JP6267035B2 - Built-in structure of dye-sensitized solar cell and slat for power generation blind - Google Patents

Built-in structure of dye-sensitized solar cell and slat for power generation blind Download PDF

Info

Publication number
JP6267035B2
JP6267035B2 JP2014068327A JP2014068327A JP6267035B2 JP 6267035 B2 JP6267035 B2 JP 6267035B2 JP 2014068327 A JP2014068327 A JP 2014068327A JP 2014068327 A JP2014068327 A JP 2014068327A JP 6267035 B2 JP6267035 B2 JP 6267035B2
Authority
JP
Japan
Prior art keywords
dye
solar cell
sensitized solar
built
photoelectrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2014068327A
Other languages
Japanese (ja)
Other versions
JP2015192030A (en
Inventor
大輔 時田
大輔 時田
山口 文治
文治 山口
俊介 功刀
俊介 功刀
智弘 大塚
智弘 大塚
剛之 小林
剛之 小林
友章 片桐
友章 片桐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP2014068327A priority Critical patent/JP6267035B2/en
Priority to PCT/JP2015/058181 priority patent/WO2015146762A1/en
Priority to KR1020167012203A priority patent/KR20160138372A/en
Priority to CN201580002551.4A priority patent/CN105723481B/en
Priority to TW104108882A priority patent/TWI665808B/en
Publication of JP2015192030A publication Critical patent/JP2015192030A/en
Application granted granted Critical
Publication of JP6267035B2 publication Critical patent/JP6267035B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • H01G9/2072Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells comprising two or more photoelectrodes sensible to different parts of the solar spectrum, e.g. tandem cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2068Panels or arrays of photoelectrochemical cells, e.g. photovoltaic modules based on photoelectrochemical cells
    • H01G9/2077Sealing arrangements, e.g. to prevent the leakage of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2027Light-sensitive devices comprising an oxide semiconductor electrode
    • H01G9/2031Light-sensitive devices comprising an oxide semiconductor electrode comprising titanium oxide, e.g. TiO2
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/20Light-sensitive devices
    • H01G9/2059Light-sensitive devices comprising an organic dye as the active light absorbing material, e.g. adsorbed on an electrode or dissolved in solution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/10Photovoltaic [PV]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/542Dye sensitized solar cells

Description

本発明は、色素増感太陽電池セルの組込構造及び発電ブラインド用スラットに関する。   The present invention relates to a built-in structure of a dye-sensitized solar cell and a slat for a power generation blind.

近年、化石燃料に代わるクリーンエネルギーの発電装置として太陽電池が注目され、シリコン系太陽電池、色素増感太陽電池又は有機薄膜太陽電池等の開発が進められている。とりわけ色素増感太陽電池は、高い光電変換効率を有するとともに安価で量産しやすいため、その構造及び製造方法が広く研究されている。また、太陽電池の低コスト化も世界中で活発に行われている中、色素増感太陽電池は次世代の太陽電池として期待されている。   In recent years, solar cells have attracted attention as clean energy power generation devices that replace fossil fuels, and development of silicon-based solar cells, dye-sensitized solar cells, organic thin-film solar cells, and the like is underway. In particular, since dye-sensitized solar cells have high photoelectric conversion efficiency and are inexpensive and easily mass-produced, their structures and manufacturing methods have been widely studied. In addition, while cost reduction of solar cells is actively performed all over the world, dye-sensitized solar cells are expected as next-generation solar cells.

上述のような色素増感太陽電池は、一般に、光電極と、対向電極と、電解液又は電解質層とを備えて構成され、また、光電極としては、少なくとも、透明導電層、半導体層、色素を有して構成されることが一般的である。このような色素増感太陽電池においては、例えば、光電極側に光が照射されると、半導体層に吸着された色素が光を吸収し、色素分子内の電子が励起され、その電子が半導体へ渡される。そして、光電極側で発生した電子が外部回路を通じて対向電極側に移動し、この電子が電解質を通じて光電極側に戻る。このような過程が繰り返されることで、電気エネルギーが生じる構成となっている。   The dye-sensitized solar cell as described above is generally configured to include a photoelectrode, a counter electrode, and an electrolytic solution or an electrolyte layer. The photoelectrode includes at least a transparent conductive layer, a semiconductor layer, and a dye. It is common to comprise. In such a dye-sensitized solar cell, for example, when light is irradiated to the photoelectrode side, the dye adsorbed on the semiconductor layer absorbs light, and the electrons in the dye molecule are excited, and the electrons are converted into semiconductors. Passed to. Then, electrons generated on the photoelectrode side move to the counter electrode side through the external circuit, and the electrons return to the photoelectrode side through the electrolyte. By repeating such a process, electric energy is generated.

上述したような背景の中、近年では、色素増感太陽電池を日除け用のブラインドに応用することが提案されている(例えば、非特許文献1を参照)。しかしながら、非特許文献1においては、色素増感太陽電池をブラインドに応用した場合の具体的な構成は開示されていない。   In the background as described above, in recent years, it has been proposed to apply a dye-sensitized solar cell to a blind for awning (see, for example, Non-Patent Document 1). However, Non-Patent Document 1 does not disclose a specific configuration when the dye-sensitized solar cell is applied to the blind.

また、ブラインドの羽根板(スラット)の上に、色素増感太陽電池のセルを複数枚配置した構造のものが提案されている(例えば、特許文献1を参照)。特許文献1に記載の技術によれば、図3(a)、(b)の模式図に示すように、ブラインドのスラット100の表面に、色素増感太陽電池セル101が複数で並べて取り付けられており、ここでは図示を省略しているが、複数の色素増感太陽電池セル101の各々の間が結線によって電気的に接続された構成とされている。   Further, a structure in which a plurality of dye-sensitized solar cells are arranged on a blind blade (slat) has been proposed (see, for example, Patent Document 1). According to the technique described in Patent Document 1, a plurality of dye-sensitized solar cells 101 are mounted side by side on the surface of a blind slat 100 as shown in the schematic diagrams of FIGS. Although not shown here, each of the plurality of dye-sensitized solar cells 101 is electrically connected by connection.

しかしながら、特許文献1に開示された構造では、色素増感太陽電池セルで発生した電流は、この色素増感太陽電池セルに備えられる導電性基板中をスラットの長尺方向で流れる必要があるため、当該導電性基板の抵抗値が高い場合や、スラットの長尺方向寸法が長い場合には、電流の抵抗損失が大きくなり、発電性能が低下するという問題があった。また、特許文献1のように、色素増感太陽電池セルを露出状態でスラット上に配置した構成だと、発電性能のみならず、耐久性や美観の観点からも実用化に適しているとは言い難いのが実情であった。   However, in the structure disclosed in Patent Document 1, the current generated in the dye-sensitized solar cell needs to flow in the longitudinal direction of the slats in the conductive substrate provided in the dye-sensitized solar cell. When the resistance value of the conductive substrate is high or when the slats are long in the longitudinal direction, there is a problem that the resistance loss of the current increases and the power generation performance decreases. In addition, as disclosed in Patent Document 1, when the dye-sensitized solar cell is arranged on the slat in an exposed state, it is suitable for practical use from the viewpoint of not only power generation performance but also durability and aesthetics. The situation was hard to say.

特開2007−113365号公報JP 2007-113365 A

NEDO成果報告書(独立行政法人 新エネルギー・産業技術総合開発機構);http://www.nedo.go.jp/content/100507018.pdfNEDO Report (New Energy and Industrial Technology Development Organization); http: // www. nedo. go. jp / content / 100507018. pdf

本発明は上記問題に鑑みてなされたものであり、従来から用いられている施設に備えられるものと同様の形状を有する部材で発電することが可能であって、発電性能に優れるとともに、耐久性、美観特性に優れた色素増感太陽電池セルの組込構造、及び、この組込構造が適用されてなる発電ブラインド用スラットを提供することを目的とする。   The present invention has been made in view of the above problems, and can generate power with a member having the same shape as that provided in a conventionally used facility, and has excellent power generation performance and durability. An object is to provide a built-in structure of a dye-sensitized solar cell excellent in aesthetic characteristics and a slat for a power generation blind to which this built-in structure is applied.

請求項1に記載の発明は、色素増感太陽電池セルの組込構造であって、少なくとも、光電極と、該光電極と対向して設けられる対向電極とを有する色素増感太陽電池セルが、一対の基材の間に介挿された構造を有してなり、前記一対の基材の内面側が、導電性を有する導電層とされており、前記光電極は、導電性樹脂基板上に、半導体層及び色素がこの順で積層されてなり、前記対向電極は、金属箔上に触媒層が積層されてなり、前記一対の基材のうちの一方に備えられる前記導電層と前記導電性樹脂基板とが接続されることで、前記導電層と前記光電極とが電気的に接続されており、前記一対の基材のうちの他方に備えられる前記導電層と前記金属箔とが面的に接続されることで、前記導電層と前記対向電極とが電気的に接続されていることを特徴とする。 The invention according to claim 1 is a dye-sensitized solar cell built-in structure, and includes a dye-sensitized solar cell having at least a photoelectrode and a counter electrode provided to face the photoelectrode. , it has a structure that interposed between the pair of substrates, the inner surface side of the pair of substrates are a conductive layer having conductivity, the photoelectrode, a conductive resin substrate In addition, a semiconductor layer and a dye are laminated in this order, and the counter electrode is formed by laminating a catalyst layer on a metal foil, and the conductive layer and the conductive layer provided on one of the pair of base materials. by and the sex resin substrate is connected, the conductive layer and the front Kihikariden poles are electrically connected, the conductive layer provided in the other of the pair of the base materials and said metal foil by being surface connected, and the conductive layer and the counter electrode is electrically connected Iruko The features.

本発明によれば、色素増感太陽電池セルが一対の基材の間に介挿された構造を有し、一対の基材の少なくとも一方に設けられた導電層に光電極又は対向電極が接続された構成なので、既存の施設に備えられるものと同様の形状を有する部材で光による発電を行うことが可能になる。また、基材の内面側に導電層を配置し、色素増感太陽電池セルに備えられる電極を導電層に接続する構成なので、色素増感太陽電池セルで発生した電流が導電層を通じて外部に供給される際の抵抗が低減され、発電性能が向上する。
さらに、色素増感太陽電池セルが一対の基材の間に介挿された構造を有することで、色素増感太陽電池セル、さらには色素増感太陽電池セルの周囲を一対の基材で封止することができるので、風雨や設置雰囲気等に対する耐久性が向上する。また、色素増感太陽電池セルが一対の基材で覆われた構造なので、美観特性にも優れたものとなる。
さらに、特に、色素増感太陽電池セルの対向電極における導電層との接続部が金属箔から構成されることで、導電層との間の接触抵抗が低減されるので、上述した発電性能が向上する効果が、さらに顕著に得られる。また、各電極に導電性樹脂基板又は金属箔を用いることで、色素増感太陽電池セルのトータル膜厚が薄くなり、ブラインドやオーニング等へ適用した場合の美観特性が向上する。
According to the present invention, the dye-sensitized solar cell has a structure inserted between a pair of base materials, and a photoelectrode or a counter electrode is connected to a conductive layer provided on at least one of the pair of base materials. With this configuration, it is possible to generate power with light using a member having the same shape as that provided in an existing facility. In addition, a conductive layer is arranged on the inner surface side of the substrate, and the electrode provided in the dye-sensitized solar cell is connected to the conductive layer, so that the current generated in the dye-sensitized solar cell is supplied to the outside through the conductive layer. The resistance when generated is reduced and the power generation performance is improved.
Furthermore, by having a structure in which the dye-sensitized solar cell is interposed between the pair of substrates, the periphery of the dye-sensitized solar cell and further the dye-sensitized solar cell is sealed with the pair of substrates. Since it can stop, durability with respect to a wind and rain, an installation atmosphere, etc. improves. In addition, since the dye-sensitized solar cell is covered with a pair of base materials, it has excellent aesthetic characteristics.
Furthermore, in particular, the contact resistance between the conductive layer and the conductive layer in the counter electrode of the dye-sensitized solar cell is made of a metal foil, so that the contact resistance with the conductive layer is reduced, so that the power generation performance described above is improved. This effect can be obtained more remarkably. Moreover, by using a conductive resin substrate or a metal foil for each electrode, the total film thickness of the dye-sensitized solar cell is reduced, and the aesthetic characteristics when applied to blinds, awnings and the like are improved.

請求項2に記載の発明は、請求項1に記載の色素増感太陽電池セルの組込構造であって、前記一対の基材のうち、前記光電極側に接した基材の少なくとも一部に、光透過用の開口部が形成されていることを特徴とする。   The invention according to claim 2 is the built-in structure of the dye-sensitized solar cell according to claim 1, wherein at least a part of the base material in contact with the photoelectrode side of the pair of base materials. Further, an opening for light transmission is formed.

本発明によれば、光電極側に接した基材の少なくとも一部に開口部が形成されることで、例えば、一対の基材を遮光性フィルム等から構成した場合であっても、色素増感太陽電池セルの光電極に対して効率良く光を入射させることができるので、優れた発電性能及び美観特性を両立させることが可能となる。   According to the present invention, the opening is formed in at least a part of the base material in contact with the photoelectrode side. For example, even when the pair of base materials are made of a light-shielding film or the like, Since light can be efficiently incident on the photoelectrode of the solar cell, it is possible to achieve both excellent power generation performance and aesthetic characteristics.

請求項3に記載の発明は、請求項2に記載の色素増感太陽電池セルの組込構造であって、前記開口部を覆う透明基板が設けられていることを特徴とする。   The invention described in claim 3 is the structure for incorporating the dye-sensitized solar cell described in claim 2, wherein a transparent substrate covering the opening is provided.

