JP6264106B2 - Calcium fluoride optical member and manufacturing method thereof - Google Patents

Calcium fluoride optical member and manufacturing method thereof Download PDF

Info

Publication number
JP6264106B2
JP6264106B2 JP2014046844A JP2014046844A JP6264106B2 JP 6264106 B2 JP6264106 B2 JP 6264106B2 JP 2014046844 A JP2014046844 A JP 2014046844A JP 2014046844 A JP2014046844 A JP 2014046844A JP 6264106 B2 JP6264106 B2 JP 6264106B2
Authority
JP
Japan
Prior art keywords
optical member
plane
central axis
calcium fluoride
parallel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014046844A
Other languages
Japanese (ja)
Other versions
JP2015169911A (en
Inventor
直保 上原
直保 上原
影山 元英
元英 影山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2014046844A priority Critical patent/JP6264106B2/en
Publication of JP2015169911A publication Critical patent/JP2015169911A/en
Application granted granted Critical
Publication of JP6264106B2 publication Critical patent/JP6264106B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Polarising Elements (AREA)

Description

本発明はフッ化カルシウム光学部材及びその製造方法に関し、より詳細には、フッ化カルシウム単結晶の光学部材及びその製造方法に関する。   The present invention relates to a calcium fluoride optical member and a method for producing the same, and more particularly to a calcium fluoride single crystal optical member and a method for producing the same.

フッ化カルシウム(CaF、蛍石)単結晶は、真空紫外領域から赤外領域にわたる広い波長領域の光に対して高い透過率を有している。そのためCaF単結晶は光学部材として広く使用されており、例えば、エキシマランプの発光管の材料として用いられている(特許文献1)。 A calcium fluoride (CaF 2 , fluorite) single crystal has a high transmittance for light in a wide wavelength range from the vacuum ultraviolet region to the infrared region. Therefore, CaF 2 single crystal is widely used as an optical member, and is used, for example, as a material for an arc tube of an excimer lamp (Patent Document 1).

特開2009−163965号公報JP 2009-163965 A

CaF単結晶により形成された光学部材は、温度や圧力の異なる様々な環境下で使用されるが、高温・高圧の環境下においては、強度が十分ではないことが分かっている。そのため、光学部材の用途や使用環境によっては、CaF単結晶により形成された光学部材が適さないことがあった。 An optical member formed of a CaF 2 single crystal is used in various environments having different temperatures and pressures, but it has been found that the strength is not sufficient in a high temperature / high pressure environment. Therefore, depending on the application and use environment of the optical member, there is the optical member formed by CaF 2 single crystals are not suitable.

そこで本発明は、上記の課題を解決することを目的とし、高温且つ高圧下においても、確実に使用できるCaF単結晶光学部材を提供することを目的とする。 Therefore, an object of the present invention is to provide a CaF 2 single crystal optical member that can be used reliably even at high temperatures and high pressures.

本発明の第1の態様に従えば、
フッ化カルシウム光学部材であって、
単結晶フッ化カルシウムで形成され且つ筒状の形状を有し、
前記筒の中心軸と、単結晶フッ化カルシウムの互いに直交する3つの{100}結晶面のいずれか1面とが直交しており、
前記筒の周壁の半径方向の厚さが、前記3つの{100}結晶面の他のいずれか1面と平行で且つ前記筒の中心軸を含む面を前記中心軸周りの一方向に45°回転した面と前記周壁とが交わる箇所、及び前記3つの{100}結晶面の残りの1面と平行で且つ前記筒の中心軸を含む面を前記中心軸周りの前記一方向に45°回転した面と前記周壁とが交わる箇所において他の箇所より大きいフッ化カルシウム光学部材が提供される。
According to the first aspect of the present invention,
A calcium fluoride optical member,
It is formed of single crystal calcium fluoride and has a cylindrical shape,
The central axis of the cylinder and one of the three {100} crystal planes of the single crystal calcium fluoride orthogonal to each other are orthogonal to each other,
A radial thickness of the peripheral wall of the cylinder is 45 ° in one direction around the central axis with a plane parallel to any one of the three {100} crystal faces and including the central axis of the cylinder. Rotate the surface where the rotated surface and the peripheral wall intersect, and the plane parallel to the remaining one of the three {100} crystal planes and including the central axis of the cylinder by 45 ° in the one direction around the central axis A calcium fluoride optical member that is larger than the other part is provided at the place where the finished surface and the peripheral wall intersect.

本発明の第2の態様に従えば、
単結晶フッ化カルシウムで形成され且つ内部に円柱状の空間が形成された略四角筒状の光学部材であって、前記略四角筒の対向する1組の外側面が単結晶フッ化カルシウムの互いに直交する3つの{100}面のうちの第1面と平行であり、前記略四角筒の対向する別の1組の外側面が{100}面のうちの第2面と平行であり、前記略四角筒の底面又は上面が、{100}面のうちの第3面と平行である光学部材が提供される。
According to the second aspect of the present invention,
A substantially rectangular tube-shaped optical member formed of single-crystal calcium fluoride and having a cylindrical space formed therein, wherein a pair of opposed outer surfaces of the substantially square-tube are made of single-crystal calcium fluoride. The first surface of the three orthogonal {100} surfaces is parallel to the other surface, and another set of opposed outer surfaces of the substantially square tube is parallel to the second surface of the {100} surfaces, An optical member is provided in which the bottom surface or top surface of the substantially rectangular tube is parallel to the third surface of the {100} surfaces.

本発明の第3の態様に従えば、
フッ化カルシウム光学部材の製造方法であって、
単結晶フッ化カルシウムの互いに直交する3つの{100}結晶面の存在する方向を特定することと、
前記単結晶フッ化カルシウムを筒状に削り出すこととを有し、
前記削り出しは、前記筒の中心軸と、前記3つの{100}結晶面のいずれか1面とが直交し、且つ前記筒の周壁の半径方向の厚さが、前記3つの{100}結晶面の他のいずれか1面と平行で且つ前記筒の中心軸を含む面を前記中心軸周りの一方向に45°回転した面と前記周壁とが交わる箇所、及び前記3つの{100}結晶面の残りの1面と平行で且つ前記筒の中心軸を含む面を前記中心軸周りの前記一方向に45°回転した面と前記周壁とが交わる箇所において他の箇所より大きくなるように行われるフッ化カルシウム光学部材の製造方法が提供される。
According to a third aspect of the invention,
A method for producing a calcium fluoride optical member, comprising:
Identifying the direction in which three {100} crystal planes of single crystal calcium fluoride are orthogonal to each other;
Scraping the single crystal calcium fluoride into a cylindrical shape,
In the cutting, the central axis of the cylinder and any one of the three {100} crystal faces are orthogonal to each other, and the radial thickness of the peripheral wall of the cylinder is the three {100} crystals. A surface that is parallel to any one of the other surfaces and includes the central axis of the cylinder, rotated by 45 ° in one direction around the central axis, and a portion where the peripheral wall intersects, and the three {100} crystals A plane parallel to the remaining one of the planes and including the central axis of the cylinder is made to be larger than the other part at a point where the surface rotated by 45 ° in the one direction around the central axis and the peripheral wall intersect. The manufacturing method of the said calcium fluoride optical member is provided.

本発明によれば、高温且つ高圧の環境下においても、十分な強度を有するCaF単結晶光学部材が提供される。 According to the present invention, a CaF 2 single crystal optical member having sufficient strength even in a high temperature and high pressure environment is provided.

図1は、本発明の実施形態に係る光学部材の斜視図である。FIG. 1 is a perspective view of an optical member according to an embodiment of the present invention. 図2は、シミュレーションにおける位置拘束条件及び荷重条件を示す説明図である。FIG. 2 is an explanatory diagram showing position constraint conditions and load conditions in the simulation. 図3(a)〜(c)は、光学部材とCaF単結晶の単位格子(立方格子)との位置関係、及び光学部材と単位格子の主軸x、主軸y、主軸zとの位置関係を示す。3A to 3C show the positional relationship between the optical member and the unit lattice (cubic lattice) of the CaF 2 single crystal, and the positional relationship between the optical member and the principal axis x, principal axis y, and principal axis z of the unit lattice. Show. 図4は、実施例の光学部材と比較例の光学部材について、解析条件及び解析結果を示す表である。FIG. 4 is a table showing analysis conditions and analysis results for the optical member of the example and the optical member of the comparative example. 図5(a)〜(c)は、実施例の光学部材の解析結果であり、内圧が30atmのときに光学部材に生じるせん断応力の様子を示す。FIGS. 5A to 5C are analysis results of the optical member of the example, and show the state of shear stress generated in the optical member when the internal pressure is 30 atm. 図6(a)〜(c)は、実施例の光学部材の解析結果であり、内圧が90atmのときに光学部材に生じるせん断応力の様子を示す。6A to 6C are analysis results of the optical member of the example, and show a state of shear stress generated in the optical member when the internal pressure is 90 atm. 図7は、実施例の光学部材において、内圧によるせん断応力の生じる位置を示す説明図である。FIG. 7 is an explanatory diagram illustrating a position where shear stress is generated due to internal pressure in the optical member of the example. 図8は、CaF単結晶の臨界分解せん断応力(CRSS)と温度との関係を、結晶面ごとに示すグラフである。FIG. 8 is a graph showing the relationship between the critical decomposition shear stress (CRSS) of CaF 2 single crystal and the temperature for each crystal plane. 図9(a)〜(c)は、比較例の光学部材の解析結果であり、内圧が30atmのときに光学部材に生じるせん断応力の様子を示す。FIGS. 9A to 9C are analysis results of the optical member of the comparative example, and show the state of shear stress generated in the optical member when the internal pressure is 30 atm. 図10(a)〜(c)は、比較例の光学部材の解析結果であり、内圧が90atmのときに光学部材に生じるせん断応力の様子を示す。FIGS. 10A to 10C are analysis results of the optical member of the comparative example, and show the state of shear stress generated in the optical member when the internal pressure is 90 atm. 図11は、比較例の光学部材において、内圧によるせん断応力の生じる位置を示す説明図である。FIG. 11 is an explanatory diagram showing a position where shear stress due to internal pressure occurs in the optical member of the comparative example. 図12(a)〜(c)は、比較例の光学部材の解析結果であり、内圧が30atmのときに光学部材に生じるせん断応力の様子を示す。12A to 12C are analysis results of the optical member of the comparative example, and show the state of shear stress generated in the optical member when the internal pressure is 30 atm. 図13(a)〜(c)は、比較例の光学部材の解析結果であり、内圧が90atmのときに光学部材に生じるせん断応力の様子を示す。FIGS. 13A to 13C are analysis results of the optical member of the comparative example, and show the state of shear stress generated in the optical member when the internal pressure is 90 atm. 図14は、比較例の光学部材において、内圧によるせん断応力の生じる位置を示す説明図である。FIG. 14 is an explanatory view showing a position where shear stress due to internal pressure occurs in the optical member of the comparative example.

<第1実施形態>
図1〜図14を参照して、本願の第1実施形態について説明する。
<First Embodiment>
A first embodiment of the present application will be described with reference to FIGS.

本実施形態の光学部材10は、図1に示す通り、中心軸Aを有する筒状のCaF管であり、管を形成する内周面10i及び外周面10oを有する。中心軸に直交する断面形状は、外形が略正方形であり中心軸Aと同心の円形開口を有する。すなわち光学部材10は、その内部に円柱状の空間が形成された略四角柱状の形状を有する。外周面10oの4つの角部Cは所定の曲率で丸みが与えられている。 As shown in FIG. 1, the optical member 10 of the present embodiment is a cylindrical CaF 2 tube having a central axis A, and has an inner peripheral surface 10i and an outer peripheral surface 10o forming the tube. The cross-sectional shape orthogonal to the central axis has a substantially square outer shape and a circular opening concentric with the central axis A. That is, the optical member 10 has a substantially quadrangular prism shape in which a cylindrical space is formed. The four corners C of the outer peripheral surface 10o are rounded with a predetermined curvature.

光学部材10はCaF単結晶によって形成されており、CaF単結晶の互いに直交する三つの{100}結晶面(第1面、第2面、第3面)、すなわち(100)結晶面、(010)結晶面、(001)結晶面のうち、いずれか一つの結晶面が中心軸Aと直交する方向に存在している。一例として図3(a)に、(001)結晶面が中心軸Aに直交する方向に存在する光学部材をCaF単結晶の単位格子ULとともに示す。以下、{100}結晶面、(100)結晶面、(010)結晶面等は、単に{100}面、(100)面、(010)面等と記載する。 The optical member 10 is formed by CaF 2 single crystal, the three {100} crystal faces that are orthogonal to each other of the CaF 2 single crystal (first surface, second surface, third surface), i.e., (100) crystal plane, One of the (010) crystal plane and the (001) crystal plane exists in a direction perpendicular to the central axis A. As an example, FIG. 3A shows an optical member having a (001) crystal plane in a direction perpendicular to the central axis A together with a unit cell UL of CaF 2 single crystal. Hereinafter, the {100} crystal plane, (100) crystal plane, (010) crystal plane, etc. are simply referred to as {100} plane, (100) plane, (010) plane, etc.

光学部材10においては、CaF単結晶の互いに直交する三つの{100}面のうち、中心軸Aと直交しない残りの2つの{100}面が、それぞれ、外周面10oの対向する2組の面とそれぞれ平行に存在している。図3(a)に示す光学部材10では、(010)面が、外周面10oの対向する1組の面と平行に存在し、(100)面が、外周面10oの対向するもう1組の面と平行に存在していることがわかる。 In the optical member 10, among the three {100} planes of the CaF 2 single crystal that are orthogonal to each other, the remaining two {100} planes that are not orthogonal to the central axis A are two sets of opposing outer peripheral surfaces 10o, respectively. Each surface is parallel to each other. In the optical member 10 shown in FIG. 3 (a), the (010) plane exists in parallel with a pair of opposing surfaces of the outer peripheral surface 10o, and the (100) plane is another set of opposing outer peripheral surfaces 10o. It can be seen that it exists parallel to the surface.

なお、本明細書において「CaF単結晶」とは、一つの結晶からなる文字通りの単結晶のみではなく、2つ以上の数えられる程度の数の結晶からなるCaF結晶であって、CaF単結晶と同程度の光学特性を備えるCaF結晶も含むものとする。また本明細書において「軸(中心軸)と直交する面」、「軸(中心軸)と直交して存在する面」とは、軸と直交する面(「直交面」)のみではなく、直交面を、当該直交面内に含まれ且つ当該軸と交差する任意の軸まわりに、任意の回転方向に、約5度以下の角度だけ回転させた面も含まれるものとする。また、「軸(中心軸)を含む面」とは、軸を含む面を、上記の任意の軸まわりに、任意の回転方向に、約5度以下の角度だけ回転させた面も含むものとする。 Note that "CaF 2 single crystal" as used herein, not only literal single crystal consisting of a single crystal, a CaF 2 crystals of two or more of the number of degree counted crystal, CaF 2 A CaF 2 crystal having the same optical characteristics as a single crystal is also included. Also, in this specification, “a plane orthogonal to the axis (center axis)” and “a plane perpendicular to the axis (center axis)” are not only a plane orthogonal to the axis (“orthogonal plane”) but also orthogonal A surface obtained by rotating a surface by an angle of about 5 degrees or less in an arbitrary rotation direction around an arbitrary axis included in the orthogonal plane and intersecting the axis is also included. Further, the “plane including the axis (center axis)” includes a plane obtained by rotating the plane including the axis about the above-described arbitrary axis in an arbitrary rotation direction by an angle of about 5 degrees or less.

光学部材10は様々な分野で用いることができるが、例えば半導体製造装置の分野では、露光装置の光源、ウエハ検査装置の光源等において用いることができる。この場合は、光学部材10の両側の端面10eの開口10aの少なくとも一方から、光学部材10の内側に気体を与えた後、両側の端面10eの開口10aに不図示の蓋を取り付け、気体を密封する。そして内側に気体が密封された光学部材10を任意の保持部材(不図示)によって保持する。この状態で密封した気体に赤外線等の励起光を照射して気体原子(気体分子)をプラズマ状態に至らせることにより、内周面10i及び外周面10oを介して、光学部材10の外部にプラズマ光を取り出すことができる。   The optical member 10 can be used in various fields. For example, in the field of semiconductor manufacturing apparatuses, the optical member 10 can be used in a light source of an exposure apparatus, a light source of a wafer inspection apparatus, and the like. In this case, after supplying gas to the inside of the optical member 10 from at least one of the openings 10a on both end faces 10e of the optical member 10, a lid (not shown) is attached to the openings 10a on both end faces 10e to seal the gas. To do. Then, the optical member 10 sealed with gas is held by an arbitrary holding member (not shown). The gas sealed in this state is irradiated with excitation light such as infrared rays to bring gas atoms (gas molecules) into a plasma state, and thereby plasma is generated outside the optical member 10 via the inner peripheral surface 10i and the outer peripheral surface 10o. Light can be extracted.

以下に本発明の実施例を更に詳細に説明するが、本発明はこれに限定されるものではない。   Examples of the present invention will be described in more detail below, but the present invention is not limited thereto.

<実施例1> <Example 1>

実施例1の光学部材10は、中心軸A方向の長さが50mm、内周面10iの断面が直径25mmの円形、外周面10oの断面が一辺30mmの略正方形である光源用筒状部材である。また、光学部材10の角部Cは、R=5mmの丸みを有している。また光学部材10は1つの結晶からなる狭義のCaF単結晶により形成されており、(001)結晶面が中心軸Aに直交する方向に、(010)面及び(100)面が、外周面10oの対向する2組の面にそれぞれ平行に存在している(図3(a))。 The optical member 10 of Example 1 is a cylindrical member for a light source having a length of 50 mm in the direction of the central axis A, a circular shape with a cross section of an inner peripheral surface 10 i of 25 mm in diameter, and a substantially square shape with a cross section of an outer peripheral surface 10 o of 30 mm on a side. is there. Further, the corner C of the optical member 10 has a roundness of R = 5 mm. Further, the optical member 10 is formed by a narrowly defined CaF 2 single crystal composed of one crystal, and the (001) plane and the (100) plane are the outer peripheral surface in the direction in which the (001) crystal plane is orthogonal to the central axis A. Each of them exists in parallel with two opposing faces of 10o (FIG. 3 (a)).

実施例1の光学部材10の内部に収容されるガス圧(内圧)に対する強度、すなわち耐圧性又は耐久性を調べるために、次のシミュレーション(有限要素解析)を行った。   In order to examine the strength against the gas pressure (internal pressure) accommodated in the optical member 10 of Example 1, that is, pressure resistance or durability, the following simulation (finite element analysis) was performed.

<解析条件>
シミュレーションにおいては、上記の光学部材10を対象として、このような光学部材10に内圧が生じた時に、光学部材10を形成するCaF単結晶の{100}面に生じる最大せん断応力の値及びせん断応力の生じる位置を解析した。まず、本シミュレーションの解析条件について説明する。
<Analysis conditions>
In the simulation, with respect to the optical member 10 described above, when an internal pressure is generated in the optical member 10, the value of the maximum shear stress generated in the {100} plane of the CaF 2 single crystal forming the optical member 10 and the shear The position where stress was generated was analyzed. First, analysis conditions for this simulation will be described.

(1)位置拘束条件
図1、図2に示す通り、光学部材10の端面10eを含む面と中心軸Aとの交点に仮想拘束点VCを設定し、この仮想拘束点VCの位置を拘束することにより、光学部材10の仮想拘束点全拘束を行った。これにより光学部材10を、荷重に応じた形状変化に関してはなんら規制を受けず自在に変形することが可能な状態で、且つ荷重を受けて全体の位置がシフトすることがないよう係止された状態で拘束した。
(1) Position restraint condition As shown in FIGS. 1 and 2, a virtual restraint point VC is set at the intersection of the surface including the end face 10e of the optical member 10 and the central axis A, and the position of the virtual restraint point VC is restrained. As a result, all the virtual constraint points of the optical member 10 were restrained. As a result, the optical member 10 is locked in such a manner that the optical member 10 can be freely deformed without any restriction regarding the shape change according to the load, and the entire position is not shifted by receiving the load. Restrained in state.

