JP2008057204A - Method of analyzing behavior of reinforced concrete column subjected to repeated loading - Google Patents

Method of analyzing behavior of reinforced concrete column subjected to repeated loading Download PDF

Info

Publication number
JP2008057204A
JP2008057204A JP2006235101A JP2006235101A JP2008057204A JP 2008057204 A JP2008057204 A JP 2008057204A JP 2006235101 A JP2006235101 A JP 2006235101A JP 2006235101 A JP2006235101 A JP 2006235101A JP 2008057204 A JP2008057204 A JP 2008057204A
Authority
JP
Japan
Prior art keywords
reinforced concrete
concrete column
behavior
buckling
analysis
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006235101A
Other languages
Japanese (ja)
Inventor
Toshiharu Nakamura
敏晴 中村
Takashi Misawa
孝史 三澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Okumura Corp
Original Assignee
Okumura Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Okumura Corp filed Critical Okumura Corp
Priority to JP2006235101A priority Critical patent/JP2008057204A/en
Publication of JP2008057204A publication Critical patent/JP2008057204A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Bridges Or Land Bridges (AREA)
  • Rod-Shaped Construction Members (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of analyzing the behavior of a reinforced concrete column subjected to repeated loading, for analyzing the behavior of the reinforced concrete column by using a computer according to the finite element method while adequately reflecting a deterioration mechanism of a load bearing ability by repeated loading in a plastic region of the reinforced concrete column. <P>SOLUTION: The method of analyzing the behavior of the reinforced concrete column is implemented by analyzing the behavior of the reinforced concrete column 10 subjected to the repeated loading in the plastic region, by using a computer according to the finite element method. In the method, a buckling model is incorporated in a structure side of axial reinforcements of the reinforced concrete column 10, and the behavior of the reinforced concrete column 10 in a region where a load bearing ability is lost after the load bearing ability reaches a peak, is analyzed. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、塑性域において繰返し載荷を受ける鉄筋コンクリート柱の挙動を、有限要素法によりコンピュータを用いて解析する鉄筋コンクリート柱の挙動解析方法に関する。   The present invention relates to a behavior analysis method for a reinforced concrete column in which the behavior of a reinforced concrete column subjected to repeated loading in a plastic region is analyzed using a computer by a finite element method.

東海地震や、東南海、南海地震等が懸念される中、橋梁などの鉄筋コンクリート構造物の設計法は性能設計が主流となりつつある。性能設計では、構造物の耐力やじん性能を的確に表現する必要があるが、鉄筋コンクリート構造物の塑性域での繰返し載荷による耐荷力の劣化機構には未解明の部分もあり、またその挙動を表現する解析手法も確立されていないのが現状である。   While there are concerns about the Tokai Earthquake, the Tonankai, and Nankai Earthquakes, performance design is becoming the mainstream in the design methods for reinforced concrete structures such as bridges. In performance design, it is necessary to accurately express the proof stress and dust performance of the structure, but there are unclear parts in the mechanism of deterioration of the load proof strength due to repeated loading of reinforced concrete structures in the plastic region, and the behavior is also expressed. Currently, no analysis method has been established.

一方、土木・建設分野においては、有限要素法(FEM)を用いた解析手法が汎用されており、コンピュータ技術の発展に伴って、種々の構造解析プログラムや設計システムが開発されている(例えば、特許文献1、特許文献2参照)。
特開2003−20649号公報 特開2005−299203号公報
On the other hand, in the field of civil engineering and construction, analysis methods using the finite element method (FEM) are widely used, and various structural analysis programs and design systems have been developed along with the development of computer technology (for example, (See Patent Document 1 and Patent Document 2).
JP 2003-20649 A JP-A-2005-299203

例えば橋梁の下部構造を構成する鉄筋コンクリート柱は、例えばフーチング基礎に近接する柱基部における軸方向鉄筋に囲まれたコアコンクリートのせん断変形と、これに伴う軸方向鉄筋の座屈と、被りコンクリートの剥落とによって耐荷力を失うのが一般的な挙動である。従来のFEM解析では、この挙動を表現しようとする場合、耐荷力がピークに達するまでは比較的良好に再現することができるが、ピークに達した後に耐荷力を失う領域(ポストピーク領域)を再現することはできなかった。すなわち、従来のFEM解析では、鉄筋コンクリート柱の塑性域における繰返し載荷による耐荷力の劣化機構を、ポストピーク領域を含めて適切に反映させて解析することは困難だった。   For example, the reinforced concrete columns that make up the substructure of the bridge are, for example, the shear deformation of the core concrete surrounded by the axial reinforcement at the column base close to the footing foundation, the buckling of the axial reinforcement accompanying this, and the peeling of the covered concrete It is a common behavior to lose the load bearing capacity. In the conventional FEM analysis, when this behavior is to be expressed, it can be reproduced relatively well until the load bearing capacity reaches a peak, but the area that loses the load bearing capacity after reaching the peak (post-peak area). It could not be reproduced. That is, in the conventional FEM analysis, it has been difficult to appropriately reflect the deterioration mechanism of the load bearing capacity due to repeated loading in the plastic region of the reinforced concrete column including the post peak region.

本発明は、このような従来の課題に着目してなされたものであり、鉄筋コンクリート柱の塑性域における繰返し載荷による耐荷力の劣化機構を、ポストピーク領域を含めて適切に反映させて、有限要素法によりコンピュータを用いて解析することのできる繰返し載荷を受ける鉄筋コンクリート柱の挙動解析方法を提供することを目的とする。   The present invention has been made by paying attention to such a conventional problem, and appropriately reflects the deterioration mechanism of the load bearing capacity due to repeated loading in the plastic region of the reinforced concrete column including the post-peak region, thereby providing a finite element. The purpose of this study is to provide a method for analyzing the behavior of reinforced concrete columns subjected to repeated loading that can be analyzed using a computer.

本発明は、塑性域において繰返し載荷を受ける鉄筋コンクリート柱の挙動を、有限要素法によりコンピュータを用いて解析する鉄筋コンクリート柱の挙動解析方法において、前記鉄筋コンクリート柱の軸方向鉄筋の構成側に座屈モデルを組み込んで、耐荷力がピークに達した後に耐荷力を失う領域の前記鉄筋コンクリート柱の挙動を解析することを特徴とする繰返し載荷を受ける鉄筋コンクリート柱の挙動解析方法を提供することにより、上記目的を達成したものである。   The present invention relates to a reinforced concrete column behavior analysis method for analyzing the behavior of a reinforced concrete column subjected to repeated loading in a plastic region by using a computer by a finite element method, and a buckling model is provided on the component side of the axial rebar of the reinforced concrete column. Incorporating and analyzing the behavior of the reinforced concrete column in the region where the load bearing capacity is lost after the load bearing capacity reaches its peak, providing a method for analyzing the behavior of reinforced concrete columns subjected to repeated loading, thereby achieving the above object It is a thing.

また、本発明の繰返し載荷を受ける鉄筋コンクリート柱の挙動解析方法は、前記繰返し載荷が水平方向の載荷であり、前記座屈モデルが組み込まれる前記軸方向鉄筋の要素は、前記鉄筋コンクリート柱の基部における圧縮側及び引張側の1要素であることが好ましい。   Further, according to the method of analyzing the behavior of a reinforced concrete column subjected to repeated loading according to the present invention, the repeated loading is horizontal loading, and the element of the axial reinforcing bar in which the buckling model is incorporated is compressed at the base of the reinforced concrete column. A single element on the side and on the tension side is preferred.

以下、本発明の繰返し載荷を受ける鉄筋コンクリート柱の挙動解析方法をさらに詳細に説明する。 本発明の繰返し載荷を受ける鉄筋コンクリート柱の挙動解析方法は、塑性域において繰返し載荷を受ける鉄筋コンクリート柱の挙動を、有限要素法によりコンピュータを用いて解析する鉄筋コンクリート柱の挙動解析方法において、前記鉄筋コンクリート柱の軸方向鉄筋の構成側に座屈モデルを組み込んで、耐荷力がピークに達した後に耐荷力を失う領域の前記鉄筋コンクリート柱の挙動を解析する。   Hereinafter, the method for analyzing the behavior of a reinforced concrete column subjected to repeated loading according to the present invention will be described in more detail. The behavior analysis method of a reinforced concrete column subjected to repeated loading according to the present invention is a behavior analysis method of a reinforced concrete column that analyzes the behavior of a reinforced concrete column subjected to repeated loading in a plastic region using a computer by a finite element method. A buckling model is incorporated on the component side of the axial rebar to analyze the behavior of the reinforced concrete column in the region where the load bearing capacity is lost after the load bearing capacity reaches a peak.

本発明の挙動解析方法によれば、塑性域において繰返し載荷を受ける鉄筋コンクリート柱の挙動は、コンピュータにインストールされた、公知の有限要素法(FEM)を用いた解析ソフトによる種々の構造解析プログラムを用いて解析することができる。このようなFEM解析ソフトとしては、例えば汎用線形及び非線形構造解析システムとして公知の商品名「DIANA」(TNO DIANA社製、販売代理店JIPテクノサイエンス株式会社)を好ましく使用することができる。DIANAは、土木・建設分野において、特にコンクリートのひび割れ進展解析、鋼構造物の疲労破壊解析・耐荷力解析、地盤の段階施工解析などの非線形解析に有利な解析システムである。またDIANAは、鉄筋コンクリート構造物中の配筋を、埋込鉄筋要素としてモデル化することにより、例えばコンクリートのメッシュ形状を意識することなく、任意の位置に鉄筋やPC鋼線を配置することが可能な機能を備えている。さらに、DIANAは、例えばコンクリートや鉄筋に関する種々の構成側を備えると共に、ユーザーサブルーチン機能を備えている。   According to the behavior analysis method of the present invention, the behavior of a reinforced concrete column subjected to repeated loading in a plastic region is determined by using various structural analysis programs by analysis software using a known finite element method (FEM) installed in a computer. Can be analyzed. As such FEM analysis software, for example, a well-known trade name “DIANA” (manufactured by TNO DIANA Co., Ltd., sales agent JIP Techno Science Co., Ltd.) can be preferably used as a general-purpose linear and nonlinear structure analysis system. DIANA is an advantageous analysis system in the civil engineering / construction field, especially for nonlinear analysis such as crack growth analysis of concrete, fatigue failure analysis / load-bearing analysis of steel structures, and ground stage construction analysis. In addition, DIANA models reinforcements in reinforced concrete structures as embedded reinforcement elements, so it is possible to place reinforcements and PC steel wires at any position without being aware of the concrete mesh shape, for example. It has various functions. Furthermore, DIANA has various constituent sides related to, for example, concrete and reinforcing bars, and also has a user subroutine function.

本発明では、例えばDIANAのユーザーサブルーチン機能を使用して、鉄筋コンクリート柱の軸方向鉄筋の構成側に座屈モデルを組み込むことにより、耐荷力がピークに達した後に耐荷力を失うポストピーク領域の鉄筋コンクリート柱の挙動を解析する。   In the present invention, for example, a user subroutine function of DIANA is used to incorporate a buckling model on the structural side of the axial rebar of the reinforced concrete column, thereby losing the load resistance after the load resistance reaches a peak. Analyze column behavior.

ここで、例えばユーザーサブルーチン機能を使用して、鉄筋コンクリート柱の軸方向鉄筋の構成側に組み込まれる座屈モデルとしては、例えば図1に応力ひずみ関係を示す、鉄筋単体を用いた座屈実験結果を基に提案された田上らの提案モデルを好ましく採用することができる(田上和也、中村光、斉藤成彦、檜垣勇:繰り返し荷重を受ける鉄筋の座屈モデルに関する研究、土木学会構造工学論文集vol.47A,2001.3参照)。   Here, for example, as a buckling model incorporated into the structural side of the axial rebar of a reinforced concrete column using a user subroutine function, for example, the results of a buckling experiment using a single reinforcing bar showing the stress-strain relationship are shown in FIG. The proposed model proposed by Tagami et al. Can be preferably used (Kazuya Tagami, Hikaru Nakamura, Naruhiko Saito, Isamu Higaki: Research on buckling model of rebar subjected to repeated load, Structural engineering papers vol. .47A, 2001.3).

田上らの提案モデルを座屈モデルとして組み込んだユーザーサブルーチンでは、図2に示すように、ユーザーサブルーチンをスタートさせると、引張応力を受ける場合はトリリニヤモデルとなり(図1のOA−AB−BC参照)、引張降伏後に軸圧縮ひずみを受ける場合は初期勾配で除荷される(図1のCD参照)。引き続き圧縮応力を受けると座屈点(図1のD参照)に達する。なお、座屈点は、オイラーやエンゲッサ・カルマン等の理論式によって求めることができる。   In the user subroutine that incorporates the model proposed by Tagami et al. As a buckling model, as shown in FIG. 2, when the user subroutine is started, it becomes a trilinear model when it receives tensile stress (see OA-AB-BC in FIG. 1). ), When subjected to axial compression strain after tensile yielding, it is unloaded with an initial gradient (see CD in FIG. 1). When the compressive stress is subsequently applied, the buckling point (see D in FIG. 1) is reached. The buckling point can be obtained by a theoretical formula such as Euler or Engessa Kalman.

座屈後の挙動(図1のDE参照)は、式(1)のモデルで表される。すなわち、座屈後急激に応力が低下し、次第に緩やかな曲線になり、残存応力に向かう。再引張時の挙動は、圧縮応力を受けている間は初期勾配となり(図1のEF参照)、その後の挙動(図1のFG参照)は、式(2)に従って、座屈後の圧縮ひずみ量に応じて引張応力を低減した点を目指す直線となる。すなわち、座屈後に引張ひずみを受ける場合、式(2)に示す(σt,max,σt,i)の点に向かう直線でモデル化することができる。 The behavior after buckling (see DE in FIG. 1) is expressed by the model of equation (1). That is, after buckling, the stress suddenly decreases, gradually becomes a gentle curve, and moves toward the residual stress. The behavior at the time of re-tension becomes an initial gradient while receiving compressive stress (see EF in FIG. 1), and the behavior after that (see FG in FIG. 1) is the compressive strain after buckling according to the equation (2). It becomes a straight line aiming at a point where the tensile stress is reduced according to the amount. That is, when a tensile strain is applied after buckling, it can be modeled by a straight line toward the point of (σ t, max , σ t, i ) shown in Equation (2).

Figure 2008057204
Figure 2008057204

Figure 2008057204
Figure 2008057204

ここで、式(2)は、前サイクルの最大引張ひずみに対応する応力σt,i -1に対し、新たなサイクルを行う場合は、前サイクルの最大引張ひずみに対応する引張応力σt,iが座屈後の圧縮ひずみ増分量εbにより低下することを表している。 Here, when the new cycle is performed with respect to the stress σ t, i −1 corresponding to the maximum tensile strain of the previous cycle, the expression (2) indicates that the tensile stress σ t, It represents that i decreases with the amount of incremental strain ε b after buckling.

さらに、G点から再圧縮される場合は初期勾配で除荷される(図1のGI参照)。この時、I点の座屈応力を算定する場合、式(3)に示すようにC点(C点の応力:σC)からG点(G点の応力:σG)までの応力低下量だけI点の降伏応力(σ)が低下するととして降伏応力を算定し、定変位繰り返しでの応力低下を考慮する。以降、応力状態に応じて上記の座屈後の挙動で順次計算する。 Furthermore, when recompressing from the point G, it is unloaded with an initial gradient (see GI in FIG. 1). At this time, when calculating the buckling stress at point I, the amount of stress reduction from point C (stress at point C : σ C ) to point G (stress at point G: σ G ) as shown in Equation (3). Assuming that the yield stress (σ I ) at point I is reduced, the yield stress is calculated, and the stress reduction due to repeated constant displacement is taken into account. Thereafter, calculation is sequentially performed according to the behavior after the buckling according to the stress state.

Figure 2008057204
Figure 2008057204

本発明の繰返し載荷を受ける鉄筋コンクリート柱の挙動解析方法によれば、鉄筋コンクリート柱の塑性域における繰返し載荷による耐荷力の劣化機構を、ポストピーク領域を含めて適切に反映させて、有限要素法によりコンピュータを用いて解析することができる。   According to the behavior analysis method of a reinforced concrete column subjected to repeated loading according to the present invention, a finite element method is used to appropriately reflect the deterioration mechanism of the load bearing capacity due to repeated loading in the plastic region of the reinforced concrete column including the post-peak region. Can be used for analysis.

本発明の好ましい第1実施形態では、図3(a),(b)及び図4(a),(b)に示すような構造を備える、地震時に曲げ破壊する鉄道高架橋を模擬した鉄筋コンクリート柱10を解析対象として、水平交番載荷実験を行うと共に、本発明の鉄筋コンクリート柱の挙動解析方法により、耐荷力がピークに達した後に耐荷力を失う領域(ポストピーク領域)までの挙動解析を有限要素法(FEM)解析により行って、水平交番載荷実験による実験結果と比較検討した。   In the first preferred embodiment of the present invention, a reinforced concrete column 10 having a structure as shown in FIGS. 3A and 3B and FIGS. 4A and 4B simulating a railway viaduct that bends and breaks during an earthquake. In addition to conducting horizontal alternating loading experiments for the analysis target, the behavior analysis method of the reinforced concrete column of the present invention analyzes the behavior up to the area where the load bearing capacity is lost after the load bearing capacity reaches the peak (post peak area). (FEM) analysis was performed and compared with the experimental results from the horizontal alternating loading test.

鉄筋コンクリート柱10は、断面寸法が50×50cm、高さが200cmの大きさを有しており、フーチング基礎11との接合部から150cmの高さを加力点として、水平方向の載荷を繰返すことにより、水平交番載荷実験を行った。図3(a),(b)に鉄筋コンクリート柱10の構造図を、図4(a),(b)に鉄筋コンクリート柱10の配筋図を、表1に鉄筋コンクリート柱10の諸元を示す。水平交番載荷実験により、鉄筋コンクリート柱10は、水平方向の載荷が繰返されて、フーチング基礎11と近接する柱基部において、圧縮側コンクリートの圧壊(軸方向鉄筋の座屈、かぶりコンクリートのはらみ出し、剥落)を生じて曲げ破壊した。   The reinforced concrete column 10 has a cross-sectional dimension of 50 × 50 cm and a height of 200 cm. By repeating horizontal loading with a height of 150 cm from the joint with the footing foundation 11 as an applied point. A horizontal alternating loading experiment was conducted. FIGS. 3A and 3B are structural diagrams of the reinforced concrete column 10, FIGS. 4A and 4B are bar arrangement diagrams of the reinforced concrete column 10, and Table 1 shows the specifications of the reinforced concrete column 10. FIG. In the horizontal alternating loading test, the reinforced concrete column 10 was repeatedly loaded in the horizontal direction, and at the column base adjacent to the footing foundation 11, the compression side concrete was crushed (buckling of the axial rebar, cover concrete protruding and peeling off). ) To cause bending fracture.

Figure 2008057204
Figure 2008057204

一方、FEM解析では、コンピュータにインストールする有限要素法による解析ソフトとして、上述の商品名「DIANA」(TNO DIANA社製、販売代理店JIPテクノサイエンス株式会社)を使用した。また解析モデルは、図5(a),(b)に示す2次元モデルとし、底辺を完全固定とした。さらに、解析要素として、コンクートは4節点の四辺形要素、軸方向鉄筋はトラス要素、帯鉄筋は埋込み鉄筋要素を用いた。   On the other hand, in the FEM analysis, the above-mentioned trade name “DIANA” (manufactured by TNO DIANA Co., Ltd., sales agent JIP Techno Science Co., Ltd.) was used as analysis software by a finite element method installed in a computer. The analysis model was a two-dimensional model shown in FIGS. 5A and 5B, and the base was completely fixed. Further, as the analysis element, the quadruple element with four nodes was used for the concrete, the truss element was used for the axial rebar, and the embedded rebar element was used for the strip reinforcement.

コンクリートの構成則は、Vecchio and Collins( F.J.Vecchio, M. P.Collins: The modified compression field theory for reinforced concrete elements subjected to shear,ACI Journal 83,pp.219-231,22(1986)参照)、及びSelby and Vecchio(R.G.Selby, F.J.Vecchio : Three-dimensional Constitutive Relations for Reinforced Concrete. Tech.Rep. 93-02, Univ. Toronto, dept. Civil Eng., Toronta,Canada, 1993.参照)により提案されている全ひずみ理論による回転ひび割れモデルを用いた。このモデルのひび割れ方向はひずみベクトルの主方向とともに連続的に回転する。   The concrete constitutive law is described in Vecchio and Collins (see FJVecchio, MPCollins: The modified compression field theory for reinforced concrete elements subjected to shear, ACI Journal 83, pp.219-231, 22 (1986)), and Selby and Vecchio. (See RGSelby, FJVecchio: Three-dimensional Constitutive Relations for Reinforced Concrete. Tech. Rep. 93-02, Univ. Toronto, dept. Civil Eng., Toronta, Canada, 1993.) Rotational crack model was used. The crack direction of this model rotates continuously with the main direction of the strain vector.

コンクリートの応力−ひずみ関係は、引張側にHordijk(D.A.Hordijk:Local approach to fatigue of concrete, PhD thesis, Delft University of Technology,1991.参照)の引張破壊エネルギーに基づく非線形軟化曲線を用い、圧縮側にFeenstra(P.H.Feenstra:Computational Aspects of Biaxial Stress in Plain and Reinforced Concrete,PhD thesis,Delift University of Technology,1993.参照)の圧縮破壊エネルギーに基づく非線形軟化曲線を用いた。なお、引張破壊エネルギーは土木学会コンクリート標準示方書(2002年制定 コンクリート標準示方書 構造性能照査編,土木学会.参照)の方法で算定し、圧縮破壊エネルギーは中村ら(H.Nakamura,T.Higai:Compressive Fracture Energy and Fracture Zone Length of Concrete,Seminar on Post-Peak Behavior of Structures Subjected to Seismic Loads,JCI,Vol.2, pp. 259-272, 1999.10参照)の方法で算定した。   The stress-strain relationship of concrete uses the nonlinear softening curve based on the tensile fracture energy of Hordijk (DAHordijk: Local approach to fatigue of concrete, PhD thesis, Delft University of Technology, 1991) on the tension side, and on the compression side. A nonlinear softening curve based on the compressive fracture energy of Feenstra (PHFeenstra: Computational Aspects of Biaxial Stress in Plain and Reinforced Concrete, PhD thesis, Delift University of Technology, 1993) was used. The tensile fracture energy is calculated by the method of the Japan Society of Civil Engineers Concrete Standards Specification (referred to by the Japan Society of Civil Engineers, Structural Performance Review, 2002), and the compressive fracture energy is calculated by Nakamura et al. (H. Nakamura, T. Higai). : Compressive Fracture Energy and Fracture Zone Length of Concrete, Seminar on Post-Peak Behavior of Structures Subjected to Seismic Loads, JCI, Vol.2, pp. 259-272, 1999.10.

計算ステップは、鉛直加力点に所定の鉛直荷重を考慮した後に、1δy(=7.5mm)の1/10の変位ステップで、水平加力点に強制変位を作用させた。   In the calculation step, after a predetermined vertical load was taken into consideration in the vertical force application point, a forced displacement was applied to the horizontal force application point in a 1/10 displacement step of 1δy (= 7.5 mm).

求解法にはBFGS法を使用し、収束誤差は1/1000、繰り返し回数は50回とし、収束しなかった場合に誤差は持ち越すものとした。   The BFGS method was used as the solution method, the convergence error was 1/1000, the number of iterations was 50, and the error was carried over when it did not converge.

なお、軸方向鉄筋の座屈を考慮しない場合の鉄筋の構成則は、弾塑性とし、降伏基準としてVon Misesの基準を使用した。   In addition, the constitutive law of the reinforcing bars when the buckling of the axial reinforcing bars is not taken into account is elastoplastic, and the Von Mises criterion is used as the yield criterion.

軸方向鉄筋の構成側に座屈モデルを組み込む際には、上述のDIANAのユーザーサブルーチン機能を使用し、上述の田上らの提案モデルを座屈モデルとして、鉄筋コンクリート柱10の基部における軸方向鉄筋の圧縮側及び引張側の1要素(要素長75mm)に座屈モデルを組み込んだ。その他の軸方向鉄筋は、座屈を考慮しないモデルとした。   When incorporating the buckling model on the component side of the axial rebar, the above-mentioned DIANA user subroutine function is used, and the above proposed model by Tagami et al. Is used as the buckling model, and the axial rebar at the base of the reinforced concrete column 10 is used. A buckling model was incorporated into one element (element length 75 mm) on the compression side and the tension side. The other axial rebars were models that did not consider buckling.

なお、軸方向鉄筋の座屈応力は鉄筋の降伏応力とした。これは、水平交番載荷実験における軸方向鉄筋の座屈長が帯状鉄筋間隔75mmの3倍以下であり、この座屈長では弾性理論によるオイラーの理論式の適用範囲外となることから、近似的に定めたものである。   The buckling stress of the axial rebar was the yield stress of the rebar. This is approximate because the buckling length of the axial rebar in the horizontal alternating loading test is not more than 3 times the strip rebar spacing of 75 mm, and this buckling length is outside the scope of Euler's theoretical formula based on elasticity theory. It is determined in

そして、本第1実施形態によれば、FEM解析により塑性域において繰返し載荷を受ける鉄筋コンクリート柱10の挙動をコンピュータを用いて解析するには、例えば図6に示すように、DIANAによってまず線形計算を行う。コンクリート要素、鉄筋要素が非線形領域に達したら、各々の非線形特性を考慮して、引き続き各載荷ステップにおける非線形計算を行い、収束計算により解を求める。   According to the first embodiment, in order to analyze the behavior of the reinforced concrete column 10 that is repeatedly loaded in the plastic region by FEM analysis using a computer, for example, as shown in FIG. Do. When the concrete element and the reinforcing bar element reach the nonlinear region, the nonlinear calculation at each loading step is continuously performed in consideration of each nonlinear characteristic, and a solution is obtained by convergence calculation.

また、本第1実施形態では、鉄筋コンクリート柱10の軸方向鉄筋の構成側に座屈モデルが組み込まれているので、コンクリートの圧壊や軸方向鉄筋の座屈の発生が反映された挙動解析が行われる。コンクリートの圧壊や軸方向鉄筋の座屈によって耐荷力が劣化し、荷重が降伏荷重として例えば最大荷重の50%以下程度に低下したら、挙動解析を終了する。   Further, in the first embodiment, since a buckling model is incorporated on the side of the axial reinforcing bar of the reinforced concrete column 10, a behavior analysis reflecting the occurrence of concrete crushing and buckling of the axial reinforcing bar is performed. Is called. When the load bearing capacity deteriorates due to concrete crushing or buckling of the axial rebar, and the load is reduced to, for example, about 50% or less of the maximum load as the yield load, the behavior analysis is terminated.

なお、本第1実施形態では、DIANAを用いた鉄筋コンクリート柱10の挙動解析として、図5(a),(b)に示す2次元モデルによる解析モデルについて、従来と同様の軸方向鉄筋の座屈を考慮しない解析も行った。   In the first embodiment, as the behavior analysis of the reinforced concrete column 10 using DIANA, the analysis model based on the two-dimensional model shown in FIGS. We also performed an analysis without considering the above.

図7は、本第1実施形態において解析された、塑性域において繰返し載荷を受ける鉄筋コンクリート柱10の挙動を、鉄筋コンクリート柱10に載荷した水平荷重と鉄筋コンクリート柱10の水平変位との関係として、水平交番載荷実験による実験結果と比較して示すものである。図7に示す解析結果によれば、座屈を考慮しない場合の解析値は、水平変位75mmに至っても実験結果のような荷重の低下を示さない。これに対して、座屈を考慮した場合の解析値は、10δy(75mm)において荷重が低下している。また荷重の載荷時における座屈を考慮した場合の解析値は、実験値の荷重と同等である。   FIG. 7 shows the behavior of the reinforced concrete column 10 subjected to repeated loading in the plastic region analyzed in the first embodiment as a relationship between the horizontal load loaded on the reinforced concrete column 10 and the horizontal displacement of the reinforced concrete column 10. This is shown in comparison with the experimental results from the loading experiment. According to the analysis result shown in FIG. 7, the analysis value when the buckling is not taken into account does not show a decrease in load like the experimental result even when the horizontal displacement reaches 75 mm. On the other hand, in the analysis value in consideration of buckling, the load decreases at 10δy (75 mm). In addition, the analysis value in consideration of buckling when the load is loaded is equivalent to the experimental load.

このように、塑性域において繰返し載荷を受けて破壊する鉄筋コンクリート柱10を対象として、軸方向鉄筋の構成側に座屈挙動を組み込んで耐荷力が低下するまでFEM解析を行った結果、軸方向鉄筋の構成側に座屈を考慮すれば、水平交番載荷実験による実験結果の水平荷重−水平変位関係を、荷重が低下するまで、良好に再現できることが判明した。またこれによって、曲げ破壊する鉄筋コンクリート柱10のポストピーク挙動をFEM解析によって表現する一手法として、軸方向鉄筋の構成側に座屈モデルを組み込んで解析する方法が有効であることが判明した。   As described above, as a result of performing FEM analysis for the reinforced concrete column 10 that receives and repeatedly receives a load in the plastic region and incorporates a buckling behavior on the component side of the axial rebar to reduce the load bearing capacity, the axial rebar is the result. If buckling is taken into consideration, the horizontal load-horizontal displacement relationship in the experimental results of the horizontal alternating loading test can be reproduced well until the load decreases. In addition, it has been proved effective to incorporate a buckling model on the component side of the axial rebar and analyze the post peak behavior of the reinforced concrete column 10 to be bent and fractured by FEM analysis.

本発明の好ましい第2実施形態では、図8(a),(b)に示すような構造を備える、図3(a),(b)及び図4(a),(b)の鉄筋コンクリート柱のフーチング基礎11から3〜122cmの部分を、スパイラ筋による吹付モルタル厚さ4cmのスパイラル巻立工法で補強した補強鉄筋コンクリート柱12を解析対象として、上記第1実施形態と同様に、水平交番載荷実験を行うと共に、本発明の鉄筋コンクリート柱の挙動解析方法により、上記第1実施形態と同様に、耐荷力がピークに達した後に耐荷力を失う領域(ポストピーク領域)までの挙動解析を有限要素法(FEM)解析により行って、水平交番載荷実験による実験結果と比較検討した。   In the second preferred embodiment of the present invention, the reinforced concrete columns of FIGS. 3 (a), (b) and FIGS. 4 (a), (b) having the structure shown in FIGS. 8 (a) and 8 (b) are provided. In the same manner as in the first embodiment, a horizontal alternating loading test was performed on the reinforced concrete column 12 reinforced by a spiral winding method with a sprayed mortar thickness of 4 cm from the footing foundation 11 of 3 to 122 cm. As with the first embodiment, the behavior analysis of the reinforced concrete column according to the present invention is performed up to a region (post-peak region) where the load resistance is lost after reaching the peak, as in the first embodiment. FEM) analysis, and compared with the experimental results of horizontal alternating loading test.

また、本第2実施形態では、解析モデルを図9(a),(b)に示す3次元モデルとし、解析要素として、コンクートは4節点の四辺形要素、軸方向鉄筋はトラス要素、帯鉄筋は埋込み鉄筋要素を用いた。軸方向鉄筋の構成側に組み込む座屈モデルは、基部の軸方向鉄筋の両外縁の要素に適用し、その他の要素はバイリニアとした。座屈長は帯状鉄筋間隔として設定し、座屈応力は、最終的には降伏応力の1.5倍に設定した。なお、本第2実施形態においても、上記第1実施形態と同様に、DIANAを用いた補強鉄筋コンクリート柱12の挙動解析として、図9(a),(b)に示す3次元モデルによる解析モデルについて、従来と同様の軸方向鉄筋の座屈を考慮しない解析も行った。   In the second embodiment, the analysis model is a three-dimensional model shown in FIGS. 9A and 9B. As analysis elements, the concrete is a four-node quadrilateral element, the axial reinforcement is a truss element, and the belt reinforcement. Used embedded reinforcement elements. The buckling model incorporated in the constituent side of the axial rebar was applied to the elements at both outer edges of the base axial rebar, and the other elements were bilinear. The buckling length was set as the strip rebar spacing, and the buckling stress was finally set to 1.5 times the yield stress. In the second embodiment, as in the first embodiment, as a behavior analysis of the reinforced concrete column 12 using DIANA, an analysis model based on the three-dimensional model shown in FIGS. 9A and 9B is used. The analysis without considering the buckling of the axial rebar as in the past was also performed.

図10は、本第2実施形態において、軸方向鉄筋の構成側に座屈モデルを組み込んで解析された、塑性域において繰返し載荷を受ける補強鉄筋コンクリート柱12の挙動を、補強鉄筋コンクリート柱12に載荷した水平荷重と補強鉄筋コンクリート柱12の水平変位との関係として、水平交番載荷実験による実験結果と比較して示すものである。また図11は、本第2実施形態において、軸方向鉄筋の構成側に座屈を考慮しない従来の方法で解析された、塑性域において繰返し載荷を受ける補強鉄筋コンクリート柱12の挙動を、補強鉄筋コンクリート柱12に載荷した水平荷重と補強鉄筋コンクリート柱12の水平変位との関係として、水平交番載荷実験による実験結果と比較して示すものである。   FIG. 10 shows the behavior of the reinforced concrete column 12 subjected to repeated loading in the plastic region, which is analyzed by incorporating a buckling model on the component side of the axial rebar in the second embodiment, and is loaded on the reinforced concrete column 12. The relationship between the horizontal load and the horizontal displacement of the reinforced reinforced concrete column 12 is shown in comparison with the experimental results of the horizontal alternating loading test. Further, FIG. 11 shows the behavior of the reinforced concrete column 12 subjected to repeated loading in the plastic region, which is analyzed by a conventional method in which buckling is not considered on the component side of the axial rebar in the second embodiment. 12 shows the relationship between the horizontal load loaded on the horizontal load 12 and the horizontal displacement of the reinforced reinforced concrete column 12 in comparison with the experimental results of the horizontal alternating loading test.

図10及び図11に示す解析結果によれば、座屈を考慮しない場合の解析値は、水平変位が増大しても実験結果のような荷重の低下を示さない。これに対して、座屈を考慮した場合の解析値は、水平変位の増大に伴って、実験結果と同様に、階段状に荷重が低下している。また荷重の載荷時における座屈を考慮した場合の解析値は、実験値の荷重と略同等である。   According to the analysis results shown in FIGS. 10 and 11, the analysis value when the buckling is not taken into account does not show a decrease in load like the experimental result even when the horizontal displacement increases. On the other hand, in the analysis value when buckling is taken into account, the load decreases stepwise as the horizontal displacement increases, similar to the experimental result. In addition, the analysis value in consideration of buckling when the load is loaded is substantially equal to the load of the experimental value.

したがって、3次元モデルによる本第2実施形態によっても、軸方向鉄筋の構成側に座屈を考慮すれば、水平交番載荷実験による実験結果の水平荷重−水平変位関係を、荷重が低下するまで、良好に再現できることが判明する。また、鉄筋コンクリート柱のポストピーク挙動をFEM解析によって表現する一手法として、軸方向鉄筋の構成側に座屈モデルを組み込んで解析する方法が有効であることが判明する。   Therefore, even in the second embodiment based on the three-dimensional model, if buckling is considered on the component side of the axial rebar, the horizontal load-horizontal displacement relationship of the experimental result by the horizontal alternating loading test is reduced until the load decreases. It turns out that it can be reproduced well. In addition, as a method for expressing the post-peak behavior of reinforced concrete columns by FEM analysis, it is proved effective to incorporate a buckling model on the component side of the axial rebar and analyze it.

なお、本発明は上記各実施形態に限定されることなく種々の変更が可能である。例えば、コンピュータにインストールする有限要素法による解析ソフトは、DIANAである必要は必ずしも無く、軸方向鉄筋の構成側に座屈モデルを組み込むことが可能な、その他の種々の有限要素法による解析ソフトを用いることができる。また、コンクリートの構成則やコンクリートの応力−ひずみ関係は、上述の理論や標準示方書等に基づくものである必要は必ずしもない。   The present invention is not limited to the above-described embodiments, and various modifications can be made. For example, the finite element analysis software installed in the computer does not necessarily need to be DIANA, and other various finite element analysis software that can incorporate a buckling model on the side of the axial reinforcing bar. Can be used. Moreover, the constitutive law of concrete and the stress-strain relationship of concrete do not necessarily need to be based on the above-mentioned theory or standard specification.

軸方向鉄筋の構成側に組み込まれる座屈モデルの一例を説明する、応力ひずみ関係のグラフである。It is a stress-strain relationship graph explaining an example of the buckling model incorporated in the component side of an axial rebar. 座屈モデルを組み込んだユーザーサブルーチンの一例を説明するフローチャートである。It is a flowchart explaining an example of the user subroutine incorporating a buckling model. 第1実施形態において解析対象となる鉄筋コンクリート柱の構造を説明する、(a)は正面構造図、(b)は上面構造図である。The structure of the reinforced concrete pillar used as the analysis object in 1st Embodiment is demonstrated, (a) is a front structural drawing, (b) is an upper surface structural drawing. 第1実施形態において解析対象となる鉄筋コンクリート柱の配筋状態を説明する、(a)は横断配筋図、(b)は縦断配筋図である。The arrangement of reinforced concrete columns to be analyzed in the first embodiment will be described. (A) is a transverse arrangement diagram and (b) is a longitudinal arrangement diagram. 第1実施形態においてFEM解析で使用する、(a)はコンクリートの二次元解析モデル、(b)は鉄筋の二次元解析モデルである。In the first embodiment, used in FEM analysis, (a) is a two-dimensional analysis model of concrete, and (b) is a two-dimensional analysis model of reinforcing steel. 軸方向鉄筋の構成側に座屈モデルを組み込んだFEM解析による鉄筋コンクリート柱の挙動の解析手順を説明するフローチャートである。It is a flowchart explaining the analysis procedure of the behavior of a reinforced concrete column by FEM analysis which incorporated the buckling model in the component side of an axial rebar. 第1実施形態において解析された塑性域において繰返し載荷を受ける鉄筋コンクリート柱の挙動を、水平交番載荷実験による実験結果と比較して示すグラフである。It is a graph which shows the behavior of the reinforced concrete column which receives repeated loading in the plastic zone analyzed in a 1st embodiment compared with the experimental result by a horizontal alternating loading experiment. 第2実施形態において解析対象となる補強鉄筋コンクリート柱の構造を説明する、(a)は上面構造図、(b)は正面構造図である。The structure of a reinforced reinforced concrete column to be analyzed in the second embodiment will be described. (A) is a top structural view, and (b) is a front structural view. 第2実施形態においてFEM解析で使用する、(a)はコンクリートの三次元解析モデル、(b)は鉄筋の三次元解析モデルである。In the second embodiment, (a) is a three-dimensional analysis model of concrete, and (b) is a three-dimensional analysis model of reinforcing steel used in FEM analysis in the second embodiment. 第2実施形態において、軸方向鉄筋の構成側に座屈モデルを組み込んで解析された塑性域において繰返し載荷を受ける補強鉄筋コンクリート柱の挙動を、水平交番載荷実験による実験結果と比較して示すグラフである。In the second embodiment, a graph showing the behavior of a reinforced concrete column subjected to repeated loading in a plastic region analyzed by incorporating a buckling model on the component side of the axial rebar in comparison with the experimental result by horizontal alternating loading test. is there. 第2実施形態において、軸方向鉄筋の構成側に座屈を考慮しないで解析された塑性域において繰返し載荷を受ける補強鉄筋コンクリート柱の挙動を、水平交番載荷実験による実験結果と比較して示すグラフである。In the second embodiment, a graph showing the behavior of a reinforced concrete column subjected to repeated loading in a plastic region analyzed without considering buckling on the constituent side of the axial rebar in comparison with the experimental result by horizontal alternating loading test. is there.

符号の説明Explanation of symbols

10 鉄筋コンクリート柱
11 フーチング基礎
12 補強鉄筋コンクリート柱
10 Reinforced concrete pillars 11 Footing foundation 12 Reinforced reinforced concrete pillars

Claims (2)

塑性域において繰返し載荷を受ける鉄筋コンクリート柱の挙動を、有限要素法によりコンピュータを用いて解析する鉄筋コンクリート柱の挙動解析方法において、
前記鉄筋コンクリート柱の軸方向鉄筋の構成側に座屈モデルを組み込んで、耐荷力がピークに達した後に耐荷力を失う領域の前記鉄筋コンクリート柱の挙動を解析することを特徴とする繰返し載荷を受ける鉄筋コンクリート柱の挙動解析方法。
In the behavior analysis method for reinforced concrete columns, the behavior of reinforced concrete columns subjected to repeated loading in the plastic zone is analyzed using a computer by the finite element method.
Reinforced concrete subjected to repeated loading, characterized by incorporating a buckling model on the side of the axial reinforcing bar of the reinforced concrete column and analyzing the behavior of the reinforced concrete column in a region where the load bearing capacity is lost after the load bearing capacity reaches a peak Column behavior analysis method.
前記繰返し載荷が水平方向の載荷であり、前記座屈モデルが組み込まれる前記軸方向鉄筋の要素は、前記鉄筋コンクリート柱の基部における圧縮側及び引張側の1要素である請求項1に記載の繰返し載荷を受ける鉄筋コンクリート柱の挙動解析方法。
The cyclic loading according to claim 1, wherein the cyclic loading is a horizontal loading, and the element of the axial rebar in which the buckling model is incorporated is one element on the compression side and the tension side in the base of the reinforced concrete column. Analysis method for reinforced concrete columns subjected to bending.
JP2006235101A 2006-08-31 2006-08-31 Method of analyzing behavior of reinforced concrete column subjected to repeated loading Pending JP2008057204A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006235101A JP2008057204A (en) 2006-08-31 2006-08-31 Method of analyzing behavior of reinforced concrete column subjected to repeated loading

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006235101A JP2008057204A (en) 2006-08-31 2006-08-31 Method of analyzing behavior of reinforced concrete column subjected to repeated loading

Publications (1)

Publication Number Publication Date
JP2008057204A true JP2008057204A (en) 2008-03-13

Family

ID=39240285

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006235101A Pending JP2008057204A (en) 2006-08-31 2006-08-31 Method of analyzing behavior of reinforced concrete column subjected to repeated loading

Country Status (1)

Country Link
JP (1) JP2008057204A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107144402A (en) * 2017-05-09 2017-09-08 广西大学 Post unloading test device is removed in the simulation tested for civil engineering continuous collapse suddenly
CN109635472A (en) * 2018-12-18 2019-04-16 中南大学 High-speed rail large span mixes girder stayed-cable bridge and non-fragment orbit interaction modeling method
CN110378009A (en) * 2019-07-15 2019-10-25 郑州大学 The analysis method of stainless reinforced column compression bearing

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08245246A (en) * 1995-03-07 1996-09-24 Kajima Corp Improvement of deformability of concrete member
JP2005299203A (en) * 2004-04-12 2005-10-27 Fuji Ps Corp Three-dimensional structure design system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08245246A (en) * 1995-03-07 1996-09-24 Kajima Corp Improvement of deformability of concrete member
JP2005299203A (en) * 2004-04-12 2005-10-27 Fuji Ps Corp Three-dimensional structure design system

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107144402A (en) * 2017-05-09 2017-09-08 广西大学 Post unloading test device is removed in the simulation tested for civil engineering continuous collapse suddenly
CN109635472A (en) * 2018-12-18 2019-04-16 中南大学 High-speed rail large span mixes girder stayed-cable bridge and non-fragment orbit interaction modeling method
CN110378009A (en) * 2019-07-15 2019-10-25 郑州大学 The analysis method of stainless reinforced column compression bearing
CN110378009B (en) * 2019-07-15 2022-11-01 郑州大学 Method for analyzing compressive bearing capacity of stainless steel reinforced concrete column

Similar Documents

Publication Publication Date Title
Yuksel et al. Seismic behavior of two exterior beam–column connections made of normal-strength concrete developed for precast construction
Roh et al. Modeling and seismic response of structures with concrete rocking columns and viscous dampers
Prakash et al. Seismic performance of circular RC columns subjected to axial force, bending, and torsion with low and moderate shear
Abdelnaby et al. Numerical modeling and analysis of RC frames subjected to multiple earthquakes
Wu et al. Seismic performance of steel and concrete composite shear walls with embedded steel truss for use in high-rise buildings
Halahla et al. The effect of shape memory alloys on the ductility of exterior reinforced concrete beam-column joints using the damage plasticity model
JP2002194894A (en) Design method of aseismatic reinforcing structure, and storage medium
Blandón et al. Thin slender concrete rectangular walls in moderate seismic regions with a single reinforcement layer
Khan et al. A simplified model for inelastic seismic analysis of RC frame have shear hinge in beam-column joints
Najafgholipour et al. A nonlinear model to apply beam-column joint shear failure in analysis of RC moment resisting frames
Ezzeldin et al. System-level seismic risk assessment methodology: Application to reinforced masonry buildings with boundary elements
Sritharan et al. Seismic analysis and design of precast concrete jointed wall systems
Perera Performance evaluation of masonry-infilled RC frames under cyclic loading based on damage mechanics
Salman et al. Finite element modeling of a reinforced concrete column strengthened with steel jacket
Kim et al. Shear strength of exterior beam-column joints with limited ductility details
JP2008057204A (en) Method of analyzing behavior of reinforced concrete column subjected to repeated loading
Pandey et al. Seismic performance of bond controlled RC columns
Nojavan et al. Analytical study of in-plane buckling of longitudinal bars in reinforced concrete columns under extreme earthquake loading
Rosso et al. Influence of longitudinal reinforcement layouts on RC wall performance
Ong et al. Retrofit of exterior reinforced concrete beam-column joint using pre-tensioned stiffened steel angles
Akkose et al. Pushover analysis of prefabricated structures with various partially fixity rates
Pohoryles Realistic FRP seismic strengthening schemes for interior reinforced concrete beam-column joints
Moridani et al. Nonlinear analysis of reinforced concrete joints with bond-slip effect consideration in OpenSees
Demirtaş et al. Lattice modelling of substandard RC beam-column joints considering localization issues
Amato et al. Flexural behaviour of external R/C steel fibre reinforced beam-column joints

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081010

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100817

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101014

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101130

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110128

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110816