JP6267905B2 - Calculation method for bending strength of flat beams - Google Patents

Calculation method for bending strength of flat beams Download PDF

Info

Publication number
JP6267905B2
JP6267905B2 JP2013196273A JP2013196273A JP6267905B2 JP 6267905 B2 JP6267905 B2 JP 6267905B2 JP 2013196273 A JP2013196273 A JP 2013196273A JP 2013196273 A JP2013196273 A JP 2013196273A JP 6267905 B2 JP6267905 B2 JP 6267905B2
Authority
JP
Japan
Prior art keywords
column
flat
bending strength
width
calculation method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013196273A
Other languages
Japanese (ja)
Other versions
JP2015061961A (en
Inventor
鈴木 英之
英之 鈴木
卓 田畑
卓 田畑
祐希 古谷
祐希 古谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hazama Ando Corp
Original Assignee
Hazama Ando Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hazama Ando Corp filed Critical Hazama Ando Corp
Priority to JP2013196273A priority Critical patent/JP6267905B2/en
Publication of JP2015061961A publication Critical patent/JP2015061961A/en
Application granted granted Critical
Publication of JP6267905B2 publication Critical patent/JP6267905B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rod-Shaped Construction Members (AREA)

Description

本発明は扁平梁の曲げ耐力算定方法に係り、柱外の扁平梁の実際の応力状態に対応した曲げ耐力を適正に算定し、それに基づき、合理的な梁の設計を行えるようにした扁平梁の曲げ耐力算定方法に関する。 The present invention relates to a bending strength calculating how flat beams, flat to properly calculate the flexural strength corresponding to the actual stress state of the column outside of the flat beam, based on it, to allow a reasonable beam design about the beams of the bending strength calculation how.

従来、鉄筋コンクリート建物に用いられる梁は所定の曲げ耐力を確保するために、梁せいを大きくするか、鉄筋量を多くして対応していた。この場合、通常の梁幅は柱幅よりも狭く設定されているため、梁幅内に配筋される本数が限られている。一方で梁せいを大きくする方法もあるが、梁下の室内空間を狭めることになり、梁下空間を確保するために建物高さを大きくする必要があった。そのような問題を解決するために、たとえば鉄筋コンクリート造の集合住宅において、建物高さを低減し、階高の有効利用を図るために、バルコニー等の開口部側に位置する梁に扁平梁を用いる提案がされている(特許文献1,特許文献2)。   Conventionally, in order to secure a predetermined bending strength, beams used for reinforced concrete buildings have been made to increase the beam length or increase the amount of reinforcing bars. In this case, since the normal beam width is set narrower than the column width, the number of bars arranged within the beam width is limited. On the other hand, there is a method of increasing the beam length, but the indoor space under the beam is narrowed, and it is necessary to increase the height of the building to secure the space under the beam. In order to solve such a problem, for example, in a reinforced concrete apartment house, flat beams are used for the beams located on the opening side of a balcony or the like in order to reduce the height of the building and effectively use the floor height. Proposals have been made (Patent Document 1, Patent Document 2).

特開2003−82869号公報JP 2003-82869 A 特開2007−107367号公報 扁平梁は梁幅が柱幅より広く、せいが小さいため、柱梁接合部に作用する外力(曲げモーメント、せん断力)に対する梁の抵抗挙動および耐力等が、従来の柱梁接合部の梁とは異なることが認められており、従来の柱梁接合部における設計方法がそのまま適用できない。このように不明な点が多い扁平梁の柱梁接合部における扁平梁の挙動を解明するための研究も進められている(非特許文献1,非特許文献2)。非特許文献1の研究によれば、扁平梁の主筋のうち、柱幅より外側に位置する主筋は、柱から離れるに従って曲げ耐力に寄与する割合が低下していくとされている。非特許文献2の研究によれば、扁平梁の梁幅が柱幅の2倍程度なら梁としての曲げ耐力を発揮し、柱に近い梁のコンクリート拘束を強めると良好な性状を示すとされている。JP, 2007-107367, A Since flat beams have a beam width wider than a column width and less than that of a column, the resistance behavior and the proof strength of a beam with respect to external forces (bending moment, shearing force) acting on a column beam connection portion have been reduced. It is recognized that the beam is different from the beam of the beam-column joint, and the conventional design method for the beam-column joint cannot be applied as it is. Studies for elucidating the behavior of flat beams at the column beam joints of flat beams with many unclear points are also in progress (Non-patent Documents 1 and 2). According to the research of Non-Patent Document 1, it is said that the ratio of the main bars located outside the column width among the main bars of the flat beam decreases as the distance from the column decreases. According to the research of Non-Patent Document 2, it is said that if the beam width of a flat beam is about twice the column width, it will show the bending strength as a beam, and if the concrete restraint of the beam near the column is strengthened, it will show good properties. Yes.

別所佐登志、松崎育弘他、“幅広はり・柱接合部の水平加力実験(その1 実験結果概要、その2 実験結果の検討)”、日本建築学会大会学術講演梗概集、pp.445〜448、昭和63年10月Bessho Sato, Matsuzaki Ikuhiro, et al., “Horizontal Loading Experiments on Wide Beam / Column Joints (Part 1 Outline of Experimental Results, Part 2 Examination of Experimental Results)”, Architectural Institute of Japan Annual Meeting Abstracts, pp.445-448 October 1988 西村康志郎、瀧口克己他、“鉄筋コンクリート扁平梁構法の開発研究”、日本建築学会構造系論文集、第616号、pp.179〜186、2007年6月Yashiro Nishimura, Katsumi Higuchi et al., “Development Research on Reinforced Concrete Flat Beam Construction”, Architectural Institute of Japan, 616, pp. 179-186, June 2007

ところで、各非特許文献にあるように、設計手法が確立していない現状において、扁平梁の曲げ耐力計算方法は、各設計者が独自の設計手法で設計を進めていた。その一例として、柱幅Cを基準として、その柱から所定の範囲(たとえば柱幅C×n倍とか)までの梁主筋が曲げ耐力に寄与すると仮定し、その範囲に含まれる梁主筋が均一に応力度を負担するとして曲げ耐力を算定していた。   By the way, as described in each non-patent document, in the present situation where the design method has not been established, each designer has advanced the design of the bending strength calculation method of the flat beam by the original design method. As an example, it is assumed that the beam main bars from the column to a predetermined range (for example, column width C × n times) contribute to the bending strength with reference to the column width C, and the beam main bars included in the range are uniform. The bending strength was calculated assuming that the degree of stress was borne.

従来、梁の曲げ耐力を正確に算定することは、保有水平耐力計算およびせん断に対する保証設計を行う上で重要であり、扁平梁の設計において、上述のように経験的な設計を行うことは危険側の設計となったり、逆に必要以上の配筋を要する不経済設計となるなどの問題があった。   Conventionally, it is important to accurately calculate the bending strength of a beam in order to calculate the retained horizontal strength and to guarantee the design against shear, and it is dangerous to perform empirical design as described above in the design of flat beams. There was a problem that it was a side design or, on the contrary, an uneconomical design that required more than necessary reinforcement.

また、従来の梁の設計では、梁の全ての主筋を曲げ耐力に寄与させるために、柱幅外側の梁が十分な捻れ剛性を有し、梁内に一列配筋された主筋が同時に降伏することを前提としているが、発明者らの実験では、扁平梁内の主筋は柱に近い側から順次降伏することが確認されている。このため、梁幅の大きな扁平梁全幅にわたり一列に配筋された梁主筋が同時に降伏すると仮定して設計すると、部材の耐力を過大評価することになる。よって、梁主筋を同時に降伏させるためには、扁平梁の柱からの張出し長さ(梁幅)を制限するか、あるいは梁、柱を材軸直交方向に貫通する捻れ補強筋を多数配筋して梁の捻れ剛性を高くする設計が必要があった。   In addition, in the conventional beam design, in order to make all the main bars of the beam contribute to the bending strength, the beam outside the column width has sufficient torsional rigidity, and the main bars arranged in a row in the beam yield simultaneously. However, in the experiments conducted by the inventors, it has been confirmed that the main bars in the flat beams yield sequentially from the side close to the column. For this reason, if it is designed on the assumption that beam main bars arranged in a row over the entire width of a flat beam having a large beam width yield at the same time, the proof stress of the member will be overestimated. Therefore, in order to yield the main beam of the beam at the same time, limit the length of the flat beam protruding from the column (beam width), or arrange many torsion reinforcement bars that penetrate the beam and column in the direction perpendicular to the material axis. Therefore, a design that increases the torsional rigidity of the beam was necessary.

発明者らの実施した実験から、柱から離れるに従って、梁主筋が負担する応力度は低下することが確認された。すなわち、扁平梁は幅が広くなると柱に対する捻れ変形が大きくなる。この捻れ変形により柱から離れた位置の鉄筋は応力負担が小さくなることが確認されている。   From experiments conducted by the inventors, it was confirmed that the degree of stress borne by the beam main bars decreases as the distance from the column increases. That is, as the flat beam becomes wider, the torsional deformation of the column becomes larger. It has been confirmed that the stress burden is reduced in the reinforcing bars located away from the column due to this torsional deformation.

ここで、発明者が考える扁平梁の梁主筋の応力状態を生じさせる梁変形挙動について、図4、図5を参照して説明する。図4に示したように、柱10の柱幅より広い梁幅の扁平梁20の柱梁接合部1では、矢印で示したような曲げモーメントMが作用した際に、柱10と連続する扁平梁20は、柱10と一体化した梁部分20A(図中、梁(柱内)と表示)と、柱の両側に張り出した梁部分20B(図中、梁(柱外)と表示)とでは、その変形挙動が異なる。すなわち、図5に模式的に断面で示したように、梁(柱内)20Aでは、扁平梁20の根元部は、柱10と一体化した状態にあるため、梁(柱内)20Aの曲げ挙動(柱端からの所定位置のたわみ量iδB)は従来の梁と同様である。このため、梁引張主筋はすべての曲げ耐力に寄与することになる(図5(a))。これに対して、梁(柱外)20Bでは、曲げ外力が作用すると、柱10からの両側に張り出した梁部分に捻れが生じ、その後に梁として曲げモーメントを負担する。このため、柱端からの所定位置でのたわみ量は捻れによって生じるたわみoδtと梁曲げによって生じるたわみoδBの和(oδtoδBiδB)となる。このため、扁平梁20の曲げ挙動を適正に評価することが経済設計につながる。なお、図5では、扁平梁20の曲げ形状は説明のために模式的に直線で描いている。 Here, the beam deformation behavior causing the stress state of the beam main reinforcement of the flat beam considered by the inventor will be described with reference to FIGS. As shown in FIG. 4, in the column beam joint 1 of the flat beam 20 having a beam width wider than the column width of the column 10, when a bending moment M as shown by an arrow acts, The beam 20 includes a beam portion 20A integrated with the column 10 (indicated as a beam (inside the column) in the drawing) and a beam portion 20B projecting on both sides of the column (indicated as a beam (outside of the column) in the drawing). The deformation behavior is different. That is, as schematically shown in cross section in FIG. 5, in the beam (inside the column) 20A, the root portion of the flat beam 20 is integrated with the column 10, so that the bending of the beam (inside the column) 20A The behavior (the amount of deflection i δ B at a predetermined position from the column end) is the same as that of the conventional beam. For this reason, the beam tension main bar contributes to all the bending strengths (Fig.5 (a)). On the other hand, in the beam (outside the column) 20B, when a bending external force is applied, the beam portion projecting from both sides from the column 10 is twisted, and thereafter a bending moment is borne as the beam. Therefore, the deflection amount at a predetermined position from the column end is the deflection o deflection caused by bending [delta] t and the beam o [delta] a sum of B (o δ t + o δ B = i δ B) caused by the torsion. For this reason, appropriately evaluating the bending behavior of the flat beam 20 leads to economic design. In FIG. 5, the bending shape of the flat beam 20 is schematically drawn as a straight line for explanation.

そこで、本発明の目的は上述した従来の技術が有する問題点を解消し、扁平梁の挙動に合った応力状態を考慮して扁平梁における曲げ耐力を評価し、合理的な手法で曲げ耐力を算定できるできるようにした扁平梁の曲げ耐力算定方法を提供することにある。 Therefore, the object of the present invention is to solve the above-mentioned problems of the prior art, evaluate the bending strength of the flat beam in consideration of the stress state suitable for the behavior of the flat beam, and to obtain the bending strength by a rational method. to provide a bending strength calculating how the squamous beam to be able to calculate.

上記目的を達成するために、本発明の曲げ耐力算定の方法は、柱に対して扁平梁が接合される柱梁接合部における前記扁平梁の曲げ耐力の算定方法であって、前記扁平梁の全引張主筋量に対する前記柱幅の外側に配筋された引張主筋の材料強度または主筋量を低減して、前記柱幅の外側に位置する前記扁平梁の曲げ耐力を前記柱幅内の部位より低下させて前記扁平梁の設計を行うことを特徴とする。 In order to achieve the above object, a bending strength calculation method according to the present invention is a method for calculating a bending strength of a flat beam at a column beam joint where a flat beam is bonded to a column. By reducing the material strength or the main reinforcement amount of the tensile reinforcement bar arranged outside the column width with respect to the total tensile reinforcement amount, the bending strength of the flat beam positioned outside the column width is determined from the portion within the column width. The flat beam is designed to be lowered.

また、柱に対して扁平梁が接合される柱梁接合部における前記扁平梁の曲げ耐力の算定方法であって、前記扁平梁の全引張主筋量に対する前記柱幅の外側に配筋された引張主筋の材料強度または主筋量を低減して、前記柱幅の外側に位置する前記扁平梁の曲げ剛性を前記柱幅内の部位より低下させて前記扁平梁の設計を行うことを特徴とする。 A method for calculating the bending strength of the flat beam in a column beam joint where the flat beam is bonded to a column, the tension being arranged outside the column width with respect to the total tension main bar amount of the flat beam The flat beam is designed by reducing the strength of the main bar or the amount of the main bar, and lowering the bending rigidity of the flat beam located outside the column width from the portion within the column width .

梁の曲げ耐力の低減を行う曲げ耐力の算定方法において、算定式に低減関数β
β={A−B・(Σa to /ΣBa t )}<1
ここで、1.0≦A≦1.05、0.05<B<0.25
を乗じて曲げ耐力を低減することが好ましい。
In the bending strength calculation method to reduce the bending strength of the beam, the reduction function β
β = {A-B · ( Σa to / ΣBa t)} <1
Here, 1.0 ≦ A ≦ 1.05, 0.05 <B <0.25
It is preferable to reduce the bending strength by multiplying.

前記扁平梁の前記柱内に配筋された主筋の直径より前記柱幅の外側に配筋された主筋の直径を小さくすることが好ましい。

It is preferable to make the diameter of the main bar arranged outside the column width smaller than the diameter of the main bar arranged within the column width of the flat beam.

本発明によれば、捻れ変形に影響を及ぼす柱幅の外側に配された梁主筋の量の比率に応じて曲げ耐力を低減するように梁耐力を評価することにより、実際の応力状態に即した曲げ耐力の算定が可能となり、従来の問題点であった、扁平梁の幅の制限、過剰な捻れ補強筋がともに不要な合理的な設計が実現できるという効果を奏する。   According to the present invention, by evaluating the beam strength so as to reduce the bending strength according to the ratio of the amount of the main beam bars arranged outside the column width that affects the torsional deformation, Thus, it is possible to calculate the bending strength, and it is possible to realize a rational design that does not require both the limitation of the width of the flat beam and the excessive torsional reinforcement, which are the conventional problems.

本発明の扁平梁の曲げ耐力算定方法による配筋構造を行う対象となる扁平梁の柱梁接合部を示した模式説明図。The schematic explanatory drawing which showed the column beam joint part of the flat beam used as the object which performs the bar arrangement by the bending strength calculation method of the flat beam of this invention. 本発明の扁平梁の曲げ耐力算定方法による配筋構造の一実施形態を示した梁模式断面図。The beam schematic cross section which showed one Embodiment of the bar arrangement structure by the bending strength calculation method of the flat beam of this invention. 本発明の扁平梁の曲げ耐力算定方法における算定式と、実験値との関係を示した関係グラフ。The relationship graph which showed the relationship between the calculation formula in the bending strength calculation method of the flat beam of this invention, and an experimental value. 扁平梁の柱梁接合部における変形挙動を示すためのモデル図。The model figure for showing the deformation behavior in the column beam junction of a flat beam. 図4に示した扁平梁の各梁(柱内)、(柱外)での曲げ挙動を模式的に示したモデル図。The model figure which showed typically the bending behavior in each beam (inside a column) and (outside a column) of the flat beam shown in FIG.

以下、本発明の扁平梁の曲げ耐力算定方法及び扁平梁の配筋構造の基本構造について、図1〜図3を参照して説明する。
[柱梁接合部における扁平梁の耐力算定式の提案]
発明者は、図1に示した扁平梁の柱梁接合部の試験体において、図2に示した模式断面図梁主筋(柱内)、梁主筋(柱外)での配筋割合、直交主筋(捻れ補強筋)の有無を因子として複数試験体での扁平梁の曲げ耐力試験を行った。その結果をもとに式1、図3に示した扁平梁の耐力算定式(以下、算定式)を提案するものである。
この算定式によれば、柱外側に配される梁主筋の割合によって、梁の曲げ耐力が低下する挙動を反映させることができる。以下、低減関数βによってその低下開始点、低下率を考慮した(式1)を提案する。

Figure 0006267905
ここに、
My:梁の曲げ耐力、β:低減関数(≦1)、
σy:梁主筋の材料強度、d:梁の有効せい、
ΣBt:引張側の全梁主筋の断面積、
Σato:柱の外側に配される引張側の梁主筋の断面積
本実施形態では、実験結果より、A=1.05、B=0.25として、扁平梁の算定式を求めた。なお、(式1)は、従来、設計に適用されている梁の曲げ耐力算定式
My=ΣBt・σy・d …(式2)
に、扁平梁の形状による影響を考慮した低減係数βを乗じて作成したものである。 Hereinafter, the basic structure of the flat beam bending strength calculation method and the flat bar arrangement structure of the present invention will be described with reference to FIGS.
[Proposal of a formula for calculating the strength of flat beams at column beam connections]
The inventor, in the test specimen of the beam-to-column connection part of the flat beam shown in FIG. 1, the schematic cross-sectional view shown in FIG. 2 beam reinforcement (inside the column), bar arrangement ratio in the beam reinforcement (outside the column), orthogonal principal reinforcement A bending strength test of a flat beam with a plurality of test specimens was performed with or without (twist reinforcement) as a factor. Based on the results, we propose a formula for calculating the proof strength of flat beams shown in FIG.
According to this calculation formula, it is possible to reflect the behavior in which the bending strength of the beam is lowered depending on the ratio of the beam main bars arranged outside the column. Hereinafter, (Equation 1) is proposed in which the reduction start point and the reduction rate are taken into account by the reduction function β.
Figure 0006267905
here,
My: bending strength of beam, β: reduction function (≦ 1),
σy: material strength of beam main bar, d: effective beam effect,
Σ B a t: tensile side of the cross-sectional area of the entire beam main reinforcement,
Σa to : Cross-sectional area of the main beam on the tension side arranged outside the column In this embodiment, the calculation formula of the flat beam was obtained from the experimental results with A = 1.05 and B = 0.25. Incidentally, (Equation 1) is conventionally bending strength calculation formula of the beam that is applied to the design My = Σ B a t · σy · d ... ( Equation 2)
Is multiplied by a reduction factor β that takes into account the influence of the shape of the flat beam.

図3は、上記算定式と扁平梁の曲げ耐力試験結果との関係を示した関係グラフである。同図に示したように、梁主筋の全断面積に対する外側の主筋断面積の割合(ΣatoBt)が増加するにしたがって、梁の曲げ耐力が低下する挙動を式1がカバーしていることが読み取れる。 FIG. 3 is a relationship graph showing the relationship between the above calculation formula and the bending strength test result of the flat beam. As shown in the figure, according to the ratio of the outer main bars cross-sectional area to the total sectional area of the beam main reinforcement (Σa to / Σ B a t ) is increased, the behavior of the beam bending strength is lowered Formula 1 cover I can read that

[柱梁接合部における扁平梁の配筋構造の提案]
図2は、扁平梁20の柱梁接合部1における配筋構造を、部位で区画して模式的に示した配筋断面図である。上述の算定式(式1)からわかるように、柱10の外側の主筋の効果を計算上低減する方法だと、配筋された鉄筋の能力が十分に発揮されないこととなる。そこで、本発明では、曲げ耐力への寄与が低減される柱外側に配される梁主筋30の材料強度(σyo)を、柱内に配筋される梁主筋31の材料強度(σyi)より低い材料とすること、または柱外側の梁主筋30の1本の鉄筋断面積(直径)(ato(φto))を柱内側の梁主筋31の1本の鉄筋断面積(直径)(ati(φti))より小さくすることで、扁平梁の柱梁接合部における配筋構造を提案する。
すなわち、
(σyo)<(σyi)または(ato)<(ati)((φto)<(φti))
とすることで、捻れ補強筋などを必要としない合理的設計が可能となる。
[Proposal of reinforcement structure of flat beam at column beam joint]
FIG. 2 is a reinforcing bar cross-sectional view schematically showing the bar arrangement structure in the beam-column joint 1 of the flat beam 20 divided by parts. As can be seen from the above-described calculation formula (Formula 1), if the method of reducing the effect of the main bars outside the column 10 is calculated, the ability of the reinforcing bars will not be sufficiently exhibited. Therefore, in the present invention, the material strength (σ yo ) of the beam main bars 30 arranged on the outer side of the column that contributes to the bending strength is reduced, and the material strength (σ yi ) of the beam main bars 31 arranged in the column. The lower cross-sectional area (diameter) (a toto )) of one beam reinforcing bar 30 on the outer side of the column is set to a lower material. A bar arrangement structure at the column beam joint of a flat beam is proposed by making it smaller than a titi ).
That is,
yo ) <(σ yi ) or (a to ) <(a ti ) ((φ to ) <(φ ti ))
By doing so, a rational design that does not require a torsion reinforcing bar or the like becomes possible.

なお、本発明は上述した実施例に限定されるものではなく、各請求項に示した範囲内での種々の変更が可能である。すなわち、請求項に示した範囲内で適宜変更した技術的手段を組み合わせて得られる実施形態も、本発明の技術的範囲に含まれる。   In addition, this invention is not limited to the Example mentioned above, A various change within the range shown to each claim is possible. In other words, embodiments obtained by combining technical means appropriately changed within the scope of the claims are also included in the technical scope of the present invention.

1 柱梁接合部
10 柱
20 扁平梁
30,31 梁主筋
1 Beam-column joint 10 Column 20 Flat beams 30, 31 Beam reinforcement

Claims (4)

柱に対して扁平梁が接合される柱梁接合部における前記扁平梁の曲げ耐力の算定方法であって、前記扁平梁の全引張主筋量に対する前記柱幅の外側に配筋された引張主筋の材料強度または主筋量を低減して、前記柱幅の外側に位置する前記扁平梁の曲げ耐力を前記柱幅内の部位より低下させて前記扁平梁の設計を行うことを特徴とする扁平梁の曲げ耐力算定方法。 A method of calculating the bending strength of the flat beam at Column Joints flat beams are joined to the pillar, tensile main reinforcement that said is Haisuji outside the column width to the total tensile main reinforcement of flat beams The flat beam is designed by reducing the material strength or the amount of main reinforcement, and lowering the bending strength of the flat beam located outside the column width from the portion within the column width. Bending strength calculation method. 柱に対して扁平梁が接合される柱梁接合部における前記扁平梁の曲げ耐力の算定方法であって、前記扁平梁の全引張主筋量に対する前記柱幅の外側に配筋された引張主筋の材料強度または主筋量を低減して、前記柱幅の外側に位置する前記扁平梁の曲げ剛性を前記柱幅内の部位より低下させて前記扁平梁の設計を行うことを特徴とする扁平梁の曲げ耐力算定方法。 A method of calculating the bending strength of the flat beam at Column Joints flat beams are joined to the pillar, tensile main reinforcement that said is Haisuji outside the column width to the total tensile main reinforcement of flat beams The flat beam is designed by reducing the material strength or the amount of main reinforcement, and lowering the bending rigidity of the flat beam located outside the column width from the portion within the column width. Bending strength calculation method. 梁の曲げ耐力の低減を行う曲げ耐力の算定方法において、算定式に低減関数β
β={A−B・(Σa to /ΣBa t )}<1
ここで、1.0≦A≦1.05、0.05<B<0.25
を乗じて曲げ耐力を低減する請求項1に記載の扁平梁の曲げ耐力算定方法。
In the bending strength calculation method to reduce the bending strength of the beam, the reduction function β
β = {A-B · ( Σa to / ΣBa t)} <1
Here, 1.0 ≦ A ≦ 1.05, 0.05 <B <0.25
The bending strength calculation method for flat beams according to claim 1, wherein the bending strength is reduced by multiplying by.
前記扁平梁の前記柱内に配筋された主筋の直径より前記柱幅の外側に配筋された主筋の直径を小さくすることを特徴とする請求項1または請求項2に記載の扁平梁の曲げ耐力算定方法。 Flat beam according to claim 1 or claim 2, characterized in that to reduce the diameter of the main reinforcement that is Haisuji outside the pillar width than the diameter of the main reinforcement that is Haisuji to said post within the width of said flat beam Bending strength calculation method.
JP2013196273A 2013-09-21 2013-09-21 Calculation method for bending strength of flat beams Active JP6267905B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013196273A JP6267905B2 (en) 2013-09-21 2013-09-21 Calculation method for bending strength of flat beams

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013196273A JP6267905B2 (en) 2013-09-21 2013-09-21 Calculation method for bending strength of flat beams

Publications (2)

Publication Number Publication Date
JP2015061961A JP2015061961A (en) 2015-04-02
JP6267905B2 true JP6267905B2 (en) 2018-01-24

Family

ID=52821368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013196273A Active JP6267905B2 (en) 2013-09-21 2013-09-21 Calculation method for bending strength of flat beams

Country Status (1)

Country Link
JP (1) JP6267905B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108021775A (en) * 2017-12-28 2018-05-11 江南大学 Bending strength computational methods of the dust collector box body column under lateral load effect

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6243238B2 (en) * 2014-01-30 2017-12-06 株式会社長谷工コーポレーション Ramen frames with wide flat beams and buildings using them
JP7384645B2 (en) 2019-11-26 2023-11-21 株式会社奥村組 How to calculate the strength at the joint between a column and a flat beam
CN115270253B (en) * 2022-07-19 2023-06-02 中国建筑西南设计研究院有限公司 Plate reinforcement compliance judging and displaying method, system and medium

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1143994A (en) * 1997-07-25 1999-02-16 Ohbayashi Corp Rc-formed flat beam
JP4105191B2 (en) * 2005-09-16 2008-06-25 住友不動産株式会社 Column and beam frame
JP2010255227A (en) * 2009-04-22 2010-11-11 Kyoei Steel Ltd Column-beam joint structure and reinforced concrete member

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108021775A (en) * 2017-12-28 2018-05-11 江南大学 Bending strength computational methods of the dust collector box body column under lateral load effect
CN108021775B (en) * 2017-12-28 2021-12-24 江南大学 Method for calculating bending strength of upright post of dust remover box under action of transverse load

Also Published As

Publication number Publication date
JP2015061961A (en) 2015-04-02

Similar Documents

Publication Publication Date Title
Hu et al. Nonlinear analysis of axially loaded concrete-filled tube columns with confinement effect
JP6414374B1 (en) Analysis method, design method, manufacturing method, and program
JP6267905B2 (en) Calculation method for bending strength of flat beams
JP2019056220A (en) Steel beam design method used for floor structure, floor structure
CN109750748B (en) Reinforced concrete structure design method directly based on performance
CN103541437B (en) Reinforced concrete frame node district additional steel plates and gauze wire cloth parcel strengthen structure and preparation method
CN102758501B (en) High-strength spiral hoop confined high-strength wide flange cross-shaped steel reinforced octagonal concrete column
US20150345128A1 (en) Reinforced concrete structure
Smitha et al. Steel–concrete composite flange plate connections—finite element modeling and parametric studies
JP2018204425A (en) Steel beam with floor slab and design method therefor
JP6646206B2 (en) Joint structure of RC members
JP6681277B2 (en) Joint strength evaluation method of beam-column joint structure, method of designing beam-column joint structure, and beam-column joint structure
CN107829505A (en) A kind of coupling beam structure and its design method strengthened using X-shaped steel plate
Zhu et al. Experimental and numerical study on seismic behavior of partially steel-reinforced concrete beam-to-steel tube column joint
Xing et al. Seismic behavior of reinforced concrete interior beam-column joints with beams of different depths
Rosso et al. Influence of longitudinal reinforcement layouts on RC wall performance
US8615969B2 (en) Reinforcement structure of rectangular flat metal plate
Ibrahim et al. Nonlinear analysis of simply supported composite steel-concrete beam
Wang et al. Experimental research on seismic behavior of+-shaped columns reinforced with high-strength steel bars under cyclic loading
JP5939707B2 (en) Reinforcement structure for beam-column joints
JP6891053B2 (en) Beam-column joint structure
JP2009144500A (en) Shearing reinforcement structure for column-beam joint part of uppermost story
JP2008057204A (en) Method of analyzing behavior of reinforced concrete column subjected to repeated loading
JP6438257B2 (en) Design method of reinforced concrete structure and reinforced concrete structure
JP2020041348A (en) Composite deck slab

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170315

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170418

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

R150 Certificate of patent or registration of utility model

Ref document number: 6267905

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250