本発明によれば、基材上において、開口部を覆う透明基板が設けられることで、色素増感太陽電池セルを一対の基材間で確実に封止することができるので、優れた耐久性を確保することが可能となる。   According to the present invention, since a transparent substrate covering the opening is provided on the base material, the dye-sensitized solar cell can be reliably sealed between the pair of base materials, and thus has excellent durability. Can be secured.

請求項4に記載の発明は、請求項1〜請求項3の何れか一項に記載の色素増感太陽電池セルの組込構造であって、前記導電層のシート抵抗が、該導電層に接続される前記光電極又は前記対向電極のシート抵抗よりも小さいことを特徴とする。   The invention according to claim 4 is the built-in structure of the dye-sensitized solar cell according to any one of claims 1 to 3, wherein the sheet resistance of the conductive layer is applied to the conductive layer. The sheet resistance of the photoelectrode or the counter electrode to be connected is smaller.

本発明によれば、導電層のシート抵抗が、この導電層に接続される光電極又は対向電極のシート抵抗よりも小さい構成とすることで、色素増感太陽電池セルで発生した電流が導電層を通じて外部に供給される際の抵抗がより効果的に低減され、発電性能がさらに向上する。   According to the present invention, the sheet resistance of the conductive layer is configured to be smaller than the sheet resistance of the photoelectrode or the counter electrode connected to the conductive layer, so that the current generated in the dye-sensitized solar cell is the conductive layer. As a result, the resistance when being supplied to the outside through the power is more effectively reduced, and the power generation performance is further improved.

請求項に記載の発明は、発電ブラインド用スラットであって、請求項1〜請求項の何れか一項に記載の色素増感太陽電池セルの組込構造を有してなることを特徴とする。 Invention of Claim 5 is a slat for electric power generation blinds, Comprising: It has the built-in structure of the dye-sensitized solar cell as described in any one of Claims 1-4. And

本発明によれば、上記構成の色素増感太陽電池セルの組込構造が適用された発電ブラインド用スラットなので、上記同様、発電性能に優れるとともに、耐久性、美観特性に優れたものとなる。   According to the present invention, since it is a slat for power generation blinds to which the built-in structure of the dye-sensitized solar cell having the above-described structure is applied, it has excellent power generation performance as well as excellent durability and aesthetic characteristics.

本発明に係る色素増感太陽電池セルの組込構造によれば、上記した解決手段によって以下の効果を奏する。
すなわち、本発明によれば、色素増感太陽電池セルが一対の基材の間に介挿された構造を有し、一対の基材の少なくとも一方に設けられた導電層に光電極又は対向電極が接続されているので、既存の施設に備えられるものと同様の形状を有する部材で光による発電を行うことが可能になる。また、基材の内面側に配置した導電層に、色素増感太陽電池セルに備えられる電極を接続する構成なので、色素増感太陽電池セルで発生した電流が導電層を通じて外部に供給される際の抵抗が低減され、発電性能が向上する。さらに、色素増感太陽電池セルが一対の基材の間に介挿された構造なので、色素増感太陽電池セル、さらには色素増感太陽電池セルの周囲を一対の基材で封止することができ、耐久性が向上するとともに、色素増感太陽電池セルが一対の基材で覆われた構造なので、美観特性も向上する。
従って、従来から用いられている施設に備えられる部材に上記構造を適用することで、発電性能に優れるとともに、耐久性、美観特性に優れた色素増感太陽電池セルの組込構造が実現できるという効果を奏する。
According to the built-in structure of the dye-sensitized solar cell according to the present invention, the following effects can be obtained by the above-described solving means.
That is, according to the present invention, the dye-sensitized solar cell has a structure interposed between a pair of base materials, and the photoelectrode or the counter electrode is provided on the conductive layer provided on at least one of the pair of base materials. Are connected, it becomes possible to perform power generation by light with a member having the same shape as that provided in an existing facility. In addition, since the electrode provided in the dye-sensitized solar cell is connected to the conductive layer disposed on the inner surface side of the substrate, the current generated in the dye-sensitized solar cell is supplied to the outside through the conductive layer. Resistance is reduced, and power generation performance is improved. Further, since the dye-sensitized solar cell is interposed between a pair of base materials, the dye-sensitized solar cell and further the periphery of the dye-sensitized solar cell is sealed with a pair of base materials Thus, the durability is improved and the aesthetic characteristics are also improved because the dye-sensitized solar cell is covered with a pair of base materials.
Therefore, by applying the above structure to a member provided in a conventionally used facility, it is possible to realize a built-in structure of a dye-sensitized solar cell that is excellent in power generation performance and excellent in durability and aesthetic characteristics. There is an effect.

また、本発明に係る発電ブラインド用スラットによれば、上記構成の色素増感太陽電池セルの組込構造が適用された発電ブラインド用スラットなので、発電性能に優れるとともに、耐久性、美観特性に優れたブラインドを構成することが可能となる。   Moreover, according to the slat for power generation blinds according to the present invention, since it is a slat for power generation blinds to which the built-in structure of the dye-sensitized solar cell having the above-described configuration is applied, it has excellent power generation performance and durability and aesthetic characteristics. It is possible to construct a blind.

本発明の一実施形態である色素増感太陽電池セルの組込構造について説明する図であり、図1(a)は一部を分解した斜視図、図1(b)は組立状態における図1(a)中に示したA−A断面図である。It is a figure explaining the built-in structure of the dye-sensitized solar cell which is one Embodiment of this invention, FIG.1 (a) is the perspective view which decomposed | disassembled one part, FIG.1 (b) is FIG. 1 in an assembly state. It is AA sectional drawing shown in (a). 本発明の一実施形態である色素増感太陽電池セルの組込構造について、該組込構造を発電ブラインド用スラットに適用した例を説明する図であり、図1(a)、(b)に示す色素増感太陽電池セルの組込構造を、長尺とされたブラインドへの色素増感太陽電池セルの組込みに適用した例を示す平面図である。It is a figure explaining the example which applied this built-in structure to the slat for electric power generation blinds about the built-in structure of the dye-sensitized solar cell which is one Embodiment of this invention, and is shown to FIG. 1 (a), (b) It is a top view which shows the example which applied the incorporation structure of the dye-sensitized solar cell shown to the integration of the dye-sensitized solar cell to the elongate blind. 従来の色素増感太陽電池セルの取付構造を示す図であり、図3(a)は斜視図、図3(b)は図3(a)中に示すB−B断面図である。It is a figure which shows the attachment structure of the conventional dye-sensitized photovoltaic cell, Fig.3 (a) is a perspective view, FIG.3 (b) is BB sectional drawing shown in Fig.3 (a).

以下、図面を参照して本発明に係る色素増感太陽電池セルの組込構造、及び、この組込構造が適用されてなる発電ブラインド用スラットの一実施形態について、図1及び図2を適宜参照しながらその構成を説明する。なお、以下の説明で用いる図面は、その特徴をわかりやすくするために、便宜上、特徴となる部分を拡大して示している場合があり、各構成要素の寸法比率等は、実際とは異なる場合がある。また、以下の説明において例示される材料、寸法等は一例であって、本発明はそれらに限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することが可能である。   1 and 2 for an embodiment of a dye-sensitized solar cell built-in structure according to the present invention and a power generation blind slat to which the built-in structure is applied according to the present invention with reference to the drawings. The configuration will be described with reference to FIG. Note that the drawings used in the following description may show the characteristic parts in an enlarged manner for the sake of convenience in order to make the characteristics easy to understand. There is. In addition, the materials, dimensions, and the like exemplified in the following description are examples, and the present invention is not limited to them, and can be appropriately changed and implemented without changing the gist thereof.

<色素増感太陽電池セルの組込構造(発電ブラインド用スラット)>
本実施形態の色素増感太陽電池セルの組込構造Aは、図1(a)、(b)に示すように、少なくとも、光電極10と、該光電極10と対向して設けられる対向電極20とを有する色素増感太陽電池セル1が、一対の基材5(5A、5B)の間に介挿された構造を有してなる。そして、本実施形態の色素増感太陽電池セルの組込構造Aは、一対の基材5A、5Bのうちの少なくとも一方の内面5b側、図示例では一対の基材5A、5Bの両方の内面5bが導電性を有する導電層51とされており、この導電層51と光電極10及び対向電極20とが電気的に接続され、概略構成される。また、図示例においては、光電極10に備えられる導電性樹脂基板11、及び、対向電極20に備えられる導電性樹脂基板21が、それぞれ、一対の基材5A、5Bの内面5b側に設けられた導電層51に、結線部6A、6Bによって電気的に接続されている。
<Dye-sensitized solar cell built-in structure (slat for power generation blinds)>
The dye-sensitized solar cell built-in structure A of this embodiment includes at least a photoelectrode 10 and a counter electrode provided to face the photoelectrode 10 as shown in FIGS. 20 has a structure in which a dye-sensitized solar cell 1 having a structure 20 is interposed between a pair of base materials 5 (5A, 5B). And the built-in structure A of the dye-sensitized solar cell of this embodiment is the inner surface 5b side of at least one of the pair of base materials 5A and 5B, both inner surfaces of the pair of base materials 5A and 5B in the illustrated example. Reference numeral 5b denotes a conductive layer 51 having conductivity. The conductive layer 51, the photoelectrode 10 and the counter electrode 20 are electrically connected to each other and are roughly configured. In the illustrated example, the conductive resin substrate 11 provided in the photoelectrode 10 and the conductive resin substrate 21 provided in the counter electrode 20 are provided on the inner surface 5b side of the pair of base materials 5A and 5B, respectively. The conductive layer 51 is electrically connected by connecting portions 6A and 6B.

また、本実施形態においては、一対の基材5A、5Bの間に介挿された色素増感太陽電池セル1が、一対の基材5A、5Bの平面視で周縁部近傍に設けられた組込封止材7によって封止されている。なお、図1(a)の一部分解斜視図においては、図示の都合上、組込封止材7の図示を省略している。   Moreover, in this embodiment, the group by which the dye-sensitized solar cell 1 inserted between a pair of base material 5A, 5B was provided in the peripheral part vicinity by planar view of a pair of base material 5A, 5B. It is sealed by the embedded sealing material 7. In the partially exploded perspective view of FIG. 1A, the built-in sealing material 7 is not shown for the sake of illustration.

また、図1(a)、(b)に示す色素増感太陽電池セルの組込構造Aは、図示の都合上、色素増感太陽電池セルの組込構造Aを、短尺の色素増感太陽電池セル1が1箇所に設けられた状態で示している。ここで、図2に示すように、色素増感太陽電池セルの組込構造Aを長尺で構成する場合には、一対の基材5A、5Bを長尺に構成し、さらに、色素増感太陽電池セル1も長尺に構成することができる。あるいは、本実施形態では、一対の基材5A、5B間に短尺の色素増感太陽電池セル1を複数配置した構成とすることもでき、この場合には、色素増感太陽電池セル1の各々の間を、一対の基材5A、5Bに設けられた導電層51によって電気的に接続することができることから、複数配置した色素増感太陽電池セル1の各々の間を結線で接続することなく、電気的な接続が可能になる。   In addition, the dye-sensitized solar cell built-in structure A shown in FIGS. 1A and 1B has a dye-sensitized solar cell built-in structure A which is a short dye-sensitized solar cell for convenience of illustration. The battery cell 1 is shown in a state provided in one place. Here, as shown in FIG. 2, when the built-in structure A of the dye-sensitized solar cell is configured to be long, the pair of base materials 5A and 5B are configured to be long, and further dye-sensitized. The solar battery cell 1 can also be configured to be long. Alternatively, in the present embodiment, a plurality of short dye-sensitized solar cells 1 may be arranged between the pair of base materials 5A and 5B. In this case, each of the dye-sensitized solar cells 1 Can be electrically connected to each other by the conductive layer 51 provided on the pair of base materials 5A and 5B, so that the plurality of dye-sensitized solar cells 1 are not connected by wiring. , Electrical connection becomes possible.

本実施形態の色素増感太陽電池セルの組込構造Aは、例えば、図2に示すように、発電ブラインド用のスラット(羽板)に適用することで、従来からのスラットと同様の形状を有する色素増感太陽電池セルの組込構造Aを用いてブラインドを構成することができるものである。また、このような色素増感太陽電池セルの組込構造Aは、従来と同様のブラインドとして使用することで、設置場所であるビルや家屋内の窓際等において光発電を行うことが可能になるというものである。また、本実施形態の色素増感太陽電池セルの組込構造Aは、図示例のようなブラインドとしての用途の他、例えば、ビニルハウスの屋根部やガレージの天井板、あるいはサンシェード、オーニング、カーポート、建屋の壁面等に適用した場合においても、上記同様、各々通常の機能を発揮しながら、光発電が可能になるというものである。
以下に、色素増感太陽電池セルの組込構造Aをなす各構成について詳述する。
The built-in structure A of the dye-sensitized solar cell according to the present embodiment has a shape similar to that of a conventional slat, for example, as shown in FIG. A blind can be formed using the built-in structure A of the dye-sensitized solar cell. Moreover, the built-in structure A of such a dye-sensitized solar cell can be used as a blind as in the prior art, so that photovoltaic power generation can be performed at a building or a window in a house where the installation is made. That's it. Further, the dye-sensitized solar cell built-in structure A of the present embodiment is used as a blind as shown in the illustrated example, for example, a roof of a vinyl house, a ceiling plate of a garage, a sunshade, an awning, a car Even when applied to a port, a wall surface of a building, etc., as in the above, photovoltaic power generation becomes possible while exhibiting normal functions.
Below, each structure which comprises the built-in structure A of a dye-sensitized solar cell is explained in full detail.

[色素増感太陽電池セル]
上述したように、色素増感太陽電池セル1は、少なくとも、光電極10と、該光電極10との間で一定の厚み寸法を有するように対向して配置された対向電極20とを有する。また、図1(a)、(b)では、光電極10と対向電極20との間に電解質30が設けられており、この電解質30は、セル封止材40によって封止されている。
[Dye-sensitized solar cell]
As described above, the dye-sensitized solar cell 1 includes at least the photoelectrode 10 and the counter electrode 20 disposed to face the photoelectrode 10 so as to have a certain thickness dimension. Further, in FIGS. 1A and 1B, an electrolyte 30 is provided between the photoelectrode 10 and the counter electrode 20, and the electrolyte 30 is sealed with a cell sealing material 40.

(光電極)
図1(a)、(b)に示す例のように、光電極10は、導電性樹脂基板11、半導体層12及び色素13がこの順で積層されてなる。図示例においては、光電極10の導電性樹脂基板1が上側とされ、一方の基材5Aと対向して配置されている。また、図示例の導電性樹脂基板11は、透明基材11aの表面に導電材料層11bが積層されて構成され、一方の基材5Aの内面5b側に設けられた導電層51と重ね合わされるとともに、結線部6Aによって導電材料層11bが導電層51と電気的に接続されている。
(Photoelectrode)
As in the example shown in FIGS. 1A and 1B, the photoelectrode 10 is formed by laminating a conductive resin substrate 11, a semiconductor layer 12, and a dye 13 in this order. In the illustrated example, the conductive resin substrate 1 of the photoelectrode 10 is on the upper side and is disposed to face one of the base materials 5A. Further, the conductive resin substrate 11 in the illustrated example is configured by laminating a conductive material layer 11b on the surface of the transparent base material 11a, and is overlapped with the conductive layer 51 provided on the inner surface 5b side of one base material 5A. At the same time, the conductive material layer 11b is electrically connected to the conductive layer 51 by the connecting portion 6A.

導電性樹脂基板11は、光電極10の基板となる透明部材であり、導電性を有するとともに、光電極並びに光電極が用いられる色素増感太陽電池等の製造及び利用に適用可能であって、且つ、可視光に対して透明な材質で構成されていれば、その材質等は特に限定されない。例えば、湾曲部や凹凸部等を有する場所への設置自由度を高める点から、導電性樹脂基板11としては、透明な導電性樹脂材料からなるフィルム基材を用いることが好ましい。このような樹脂材料としては、例えば、ITO(錫ドープ酸化インジウム)やFTO(フッ素ドープ酸化錫)、ATO(アンチモンドープ酸化錫)、GZO(ガリウムドープ酸化亜鉛)、AZO(アルミニウムドープ酸化亜鉛)からなる導電材料層11bを、PET、PEN、ポリカーボネート、アクリル等の樹脂からなる透明基材11a上に成膜したものが挙げられる。また、導電性樹脂基板11としては、銀、銅、アルミニウム、鉄、チタン、ステンレス、ニッケル、マンガン、亜鉛等の金属、又は合金を、メッシュ状として導電材料層11bとし、これを上記の樹脂からなる透明基材11a上に成膜した膜等が挙げられる。このような樹脂材料を導電性樹脂基板11に使用することで、軽量で薄くフレキシブルな光電極が用いられてなる色素増感太陽電池等を製造することが可能となる。   The conductive resin substrate 11 is a transparent member that becomes the substrate of the photoelectrode 10 and has conductivity, and is applicable to the manufacture and use of a photosensitized solar cell or the like in which the photoelectrode and the photoelectrode are used, And if it is comprised with the material transparent with respect to visible light, the material etc. will not be specifically limited. For example, it is preferable to use a film substrate made of a transparent conductive resin material as the conductive resin substrate 11 from the viewpoint of increasing the degree of freedom of installation in a place having a curved portion, an uneven portion, or the like. Examples of such a resin material include ITO (tin-doped indium oxide), FTO (fluorine-doped tin oxide), ATO (antimony-doped tin oxide), GZO (gallium-doped zinc oxide), and AZO (aluminum-doped zinc oxide). And a conductive material layer 11b formed on a transparent substrate 11a made of a resin such as PET, PEN, polycarbonate, or acrylic. In addition, as the conductive resin substrate 11, a metal or an alloy such as silver, copper, aluminum, iron, titanium, stainless steel, nickel, manganese, zinc or the like is used as a mesh to form a conductive material layer 11b. Examples thereof include a film formed on the transparent substrate 11a. By using such a resin material for the conductive resin substrate 11, it is possible to manufacture a dye-sensitized solar cell or the like using a light, thin and flexible photoelectrode.

導電性樹脂基板11は、上述したように、導電材料層11bが透明基材11aの表面に積層された構成とすることができるが、この場合には、図1(b)に示す例のように、導電材料層11bと導電層51とを結線部6Aで接続することで、電気的に接続することができる。   As described above, the conductive resin substrate 11 can have a configuration in which the conductive material layer 11b is laminated on the surface of the transparent base material 11a. In this case, as shown in FIG. In addition, the conductive material layer 11b and the conductive layer 51 can be electrically connected by connecting them with the connection portion 6A.

光電極10を構成する半導体層12は、導電性樹脂基板11上に形成され、その材料は特に限定されず、後述の色素13の吸着が可能な、従来から色素増感太陽電池の光電極に用いられている半導体材料を何ら制限無く用いることができる。このような半導体材料としては、例えば、酸化チタン(TiO)、酸化亜鉛(ZnO)、チタン酸ストロンチウム(SrTiO)等の金属酸化物からなる多孔質材料等を用いることができる。 The semiconductor layer 12 constituting the photoelectrode 10 is formed on the conductive resin substrate 11, and the material thereof is not particularly limited. Conventionally, it can be used as a photoelectrode of a dye-sensitized solar cell capable of adsorbing the dye 13 described later. The semiconductor material used can be used without any limitation. As such a semiconductor material, for example, a porous material made of a metal oxide such as titanium oxide (TiO 2 ), zinc oxide (ZnO), or strontium titanate (SrTiO 3 ) can be used.

半導体層12が金属酸化物半導体の微粒子によって構成される場合、半導体層12は、微粒子を含む公知のペーストが導電性樹脂基板11上で焼成されることで形成されたものであってもよい。また、金属酸化物半導体の微粒子を、搬送ガスによって導電性樹脂基板11上に吹き付けることにより、微粒子同士が接合された状態で形成される多孔質構造として、半導体層12を構成してもよい。上述のような、金属酸化物半導体の微粒子を導電性樹脂基板11上に吹き付けて多孔質構造の半導体層12を形成する方法としては、例えば、エアロゾルデポジション法(AD法)が挙げられる。   When the semiconductor layer 12 is composed of metal oxide semiconductor fine particles, the semiconductor layer 12 may be formed by firing a known paste containing fine particles on the conductive resin substrate 11. Alternatively, the semiconductor layer 12 may be configured as a porous structure formed in a state in which the fine particles of the metal oxide semiconductor are bonded to each other by spraying the fine particles of the metal oxide semiconductor onto the conductive resin substrate 11 with a carrier gas. Examples of the method for forming the porous semiconductor layer 12 by spraying metal oxide semiconductor fine particles on the conductive resin substrate 11 as described above include an aerosol deposition method (AD method).

ここで、半導体層12を構成する金属酸化物半導体の微粒子の一次粒子径としては、当該微粒子を導電性樹脂基板11上に成膜する方法によって好適な範囲が異なる場合があるが、通常は、1nm〜500μmが好ましく、1nm〜250μmがより好ましく、5nm〜100μmがさらに好ましく、10nm〜10μmが特に好ましい。なお、金属酸化物半導体の微粒子の一次粒子径を求める方法としては、例えば、レーザー回折式粒度分布測定装置を用いた測定によって得られた体積平均径の分布のピーク値から決定する方法や、SEM観察によって複数の微粒子の長径方向の寸法を測定した後、その平均値を算出する方法等が挙げられる。これらのうち、金属酸化物半導体の微粒子の一次粒子径は、SEM観察によって測定することが好ましい。   Here, the primary particle diameter of the metal oxide semiconductor fine particles constituting the semiconductor layer 12 may vary in a suitable range depending on the method of forming the fine particles on the conductive resin substrate 11. 1 nm to 500 μm are preferable, 1 nm to 250 μm are more preferable, 5 nm to 100 μm are further preferable, and 10 nm to 10 μm are particularly preferable. In addition, as a method for obtaining the primary particle diameter of the metal oxide semiconductor fine particles, for example, a method of determining from the peak value of the volume average diameter distribution obtained by measurement using a laser diffraction particle size distribution measuring device, or SEM Examples include a method of measuring the dimension in the major axis direction of a plurality of fine particles by observation and then calculating an average value thereof. Of these, the primary particle diameter of the metal oxide semiconductor fine particles is preferably measured by SEM observation.

半導体層12は多孔質構造とされていることが好ましい。このように、半導体層12が、少なくともその表面が多孔質構造とされていることで、後述の色素13の半導体層12上への吸着可能面積が増加し、色素の吸着量を増加させることができる。これにより、変換効率が向上し、高い電池特性を得ることが可能となる。   The semiconductor layer 12 preferably has a porous structure. As described above, at least the surface of the semiconductor layer 12 has a porous structure, so that an area capable of adsorbing the dye 13 (described later) on the semiconductor layer 12 is increased, and the amount of the dye adsorbed can be increased. it can. Thereby, conversion efficiency improves and it becomes possible to obtain a high battery characteristic.

色素13は、光電極10において半導体層12に吸着するように形成される、増感色素からなる層である。この色素13は、照射された光によって励起され、電子を放出する作用を有する。そして、色素13から放出された電子は、バンドギャップが広い半導体層12に受け渡され、この半導体層12内を拡散して導電性樹脂基板11に円滑に移動する。   The dye 13 is a layer made of a sensitizing dye that is formed so as to be adsorbed to the semiconductor layer 12 in the photoelectrode 10. The dye 13 is excited by the irradiated light and has an action of emitting electrons. The electrons emitted from the dye 13 are transferred to the semiconductor layer 12 having a wide band gap, and diffuse in the semiconductor layer 12 and smoothly move to the conductive resin substrate 11.

光電極10を構成する色素13は、半導体層12に吸着するように設けられることが好ましく、且つ、半導体層12の表面(内部表面も含む)が色素13で被覆されるように形成されることが好ましい。   The dye 13 constituting the photoelectrode 10 is preferably provided so as to be adsorbed to the semiconductor layer 12, and formed so that the surface of the semiconductor layer 12 (including the inner surface) is covered with the dye 13. Is preferred.

上述のように、照射された光によって電子を放出する色素13としては、例えば、ルテニウム錯体、シアニンやクロロフィルといった有機色素が挙げられる。また、色素13としては、吸収する波長域が広い点と、光励起の寿命が長く、半導体層12に受け渡された電子が安定する点から、ルテニウム錯体が好適であり、より具体的には、シス−ジ(チオシアナト)−ビス(2,2’−ビピリジル−4,4’−ジカルボン酸)ルテニウム(II)(N3と呼ばれることがある)、該シス−ジ(チオシアナト)−ビス(2,2’−ビピリジル−4,4’−ジカルボン酸)ルテニウム(II)のビス−テトラブチルアンモニウム塩(N719と呼ばれることがある)、トリ(チオシアナト)−(4,4’,4’’−トリカルボキシ−2,2’:6’,2’’−ターピリジン)ルテニウムのトリス−テトラブチルアンモニウム塩等が好適である。   As described above, examples of the dye 13 that emits electrons when irradiated with light include organic dyes such as a ruthenium complex, cyanine, and chlorophyll. Further, as the dye 13, a ruthenium complex is preferable because it has a wide absorption wavelength range, has a long lifetime of photoexcitation, and stabilizes electrons transferred to the semiconductor layer 12, more specifically, Cis-di (thiocyanato) -bis (2,2′-bipyridyl-4,4′-dicarboxylic acid) ruthenium (II) (sometimes referred to as N3), cis-di (thiocyanato) -bis (2,2 Bis-tetrabutylammonium salt of '-bipyridyl-4,4'-dicarboxylic acid) ruthenium (II) (sometimes called N719), tri (thiocyanato)-(4,4', 4 ''-tricarboxy- 2,2 ′: 6 ′, 2 ″ -terpyridine) ruthenium tris-tetrabutylammonium salt and the like are preferred.

(対向電極)
図1(a)、(b)に示す例のように、対向電極20は、導電性樹脂基板21上に触媒層22が積層されて構成され、図示例においては、対向電極20の導電性樹脂基板21が下側とされ、他方の基材5Bと対向して配置されている。また、図示例の導電性樹脂基板21は、基材21aの表面に導電材料層21bが積層されて構成され、他方の基材5Bの内面5b側に設けられた導電層51と重ね合わされるとともに、結線部6Bによって導電材料層21bが導電層51と電気的に接続されている。
(Counter electrode)
1A and 1B, the counter electrode 20 is configured by laminating a catalyst layer 22 on a conductive resin substrate 21, and in the illustrated example, the conductive resin of the counter electrode 20 is configured. The board | substrate 21 is made into the lower side and is arrange | positioned facing the other base material 5B. In addition, the conductive resin substrate 21 in the illustrated example is configured by laminating a conductive material layer 21b on the surface of the base material 21a, and is superimposed on the conductive layer 51 provided on the inner surface 5b side of the other base material 5B. The conductive material layer 21b is electrically connected to the conductive layer 51 by the connection part 6B.

導電性樹脂基板21は、対向電極20における基台となる部材であり、色素増感太陽電池セル1の製造及び利用に適用可能な材質で構成されていれば、その材質等は特に限定されないが、光電極10側と対向電極20の両面受光が可能になるという観点から、上述した光電極10の場合と同様、導電性を有する透明部材からなり、可視光に対して透明な材質であることが好ましい。また、光電極10に備えられる導電性樹脂基板11と同様、湾曲部や凹凸部等を有する場所への設置自由度を高める点から、導電性樹脂基板21としては、透明な導電性樹脂材料からなるフィルム基材を用いることが好ましく、例えば、ITO、FTO、ATO、GZO、AZOからなる導電材料層21bを、PET、PEN、ポリカーボネート、アクリル等の樹脂からなる基材21a上に成膜したものが挙げられる。また、導電性樹脂基板21としては、銀、銅、アルミニウム、鉄、チタン、ステンレス、ニッケル、マンガン、亜鉛等の金属、又は合金を、メッシュ状として導電材料層21bとし、これを、上記樹脂からなる基材21a上に成膜した膜等が挙げられる。   The conductive resin substrate 21 is a member that serves as a base for the counter electrode 20, and the material is not particularly limited as long as the conductive resin substrate 21 is made of a material that can be applied to manufacture and use of the dye-sensitized solar cell 1. From the viewpoint that both sides of the photoelectrode 10 and the counter electrode 20 can be received, as in the case of the photoelectrode 10 described above, it is made of a transparent member having conductivity and is transparent to visible light. Is preferred. Further, like the conductive resin substrate 11 provided in the photoelectrode 10, the conductive resin substrate 21 is made of a transparent conductive resin material from the viewpoint of increasing the degree of freedom of installation in a place having a curved portion or an uneven portion. It is preferable to use a film substrate such as, for example, a conductive material layer 21b made of ITO, FTO, ATO, GZO, or AZO formed on a substrate 21a made of a resin such as PET, PEN, polycarbonate, or acrylic. Is mentioned. In addition, as the conductive resin substrate 21, a metal or an alloy such as silver, copper, aluminum, iron, titanium, stainless steel, nickel, manganese, zinc or the like is used as a mesh to form a conductive material layer 21b. Examples thereof include a film formed on the base material 21a.

上述のような樹脂材料を導電性樹脂基板21に使用することで、軽量で薄くフレキシブルな光電極が用いられてなる色素増感太陽電池等を製造することが可能となる。   By using the resin material as described above for the conductive resin substrate 21, it is possible to manufacture a dye-sensitized solar cell using a light, thin and flexible photoelectrode.

また、導電性樹脂基板21は、必ずしも透明性を有している必要性はなく、例えば、鉄、アルミニウム、ステンレス、銅、銀、チタン、白金、金、モリブデン、マンガン、クロム、ニッケル等の金属、あるいは合金からなる導電材料層21bを、PET、PEN、ポリカーボネート、アクリル等の樹脂からなる基材23上に成膜したものの他、上記金属材料からなる金属箔等を導電性樹脂基板21に代えて用いることもできる。   Further, the conductive resin substrate 21 is not necessarily required to have transparency. For example, a metal such as iron, aluminum, stainless steel, copper, silver, titanium, platinum, gold, molybdenum, manganese, chromium, nickel, etc. Alternatively, the conductive material layer 21b made of an alloy is formed on a base material 23 made of a resin such as PET, PEN, polycarbonate, or acrylic, and the metal foil made of the metal material is replaced with the conductive resin substrate 21. Can also be used.

ここで、基材21aとして、例えば、光電極10に用いられる透明基材11aと同様の材料を用いた場合には、導電性樹脂基板21と導電層51との間を結線部6Bで接続することで、これらを電気的に接続することができる。一方、基材21aに金属箔等の導電材料を用いた場合には、上記の結線部6Bを用いることなく、導電性樹脂基板21と導電層51との間が電気的に接続される。即ち、この場合、導電性樹脂基板21と導電層51とが直接電気的に接続された構成なので、接触抵抗が低減される。これにより、色素増感太陽電池セル1で発生した電流を効率良く外部へ送出することができるので、発電性能が向上する効果がより顕著に得られる。
なお、導電性樹脂基板21の基材21aに金属箔を用いる場合や、導電性樹脂基板21に代えて金属箔を用いる場合には、例えば、厚みが300μmの金属材料からなる金属箔を採用することができる。
Here, as the base material 21a, for example, when the same material as the transparent base material 11a used for the photoelectrode 10 is used, the conductive resin substrate 21 and the conductive layer 51 are connected by the connecting portion 6B. Thus, these can be electrically connected. On the other hand, when a conductive material such as a metal foil is used for the base material 21a, the conductive resin substrate 21 and the conductive layer 51 are electrically connected without using the connection part 6B. That is, in this case, since the conductive resin substrate 21 and the conductive layer 51 are directly electrically connected, the contact resistance is reduced. Thereby, since the electric current generated in the dye-sensitized solar cell 1 can be efficiently sent to the outside, the effect of improving the power generation performance can be obtained more remarkably.
In addition, when using metal foil for the base material 21a of the conductive resin substrate 21 or when using metal foil instead of the conductive resin substrate 21, for example, a metal foil made of a metal material having a thickness of 300 μm is employed. be able to.

触媒層22は、例えば、スパッタリング法や印刷法により、導電性樹脂基板21の板面上に形成される。この触媒層22としては、後述する電解質30の酸化還元反応に対して触媒能を有する材料が選ばれ、例えば、金(Au)、白金(Pt)等の金属触媒の他に、カーボンナノチューブ、グラファイト(黒鉛)等の導電性炭素や、ポリアニリン、ポリピロール、ポリチオフェン等の導電性高分子等が挙げられる。あるいは、触媒層22としては、導電性樹脂基板21板面上に導電性を有するITO膜やFTO膜を成膜した後、この上にPt等の金属触媒が成膜されたものを用いることも可能である。   The catalyst layer 22 is formed on the plate surface of the conductive resin substrate 21 by, for example, a sputtering method or a printing method. As the catalyst layer 22, a material having catalytic ability for a redox reaction of the electrolyte 30 described later is selected. For example, in addition to a metal catalyst such as gold (Au) or platinum (Pt), carbon nanotubes, graphite Examples thereof include conductive carbon such as (graphite) and conductive polymers such as polyaniline, polypyrrole, and polythiophene. Alternatively, the catalyst layer 22 may be formed by depositing a conductive ITO film or FTO film on the surface of the conductive resin substrate 21 and then depositing a metal catalyst such as Pt thereon. Is possible.

なお、導電性樹脂基板21及び触媒層22は、色素増感太陽電池に照射される光に対して透明でなくてもよいが、例えば、光照射方向の自由度確保の観点からは、透明であることが好ましい。   The conductive resin substrate 21 and the catalyst layer 22 do not have to be transparent with respect to the light applied to the dye-sensitized solar cell. For example, from the viewpoint of ensuring the degree of freedom in the light irradiation direction, the conductive resin substrate 21 and the catalyst layer 22 are transparent. Preferably there is.

(電解質)
電解質30は、光電極10と対向電極20との間で、セル封止材40で囲まれた空間に充填されている。電解質30は、色素増感太陽電池セル1において、継続的に電気を流すための酸化還元反応を生ずる酸化還元対を含む物質からなる。このような酸化還元対としては、例えば、ヨウ素レドックス等が挙げられる。ヨウ素レドックスを含む電解質30には、例えば、アセトニトリルやプロピオニトリル等の非水系溶媒、又は、ヨウ化ジメチルプロピルイミダゾリウムやヨウ化ブチルメチルイミダゾリウム等のイオン性液体等に、ヨウ化リチウムとヨウ素とが混合されてなる溶液が用いられる。また、電解質30には、本発明の趣旨を逸脱しない範囲内で、フィラーや増粘剤等の他の添加剤が含有されていても良い。
(Electrolytes)
The electrolyte 30 is filled in a space surrounded by the cell sealing material 40 between the photoelectrode 10 and the counter electrode 20. In the dye-sensitized solar cell 1, the electrolyte 30 is made of a substance including a redox pair that causes a redox reaction for continuously flowing electricity. Examples of such a redox pair include iodine redox. Examples of the electrolyte 30 containing iodine redox include non-aqueous solvents such as acetonitrile and propionitrile, or ionic liquids such as dimethylpropylimidazolium iodide and butylmethylimidazolium iodide, and lithium iodide and iodine. A solution in which is mixed is used. Further, the electrolyte 30 may contain other additives such as a filler and a thickener within a range not departing from the gist of the present invention.

なお、電解質30における酸化還元対の濃度は特に制限されないが、電解質30が液体状の電解液である場合、好ましくは0.1〜10mol/Lであり、より好ましくは0.2〜2mol/Lである。また、電解質30の溶媒中にヨウ素を添加する場合における、ヨウ素の濃度の好ましい範囲は、0.01〜1mol/Lである。
また、電解質30には、従来公知の導電性高分子が含まれていてもよい。
The concentration of the redox couple in the electrolyte 30 is not particularly limited. However, when the electrolyte 30 is a liquid electrolyte, it is preferably 0.1 to 10 mol / L, more preferably 0.2 to 2 mol / L. It is. Moreover, the preferable range of the iodine concentration in the case of adding iodine to the solvent of the electrolyte 30 is 0.01 to 1 mol / L.
Further, the electrolyte 30 may contain a conventionally known conductive polymer.

また、本実施形態では、液体状の電解質に代えて、半固体状(ゲル状)又は固体状のものを電解質30に用いても良い。このような電解質30としては、例えば、電解液にゲル化剤又は増粘剤を添加し、必要に応じて溶媒を除去することにより、電解液をゲル化又は固体化したものと適用できる。このように、液体状の電解質に代えて、ゲル状又は固体状の電解質30を用いることにより、色素増感太陽電池セル1、ひいては、色素増感太陽電池セルの組込構造Aから電解液が漏出するリスクが解消される。   In the present embodiment, a semi-solid (gel) or solid material may be used for the electrolyte 30 instead of the liquid electrolyte. As such an electrolyte 30, for example, a gelling agent or a thickening agent may be added to the electrolytic solution, and the solvent may be removed as necessary, so that the electrolytic solution is gelled or solidified. Thus, instead of the liquid electrolyte, the gel-like or solid electrolyte 30 is used, so that the electrolytic solution can be obtained from the dye-sensitized solar cell 1, and thus the built-in structure A of the dye-sensitized solar cell. The risk of leakage is eliminated.

(セル封止材)
セル封止材40としては、電解質30を電池セル内部に保持できる部材であることが好ましい。このようなセル封止材40としては、例えば、従来公知の熱可塑性樹脂や熱硬化性樹脂や紫外線硬化性樹脂等の合成樹脂からなるものを適用することができる。
(Cell sealing material)
The cell sealing material 40 is preferably a member that can hold the electrolyte 30 inside the battery cell. As such a cell sealing material 40, what consists of synthetic resins, such as a conventionally well-known thermoplastic resin, a thermosetting resin, and an ultraviolet curable resin, can be applied, for example.

[組込構造]
上述したように、本実施形態の色素増感太陽電池セルの組込構造Aは、図1(a)、(b)に示すような、上記構成の色素増感太陽電池セル1が一対の基材5A、5Bの間に介挿された構造を有する。そして、色素増感太陽電池セルの組込構造Aは、一対の基材5A、5Bのうちの少なくとも一方の内面5b側が導電性を有する導電層51とされており、この導電層51と光電極10及び対向電極20とが電気的に接続されている。
[Built-in structure]
As described above, the dye-sensitized solar cell built-in structure A of the present embodiment has a pair of dye-sensitized solar cells 1 having the above-described configuration as shown in FIGS. 1 (a) and 1 (b). It has a structure inserted between the materials 5A and 5B. The built-in structure A of the dye-sensitized solar cell has a conductive layer 51 having conductivity on at least one inner surface 5b side of the pair of base materials 5A and 5B. The conductive layer 51 and the photoelectrode 10 and the counter electrode 20 are electrically connected.

(一対の基材)
本実施形態において説明する一対の基材5A、5Bは、例えば、フィルム状の透明樹脂材料等から構成することができ、色素増感太陽電池セルの組込構造Aにおける支持基板あるいは筐体として機能する。また、一対の基材5A、5Bは、ブラインドのスラットやビニルハウスの屋根部、あるいは、ガレージの天井板やサンシェード、オーニング、カーポート、建屋の壁面等に例示される、既存の施設に備えられるものと同様の板状部材として構成されることで、色素増感太陽電池セルの組込構造Aが、上記の各箇所に適用可能とされるものである。
(A pair of base materials)
The pair of base materials 5A and 5B described in the present embodiment can be made of, for example, a film-like transparent resin material and the like, and function as a support substrate or a housing in the built-in structure A of the dye-sensitized solar cell. To do. Further, the pair of base materials 5A and 5B is provided in an existing facility exemplified by blind slats, roofs of vinyl houses, garage ceilings, sunshades, awnings, carports, building walls, and the like. By being configured as a plate-like member similar to the above, the built-in structure A of the dye-sensitized solar cell can be applied to each of the above locations.

一対の基材5A、5Bをなす材料としては、上記例示したような、色素増感太陽電池セルの組込構造Aが適用される既存の部材と同様のものを用いることができ、例えば、透明であって、耐熱性や耐候性等を兼ね備える樹脂材料等を何ら制限無く採用することができる。このような材料としては、例えば、上述したフィルム状の透明樹脂材料等の他、塩ビ等の不透明樹脂材料や、アルミニウム、ステンレス、ニッケル、マグネシウム、マンガン、金、銀、銅、チタン薄板等の金属板、樹木等の各種材料を例示できる。   As a material which makes a pair of base materials 5A and 5B, the same thing as the existing member to which the built-in structure A of a dye-sensitized solar cell as illustrated above is applied can be used, for example, transparent Thus, a resin material having heat resistance, weather resistance, etc. can be used without any limitation. As such a material, for example, in addition to the film-like transparent resin material described above, opaque resin materials such as vinyl chloride, and metals such as aluminum, stainless steel, nickel, magnesium, manganese, gold, silver, copper, and titanium thin plate Various materials such as boards and trees can be exemplified.

本実施形態で例示する色素増感太陽電池セルの組込構造Aにおいては、図1(a)、(b)に示すように、一対の基材5A、5Bのうち、光電極10側に接した一方の基材5Aの略中央付近に、光透過用の開口部52が形成されている。また、図2に示す長尺の色素増感太陽電池セルの組込構造Aにおいては、一方の基材5Aの幅方向で略中心付近に、長尺方向にわたって細長に形成された開口部52が設けられている。   In the built-in structure A of the dye-sensitized solar cell exemplified in this embodiment, as shown in FIGS. 1A and 1B, the pair of base materials 5A and 5B is in contact with the photoelectrode 10 side. An opening 52 for light transmission is formed in the vicinity of the approximate center of the one base material 5A. In addition, in the long dye D-sensitized solar cell built-in structure A shown in FIG. 2, an opening 52 that is elongated in the longitudinal direction is formed in the vicinity of the center in the width direction of one base material 5A. Is provided.

このように、光電極10側に接した基材(一方の基材5A)の少なくとも一部に開口部52が形成されることで、例えば、一対の基材5A、5Bを遮光性フィルムや金属板等から構成した場合であっても、光電極10に対して効率良く光を入射させることができる。これにより、色素増感太陽電池セルの組込構造Aを遮光部材に適用した場合であっても、優れた発電性能を維持できるとともに、優れた美観特性も得られる。
なお、一対の基材5A、5Bを透明材料から構成した場合には、上記の開口部52は必須ではないが、この開口部52が設けられていても特に支障はない。
Thus, by forming the opening 52 in at least a part of the base material (one base material 5A) in contact with the photoelectrode 10 side, for example, the pair of base materials 5A and 5B is made of a light-shielding film or a metal. Even in the case of a plate or the like, light can be efficiently incident on the photoelectrode 10. Thereby, even if it is a case where the built-in structure A of a dye-sensitized solar cell is applied to a light shielding member, while being able to maintain the outstanding electric power generation performance, the outstanding aesthetic property is also acquired.
When the pair of base materials 5A and 5B is made of a transparent material, the opening 52 is not essential, but there is no particular problem even if the opening 52 is provided.

さらに、本実施形態においては、図1(b)に示すように、一方の基材5A上において、開口部52を覆う透明基板53が設けられていることがより好ましい。図示例においては、一方の基材5Aの外面5a側に透明基板53が設けられており、この透明基板53は、熱可塑性樹脂又は熱硬化性樹脂等からなる封止堰部54によって一方の基材5A上に固定されている。
このように、開口部52を覆う透明基板53が設けられることで、色素増感太陽電池セル1を一対の基材5A、5B間で確実に封止することができるので、より優れた耐久性を確保することが可能となる。なお、図1(a)の一部分解斜視図においては、図示の都合上、封止堰部54及び透明基板53の図示を省略している。
Furthermore, in this embodiment, as shown in FIG.1 (b), it is more preferable that the transparent substrate 53 which covers the opening part 52 is provided on one base material 5A. In the illustrated example, a transparent substrate 53 is provided on the outer surface 5a side of one base material 5A, and this transparent substrate 53 is formed on one substrate by a sealing dam portion 54 made of a thermoplastic resin or a thermosetting resin. It is fixed on the material 5A.
Thus, since the transparent substrate 53 covering the opening 52 is provided, the dye-sensitized solar cell 1 can be reliably sealed between the pair of base materials 5A and 5B. Can be secured. In the partially exploded perspective view of FIG. 1A, the sealing weir portion 54 and the transparent substrate 53 are not shown for convenience of illustration.

本実施形態では、一対の基材5A、5Bの何れかの内面5b側、図1(a)、(b)に示す例では一対の基材5A、5Bの両方の内面5b側に、導電材料からなる導電層51が設けられている。導電層51は、上述したように、色素増感太陽電池セル1の各電極と電気的に接続されることで、色素増感太陽電池セル1で発生した電流を外部に送出することが可能になるものであり、例えば、図2に示す長尺の色素増感太陽電池セルの組込構造Aにおいて、その長尺方向における何れの位置からでも電流を取り出すことが可能になるものである。   In the present embodiment, a conductive material is provided on the inner surface 5b side of one of the pair of base materials 5A and 5B, on the inner surface 5b side of both the pair of base materials 5A and 5B in the example shown in FIGS. A conductive layer 51 made of is provided. As described above, the conductive layer 51 is electrically connected to each electrode of the dye-sensitized solar cell 1 so that the current generated in the dye-sensitized solar cell 1 can be transmitted to the outside. For example, in the built-in structure A of the long dye-sensitized solar cell shown in FIG. 2, the current can be taken out from any position in the long direction.

導電層51に用いられる材料としては、高い導電性を有し、且つ、シート抵抗の低い金属材料等であれば、特に限定されるものではなく、例えば、チタン等からなる金属材料をスパッタ法等によって一対の基材5A、5Bの内面5b上に堆積させることで形成することができる。   The material used for the conductive layer 51 is not particularly limited as long as it is a metal material having high conductivity and low sheet resistance. For example, a metal material made of titanium or the like is sputtered. Can be formed by depositing on the inner surfaces 5b of the pair of substrates 5A, 5B.

本実施形態では、導電層51のシート抵抗が、導電層51に接続される光電極10又は対向電極20のシート抵抗、即ち、導電性樹脂基板11又は導電性樹脂基板21のシート抵抗よりも小さいことが好ましい。このように、導電層51のシート抵抗が、導電性樹脂基板11又は導電性樹脂基板21のシート抵抗よりも小さい構成とすることで、色素増感太陽電池セル1で発生した電流が導電層51を通じて外部に供給される際の抵抗がより効果的に低減され、発電性能がさらに向上するという効果が得られる。   In the present embodiment, the sheet resistance of the conductive layer 51 is smaller than the sheet resistance of the photoelectrode 10 or the counter electrode 20 connected to the conductive layer 51, that is, the sheet resistance of the conductive resin substrate 11 or the conductive resin substrate 21. It is preferable. Thus, by setting the sheet resistance of the conductive layer 51 to be smaller than the sheet resistance of the conductive resin substrate 11 or the conductive resin substrate 21, the current generated in the dye-sensitized solar cell 1 can be converted into the conductive layer 51. As a result, the resistance when being supplied to the outside through the power can be more effectively reduced, and the power generation performance can be further improved.

なお、例えば、一対の基材5A、5Bを金属材料等の導電性材料から構成した場合には、各基材自体が導電性を有していることから、導電層51を設けなくとも、色素増感太陽電池セル1からの集電を行うことが可能となる場合がある。このようなケースとしては、例えば、本発明に係る色素増感太陽電池セルの組込構造Aをブラインドのスラットに適用し、このスラットを金属材料から構成したうえで、色素増感太陽電池セルを挟み込む内面側に塗装を施さない場合等が挙げられる。しかしながら、一対の基材5A、5Bを金属材料から構成した場合でも、それらの内面5b側に、導電性が高く、且つ、シート抵抗の低い導電材料からなる導電層を設けることで、基材本体に導電性を持たせて集電を行った場合に比べて抵抗が低減され、発電性能が顕著に高められる効果が得られる。
なお、一対の基材5A、5Bを、透明性を持たない金属材料等から構成した場合には、上記の開口部52を設けることが必須となる。
For example, in the case where the pair of base materials 5A and 5B is made of a conductive material such as a metal material, since each base material itself has conductivity, the dye is provided without providing the conductive layer 51. It may be possible to collect current from the sensitized solar cell 1. As such a case, for example, the dye-sensitized solar cell built-in structure A according to the present invention is applied to a blind slat, and the slat is made of a metal material. A case where no coating is applied to the inner surface side to be sandwiched is mentioned. However, even when the pair of base materials 5A and 5B is made of a metal material, by providing a conductive layer made of a conductive material having high conductivity and low sheet resistance on the inner surface 5b side, the base material body As compared with the case where current collection is performed by imparting electrical conductivity to the metal, the resistance is reduced, and the power generation performance is remarkably improved.
In addition, when the pair of base materials 5A and 5B is made of a metal material having no transparency, it is essential to provide the opening 52 described above.

(結線部)
本実施形態の色素増感太陽電池セルの組込構造Aにおいては、図1(a)、(b)に示す例のように、光電極10及び対向電極20の導電層51への電気的接続を、導電性樹脂基板11に備えられる導電材料層11b、及び、導電性樹脂基板21に備えられる導電材料層21bと、導電層51とを、それぞれ、結線部6A、6Bを介して接続することで行っている。一方、本実施形態では、上述したように、対向電極20に設けられる基材21aを金属箔等の導電材料から構成した場合には、対向電極20と導電層51との間で、直接、電気的な接続が図られることから、結線部6Bが不要となる。
(Connection section)
In the built-in structure A of the dye-sensitized solar cell of the present embodiment, as in the example shown in FIGS. 1A and 1B, the electrical connection of the photoelectrode 10 and the counter electrode 20 to the conductive layer 51 is performed. Are connected to the conductive material layer 11b provided in the conductive resin substrate 11 and the conductive material layer 21b provided in the conductive resin substrate 21 and the conductive layer 51 via the connection portions 6A and 6B, respectively. Is going on. On the other hand, in the present embodiment, as described above, when the base material 21a provided on the counter electrode 20 is made of a conductive material such as a metal foil, an electric power is directly connected between the counter electrode 20 and the conductive layer 51. Since a general connection is achieved, the connection part 6B becomes unnecessary.

上述のような結線部6A、6Bとしては、従来からこの分野で用いられている線材を採用することができる。   As the connection parts 6A and 6B as described above, wires conventionally used in this field can be employed.

本実施形態においては、導電性樹脂基板11及び導電性樹脂基板21と導電層51との間を、それぞれ結線部6A、6Bで接続することにより、色素増感太陽電池セル1で発生した電流を送出する際の抵抗がさらに低減され、発電性能がさらに向上する効果が得られる。   In the present embodiment, the current generated in the dye-sensitized solar cell 1 is obtained by connecting the conductive resin substrate 11 and the conductive resin substrate 21 and the conductive layer 51 with the connection portions 6A and 6B, respectively. The resistance at the time of sending out is further reduced, and the effect of further improving the power generation performance can be obtained.

また、本実施形態においては、光電極10及び対向電極20に備えられる各基材を、導電性を有さない基材とした場合であっても、上記の結線部6A、6Bを、光電極10及び対向電極20と導電層51との間で適正に配線することで、色素増感太陽電池セル1で発生した電流を確実に導電層51に受け渡すことが可能になる。   Moreover, in this embodiment, even if it is a case where each base material with which the photoelectrode 10 and the counter electrode 20 are provided is a base material which does not have electroconductivity, said connection part 6A, 6B is used as a photoelectrode. 10 and the counter electrode 20 and the conductive layer 51 are appropriately wired, so that the current generated in the dye-sensitized solar cell 1 can be reliably transferred to the conductive layer 51.

(組込封止材)
本実施形態の色素増感太陽電池セルの組込構造Aにおいては、図1(a)、(b)に示すように、一対の基材5A、5Bの平面視で周縁部近傍に設けられ、且つ、一対の基材5A、5Bの間に介挿された組込封止材7が備えられている。色素増感太陽電池セルの組込構造Aは、このような組込封止材7が設けられることで、一対の基材5A、5B間に色素増感太陽電池セル1を封止できる構成とされている。
(Built-in sealing material)
In the built-in structure A of the dye-sensitized solar cell of the present embodiment, as shown in FIGS. 1A and 1B, the dye-sensitized solar cell is provided in the vicinity of the peripheral edge in a plan view of the pair of base materials 5A and 5B. And the built-in sealing material 7 inserted between a pair of base materials 5A and 5B is provided. The built-in structure A of the dye-sensitized solar cell is configured such that the dye-sensitized solar cell 1 can be sealed between the pair of base materials 5A and 5B by providing such a built-in sealing material 7. Has been.

組込封止材7の材料としては、色素増感太陽電池セル1において電解質30の封止に用いられるセル封止材40と同様の材料を用いることができ、例えば、従来公知の熱可塑性樹脂や熱硬化性樹脂や紫外線硬化性樹脂等の合成樹脂からなるものを適用することができる。   As the material of the built-in sealing material 7, the same material as the cell sealing material 40 used for sealing the electrolyte 30 in the dye-sensitized solar cell 1 can be used. For example, a conventionally known thermoplastic resin Or a synthetic resin such as a thermosetting resin or an ultraviolet curable resin can be applied.

[製造方法]
上記構成の色素増感太陽電池セル1、及び、色素増感太陽電池セルの組込構造Aを製造する場合には、例えば、以下の方法とすることができる。
[Production method]
When manufacturing the dye-sensitized solar cell 1 having the above-described configuration and the built-in structure A of the dye-sensitized solar cell, for example, the following method can be used.

まず、上述したAD法を用いることにより、導電性樹脂基板11上にTiOを積層することで半導体層12を形成した後、さらに、半導体層12上に色素13を常法によって吸着させることで、光電極10を作製する。
また、導電性樹脂基板21上に、スパッタリング法により、導電性樹脂基板21上に白金(Pt)を積層して触媒層22を形成することで、対向電極20を作製する。
その後、光電極10と、導電性樹脂基板21上に形成された触媒層22との間に電解質30を配置して、セル封止材40で封止することにより、色素増感太陽電池セル1を製造する。
First, by using the AD method described above, the semiconductor layer 12 is formed by laminating TiO 2 on the conductive resin substrate 11, and then the dye 13 is further adsorbed on the semiconductor layer 12 by a conventional method. The photoelectrode 10 is produced.
Moreover, the counter electrode 20 is produced by laminating platinum (Pt) on the conductive resin substrate 21 and forming the catalyst layer 22 on the conductive resin substrate 21 by a sputtering method.
Thereafter, the electrolyte 30 is disposed between the photoelectrode 10 and the catalyst layer 22 formed on the conductive resin substrate 21 and sealed with the cell sealing material 40, thereby the dye-sensitized solar cell 1. Manufacturing.

また、透明な樹脂材料等からなる一対の基材5A、5Bの片面上に、それぞれ金属材料を積層することで、導電性を有する導電層51を形成する。
そして、他方の基材5Bの外面5aを下側とし、内面5b上、即ち、導電層51に対して、対向電極20に備えられる導電性樹脂基板21を重ね合わせるように、色素増感太陽電池セル1を載置して接続する。その後、色素増感太陽電池セル1の光電極10に備えられる導電性樹脂基板11上に導電層51を接続するように、一方の基材5Aを重ね合わせ、組込封止部7によって固定封止する。
なお、必要に応じて、導電性樹脂基板11及び導電性樹脂基板21と各導電層51を接続するための結線部6A、6Bを取り付ける。
Further, a conductive layer 51 having conductivity is formed by laminating a metal material on one surface of a pair of base materials 5A and 5B made of a transparent resin material or the like.
Then, the dye-sensitized solar cell is formed such that the outer surface 5a of the other base material 5B is on the lower side and the conductive resin substrate 21 provided in the counter electrode 20 is superimposed on the inner surface 5b, that is, on the conductive layer 51. Cell 1 is placed and connected. Thereafter, one base material 5A is overlaid so as to connect the conductive layer 51 on the conductive resin substrate 11 provided in the photoelectrode 10 of the dye-sensitized solar cell 1, and fixed and sealed by the built-in sealing portion 7. Stop.
In addition, the connection part 6A, 6B for connecting the conductive resin board | substrate 11, the conductive resin board | substrate 21, and each conductive layer 51 is attached as needed.

上記にて例示したような方法により、色素増感太陽電池セル1が一対の基材5A、5Bの間に介挿された構造を有し、一対の基材5A、5Bの内面5b側が導電性を有する導電層51とされ、この導電層51と光電極10及び対向電極20とが電気的に接続されてなる、本実施形態の色素増感太陽電池セルの組込構造Aを製造することができる。   By the method exemplified above, the dye-sensitized solar cell 1 has a structure inserted between the pair of base materials 5A and 5B, and the inner surface 5b side of the pair of base materials 5A and 5B is conductive. And manufacturing the built-in structure A of the dye-sensitized solar cell according to this embodiment, in which the conductive layer 51 is electrically connected to the photoelectrode 10 and the counter electrode 20. it can.

[色素増感太陽電池セルの組込構造の用途]
上述した構成の色素増感太陽電池セルの組込構造Aは、図2に示す例のように長尺で構成することで、従来から用いられている施設に備えられる部材に適用することが容易になる。この場合、光による発電効率の観点からは、太陽光や照明光に曝される環境下にある部材への適用が主となり、このような部材として、例えば、ブラインドのスラット、ビニルハウスの屋根部、ガレージの天井板、サンシェード、オーニング、カーポート、建屋の壁面等が挙げられる。一方、色素増感太陽電池セル1は、例えば、太陽光に対して影となる場所や壁面等、本来、発電には不利な状況下においても十分な性能を発揮できることから、色素増感太陽電池セルの組込構造Aの適用対象は多岐にわたるものとなる。
[Use of dye-sensitized solar cell built-in structure]
The built-in structure A of the dye-sensitized solar cell having the above-described configuration can be easily applied to a member provided in a conventionally used facility by being configured to be long as in the example shown in FIG. become. In this case, from the viewpoint of power generation efficiency by light, it is mainly applied to a member in an environment exposed to sunlight or illumination light. As such a member, for example, a blind slat, a roof portion of a vinyl house, etc. Garage ceilings, sunshades, awnings, carports, building walls and the like. On the other hand, the dye-sensitized solar cell 1 can exhibit sufficient performance even under circumstances that are inherently disadvantageous for power generation, such as a place or a wall that is shaded by sunlight, and thus, a dye-sensitized solar cell. The application target of the cell built-in structure A is diverse.

ここで、図2に示すような長尺の色素増感太陽電池セルの組込構造Aを、例えば、ビルや家屋の窓際等に設置されるブラインドに適用した場合には、複数のスラット(色素増感太陽電池セルの組込構造A)に太陽光が照射され、スラットによる遮光効果を得ると同時に、このスラットの内部に組み込まれた色素増感太陽電池セル1により、光発電が行われる。そして、色素増感太陽電池セル1で発生した電流は、スラット内部の導電層51を介して外部に取り出すことで抵抗が低減され、効率の良い集電が可能となる。   Here, when the built-in structure A of a long dye-sensitized solar cell as shown in FIG. 2 is applied to, for example, a blind installed near a window of a building or a house, a plurality of slats (dyes Sunlight is applied to the built-in structure A) of the sensitized solar cell to obtain a light shielding effect by the slat, and at the same time, photovoltaic power generation is performed by the dye-sensitized solar cell 1 incorporated in the slat. And the electric current which generate | occur | produced in the dye-sensitized solar cell 1 is taken out outside through the conductive layer 51 inside a slat, resistance is reduced, and efficient current collection is attained.

本発明に係る色素増感太陽電池セルの組込構造Aを適用することにより、色素増感太陽電池セル1で発生した電流を取り出す際の抵抗が低減される理由としては、以下のような理由が考えられる。
まず、対向電極20にそれぞれ備えられる導電性樹脂基板21が、導電層51に面的に接続されることで接触面積が大きくなり、接触抵抗が十分に低減されることが挙げられる。
また、長尺とされた色素増感太陽電池セルの組込構造Aにおいて、導電性樹脂基板21と各導電層51とが面的に接続されることで、この接続面の多くの箇所において、色素増感太陽電池セル1で発生した電流の受け渡しが行われることも挙げられる。
The reason why the resistance when taking out the current generated in the dye-sensitized solar cell 1 is reduced by applying the built-in structure A of the dye-sensitized solar cell according to the present invention is as follows. Can be considered.
First, the conductive resin substrate 21 provided in each of the counter electrodes 20 is connected to the conductive layer 51 in a plane to increase the contact area and sufficiently reduce the contact resistance.
In addition, in the built-in structure A of the dye-sensitized solar cell that is long, the conductive resin substrate 21 and each conductive layer 51 are connected in a plane, so that in many places on this connection surface, Another example is that the current generated in the dye-sensitized solar cell 1 is transferred.

また、導電層51のシート抵抗を、導電性樹脂基板11及び導電性樹脂基板21のシート抵抗よりも低い構成とすることで、これらの間の抵抗をより低減でき、発電性能がさらに向上する。
さらに、色素増感太陽電池セル1が一対の基材5A、5Bの間に介挿された構造を有することで、色素増感太陽電池セル1の周囲を一対の基材5A、5Bで封止することができるので、風雨や設置雰囲気等に対する耐久性も向上する。
Moreover, by setting the sheet resistance of the conductive layer 51 to be lower than the sheet resistance of the conductive resin substrate 11 and the conductive resin substrate 21, the resistance between them can be further reduced, and the power generation performance is further improved.
Furthermore, by having the structure in which the dye-sensitized solar cell 1 is interposed between the pair of base materials 5A and 5B, the periphery of the dye-sensitized solar cell 1 is sealed with the pair of base materials 5A and 5B. As a result, durability against wind and rain, installation atmosphere, etc. is improved.

また、本発明に係る色素増感太陽電池セルの組込構造Aは、色素増感太陽電池セル1が一対の基材5A、5Bで挟み込まれ、さらに、周縁部が組込封止材7で封止されていることから、色素増感太陽電池セル1自体の封止構造と併せて二重封止とされており、高い耐久性が得られるものとなる。   In addition, the dye-sensitized solar cell built-in structure A according to the present invention has the dye-sensitized solar cell 1 sandwiched between the pair of base materials 5A and 5B, and the peripheral portion is the built-in sealing material 7. Since it is sealed, it is double sealed together with the sealing structure of the dye-sensitized solar cell 1 itself, and high durability is obtained.

また、本発明に係る色素増感太陽電池セルの組込構造Aを遮光部材であるブラインドに適用した場合、一対の基材5A、5Bによって色素増感太陽電池セル1が覆われ、外部から視認できない状態となるか、あるいは、開口部52から光電極10のみが視認できる程度なので、美観特性が向上する効果が得られるものである。   Moreover, when the built-in structure A of the dye-sensitized solar cell according to the present invention is applied to the blind which is a light-shielding member, the dye-sensitized solar cell 1 is covered by the pair of base materials 5A and 5B and is visually recognized from the outside. Since it is in a state where it cannot be performed or only the photoelectrode 10 is visible from the opening 52, an effect of improving the aesthetic characteristics can be obtained.

なお、本実施形態においては、例えば、上記の色素増感太陽電池セル1に代えて、有機薄膜太陽電池セルを一対の基材の間に介挿させた構成を採用した場合でも、上述したような、発電性能が向上するとともに、耐久性や美観特性も向上する効果が得られる。   In the present embodiment, for example, instead of the dye-sensitized solar cell 1 described above, even when a configuration in which an organic thin-film solar cell is interposed between a pair of base materials is employed, as described above. In addition, the power generation performance is improved and the durability and aesthetic characteristics are also improved.

<作用効果>
以上説明したように、本発明に係る色素増感太陽電池セルの組込構造Aによれば、色素増感太陽電池セル1が一対の基材5A、5Bの間に介挿された構造を有し、一対の基材5A、5Bの少なくとも一方に設けられた導電層51に光電極10又は対向電極20が接続されているので、既存の施設に備えられるものと同様の形状を有する部材で光による発電を行うことが可能になる。また、基材5A、5Bの内面5b側に配置した導電層51に、色素増感太陽電池セル1に備えられる電極を接続する構成なので、色素増感太陽電池セル1で発生した電流が導電層51を通じて外部に供給される際の抵抗が低減され、発電性能が向上する。さらに、色素増感太陽電池セル1が一対の基材5A、5Bの間に介挿された構造なので、色素増感太陽電池セル1、さらには色素増感太陽電池セル1の周囲を一対の基材5A、5Bで封止することができ、耐久性が向上するとともに、色素増感太陽電池セル1が一対の基材5A、5Bで覆われた構造なので、美観特性も向上する。
<Effect>
As described above, the dye-sensitized solar cell built-in structure A according to the present invention has a structure in which the dye-sensitized solar cell 1 is interposed between the pair of base materials 5A and 5B. In addition, since the photoelectrode 10 or the counter electrode 20 is connected to the conductive layer 51 provided on at least one of the pair of base materials 5A and 5B, the light having a shape similar to that provided in an existing facility is used. It becomes possible to generate electricity by. Moreover, since it is the structure which connects the electrode with which the dye-sensitized solar cell 1 is equipped to the conductive layer 51 arrange | positioned at the inner surface 5b side of base material 5A, 5B, the electric current which generate | occur | produced in the dye-sensitized solar cell 1 is a conductive layer. Resistance when supplied to the outside through 51 is reduced, and power generation performance is improved. Further, since the dye-sensitized solar cell 1 is interposed between the pair of base materials 5A and 5B, the dye-sensitized solar cell 1 and the periphery of the dye-sensitized solar cell 1 are paired with a pair of bases. It can be sealed with the materials 5A and 5B, the durability is improved, and the aesthetic characteristics are also improved because the dye-sensitized solar cell 1 is covered with the pair of base materials 5A and 5B.

従って、本発明によれば、従来から用いられている施設に備えられる部材、例えば、ブラインドのスラット、ビニルハウスの屋根部やガレージの天井板、あるいはサンシェード、オーニング、カーポート、建屋の壁面等に上記構造を適用することで、発電性能に優れるとともに、耐久性、美観特性に優れた色素増感太陽電池セルの組込構造Aが実現できるという効果を奏する。   Therefore, according to the present invention, a member provided in a conventionally used facility, such as a blind slat, a roof of a vinyl house or a ceiling plate of a garage, or a sunshade, awning, carport, a building wall, etc. By applying the above structure, there is an effect that the built-in structure A of the dye-sensitized solar cell which is excellent in power generation performance and excellent in durability and aesthetic characteristics can be realized.

また、本発明に係る発電ブラインド用スラットによれば、上記構成の色素増感太陽電池セルの組込構造Aが適用されたものなので、発電性能に優れるとともに、耐久性、美観特性に優れたブラインドを構成できるという効果を奏する。   Moreover, according to the slat for power generation blinds according to the present invention, since the built-in structure A of the dye-sensitized solar cell having the above-described configuration is applied, the blind having excellent power generation performance and durability and aesthetic characteristics. There is an effect that can be configured.

次に、本発明を以下の実施例により詳細に説明するが、本発明はこれらの実施例にのみ限定されるものではない。   Next, the present invention will be described in detail by the following examples, but the present invention is not limited only to these examples.

[実施例1]
実施例1では、以下の条件及び手順で光電極及び対向電極を作製して、これら各電極の間に電解質が充填された色素増感太陽電池セルを作製するとともに、片面側に導電層が形成された一対の基材を作製し、この一対の基材の間に色素増感太陽電池セルが介挿されてなる色素増感太陽電池セルの組込構造を作製した。なお、本実施例では、本発明に係る色素増感太陽電池セルの組込構造が適用できる一例として、色素増感太陽電池セルが組み込まれたブラインドを作製した。
[Example 1]
In Example 1, a photoelectrode and a counter electrode were produced under the following conditions and procedures, a dye-sensitized solar cell in which an electrolyte was filled between these electrodes was produced, and a conductive layer was formed on one side. A pair of base materials thus prepared was prepared, and a dye-sensitized solar cell built-in structure in which a dye-sensitized solar cell was interposed between the pair of base materials was manufactured. In this example, a blind incorporating a dye-sensitized solar cell was manufactured as an example to which the built-in structure of the dye-sensitized solar cell according to the present invention can be applied.

(光電極の作製)
まず、導電性樹脂基板として15mm×214mmのITO(錫ドープ酸化インジウム)−PEN(ポリエチレンナフタレート)からなるフィルム材料(シート抵抗:15Ω/□)を準備し、この片面側に、AD法を用いて上記の酸化チタン粒子を吹き付け、半導体層を形成した。この際、AD法における成膜条件としては、搬送ガスとして窒素を用いるとともに、ガス流量を1L/min、温度を25℃、成膜室内の圧力を100Paとした。この際、酸化チタン粒子として、平均粒子径が約20nm及び約200nmのアナターゼ型TiO粒子を、重量比50:50の割合で混合した混合紛体を使用した。
また、半導体層は、導電性樹脂基板上において9mm×210mmの大きさで形成するとともに、その四隅のうちの1箇所を、導電性樹脂基板の四隅のうちの1箇所から、横幅方向で4mm、長手方向で2mmの間隔を空けて形成した。また、半導体層の膜厚は8μmに調整した。
(Production of photoelectrode)
First, a film material (sheet resistance: 15 Ω / □) made of ITO (tin-doped indium oxide) -PEN (polyethylene naphthalate) having a size of 15 mm × 214 mm is prepared as a conductive resin substrate. The titanium oxide particles were sprayed to form a semiconductor layer. At this time, as film formation conditions in the AD method, nitrogen was used as the carrier gas, the gas flow rate was 1 L / min, the temperature was 25 ° C., and the pressure in the film formation chamber was 100 Pa. At this time, a mixed powder obtained by mixing anatase TiO 2 particles having an average particle diameter of about 20 nm and about 200 nm at a weight ratio of 50:50 was used as the titanium oxide particles.
The semiconductor layer is formed in a size of 9 mm × 210 mm on the conductive resin substrate, and one of the four corners is set to 4 mm in the lateral width direction from one of the four corners of the conductive resin substrate. They were formed with an interval of 2 mm in the longitudinal direction. The film thickness of the semiconductor layer was adjusted to 8 μm.

次いで、アセトニトリルとtert−ブタノールの1:1の混和液に増感色素N719を0.3mMの濃度で溶解した色素溶液中に、上記の半導体層が形成された基板を20時間浸漬させることにより、増感色素を半導体層の表面に吸着させることで光電極を作製した。   Next, the substrate on which the semiconductor layer is formed is immersed in a dye solution in which a sensitizing dye N719 is dissolved in a 1: 1 mixture of acetonitrile and tert-butanol at a concentration of 0.3 mM for 20 hours. A photoelectrode was produced by adsorbing a sensitizing dye to the surface of the semiconductor layer.

(対向電極の作製)
まず、光電極の場合と同様に、導電性樹脂基板として15mm×214mmのITO−PENからなるフィルム材料(シート抵抗:15Ω/□)を準備した。
そして、上記の導電性樹脂基板の片面側に、スパッタ法を用いて白金(Pt)を堆積させることによって触媒層を形成し、対向電極を作製した。この際、触媒層の膜厚は30nmに調整した。
(Preparation of counter electrode)
First, as in the case of the photoelectrode, a film material (sheet resistance: 15Ω / □) made of ITO-PEN of 15 mm × 214 mm was prepared as a conductive resin substrate.
Then, a catalyst layer was formed on one side of the conductive resin substrate by depositing platinum (Pt) using a sputtering method, and a counter electrode was produced. At this time, the thickness of the catalyst layer was adjusted to 30 nm.

(色素増感太陽電池セルの組立・作製)
上記方法で作製した光電極と対向電極とを、以下に示す手順で組み立て、色素増感太陽電池セルを作製した。
まず、光電極をなす導電性樹脂基板の半導体層側において、基板上における半導体層の周縁部に、オレフィン系の熱可塑性樹脂からなる幅2mmのセル封止材を、電極間距離を維持するために必要な厚さで形成した。この際、セル封止材の側面の一部に、電解液(電解質)注入用の孔を形成しておいた。
(Assembly and production of dye-sensitized solar cells)
The photoelectrode and the counter electrode produced by the above method were assembled in the following procedure to produce a dye-sensitized solar cell.
First, on the semiconductor layer side of the conductive resin substrate forming the photoelectrode, a cell sealing material having a width of 2 mm made of an olefin-based thermoplastic resin is maintained on the peripheral edge of the semiconductor layer on the substrate in order to maintain the distance between the electrodes. It was formed in the thickness required for Under the present circumstances, the hole for electrolyte solution (electrolyte) injection | pouring was formed in a part of side surface of a cell sealing material.

次いで、上記のセル封止材を覆うように、対向電極を、触媒層が光電極側を向くように重ね合わせた後、セル封止材を加熱して硬化させることにより、熱封止を行った。
次いで、セル封止材に形成しておいた電解液注入用の孔から電解液と注入して内部に充填した後、この孔にオレフィン系の熱可塑性樹脂を塗布して加熱硬化させることにより、孔を塞いだ。この際、電解液としては、ヨウ素0.05M及び1,3-ジメチル−2−プロピルイミダゾリウムヨージド 1.0Mを、γ−ブチロラクトンに溶解して得られた電解液を用いた。
以上のような方法により、色素増感太陽電池セルを作製した。
Next, the counter electrode is overlaid so that the cell sealing material is covered so that the catalyst layer faces the photoelectrode side, and then the cell sealing material is heated and cured to perform heat sealing. It was.
Next, after injecting the electrolyte solution from the electrolyte injection hole formed in the cell sealing material and filling the inside, by applying an olefin-based thermoplastic resin to the hole and heat-curing, I plugged the hole. At this time, an electrolytic solution obtained by dissolving 0.05M iodine and 1.0M 1,3-dimethyl-2-propylimidazolium iodide in γ-butyrolactone was used as the electrolytic solution.
A dye-sensitized solar cell was produced by the method described above.

(ブラインド:一対の基材の作製)
まず、アルミニウム薄板を切り抜き加工することにより、市販のものと同様のアルミニウム製ブラインド(スラット:25mm×240mm)を構成する基材を2枚作製した。ここで、一般に、市販のアルミニウム製ブラインドは、表面が絶縁樹脂材料でコートされているため、導電性を示さないものである。
また、上記基材のうちの1枚には、上記の光電極上に形成された半導体層(増感色素)と同一面積となる、9mm×210mmの切り抜き(開口部)を形成した。この開口部は、基材の四隅のうちの1箇所から、横幅方向で8mm、長手方向で15mmの間隔を空けて形成した。
(Blind: Production of a pair of base materials)
First, by cutting out an aluminum thin plate, two substrates constituting an aluminum blind (slat: 25 mm × 240 mm) similar to a commercially available one were produced. Here, in general, a commercially available aluminum blind does not exhibit conductivity because the surface is coated with an insulating resin material.
In addition, a 9 mm × 210 mm cutout (opening) having the same area as the semiconductor layer (sensitizing dye) formed on the photoelectrode was formed on one of the substrates. This opening was formed from one of the four corners of the substrate with an interval of 8 mm in the width direction and 15 mm in the longitudinal direction.

次いで、上記の開口部が形成された基材(上側の一方の基材)、及び、開口部の無い基材(下側の他方の基材)の各々の片面側全面に、スパッタ法を用いてチタンを堆積させることにより、導電層(シート抵抗:<1Ω/□)を形成した。   Next, a sputtering method is used on the entire surface of one side of each of the base material in which the opening is formed (upper one base material) and the base material without the opening (lower base material). By depositing titanium, a conductive layer (sheet resistance: <1Ω / □) was formed.

(色素増感太陽電池セルの組込構造の組立・作製)
以下に示す手順により、上記方法で作製した一対の基材の間に色素増感太陽電池セルを介挿させることによって、色素増感太陽電池セルの組込構造の一例であるブラインドを作製した。
まず、開口部が形成された一方の基材(ブラインド)の導電層側に、概ね周縁部に沿うように、オレフィン系の熱可塑性樹脂からなる幅2mmの組込封止材を形成した。この際、組込封止材は、一方の基材の四隅のうちの1箇所から、横幅方向では間隔を空けず、長手方向では10mmの間隔を空けて形成した。
(Assembly and production of dye-sensitized solar cell built-in structure)
The blind which is an example of the built-in structure of a dye-sensitized solar cell was produced by interposing a dye-sensitized solar cell between a pair of base materials produced by the above method according to the following procedure.
First, a built-in sealing material having a width of 2 mm made of an olefin-based thermoplastic resin was formed on the conductive layer side of one base material (blind) in which an opening was formed so as to be substantially along the peripheral edge. At this time, the built-in sealing material was formed from one of the four corners of one base material with no gap in the width direction and 10 mm in the longitudinal direction.

次いで、光電極側の導電性樹脂基板、及び、対向電極側の導電性樹脂基板の各々に、各基材に形成された導電層と結線をとるための導電性テープを配置した。
次いで、開口部が形成された一方の基材が光電極側、他方の基材が対向電極側となるように、一対の基材で色素増感太陽電池セルを挟み込んだ。この際、一対の基材を、それぞれ導電層側が色素増感太陽電池セルを向くように配置した。そして、組込封止材を加熱硬化させることにより、一対の基材によって挟み込まれた色素増感太陽電池セルを封止した。
Subsequently, the conductive tape for connecting with the conductive layer formed in each base material was arranged on each of the conductive resin substrate on the photoelectrode side and the conductive resin substrate on the counter electrode side.
Next, the dye-sensitized solar cell was sandwiched between the pair of base materials so that one base material in which the opening was formed was on the photoelectrode side and the other base material was on the counter electrode side. Under the present circumstances, a pair of base material was arrange | positioned so that the electroconductive layer side might face a dye-sensitized solar cell, respectively. And the dye-sensitized solar cell pinched | interposed by a pair of base material was sealed by heat-hardening a built-in sealing material.

次いで、開口部が形成された一方の基材上に、概ね周縁部に沿うように、オレフィン系の熱可塑性樹脂からなる幅2mmの封止堰部を形成した。この際、封止堰部は、一方の基材の四隅のうちの1箇所から、横幅方向では間隔を空けず、長手方向では10mmの間隔を空けて形成した。
次いで、開口部を覆うように封止堰部の上にPENからなるフィルムを被せ、加熱硬化させることにより、PENフィルムで開口部を封止した。
以上のような手順により、本発明に係る色素増感太陽電池セルの組込構造の一例である実施例1のブラインドを完成させた。
Next, a sealing weir portion having a width of 2 mm made of an olefin-based thermoplastic resin was formed on one base material on which the opening portion was formed so as to be substantially along the peripheral edge portion. At this time, the sealing weir portion was formed from one of the four corners of the one base member with a space of 10 mm in the longitudinal direction and no space in the width direction.
Next, a film made of PEN was placed on the sealing dam so as to cover the opening, and the opening was sealed with a PEN film by heat curing.
The blind of Example 1 which is an example of the built-in structure of the dye-sensitized solar cell concerning this invention was completed by the above procedures.

(評価方法)
上記方法で得られた、本発明に係る色素増感太陽電池セルの組込構造が適用されたブラインドについて、以下のような評価試験を行った。
まず、実施例1で作製したブラインドの発電性能については、ソーラーシュミレーター(三永電機製作所製)を用いて、光強度が100mW/cmの疑似太陽光照射下における発電効率(光電変換効率)を測定するとともに、曲線因子を測定した。この際の測定値を、下記表1に示す。
(Evaluation method)
The following evaluation test was performed on the blind to which the built-in structure of the dye-sensitized solar cell according to the present invention obtained by the above method was applied.
First, regarding the power generation performance of the blind produced in Example 1, using a solar simulator (manufactured by Mitsunaga Electric Mfg. Co., Ltd.), the power generation efficiency (photoelectric conversion efficiency) under pseudo-sunlight irradiation with a light intensity of 100 mW / cm 2 is shown. Along with the measurement, the fill factor was measured. The measured values at this time are shown in Table 1 below.

また、完成後のブラインドの美観について、色素増感太陽電池セルの封止材の部分及び対向電極の部分が目視確認できない場合には「A」、これらが確認できる場合は「B」として評価し、結果を下記表1に示した。   Also, regarding the aesthetics of the blind after completion, it is evaluated as “A” when the sealant portion and the counter electrode portion of the dye-sensitized solar cell cannot be visually confirmed, and when these can be confirmed, they are evaluated as “B”. The results are shown in Table 1 below.

[実施例2]
実施例2においては、ブラインドのスラットとなる一対の基材の片面側に、導電層としてアルミニウムを蒸着させた以外は、実施例1と同様の手順で、本発明に係る色素増感太陽電池セルの組込構造の一例であるブラインドを製造し、同様の方法で評価を行った。この際、導電層のシート抵抗が3Ω/□になるように、導電層の膜厚を調整した。
[Example 2]
In Example 2, the dye-sensitized solar cell according to the present invention was performed in the same procedure as in Example 1 except that aluminum was deposited as a conductive layer on one side of a pair of base materials serving as blind slats. A blind, which is an example of the embedded structure, was manufactured and evaluated in the same manner. At this time, the film thickness of the conductive layer was adjusted so that the sheet resistance of the conductive layer was 3Ω / □.

[比較例]
比較例においては、実施例1、2と同様の方法で色素増感太陽電池セルを作製した後、この色素増感太陽電池セルを、両面テープを用いて、直接、市販のアルミニウム製ブラインドのスラットに貼り付けてブラインドを製造した後、同様の方法で評価を行った。このアルミニウム製ブラインドは、表面が絶縁樹脂材料でコートされているため、導電性を示さないものである。
[Comparative example]
In the comparative example, after a dye-sensitized solar cell was produced in the same manner as in Examples 1 and 2, this dye-sensitized solar cell was directly bonded to a commercially available aluminum blind slat using a double-sided tape. After manufacturing a blind by pasting it on, it was evaluated in the same manner. This aluminum blind does not exhibit conductivity because the surface is coated with an insulating resin material.

実施例1、2及び比較例における評価試験結果を下記表1に示す。   The evaluation test results in Examples 1 and 2 and Comparative Example are shown in Table 1 below.

Figure 0006267035
Figure 0006267035

[評価結果]
表1の結果に示すように、本発明に係る構成を有する色素増感太陽電池セルの組込構造が適用されたブラインドは、アルミニウム製ブラインドのスラットの表面に色素増感太陽電池セルを貼り付けたのみの構成である比較例に比べて、発電効率が高く、美観にも優れていることが明らかとなった。
[Evaluation results]
As shown in the results of Table 1, in the blind to which the built-in structure of the dye-sensitized solar cell having the configuration according to the present invention is applied, the dye-sensitized solar cell is attached to the surface of the slat of the aluminum blind. It was revealed that the power generation efficiency was higher and the aesthetic appearance was superior compared to the comparative example, which was a simple configuration.

ここで、表1中に示した曲線因子は、基材の電気抵抗に最も影響を受けるものであるが、実施例1、2においては、上記した各基材(基板)のシート抵抗からも明らかなように、各基材の電気抵抗が低減されていることから、曲線因子が改善され、発電効率が良好な結果になったものと考えられる。   Here, the fill factor shown in Table 1 is most affected by the electric resistance of the base material, but in Examples 1 and 2, it is clear from the sheet resistance of each base material (substrate) described above. Thus, since the electrical resistance of each base material is reduced, it is considered that the curve factor is improved and the power generation efficiency is good.

一方、比較例においては、市販の長尺であるスラットの表面に色素増感太陽電池セルを貼り付け、スラット長尺方向で電流を流す構成のため、発電部位から電流取出し位置までの距離が大きくなっていること等から、曲線因子が非常に小さくなり、発電効率が低下したものと考えられる。   On the other hand, in the comparative example, a dye-sensitized solar cell is attached to the surface of a commercially available long slat and the current flows in the slat long direction, so the distance from the power generation site to the current extraction position is large. Therefore, it is considered that the curve factor became very small and the power generation efficiency was lowered.

以上で説明した各実施形態及び各実施例における各構成及びそれらの組み合わせ等は一例であり、本発明の趣旨を逸脱しない範囲で、構成の付加、省略、置換、及びその他の変更が可能である。また、本発明は各実施形態及び各実施例によって限定されることはなく、特許請求の範囲によってのみ限定される。   The configurations and combinations thereof in the embodiments and examples described above are examples, and additions, omissions, substitutions, and other modifications of the configurations can be made without departing from the spirit of the present invention. . Moreover, this invention is not limited by each embodiment and each Example, It is limited only by a claim.

本発明に係る色素増感太陽電池セルの組込構造は、太陽電池の構造を組み込むことで、既存の機能に加えて光発電機能が得られる可能性のある施設、例えば、ブラインドのスラット、ビニルハウスの屋根部、ガレージの天井板、サンシェード、オーニング、カーポート、建屋の壁面等に対して、幅広く適用することが可能である。   The built-in structure of the dye-sensitized solar cell according to the present invention is a facility where a photovoltaic function can be obtained in addition to the existing function by incorporating the structure of the solar cell, such as blind slats, vinyl It can be widely applied to the roof of a house, a ceiling plate of a garage, a sunshade, an awning, a carport, a wall surface of a building, and the like.

A…色素増感太陽電池セルの組込構造(発電ブラインド用スラット)、1…色素増感太陽電池セル、5…一対の基材、5A…一方の基材、5B…他方の基材)、5a…外面、5b…内面、51…導電層、52…開口部、53…透明基板、54…封止堰部、10…光電極、11…導電性樹脂基板(光電極)、11a…透明基材(光電極)、11b…導電材料層(光電極)、12…半導体層、13…色素、20…対向電極、21…導電性樹脂基板(対向電極)、21a…基材(対向電極)、21b…導電材料層(対向電極)、22…触媒層、30…電解質、40…セル封止材、6A、6B…結線部、7…組込封止材。 A ... built-in structure of dye-sensitized solar cell (slat for power generation blind), 1 ... dye-sensitized solar cell, 5 ... pair of base materials, 5A ... one base material, 5B ... other base material), 5a ... outer surface, 5b ... inner surface, 51 ... conductive layer, 52 ... opening, 53 ... transparent substrate, 54 ... sealing weir, 10 ... photoelectrode, 11 ... conductive resin substrate (photoelectrode), 11a ... transparent base Material (photoelectrode), 11b ... conductive material layer (photoelectrode), 12 ... semiconductor layer, 13 ... dye, 20 ... counter electrode, 21 ... conductive resin substrate (counter electrode), 21a ... base material (counter electrode), 21b ... conductive material layer (counter electrode), 22 ... catalyst layer, 30 ... electrolyte, 40 ... cell sealing material, 6A, 6B ... connection part, 7 ... built-in sealing material.

Claims (5)

少なくとも、光電極と、該光電極と対向して設けられる対向電極とを有する色素増感太陽電池セルが、一対の基材の間に介挿された構造を有してなり、
前記一対の基材の内面側が、導電性を有する導電層とされており、
前記光電極は、導電性樹脂基板上に、半導体層及び色素がこの順で積層されてなり、
前記対向電極は、金属箔上に触媒層が積層されてなり、
前記一対の基材のうちの一方に備えられる前記導電層と前記導電性樹脂基板とが接続されることで、前記導電層と前記光電極とが電気的に接続されており、
前記一対の基材のうちの他方に備えられる前記導電層と前記金属箔とが面的に接続されることで、前記導電層と前記対向電極とが電気的に接続されていることを特徴とする色素増感太陽電池セルの組込構造。
At least a dye-sensitized solar cell having a photoelectrode and a counter electrode provided opposite to the photoelectrode has a structure interposed between a pair of base materials,
The inner side of the pair of substrates are a conductive layer having conductivity,
The photoelectrode is formed by laminating a semiconductor layer and a dye in this order on a conductive resin substrate.
The counter electrode is formed by laminating a catalyst layer on a metal foil,
Wherein by said conductive resin substrate and the conductive layer provided on one of a pair of substrates are connected, and the conductive layer and before Kihikariden poles are electrically connected,
The conductive layer and the counter electrode are electrically connected by the surface connection between the conductive layer and the metal foil provided on the other of the pair of base materials. An embedded structure of a dye-sensitized solar cell.
前記一対の基材のうち、前記光電極側に接した基材の少なくとも一部に、光透過用の開口部が形成されていることを特徴とする請求項1に記載の色素増感太陽電池セルの組込構造。   2. The dye-sensitized solar cell according to claim 1, wherein an opening for light transmission is formed in at least a part of the base material in contact with the photoelectrode of the pair of base materials. Cell built-in structure. 前記開口部を覆う透明基板が設けられていることを特徴とする請求項2に記載の色素増感太陽電池セルの組込構造。   The transparent structure which covers the said opening part is provided, The built-in structure of the dye-sensitized solar cell of Claim 2 characterized by the above-mentioned. 前記導電層のシート抵抗が、該導電層に接続される前記光電極又は前記対向電極のシート抵抗よりも小さいことを特徴とする請求項1〜請求項3の何れか一項に記載の色素増感太陽電池セルの組込構造 4. The dye enhancement according to claim 1, wherein the sheet resistance of the conductive layer is smaller than the sheet resistance of the photoelectrode or the counter electrode connected to the conductive layer. 5. Built-in structure of solar cell . 請求項1〜請求項の何れか一項に記載の色素増感太陽電池セルの組込構造を有してなることを特徴とする発電ブラインド用スラット。 A slat for a power generation blind, comprising the built-in structure of the dye-sensitized solar cell according to any one of claims 1 to 4 .
JP2014068327A 2014-03-28 2014-03-28 Built-in structure of dye-sensitized solar cell and slat for power generation blind Expired - Fee Related JP6267035B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2014068327A JP6267035B2 (en) 2014-03-28 2014-03-28 Built-in structure of dye-sensitized solar cell and slat for power generation blind
PCT/JP2015/058181 WO2015146762A1 (en) 2014-03-28 2015-03-19 Embedded structure for dye-sensitized photovoltaic cell, and slat for power generation blind
KR1020167012203A KR20160138372A (en) 2014-03-28 2015-03-19 Embedded structure for dye-sensitized photovoltaic cell, and slat for power generation blind
CN201580002551.4A CN105723481B (en) 2014-03-28 2015-03-19 The telescope structure of dye-sensitized solar cell unit and power generation used in blinds lath
TW104108882A TWI665808B (en) 2014-03-28 2015-03-20 Dye sensitized solar cell-integrated structure and slat for power generation blind

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014068327A JP6267035B2 (en) 2014-03-28 2014-03-28 Built-in structure of dye-sensitized solar cell and slat for power generation blind

Publications (2)

Publication Number Publication Date
JP2015192030A JP2015192030A (en) 2015-11-02
JP6267035B2 true JP6267035B2 (en) 2018-01-24

Family

ID=54195283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014068327A Expired - Fee Related JP6267035B2 (en) 2014-03-28 2014-03-28 Built-in structure of dye-sensitized solar cell and slat for power generation blind

Country Status (5)

Country Link
JP (1) JP6267035B2 (en)
KR (1) KR20160138372A (en)
CN (1) CN105723481B (en)
TW (1) TWI665808B (en)
WO (1) WO2015146762A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114144896A (en) * 2019-07-29 2022-03-04 夏普株式会社 Electronic device with solar cell

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003902117A0 (en) * 2003-05-05 2003-05-22 Sustainable Technologies International Pty Ltd Photovoltaic device
US8415553B2 (en) * 2004-08-11 2013-04-09 Dyesol, Ltd. Photoelectrochemical photovoltaic panel and method to manufacture thereof
JP4755882B2 (en) 2005-10-24 2011-08-24 ペクセル・テクノロジーズ株式会社 Dye-sensitized solar cell blind
JP2009129686A (en) * 2007-11-22 2009-06-11 Kiso Micro Kk Solar battery system
EP2287959A1 (en) * 2008-05-27 2011-02-23 Fujikura, Ltd. Photoelectric conversion element
JP2010080122A (en) * 2008-09-24 2010-04-08 Eeshikku Kk Chip type solar power generation element
US20110048525A1 (en) * 2008-11-26 2011-03-03 Sony Corporation Functional device and method for producing the same
IT1404501B1 (en) * 2011-02-25 2013-11-22 Turina PHOTARMONICS MOBILE SYSTEM OF PHOTOVOLTAIC SHIELDING PANELS WITH SOLAR CELLS DSSC ORGANIC DYEING FOR FACADES OF PRE-EXISTING AND NEW CONSTRUCTION BUILDINGS
JP5372998B2 (en) * 2011-06-23 2013-12-18 株式会社エヌ・ティ・ティ・ドコモ Mobile communication terminal, information distribution method and program
JP2013171722A (en) * 2012-02-21 2013-09-02 Rohm Co Ltd Dye-sensitized photoelectric conversion element, and method of manufacturing the same
US10096431B2 (en) * 2012-09-01 2018-10-09 Fujikura Ltd. Dye-sensitized solar cell element for low illuminance
WO2014061291A1 (en) * 2012-10-19 2014-04-24 積水化学工業株式会社 Electric module

Also Published As

Publication number Publication date
KR20160138372A (en) 2016-12-05
JP2015192030A (en) 2015-11-02
CN105723481A (en) 2016-06-29
TWI665808B (en) 2019-07-11
WO2015146762A1 (en) 2015-10-01
TW201547046A (en) 2015-12-16
CN105723481B (en) 2018-07-13

Similar Documents

Publication Publication Date Title
JP5208974B2 (en) Dye-sensitized solar cell
JP2009110796A (en) Dye-sensitized photoelectric conversion element module, its manufacturing method, and electronic device
JP2006294423A (en) Dye-sensitized solar cell
JP2013020757A (en) Photoelectric conversion element, method for manufacturing the same, electronic device, counter electrode for photoelectric conversion element, and structure
JP2012059599A (en) Carbon based electrode and electrochemical device
JP4606777B2 (en) Wet solar cell
JP2005142090A (en) Dye-sensitized solar cell
JP2012064485A (en) Dye-sensitized photoelectric conversion device
JP5189870B2 (en) Electrolytic solution and dye-sensitized solar cell
JP2013545227A (en) Dye-sensitive solar cell module with light scattering layer and method for producing the same
JP2005141996A (en) Dye-sensitized solar cell
JP2006236807A (en) Dye-sensitized solar cell
JP6267035B2 (en) Built-in structure of dye-sensitized solar cell and slat for power generation blind
JP4334960B2 (en) Carbon electrode and electrode and dye-sensitized solar cell comprising the same
JP2005302499A (en) Dye-sensitized solar cell
JP2005317453A (en) Dye-sensitized solar cell and its manufacturing method
JP4696459B2 (en) Module aggregate
JP6703493B2 (en) Photoelectric conversion element and method for manufacturing photoelectric conversion element
JP5095148B2 (en) Working electrode substrate and photoelectric conversion element
JP2015141955A (en) photoelectric conversion element
JP2007172917A (en) Photoelectric transducer
JP2013054827A (en) Dye-sensitized solar cell module
WO2013015067A1 (en) Photoelectric-conversion device, electronic instrument and building
JP2009016174A (en) Photoelectric conversion element
JP5189869B2 (en) Electrolytic solution and dye-sensitized solar cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161101

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20171106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171205

R151 Written notification of patent or utility model registration

Ref document number: 6267035

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees