JP6268939B2 - 3-level power converter - Google Patents

3-level power converter Download PDF

Info

Publication number
JP6268939B2
JP6268939B2 JP2013229890A JP2013229890A JP6268939B2 JP 6268939 B2 JP6268939 B2 JP 6268939B2 JP 2013229890 A JP2013229890 A JP 2013229890A JP 2013229890 A JP2013229890 A JP 2013229890A JP 6268939 B2 JP6268939 B2 JP 6268939B2
Authority
JP
Japan
Prior art keywords
conductor
semiconductor switching
point
side conductor
switching elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013229890A
Other languages
Japanese (ja)
Other versions
JP2015091178A (en
Inventor
佑介 上高
佑介 上高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Meidensha Corp
Original Assignee
Meidensha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Meidensha Corp filed Critical Meidensha Corp
Priority to JP2013229890A priority Critical patent/JP6268939B2/en
Publication of JP2015091178A publication Critical patent/JP2015091178A/en
Application granted granted Critical
Publication of JP6268939B2 publication Critical patent/JP6268939B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、3レベル電力変換装置の主回路配線構造に関する。   The present invention relates to a main circuit wiring structure of a three-level power converter.

図5は、3レベル電力変換装置(A−NPC型)の1相分の回路図である。3相の電力変換装置では図5の回路を3並列に構成し、単相インバータでは図5の回路を2並列に構成する。電流容量を拡大するときは、図6に示すように、図5の素子を必要数並列に配置して対応している。   FIG. 5 is a circuit diagram for one phase of the three-level power converter (A-NPC type). In the three-phase power converter, the circuit in FIG. 5 is configured in three parallels, and in the single-phase inverter, the circuit in FIG. 5 is configured in two parallels. When expanding the current capacity, as shown in FIG. 6, the necessary number of elements shown in FIG. 5 are arranged in parallel.

特開2011−254672号公報Japanese Patent Application Laid-Open No. 2011-254672

しかしながら、3レベル電力変換装置は、2レベル電力変換装置に比べて半導体素子数が多いため、配線数も多くなる。また、素子の信頼性を高めて使う一要素として電流遮断時のサージ電圧を抑制する必要がある。サージ電圧の発生要因の一つとして配線のインピーダンスがあり、サージ電圧を抑制するためには配線のインピーダンスを低減する必要がある。   However, since the three-level power conversion device has a larger number of semiconductor elements than the two-level power conversion device, the number of wirings also increases. Moreover, it is necessary to suppress the surge voltage at the time of interruption of current as one element to be used by increasing the reliability of the element. One of the causes of the surge voltage is the impedance of the wiring. In order to suppress the surge voltage, it is necessary to reduce the impedance of the wiring.

以上示したように、3レベル電力変換装置において、低インダクタンス、かつ、シンプルな配線構造とすることが課題となる。   As described above, in the three-level power conversion device, there is a problem of providing a simple wiring structure with low inductance.

本発明は、前記従来の問題に鑑み、案出されたもので、その一態様は、直流電源の正負極間に直列接続され、両極間の直流電圧を1/2に分圧し、この分圧点を中性点とする複数の直流コンデンサと、前記直流コンデンサに対して並列、かつ、直流電源の正負極間に順次直列接続された第1,第4半導体スイッチング素子と、前記中性点と、第1,第4半導体スイッチング素子の共通接続点との間に接続された双方向スイッチと、直流電源の正極に接続された直流コンデンサの正極と、第1半導体スイッチング素子と、を接続するP側導体と、直流電原の負極に接続された直流コンデンサの負極と、第4半導体スイッチング素子と、を接続するN側導体と、前記中性点と、双方向スイッチを接続するM点導体と、を備えた3レベル電力変換装置であって、P側導体,N側導体およびM点導体の平板導体を3層に積層し、P側導体と、N側導体は隣り合う層に配置し、第1,第4半導体スイッチング素子は直流コンデンサの隣りに配置したことを特徴とする。   The present invention has been devised in view of the above-described conventional problems. One aspect of the present invention is connected in series between the positive and negative electrodes of a DC power source, and divides the DC voltage between both electrodes by half. A plurality of DC capacitors having a neutral point, first and fourth semiconductor switching elements parallel to the DC capacitor and connected in series between positive and negative electrodes of a DC power source, and the neutral point P is connected between the bidirectional switch connected to the common connection point of the first and fourth semiconductor switching elements, the positive electrode of the DC capacitor connected to the positive electrode of the DC power supply, and the first semiconductor switching element. An N-side conductor connecting a side conductor, a negative electrode of a DC capacitor connected to the negative electrode of the DC power source, and a fourth semiconductor switching element; the neutral point; and an M-point conductor connecting a bidirectional switch; 3 level power converter with The P-side conductor, the N-side conductor and the M-point conductor flat conductor are laminated in three layers, the P-side conductor and the N-side conductor are arranged in adjacent layers, and the first and fourth semiconductor switching elements are It is arranged next to the DC capacitor.

本発明によれば、3レベル電力変換装置において、低インダクタンス、かつ、シンプルな配線構造とすることが可能となる。   According to the present invention, a three-level power converter can have a simple wiring structure with low inductance.

実施形態における3レベル電力変換装置の主回路示す回路構成図。The circuit block diagram which shows the main circuit of the 3 level power converter device in embodiment. 実施形態における3レベル電力変換装置の配線構造を示す図。The figure which shows the wiring structure of the 3 level power converter device in embodiment. 半導体スイッチング素子T1,T4から成るモジュールの回路と端子位置を示す概略図。Schematic which shows the circuit and terminal position of a module which consist of semiconductor switching elements T1, T4. U,V相の出力端子に負荷抵抗を接続した回路構成図。The circuit block diagram which connected the load resistance to the output terminal of U and V phase. 従来の3レベル電力変換装置の一例を示す回路構成図。The circuit block diagram which shows an example of the conventional 3 level power converter device. 従来の3レベル電力変換装置の他例を示す回路構成図。The circuit block diagram which shows the other examples of the conventional 3 level power converter device.

以下、本実施形態における3レベル電力変換装置を図1〜図4に基づいて詳細に説明する。   Hereinafter, the three-level power converter according to the present embodiment will be described in detail with reference to FIGS.

[実施形態]
図1(a)は、本願発明における3レベル電力変換装置の1相分の基本回路を示す回路構成図である。3レベル電力変換装置は、直流から交流、もしくは、交流から直流に3レベル変換する。
[Embodiment]
Fig.1 (a) is a circuit block diagram which shows the basic circuit for 1 phase of the 3 level power converter device in this invention. The three-level power converter performs three-level conversion from direct current to alternating current or from alternating current to direct current.

図1(a)に示すように、直流電源の正極P(P側導体),負極(N側導体)N間に直流コンデンサC1,C2が順次直列接続される。直流コンデンサC1,C2は正極P,負極N間の直流電圧を1/2に分圧し、この分圧点を中性点とする。なお、本実施形態では、2つの直流コンデンサC1,C2を設けているが、直流コンデンサC1,C2を2つ以上を直列接続した構成でもよい。   As shown in FIG. 1A, DC capacitors C1 and C2 are sequentially connected in series between a positive electrode P (P-side conductor) and a negative electrode (N-side conductor) N of a DC power supply. The DC capacitors C1 and C2 divide the DC voltage between the positive electrode P and the negative electrode N by half, and this voltage dividing point is set as a neutral point. In the present embodiment, two DC capacitors C1 and C2 are provided. However, a configuration in which two or more DC capacitors C1 and C2 are connected in series may be used.

また、直流電源の正極P,負極N間には、直流コンデンサC1,C2に対して並列に、半導体スイッチング素子T1,T4が直列接続される。直流コンデンサC1,C2の中性点(Mアーム)と、半導体スイッチング素子T1,T4の共通接続点と、の間には、双方向スイッチが接続される。本実施形態では、半導体スイッチング素子T2,T3を逆直列接続して双方向スイッチを構成している。図1では、半導体スイッチング素子T2と半導体スイッチング素子T3はエミッタ共通接続となっているが、コレクタ共通接続による構成、もしくは、逆耐圧を有するIGBTを逆並列接続する構成でも実現できる。   Further, between the positive electrode P and the negative electrode N of the DC power supply, semiconductor switching elements T1 and T4 are connected in series in parallel with the DC capacitors C1 and C2. A bidirectional switch is connected between the neutral point (M arm) of the DC capacitors C1 and C2 and the common connection point of the semiconductor switching elements T1 and T4. In this embodiment, the semiconductor switching elements T2 and T3 are connected in reverse series to constitute a bidirectional switch. In FIG. 1, the semiconductor switching element T2 and the semiconductor switching element T3 are connected in common to the emitter, but can also be realized by a structure using a collector common connection or an antiparallel connection of IGBTs having reverse breakdown voltage.

図1(b)は、本実施形態におけるA−NPC型の3レベル電力変換装置であり、半導体スイッチング素子T1,T4の(2in1)モジュール1a〜1dを4つ、Mアームの半導体スイッチング素子T2の(1in1)モジュールT2a,T2bを2つ、Mアームの半導体スイッチング素子T3の(1in1)モジュールT3a,T3bを2つ,直流コンデンサC1a,C1b,C2a,C2bを、をそれぞれ別に備えている。   FIG. 1B shows an A-NPC type three-level power conversion device according to this embodiment, which includes four (2 in 1) modules 1a to 1d of semiconductor switching elements T1 and T4, and an M-arm semiconductor switching element T2. Two (1in1) modules T2a and T2b, two (1in1) modules T3a and T3b of the M-arm semiconductor switching element T3, and DC capacitors C1a, C1b, C2a and C2b are provided separately.

図2は、本実施形態における3レベル電力変換装置の配線構造を示す図である。図2(a)は平面図,図2(b)は側面図(分解図),図2(c)は側面図(完成図)を示している。   FIG. 2 is a diagram showing a wiring structure of the three-level power converter according to this embodiment. 2A is a plan view, FIG. 2B is a side view (exploded view), and FIG. 2C is a side view (completed view).

図2(a)に示すように、Mアームの半導体スイッチング素子のモジュールT2a→T3a→T2b→T3bの順にX方向に並べられ、半導体スイッチング素子T1,T4から成るモジュール1a→1b→1c→1dの順にX方向に並べられ、直流コンデンサC1a→C1bの順にX方向に並べられ、直流コンデンサC2a→C2bの順にX方向に並べられる。   As shown in FIG. 2A, the modules 1a → 1b → 1c → 1d of the semiconductor switching elements T1 and T4 are arranged in the X direction in the order of the modules T2a → T3a → T2b → T3b of the M-arm semiconductor switching elements. They are arranged in the X direction in order, arranged in the X direction in the order of DC capacitors C1a → C1b, and arranged in the X direction in the order of DC capacitors C2a → C2b.

また、Mアームの半導体スイッチング素子のモジュールT2a,T2b,T3a,T3b→半導体スイッチング素子T1,T2から成るモジュール1a〜1d→直流コンデンサC1a,C1b→直流コンデンサC2a,C2bの順にY方向に並べられる。   Further, the modules T2a, T2b, T3a, and T3b of the M-arm semiconductor switching elements are arranged in the Y direction in the order of modules 1a to 1d including the semiconductor switching elements T1 and T2, DC capacitors C1a, C1b, and DC capacitors C2a and C2b.

図3は、半導体スイッチング素子T1,T4から成るモジュール1a〜1dの回路と端子位置を示す概略図である。図3に示すように、前記モジュール1a〜1dは、半導体スイッチング素子T1のコレクタ端子c1,半導体スイッチング素子T1のエミッタ端子と半導体スイッチング素子T4のコレクタ端子の共通接続点c2e1,半導体スイッチング素子T4のエミッタ端子e2を有する。また、前記共通接続点e1c2→エミッタ端子e2→コレクタ端子c1の順にY方向に配置されている。   FIG. 3 is a schematic diagram showing circuits and terminal positions of the modules 1a to 1d including the semiconductor switching elements T1 and T4. As shown in FIG. 3, the modules 1a to 1d include a collector terminal c1 of the semiconductor switching element T1, a common connection point c2e1 of the emitter terminal of the semiconductor switching element T1 and a collector terminal of the semiconductor switching element T4, and an emitter of the semiconductor switching element T4. It has a terminal e2. The common connection point e1c2 → the emitter terminal e2 → the collector terminal c1 is arranged in the Y direction in this order.

次に、図2(b)に基づいて導体の接続方法について説明する。本実施形態では、導体を3層に積層して配置する。ここで、素子に近い方から順に第1層,第2層,第3層と呼称することとする。なお、P側導体P,N側導体N,M点導体M,AC導体AC,導体2は平板導体である。   Next, a method for connecting conductors will be described with reference to FIG. In the present embodiment, the conductors are stacked in three layers. Here, the first layer, the second layer, and the third layer are referred to in order from the side closer to the element. The P-side conductor P, the N-side conductor N, the M point conductor M, the AC conductor AC, and the conductor 2 are flat conductors.

まず、第1層には、導体2とM点導体Mが配置される。導体2は、半導体スイッチング素子のモジュールT2a,T3a,T3b,T2bのエミッタ端子eを接続する。M点導体は、半導体スイッチング素子のモジュールT2a,T2bと、直流コンデンサC1a,C1bの負極端子と直流コンデンサC2a,C2bのコレクタ端子cの正極端子(中性点)と、を接続する。   First, the conductor 2 and the M point conductor M are arranged in the first layer. The conductor 2 connects the emitter terminals e of the modules T2a, T3a, T3b, and T2b of the semiconductor switching element. The M point conductor connects the semiconductor switching element modules T2a and T2b to the negative terminals of the DC capacitors C1a and C1b and the positive terminal (neutral point) of the collector terminals c of the DC capacitors C2a and C2b.

第1層の次に、絶縁体3aを介して第2層が配置される。第2層には、AC導体ACと、N側導体Nが配置される。AC導体ACは、半導体スイッチング素子のモジュールT3a,T3bのコレクタ端子cと、各モジュール1a〜1dの共通接続点c2e1を接続する。N側導体Nは、各モジュール1a〜1dのエミッタ端子e2と、直流コンデンサC2a,C2bの負極端子と、を接続する。   Next to the first layer, the second layer is disposed via the insulator 3a. In the second layer, an AC conductor AC and an N-side conductor N are arranged. The AC conductor AC connects the collector terminals c of the modules T3a and T3b of the semiconductor switching element and the common connection point c2e1 of the modules 1a to 1d. The N-side conductor N connects the emitter terminals e2 of the modules 1a to 1d and the negative terminals of the DC capacitors C2a and C2b.

第2層の次に、絶縁体3bを介して第3層が積層される。第3層には、P側導体Pが配置される。P側導体Pは、各モジュール1a〜1dのコレクタ端子c1と、直流コンデンサC1a,C1bの正極端子と、が接続される。   Next to the second layer, the third layer is laminated via the insulator 3b. The P-side conductor P is disposed on the third layer. The P-side conductor P is connected to the collector terminals c1 of the modules 1a to 1d and the positive terminals of the DC capacitors C1a and C1b.

本実施形態の目的は、電流遮断時のサージ電圧の抑制と配線の簡易化である。電圧サージは、回路のインダクタンスと遮断電流値により発生する。低インダクタンスは電圧源からの電流ループの面積を小さくすることで実現できる。本実施形態における回路の各部の電流値は異なる。   The object of the present embodiment is to suppress surge voltage when current is interrupted and to simplify wiring. The voltage surge is generated by the circuit inductance and the cut-off current value. Low inductance can be achieved by reducing the area of the current loop from the voltage source. The current value of each part of the circuit in this embodiment is different.

図4は、U,V相のAC導体ACに抵抗負荷Rを接続した回路を示す図である。なお、図4では、簡略化し、各素子を並列接続していないものとして表す。図4での電流責務は以下のようになる。P側導体Pに流れる電流をI1,M点導体Mに流れる電流をI2(右方向),I3(左方向),N側導体Nに流れる電流をI4とし、U−V相のAC導体ACに抵抗負荷Rを接続したとする。T2U,T3UおよびT2V,T3Vは1素子の双方向性のスイッチとしてみる。基本の電流モードとして、U相に着目すると、電流責務は以下の2種類となる。   FIG. 4 is a diagram showing a circuit in which a resistive load R is connected to U-phase and V-phase AC conductors AC. In FIG. 4, the elements are simplified and represented as not being connected in parallel. The current duties in FIG. 4 are as follows. The current flowing in the P-side conductor P is I1, the current flowing in the M point conductor M is I2 (right direction), I3 (left direction), and the current flowing in the N-side conductor N is I4. Assume that a resistive load R is connected. T2U, T3U and T2V, T3V are regarded as one-way bidirectional switches. Focusing on the U phase as the basic current mode, the current duties are the following two types.

1.T1UとT4Yをオン
I1=I4=2E/Rの電流がP側導体PとN側導体Nおよび半導体スイッチング素子T1UとT4Yに流れる。
1. T1U and T4Y are turned on. A current of I1 = I4 = 2E / R flows through the P-side conductor P, the N-side conductor N, and the semiconductor switching elements T1U and T4Y.

2.T1UとT2V,T3Vをオン
I1=I2=E/Rの電流がP側導体PとM点導体MおよびT1UとT2V,T3Vに流れる。
2. T1U, T2V, and T3V are turned on. A current of I1 = I2 = E / R flows through the P-side conductor P and the M point conductor M, and T1U, T2V, and T3V.

半導体スイッチング素子の電流責務の点から見ると、半導体スイッチング素子T2U,T3U,T2V,T3Vは電流責務がE/Rであり、U相,V相,W相,X相,Y相,Z相の半導体スイッチング素子T1U,T1V,T1W,T4X,T4Y,T4Zは電流責務が2E/Rであるため、半導体スイッチング素子T1U,T1V,T1W,T4X,T4Y,T4Zほうが2倍となっている。また、導体の電流責務も、M点導体Mは電流責務がE/Rであり、P側導体P,N側導体Nは電流責務が2E/Rであるため、P側導体P,N側導体Nのほうが2倍となっている。   From the viewpoint of the current duty of the semiconductor switching element, the current duty of the semiconductor switching elements T2U, T3U, T2V, and T3V is E / R, and the U-phase, V-phase, W-phase, X-phase, Y-phase, and Z-phase Since the semiconductor switching elements T1U, T1V, T1W, T4X, T4Y, and T4Z have a current duty of 2E / R, the semiconductor switching elements T1U, T1V, T1W, T4X, T4Y, and T4Z are doubled. Also, the current duty of the conductor is the M point conductor M, the current duty is E / R, and the P side conductor P, N side conductor N is 2E / R, so the P side conductor P, N side conductor N is doubled.

本実施形態では、P側導体PとN側導体Nを隣り合う層に配置させることにより接近させ、電流の向きが異なるのを利用して、P側導体PおよびN側導体Nに流れる電流によって発生する磁界を相殺させ、インダクタンスを抑制している。これにより、配線のインダクタンスを低減し、配線のインピーダンスおよびサージ電圧を低減している。   In the present embodiment, the P-side conductor P and the N-side conductor N are brought close to each other by being arranged in adjacent layers, and the current flowing in the P-side conductor P and the N-side conductor N is utilized by utilizing the difference in the direction of the current. The generated magnetic field is canceled and the inductance is suppressed. As a result, the inductance of the wiring is reduced, and the impedance and surge voltage of the wiring are reduced.

また、半導体スイッチング素子のモジュールT2a,T3a,T3b,T2bよりも電流責務が大きい半導体スイッチング素子T1,T4から成るモジュール1a〜1dを直流コンデンサC1a,C1b,C2a,C2bに近い位置に配置し、接続距離を小さくすることにより、インダクタンスを低減し、配線のインピーダンスの低減,サージ電圧の抑制を図っている。   Further, modules 1a to 1d composed of semiconductor switching elements T1 and T4 having a greater current duty than the modules T2a, T3a, T3b and T2b of the semiconductor switching elements are arranged at positions close to the DC capacitors C1a, C1b, C2a and C2b. By reducing the distance, inductance is reduced, wiring impedance is reduced, and surge voltage is suppressed.

本実施形態のように、3層配線構造とすることにより、低インダクタンス、かつ、シンプルな配線構造となり、サージ電圧の抑制,小型化,低コスト化を図ることが可能となる。   By adopting a three-layer wiring structure as in the present embodiment, a simple wiring structure with low inductance can be achieved, and surge voltage can be suppressed, downsized, and cost can be reduced.

以上、本発明において、記載された具体例に対してのみ詳細に説明したが、本発明の技術思想の範囲で多彩な変形および修正が可能であることは、当業者にとって明白なことであり、このような変形および修正が特許請求の範囲に属することは当然のことである。   Although the present invention has been described in detail only for the specific examples described above, it is obvious to those skilled in the art that various changes and modifications are possible within the scope of the technical idea of the present invention. Such variations and modifications are naturally within the scope of the claims.

例えば、実施形態では、特定の構成の3レベル電力変換装置の配線構造について説明したが、P側導体P,N側導体N,およびM点導体Mの平板導体を3層に積層し、P側導体PとN側導体Nは隣り合う層に配置し、第1,第4半導体スイッチング素子T1,T4から成るモジュール1a〜1dは直流コンデンサC1,C2の隣りに配置すれば、その他の構成であってもよい。   For example, in the embodiment, the wiring structure of the three-level power conversion device having a specific configuration has been described. However, the P-side conductor P, the N-side conductor N, and the M-point conductor M flat plate conductors are stacked in three layers, and the P-side If the conductor P and the N-side conductor N are arranged in adjacent layers, and the modules 1a to 1d composed of the first and fourth semiconductor switching elements T1 and T4 are arranged next to the DC capacitors C1 and C2, the other configuration is obtained. May be.

C1,C2…直流コンデンサ
T1〜T4…半導体スイッチング素子
1a〜1d…半導体スイッチング素子T1,T4から成るモジュール
P…P側導体
N…N側導体
M…M点導体
AC…AC導体
2…導体
C1, C2 ... DC capacitors T1-T4 ... Semiconductor switching elements 1a-1d ... Modules composed of semiconductor switching elements T1, T4 P ... P-side conductor N ... N-side conductor M ... M-point conductor AC ... AC conductor 2 ... Conductor

Claims (1)

直流電源の正負極間に直列接続され、両極間の直流電圧を1/2に分圧し、この分圧点を中性点とする複数の直流コンデンサと、
前記直流コンデンサに対して並列、かつ、直流電源の正負極端子間に順次直列接続された第1,第4半導体スイッチング素子と、
前記中性点と、第1,第4半導体スイッチング素子の共通接続点との間に接続された双方向スイッチと、
直流電源の正極に接続された直流コンデンサの正極と、第1半導体スイッチング素子と、を接続するP側導体と、
直流電源の負極に接続された直流コンデンサの負極と、第4半導体スイッチング素子と、を接続するN側導体と、
前記中性点と、双方向スイッチを接続するM点導体と、
前記双方向スイッチと、前記第1,第4半導体スイッチング素子と、を接続するAC導体と、
を備えた3レベル電力変換装置であって、
P側導体,N側導体およびM点導体の平板導体を3層に積層し、P側導体と、N側導体は隣り合う層に配置し、第1,第4半導体スイッチング素子は直流コンデンサの隣りに配置し、前記M点導体と前記AC導体は隣り合う層に配置し、かつ、前記M点導体と前記AC導体は重なり合うことを特徴とする3レベル電力変換装置。
A plurality of DC capacitors connected in series between the positive and negative electrodes of the DC power source, dividing the DC voltage between the two electrodes in half, and having this voltage dividing point as a neutral point;
First and fourth semiconductor switching elements connected in series to the DC capacitor and sequentially connected in series between the positive and negative terminals of a DC power source;
A bidirectional switch connected between the neutral point and a common connection point of the first and fourth semiconductor switching elements;
A P-side conductor connecting the positive electrode of the DC capacitor connected to the positive electrode of the DC power supply and the first semiconductor switching element;
An N-side conductor connecting the negative electrode of the DC capacitor connected to the negative electrode of the DC power supply and the fourth semiconductor switching element;
The neutral point and the M point conductor connecting the bidirectional switch;
An AC conductor connecting the bidirectional switch and the first and fourth semiconductor switching elements;
A three-level power conversion device comprising:
The P-side conductor, the N-side conductor and the M-point conductor are laminated in three layers, the P-side conductor and the N-side conductor are arranged in adjacent layers, and the first and fourth semiconductor switching elements are adjacent to the DC capacitor. The M-point conductor and the AC conductor are arranged in adjacent layers, and the M-point conductor and the AC conductor overlap each other.
JP2013229890A 2013-11-06 2013-11-06 3-level power converter Active JP6268939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013229890A JP6268939B2 (en) 2013-11-06 2013-11-06 3-level power converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013229890A JP6268939B2 (en) 2013-11-06 2013-11-06 3-level power converter

Publications (2)

Publication Number Publication Date
JP2015091178A JP2015091178A (en) 2015-05-11
JP6268939B2 true JP6268939B2 (en) 2018-01-31

Family

ID=53194481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013229890A Active JP6268939B2 (en) 2013-11-06 2013-11-06 3-level power converter

Country Status (1)

Country Link
JP (1) JP6268939B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6573025B2 (en) * 2016-04-08 2019-09-11 東芝三菱電機産業システム株式会社 Multi-level power converter
JP2019037098A (en) * 2017-08-21 2019-03-07 日新電機株式会社 Three-level inverter unit and three-phase inverter device using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009022062A (en) * 2007-07-10 2009-01-29 Fuji Electric Systems Co Ltd Wiring structure of 3-level power conversion circuit
CA2780434C (en) * 2009-11-17 2015-10-06 Mitsubishi Electric Corporation 3-level power conversion apparatus

Also Published As

Publication number Publication date
JP2015091178A (en) 2015-05-11

Similar Documents

Publication Publication Date Title
US8300443B2 (en) Semiconductor module for use in power supply
JP5642086B2 (en) 3-level power converter
JP5132175B2 (en) Power converter
CN102214644B (en) Power semiconductor device and power conversion system using the device
JP5807516B2 (en) Power converter and method of arranging conductor in power converter
JP6164667B2 (en) Power conversion circuit and device
JP2014533487A (en) Power converter based on H-bridge
KR101373170B1 (en) Converter
CN103650316A (en) Power conversion device
JP6665456B2 (en) Power semiconductor device
JP6268939B2 (en) 3-level power converter
JP5835167B2 (en) Power module structure
JP5557891B2 (en) Three-phase power converter
US10284111B2 (en) Power conversion apparatus having connection conductors having inductance which inhibits ripple current
JP6206090B2 (en) 3-level power converter
EP3562023A1 (en) Power conversion device
JP6573025B2 (en) Multi-level power converter
JP2005166867A (en) Conductor structure for power conversion apparatus
JP4828170B2 (en) Power converter
JP7169742B2 (en) power converter
JP6338543B2 (en) 3-level power converter
JP2019134543A (en) Power supply device
JP7215042B2 (en) inverter
JP6344054B2 (en) Series connection capacitor placement and wiring structure
US10873268B2 (en) Main circuit wiring member and power conversion device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171218

R150 Certificate of patent or registration of utility model

Ref document number: 6268939

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150