囲にあり、強誘電体微粒子の平均粒子径が10〜200nmの範囲にあり、金属微粒子および/または金属酸化物微粒子の担持量が、強誘電体担体の酸化物としての100質量部に対して金属に換算して1〜30質量部の範囲にあり、前記強誘電体がBaTiO又はBaSrTiOであり、前記金属がPdであることを特徴とする強誘電体担体触媒からなるエタノール分解反応用触媒。 A ferroelectric carrier catalyst comprising metal fine particles and / or metal oxide fine particles and a ferroelectric fine particle carrier, wherein the metal fine particles and / or metal oxide fine particles are supported on the ferroelectric fine particle carrier, The Curie point (T C ) of the ferroelectric is in the range of 0 to 200 ° C., the average particle diameter of the ferroelectric fine particles is in the range of 10 to 200 nm, and the supported amount of metal fine particles and / or metal oxide fine particles Is in the range of 1 to 30 parts by mass in terms of metal with respect to 100 parts by mass as the oxide of the ferroelectric carrier, the ferroelectric is BaTiO 3 or BaSrTiO 3 , and the metal is Pd A catalyst for ethanol decomposition reaction comprising a ferroelectric carrier catalyst. 前記強誘電体のバンドギャップが3.2〜4.0eVの範囲にあることを特徴とする請求項1に記載の強誘電体担体触媒からなるエタノール分解反応用触媒。 The catalyst for ethanol decomposition reaction comprising the ferroelectric carrier catalyst according to claim 1, wherein the ferroelectric material has a band gap in the range of 3.2 to 4.0 eV. 前記強誘電体微粒子の結晶子径が5〜100nmの範囲にあることを特徴とする請求項1または2に記載の強誘電体担体触媒からなるエタノール分解反応用触媒。 The catalyst for ethanol decomposition reaction comprising the ferroelectric carrier catalyst according to claim 1 or 2, wherein a crystallite diameter of the ferroelectric fine particles is in a range of 5 to 100 nm. 前記金属の仕事関数が4.5〜6eVの範囲にあることを特徴とする請求項1〜3のいずれかに記載の強誘電体担体触媒からなるエタノール分解反応用触媒。 The catalyst for ethanol decomposition reaction comprising the ferroelectric carrier catalyst according to any one of claims 1 to 3, wherein the metal has a work function in the range of 4.5 to 6 eV.
JP2013035963A 2013-02-26 2013-02-26 Catalyst for ethanol decomposition reaction Expired - Fee Related JP6269912B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2013035963A JP6269912B2 (en) 2013-02-26 2013-02-26 Catalyst for ethanol decomposition reaction
PCT/JP2014/054771 WO2014133045A1 (en) 2013-02-26 2014-02-26 Ferroelectric carrier catalyst and method for producing same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013035963A JP6269912B2 (en) 2013-02-26 2013-02-26 Catalyst for ethanol decomposition reaction

Publications (2)

Publication Number Publication Date
JP2014161811A JP2014161811A (en) 2014-09-08
JP6269912B2 true JP6269912B2 (en) 2018-01-31

Family

ID=51428305

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013035963A Expired - Fee Related JP6269912B2 (en) 2013-02-26 2013-02-26 Catalyst for ethanol decomposition reaction

Country Status (2)

Country Link
JP (1) JP6269912B2 (en)
WO (1) WO2014133045A1 (en)

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5155792A (en) * 1974-11-12 1976-05-17 Matsushita Electric Ind Co Ltd Kanenseigasuno nenshoyoshokubai
JPS51125685A (en) * 1974-11-12 1976-11-02 Matsushita Electric Ind Co Ltd Oxidation catalyst for inflammable gas
JPS5554035A (en) * 1978-10-18 1980-04-21 Matsushita Electric Ind Co Ltd Catalytic body
JP5332131B2 (en) * 2006-04-28 2013-11-06 日産自動車株式会社 Exhaust gas purification catalyst and method for producing the same
JP5182850B2 (en) * 2006-09-22 2013-04-17 独立行政法人産業技術総合研究所 Perovskite complex oxide
JP5460969B2 (en) * 2008-03-03 2014-04-02 国立大学法人 岡山大学 Catalyst production method and catalyst
JP2010110671A (en) * 2008-11-04 2010-05-20 National Institute Of Advanced Industrial Science & Technology PEROVSKITE-BEARING Ni CATALYST MATERIAL FOR MODIFICATION AND METHOD OF MANUFACTURING SYNGAS USING THIS CATALYST MATERIAL
JP5307643B2 (en) * 2009-06-16 2013-10-02 新日鉄住金マテリアルズ株式会社 Exhaust gas purification catalyst and exhaust gas purification catalyst honeycomb structure
JP5468957B2 (en) * 2010-03-29 2014-04-09 Jx日鉱日石エネルギー株式会社 Hydroisomerization catalyst, method for producing the same, method for dewaxing hydrocarbon oil, method for producing hydrocarbon, and method for producing lubricating base oil
JP5804489B2 (en) * 2011-02-08 2015-11-04 国立大学法人 岡山大学 Catalyst and production method thereof
JP2012223769A (en) * 2012-08-20 2012-11-15 Nippon Shokubai Co Ltd Method for producing ammonia decomposition catalyst

Also Published As

Publication number Publication date
WO2014133045A1 (en) 2014-09-04
JP2014161811A (en) 2014-09-08

Similar Documents

Publication Publication Date Title
Wang et al. Bismuth-based photocatalysts for solar energy conversion
Bellardita et al. Absolute crystallinity and photocatalytic activity of brookite TiO2 samples
Maegli et al. Enhancement of photocatalytic water oxidation by the morphological control of LaTiO2N and cobalt oxide catalysts
Grabowska Selected perovskite oxides: Characterization, preparation and photocatalytic properties—A review
Li et al. Photocatalysts with internal electric fields
Hisatomi et al. Photocatalytic oxygen evolution using BaNbO 2 N modified with cobalt oxide under photoexcitation up to 740 nm
Kang et al. Solution combustion synthesis of high surface area CeO2 nanopowders for catalytic applications: reaction mechanism and properties
Kamarulzaman et al. Elucidation of the highest valence band and lowest conduction band shifts using XPS for ZnO and Zn0. 99Cu0. 01O band gap changes
Balaz et al. Electronic structure of tantalum oxynitride perovskite photocatalysts
Kato et al. Water splitting into H2 and O2 on alkali tantalate photocatalysts ATaO3 (A= Li, Na, and K)
Hojamberdiev et al. NH3-assisted flux growth of cube-like BaTaO2N submicron crystals in a completely ionized nonaqueous high-temperature solution and their water splitting activity
Illyaskutty et al. Enhanced ethanol sensing response from nanostructured MoO 3: ZnO thin films and their mechanism of sensing
Nguyen-Phan et al. Visible light-driven H2 production over highly dispersed ruthenia on rutile TiO2 nanorods
Jiang et al. Fabrication and efficient photocatalytic degradation of methylene blue over CuO/BiVO4 composite under visible-light irradiation
Kanhere et al. Visible light driven photocatalytic hydrogen evolution and photophysical properties of Bi3+ doped NaTaO3
Kawashima et al. NH3-assisted flux-mediated direct growth of LaTiO2N crystallites for visible-light-induced water splitting
Idris et al. Sr2CoTaO6 double perovskite oxide as a novel visible-light-absorbing bifunctional photocatalyst for photocatalytic oxygen and hydrogen evolution reactions
Deng et al. Combined X-ray diffraction and diffuse reflectance analysis of nanocrystalline mixed Sn (II) and Sn (IV) oxide powders
Weber et al. γ-Bi2O3–to Be or not to Be? Comparison of the sillenite γ-Bi2O3 and isomorphous sillenite-type Bi12SiO20
Singh et al. Efficient synthesis of BiFeO3 by the microwave-assisted sol-gel method:“A” site influence on the photoelectrochemical activity of perovskites
Ishihara et al. Effects of crystal structure on photolysis of H2O on K–Ta mixed oxide
Xu et al. Synthesis, structure, texture, and CO sensing behavior of nanocrystalline tin oxide doped with scandia
Zanetti et al. Soft-chemical synthesis, characterization and humidity sensing behavior of WO3/TiO2 nanopowders
Tang et al. Synthesis of Three-Layer Perovskite Oxynitride K2Ca2Ta3O9N· 2H2O and Photocatalytic Activity for H2 Evolution under Visible Light
Kang et al. Improved performance of tri-doped photocatalyst SrTiO3: Rh/Ta/F for H2 evolution under visible light irradiation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151021

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20151021

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161011

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20161115

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170321

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170919

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171219

R150 Certificate of patent or registration of utility model

Ref document number: 6269912

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees