JP2005166867A - Conductor structure for power conversion apparatus - Google Patents

Conductor structure for power conversion apparatus Download PDF

Info

Publication number
JP2005166867A
JP2005166867A JP2003402554A JP2003402554A JP2005166867A JP 2005166867 A JP2005166867 A JP 2005166867A JP 2003402554 A JP2003402554 A JP 2003402554A JP 2003402554 A JP2003402554 A JP 2003402554A JP 2005166867 A JP2005166867 A JP 2005166867A
Authority
JP
Japan
Prior art keywords
conductor
conductors
power conversion
cut
conversion apparatus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003402554A
Other languages
Japanese (ja)
Inventor
Akitake Takizawa
聡毅 滝沢
Orugesu Jini
オルゲス ジニ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Original Assignee
Fuji Electric Holdings Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Holdings Ltd filed Critical Fuji Electric Holdings Ltd
Priority to JP2003402554A priority Critical patent/JP2005166867A/en
Publication of JP2005166867A publication Critical patent/JP2005166867A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Power Conversion In General (AREA)
  • Inverter Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce the weight and cost of a power conversion apparatus by decreasing the amount of copper materials used as conductors in the power conversion apparatus. <P>SOLUTION: A first conductor 17a for connecting power semiconductor elements 15a-15c and the first potential of DC smoothing capacitors 3a-3d is shaped into a sheet, and part of the sheet is cut away. A second conductor 18a for connecting the elements 15a-15c and the second potential of the capacitors 3a-3d is also shaped into a sheet, and the two conductors 17a and 18b are arranged to be adjacent to each other. Specifically, the size of the second conductor 18a is made to be such that it fits in the space created by the partial removal of the first conductor 17a, and this contributes to weight reduction, shape simplification, and cost reduction. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

この発明は、電力用半導体モジュールを用いた電力変換装置の導体構造に関する。   The present invention relates to a conductor structure of a power conversion device using a power semiconductor module.

図3に電力変換装置の代表例である、直流から交流に変換するインバータの主回路図を示す。同図の符号1は交流電源、2は交流を直流に変換する整流部、3は直流平滑用コンデンサで、通常大容量の電解コンデンサが使用される。4はモータなどの負荷、5は直流から交流に変換するインバータ部で、整流部2およびインバータ部5は複数の電力用半導体で構成される。また、インバータ部5の符号6はIGBT(絶縁ゲート形バイポーラトランジスタ)、7はこれと逆並列に接続されているダイオードであり、これらが6回路で構成されている。また、整流部2はダイオード整流器回路としたが、インバータ部5と同様の回路構成とする場合もある。   FIG. 3 shows a main circuit diagram of an inverter that converts from direct current to alternating current, which is a typical example of a power converter. In the figure, reference numeral 1 is an AC power source, 2 is a rectifying unit for converting AC to DC, 3 is a DC smoothing capacitor, and a large-capacity electrolytic capacitor is usually used. 4 is a load such as a motor, and 5 is an inverter unit for converting from direct current to alternating current. The rectifying unit 2 and the inverter unit 5 are composed of a plurality of power semiconductors. Reference numeral 6 of the inverter unit 5 is an IGBT (Insulated Gate Bipolar Transistor), 7 is a diode connected in antiparallel with the IGBT, and these are composed of 6 circuits. Moreover, although the rectifier 2 is a diode rectifier circuit, it may have a circuit configuration similar to that of the inverter 5.

電力用半導体モジュールは通常、上下アーム2素子分を1組とするか、または6素子分を1組としており、通常コンバータまたはインバータを構成する場合に、素子の並列接続を実施しないときは、2素子入りのモジュールを3並列接続するか、または6素子入りのものをそのまま使用する。また、ヒューズ8は、電解コンデンサ3や整流部2またはインバータ部5の電力用半導体素子が故障し過電流が流れたときに、二次被害を防止するために接続されており、図示のように電解コンデンサ3の負電位側と直流のnライン16との間に挿入される(電解コンデンサ3の正電位側と直流のpライン17との間に挿入する場合もあるが、機能的には同じなので説明は省略する)ことが多い。   The power semiconductor module usually has two elements for the upper and lower arms as one set, or six elements as one set. When a normal converter or inverter is configured, when the elements are not connected in parallel, 2 Three modules with elements are connected in parallel, or one with six elements is used as it is. The fuse 8 is connected to prevent secondary damage when the power semiconductor element of the electrolytic capacitor 3, the rectifying unit 2 or the inverter unit 5 fails and an overcurrent flows, as shown in the figure. Inserted between the negative potential side of the electrolytic capacitor 3 and the direct current n line 16 (may be inserted between the positive potential side of the electrolytic capacitor 3 and the direct current p line 17 but is functionally the same. Therefore, explanation is omitted).

図4に2素子入り電力用半導体モジュールの外観図を示す。
11は正側直流出力端子(P端子)、12は負側直流出力端子(N端子)、13は負荷出力端子(U端子)である。また、図3において、14はスナバ回路で、IGBTのスイッチング時に発生する過電圧を防止し、2素子入りのモジュールを使用する場合は図5(a)のようにコンデンサのみのCスナバ回路、または図5(b)のようなコンデンサ,ダイオード,抵抗より構成されるRCDスナバ回路が、各素子P−N端子間に接続されるのが普通である。
FIG. 4 shows an external view of a two-element power semiconductor module.
11 is a positive side DC output terminal (P terminal), 12 is a negative side DC output terminal (N terminal), and 13 is a load output terminal (U terminal). In FIG. 3, reference numeral 14 denotes a snubber circuit, which prevents an overvoltage generated at the time of IGBT switching. When a module with two elements is used, a C snubber circuit having only a capacitor as shown in FIG. In general, an RCD snubber circuit composed of a capacitor, a diode, and a resistor as shown in FIG. 5B is connected between each element PN terminal.

図6に複数の電解コンデンサ(4並列)と3相分の電力用半導体モジュール(2素子入りモジュール3台)とヒューズとを結線したスタック構造図を示し、図7に図6に対応する回路図を示す。3a〜3dは4並列接続された電解コンデンサ、14a〜14cはスナバコンデンサ、8はヒューズ、15a〜15cは2素子入りIGBTモジュールで放熱器20上に設置される。また、16はNライン用導体、17はPライン用導体、18はヒューズ8と4並列の電解コンデンサ3の負電位側端子とを結線する導体、19a〜19cは3相出力用の導体である。   FIG. 6 shows a stack structure diagram in which a plurality of electrolytic capacitors (4 parallel), a power semiconductor module for three phases (three modules with two elements) and a fuse are connected, and FIG. 7 is a circuit diagram corresponding to FIG. Indicates. 3a to 3d are four electrolytic capacitors connected in parallel, 14a to 14c are snubber capacitors, 8 is a fuse, and 15a to 15c are two-element IGBT modules installed on the radiator 20. Also, 16 is an N-line conductor, 17 is a P-line conductor, 18 is a conductor connecting the fuse 8 and the negative potential side terminal of the four parallel electrolytic capacitors 3, and 19a to 19c are three-phase output conductors. .

通常、IGBTがスイッチングする際のサージ電圧の抑制やスナバコンデンサ容量の低減化を図るためには、電解コンデンサ3とIGBTモジュール15間の配線インダクタンスを低減させる必要があり、そのために図6のようにPライン用導体17とNライン用導体16、およびPライン用導体17と導体18とは、図示されない絶縁材を挟んだラミネート構造(並行平板構造)にするのが一般的である。なお、上記のようなスタック構造は、例えば非特許文献1や特許文献1などに開示されている。
富士電機製品カタログ「オールIGBT式UPS6000Dシリーズ 富士大容量UPS 100〜1500KVA」 特開平11−098815号(第3頁、図1)
Usually, in order to suppress the surge voltage when switching the IGBT and reduce the snubber capacitor capacity, it is necessary to reduce the wiring inductance between the electrolytic capacitor 3 and the IGBT module 15, and as shown in FIG. In general, the P-line conductor 17 and the N-line conductor 16 and the P-line conductor 17 and the conductor 18 have a laminated structure (parallel plate structure) sandwiching an insulating material (not shown). The stack structure as described above is disclosed in, for example, Non-Patent Document 1 and Patent Document 1.
Fuji Electric product catalog “All-IGBT UPS6000D series Fuji large-capacity UPS 100-1500KVA” JP-A-11-098815 (page 3, FIG. 1)

図6に示すように、導体をラミネート構造にしたスタックの場合、導体部の低インダクタンス化の効果はあるが、その一方で銅材が多くなることからコストアップ,重量アップするという問題があり、さらに各導体間には絶縁材が必要となることから、その分コストアップするという問題も発生する。加えて、導体17と導体18に電解コンデンサを接続する際、導体17と導体18とは同一平面上にないため、電解コンデンサとの接続部分の導体構造が複雑になったり、電解コンデンサの正側電極と負側電極の高さを変えるなどの処置が必要になるため、その分だけコストアップになるという問題も発生する。
したがって、この発明の課題は導体構造の簡単,軽量化を図り、低コスト化を実現することにある。
As shown in FIG. 6, in the case of a stack in which the conductor has a laminated structure, there is an effect of reducing the inductance of the conductor portion, but on the other hand, there is a problem that the cost increases and the weight increases due to the increase in the copper material. Furthermore, since an insulating material is required between the conductors, there is a problem that the cost increases accordingly. In addition, when the electrolytic capacitor is connected to the conductor 17 and the conductor 18, the conductor 17 and the conductor 18 are not on the same plane, so that the conductor structure of the connection portion with the electrolytic capacitor becomes complicated, or the positive side of the electrolytic capacitor. Since measures such as changing the height of the electrode and the negative electrode are required, there is a problem that the cost is increased accordingly.
Accordingly, an object of the present invention is to achieve a reduction in cost by simplifying and reducing the weight of the conductor structure.

このような課題を解決するために、請求項1の発明では、電力変換装置の電力用半導体素子に、その直流部の直流平滑用コンデンサとヒューズとを接続するための電力変換装置の導体構造において、前記電力用半導体素子と前記直流平滑用コンデンサの第1電位とを接続する第1導体を一部が切り抜かれた板状にするとともに、前記直流平滑用コンデンサの第2電位と前記ヒューズとを接続する第2導体を板状とし、この第2導体を前記第1導体の切り抜かれた部分に第1導体と近接して配置することを特徴とする。   In order to solve such a problem, in the invention of claim 1, in the conductor structure of the power converter for connecting the DC smoothing capacitor and the fuse of the DC part to the power semiconductor element of the power converter. The first conductor connecting the power semiconductor element and the first potential of the DC smoothing capacitor is formed in a plate shape with a part cut out, and the second potential of the DC smoothing capacitor and the fuse are The second conductor to be connected is plate-shaped, and the second conductor is disposed in the cut-out portion of the first conductor in the vicinity of the first conductor.

上記請求項1の発明においては、前記第2導体を前記第1導体の切り抜かれた部分よりも小さくすることができ(請求項2の発明)、これら請求項1または2の発明においては、前記第2導体を前記第1導体の切り抜かれた部分に埋め込み、第1,第2導体がほぼ同一平面となるように配置することができる(請求項3の発明)。また、上記請求項1の発明においては、前記第2導体を前記第1導体の切り抜かれた部分よりも大きくし、第1導体と近接してほぼ並行に配置することができる(請求項4の発明)。   In the first aspect of the invention, the second conductor can be made smaller than the cut-out portion of the first conductor (the second aspect of the invention). In the invention of the first or second aspect, The second conductor can be embedded in the cut-out portion of the first conductor, and the first and second conductors can be arranged so as to be substantially in the same plane (invention of claim 3). In the first aspect of the present invention, the second conductor can be made larger than the cut-out portion of the first conductor, and can be arranged in parallel and in close proximity to the first conductor. invention).

この発明によれば、導体部分の配線インダクタンス値の増加を抑制しつつ、従来のラミネート構造の導体に比べて銅材や製造工数を削減できるので装置の軽量化,製造の簡素化が可能となり、低コスト化が実現できる。   According to the present invention, while suppressing an increase in the wiring inductance value of the conductor portion, the copper material and the number of manufacturing steps can be reduced as compared with the conventional laminated structure conductor, so that the weight of the device and the manufacturing can be simplified. Cost reduction can be realized.

図1はこの発明の第1の実施の形態を示す構成図である。
これは、図6に示す従来例に対し、Pライン導体17の一部を長方形状に切り抜いた形状とし(17a)、ヒューズ8と電解コンデンサ3の負電位側端子とを結線する導体を、その切り抜いた形状より面積的に小さい形状とし(18a)、導体17aの切り抜かれた箇所に導体18aをはめ込み、電解コンデンサ3a〜3dを導体17aと18aとの間に接続して構成したものである。
FIG. 1 is a block diagram showing a first embodiment of the present invention.
In contrast to the conventional example shown in FIG. 6, a part of the P-line conductor 17 is cut into a rectangular shape (17a), and the conductor connecting the fuse 8 and the negative potential side terminal of the electrolytic capacitor 3 is The area is smaller than the cut shape (18a), the conductor 18a is inserted into the cut portion of the conductor 17a, and the electrolytic capacitors 3a to 3d are connected between the conductors 17a and 18a.

上記のような構成とすることにより、導体18aは導体17aを製作する際に切り抜いた銅材で製作できるため、低コスト化が実現できる。また、導体17aと18aとを同一平面上に設置できるため、各導体と電解コンデンサとの接続の際に導体の特殊な加工や、電極形状が特殊仕様の電解コンデンサを用いなくても済み、この観点からも低コスト化が可能となる。   With the above-described configuration, the conductor 18a can be manufactured using a copper material cut out when the conductor 17a is manufactured, so that the cost can be reduced. In addition, since the conductors 17a and 18a can be installed on the same plane, it is not necessary to use special processing of the conductors or electrolytic capacitors whose electrode shapes are special specifications when connecting each conductor and the electrolytic capacitor. Cost reduction is also possible from the viewpoint.

また、導体のインダクタンス値については、導体17aと18aを従来のようにラミネート構造にしていない分増加するが、図1の構成にした場合、図7に示す電流ipとinの大部分は図1の矢印のように、すなわちinは導体18aの右端および左端(in1,in2)に沿って、またip1,ip2はそれぞれin1,in2が流れている近傍に集中的に流れるため、電流ipとinによって発生する磁界が互いに打ち消し合い、インダクタンス値は小さくなる。   Further, the inductance value of the conductor increases because the conductors 17a and 18a are not laminated as in the conventional case. However, when the configuration shown in FIG. 1 is used, most of the currents ip and in shown in FIG. , That is, in flows along the right and left ends (in1, in2) of the conductor 18a, and ip1 and ip2 concentrate in the vicinity where in1 and in2 are flowing, respectively. The generated magnetic fields cancel each other, and the inductance value becomes small.

図2に第2の実施の形態を示す。
図からも明らかなように、図1の導体17aが「ロ」の字形であるのに対し、「コ」の字形(17b)にした点が特徴である。原理や効果については図1と同様である。
図1,図2の導体18a,18bを、低コスト化のため導体17a,17bを切り抜いた銅材を用いて製作(流用)し、両導体をほぼ同一平面内に配置することを想定しているが、必ずしもこのようにする必要はなく、別の銅材を用いるだけでなく、その大きさを切り抜いた部分より多き目にし、2つの導体間に或る絶縁距離(段差)をもたせて配置するようにしても良いものである。
FIG. 2 shows a second embodiment.
As is apparent from the figure, the conductor 17a in FIG. 1 has a “B” shape, whereas it has a “U” shape (17b). The principle and effect are the same as in FIG.
The conductors 18a and 18b in FIGS. 1 and 2 are manufactured (appropriated) using a copper material obtained by cutting out the conductors 17a and 17b for cost reduction, and both conductors are assumed to be arranged in substantially the same plane. However, it is not always necessary to do this, and not only another copper material is used, but the size is larger than the cut-out part, and a certain insulation distance (step) is provided between the two conductors. It may be made to do.

この発明の第1の実施の形態を示す構成図The block diagram which shows 1st Embodiment of this invention この発明の第2の実施の形態を示す構成図The block diagram which shows 2nd Embodiment of this invention インバータ主回路の一般的な例を示す回路図Circuit diagram showing a general example of an inverter main circuit 2素子入りモジュールの外観図External view of module with two elements スナバ回路の一般的な例を示す回路図Circuit diagram showing a typical example of a snubber circuit 電力変換装置の従来のスタック構造例を示す構成図Configuration diagram showing a conventional stack structure example of a power converter 図6の主回路を示す回路図Circuit diagram showing the main circuit of FIG.

符号の説明Explanation of symbols

1…交流電源、2…整流部、3,3a〜3d…直流平滑用コンデンサ、4…負荷(モータ)、5…インバータ部、6…IGBT、7…ダイオード、8…ヒューズ、11…正側直流出力端子、12…負側直流出力端子、13…負荷出力端子、14a〜14d…スナバコンデンサ、15a〜15d…IGBTモジュール、16…Nライン用導体、17,17a…Pライン用導体、18…導体、19a〜19d…3相出力用導体、20…放熱器。

DESCRIPTION OF SYMBOLS 1 ... AC power source, 2 ... Rectification part, 3, 3a-3d ... DC smoothing capacitor, 4 ... Load (motor), 5 ... Inverter part, 6 ... IGBT, 7 ... Diode, 8 ... Fuse, 11 ... Positive side direct current Output terminal, 12 ... negative DC output terminal, 13 ... load output terminal, 14a-14d ... snubber capacitor, 15a-15d ... IGBT module, 16 ... N line conductor, 17, 17a ... P line conductor, 18 ... conductor , 19a to 19d ... three-phase output conductors, 20 ... radiators.

Claims (4)

電力変換装置の電力用半導体素子に、その直流部の直流平滑用コンデンサとヒューズとを接続するための電力変換装置の導体構造において、
前記電力用半導体素子と前記直流平滑用コンデンサの第1電位とを接続する第1導体を一部が切り抜かれた板状にするとともに、前記直流平滑用コンデンサの第2電位と前記ヒューズとを接続する第2導体を板状とし、この第2導体を前記第1導体の切り抜かれた部分に第1導体と近接して配置することを特徴とする電力変換装置の導体構造。
In the conductor structure of the power converter for connecting the DC smoothing capacitor and the fuse of the DC part to the power semiconductor element of the power converter,
The first conductor connecting the power semiconductor element and the first potential of the DC smoothing capacitor is formed in a plate shape with a part cut out, and the second potential of the DC smoothing capacitor and the fuse are connected. A conductor structure for a power converter, wherein the second conductor is formed in a plate shape, and the second conductor is arranged in the cut-out portion of the first conductor in proximity to the first conductor.
前記第2導体を前記第1導体の切り抜かれた部分よりも小さい形状とすることを特徴とする請求項1に記載の電力変換装置の導体構造。   The conductor structure of the power conversion device according to claim 1, wherein the second conductor has a shape smaller than a cut-out portion of the first conductor. 前記第2導体を前記第1導体の切り抜かれた部分に埋め込み、第1,第2導体がほぼ同一平面となるように配置することを特徴とする請求項2に記載の電力変換装置の導体構造。   3. The conductor structure of the power conversion device according to claim 2, wherein the second conductor is embedded in a cut-out portion of the first conductor, and the first and second conductors are arranged in substantially the same plane. . 前記第2導体を前記第1導体の切り抜かれた部分よりも大きい形状とし、第1導体と近接してほぼ並行に配置することを特徴とする請求項1に記載の電力変換装置の導体構造。

The conductor structure of the power conversion device according to claim 1, wherein the second conductor has a shape larger than the cut-out portion of the first conductor, and is disposed in parallel with the first conductor in proximity to the first conductor.

JP2003402554A 2003-12-02 2003-12-02 Conductor structure for power conversion apparatus Pending JP2005166867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003402554A JP2005166867A (en) 2003-12-02 2003-12-02 Conductor structure for power conversion apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003402554A JP2005166867A (en) 2003-12-02 2003-12-02 Conductor structure for power conversion apparatus

Publications (1)

Publication Number Publication Date
JP2005166867A true JP2005166867A (en) 2005-06-23

Family

ID=34726089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003402554A Pending JP2005166867A (en) 2003-12-02 2003-12-02 Conductor structure for power conversion apparatus

Country Status (1)

Country Link
JP (1) JP2005166867A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123644A (en) * 2005-10-31 2007-05-17 Mitsubishi Electric Corp Power semiconductor device
JP2010148176A (en) * 2008-12-16 2010-07-01 Fuji Electric Systems Co Ltd Laminated wiring conductor of semiconductor power converter
WO2013005419A1 (en) * 2011-07-04 2013-01-10 住友重機械工業株式会社 Power converter
US9444359B2 (en) 2012-12-04 2016-09-13 Samsung Electronics Co., Ltd. Power conversion apparatus with induction control
WO2016204257A1 (en) * 2015-06-17 2016-12-22 富士電機株式会社 Power semiconductor module, flow path member, and power-semiconductor-module structure
JPWO2016204257A1 (en) * 2015-06-17 2017-09-07 富士電機株式会社 Power semiconductor module, flow path member, and power semiconductor module structure
JP6448759B1 (en) * 2017-12-26 2019-01-09 三菱電機株式会社 Power converter

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007123644A (en) * 2005-10-31 2007-05-17 Mitsubishi Electric Corp Power semiconductor device
JP2010148176A (en) * 2008-12-16 2010-07-01 Fuji Electric Systems Co Ltd Laminated wiring conductor of semiconductor power converter
WO2013005419A1 (en) * 2011-07-04 2013-01-10 住友重機械工業株式会社 Power converter
US9444359B2 (en) 2012-12-04 2016-09-13 Samsung Electronics Co., Ltd. Power conversion apparatus with induction control
WO2016204257A1 (en) * 2015-06-17 2016-12-22 富士電機株式会社 Power semiconductor module, flow path member, and power-semiconductor-module structure
JPWO2016204257A1 (en) * 2015-06-17 2017-09-07 富士電機株式会社 Power semiconductor module, flow path member, and power semiconductor module structure
JP2018166215A (en) * 2015-06-17 2018-10-25 富士電機株式会社 Power semiconductor module, flow path member, power-semiconductor-module structure, and automobile
US10192807B2 (en) 2015-06-17 2019-01-29 Fuji Electric Co., Ltd. Power semiconductor module, flow path member, and power-semiconductor-module structure
JP6448759B1 (en) * 2017-12-26 2019-01-09 三菱電機株式会社 Power converter
JP2019115234A (en) * 2017-12-26 2019-07-11 三菱電機株式会社 Power converter

Similar Documents

Publication Publication Date Title
JP4920677B2 (en) Power conversion device and assembly method thereof
US8300443B2 (en) Semiconductor module for use in power supply
JP5132175B2 (en) Power converter
JP5533068B2 (en) Semiconductor device
JP4765017B2 (en) AC-AC power converter
JP5807516B2 (en) Power converter and method of arranging conductor in power converter
EP3528605B1 (en) Compact design of multilevel power converter systems
EP2463996A1 (en) AC-to-AC converter and method for converting a first fre-quency AC-voltage to a second frequency AC-voltage
JP2019110228A (en) Power conversion device
JP2004135444A (en) Stack structure of power converter
JP2005065412A (en) Stack structure in power converter
JP2005166867A (en) Conductor structure for power conversion apparatus
JP2006042406A (en) Stack structure of power converter
JP2005176555A (en) Power converter
JP3420021B2 (en) Semiconductor power converter
US20150085549A1 (en) Power conversion apparatus
CN107624216B (en) Power electronic device
JP5678597B2 (en) Main circuit structure of power converter
JP2010199473A (en) Power conversion unit
JP7432076B2 (en) Dual active bridge converter with split energy transfer inductor for optimized current balancing in medium frequency transformers (MFTs)
JP2004153951A (en) Semiconductor power inverter circuit
JP2006271131A (en) Power converter
JP7500508B2 (en) Power Conversion Equipment
JP7395935B2 (en) power converter
JP2018174654A (en) Conductor connection structure of multilevel inverter

Legal Events

Date Code Title Description
A625 Written request for application examination (by other person)

Free format text: JAPANESE INTERMEDIATE CODE: A625

Effective date: 20060315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080327

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080717