(2)材料物性
CaF単結晶が直交異方性材料であるため、直交異方性材料であると設定した。また、光学部材10(すなわちCaF単結晶)の温度は25℃であるとした。CaF単結晶は立方晶系単結晶体であり、したがって解析に用いられる構成式中の弾性マトリクスは下記の式(1)となる。

Figure 0006264106
ここで、C11、C12、C44は、それぞれ弾性スティフネス[GPa]である。 (2) Material properties Since CaF 2 single crystal is an orthotropic material, it was set to be an orthotropic material. The temperature of the optical member 10 (i.e. CaF 2 single crystals) was to be 25 ° C.. The CaF 2 single crystal is a cubic single crystal, and therefore the elastic matrix in the constitutive formula used for the analysis is represented by the following formula (1).
Figure 0006264106
Here, C 11 , C 12 , and C 44 are elastic stiffness [GPa], respectively.

本解析に用いた弾性スティフネスC11、C12、C44は、JISR1602の「ファインセラミックスの弾性率試験方法」”動的弾性率試験方法 超音波パルス法”に準拠してCaF単結晶内を伝搬する超音波の音速[m/s]を測定し、この測定値を用いて算出したものである。CaF単結晶の25℃における弾性スティフネスは、C11=164GPa、C12=43.7GPa、C44=34.6GPaである。 The elastic stiffnesses C 11 , C 12 , and C 44 used in this analysis are measured in the CaF 2 single crystal according to JISR1602 “Fine ceramics elastic modulus test method” and “Dynamic elastic modulus test method ultrasonic pulse method”. The sound velocity [m / s] of the propagating ultrasonic wave is measured and calculated using this measured value. The elastic stiffness of the CaF 2 single crystal at 25 ° C. is C 11 = 164 GPa, C 12 = 43.7 GPa, and C 44 = 34.6 GPa.

(3)荷重条件
光学部材10の内側を30atm又は90atmに設定し、これにより光学部材10が、半径方向の圧力P(図2)を、内周面10iの周方向において均等に受けるものと設定した。
(3) Load condition The inner side of the optical member 10 is set to 30 atm or 90 atm, so that the optical member 10 receives the radial pressure P (FIG. 2) evenly in the circumferential direction of the inner peripheral surface 10i. did.

(4)結晶面配置
光学部材10の結晶面配置について、図3を参照してより詳細に説明する。図3(a)の上側には、光学部材10を基準として、光学部材10に対するCaF単結晶の単位格子(立方格子)UL及び単位格子ULの主軸x、主軸y、主軸zの配置を示し、同図の下側には、CaF単結晶の単位格子ULを基準として、単位格子ULに対する光学部材10の配置を示す。図の上下は互いに対応しており、光学部材10の中心軸Aの方向と、単位格子ULの主軸x、主軸y、主軸zの方向との関係は、図3(a)の上下でそれぞれ同一である。なお便宜上、図3(a)の上側においては、光学部材10の中心軸Aが主軸x、y、zの原点を通るものとして描いた。同図の下側においては、光学部材10の配置を表すため、光学部材10の中心軸A及び縮小した端面10eの輪郭のみを描いた。
(4) Crystal Plane Arrangement The crystal plane arrangement of the optical member 10 will be described in more detail with reference to FIG. The upper side of FIG. 3A shows the arrangement of the unit lattice (cubic lattice) UL of the CaF 2 single crystal with respect to the optical member 10 and the principal axis x, principal axis y, and principal axis z of the unit lattice UL with respect to the optical member 10. The lower side of the figure shows the arrangement of the optical member 10 with respect to the unit cell UL with reference to the unit cell UL of CaF 2 single crystal. The upper and lower sides in the figure correspond to each other, and the relationship between the direction of the central axis A of the optical member 10 and the directions of the main axis x, the main axis y, and the main axis z of the unit cell UL is the same in the upper and lower sides of FIG. It is. For convenience, the central axis A of the optical member 10 is drawn as passing through the origins of the main axes x, y, and z on the upper side of FIG. In the lower part of the figure, only the outline of the central axis A of the optical member 10 and the reduced end face 10e is drawn in order to represent the arrangement of the optical member 10.

本解析の対象である光学部材10の結晶面配置においては、図3(a)に示すとおり、単位格子ULの主軸zと光学部材10の中心軸Aが一致している。また、単位格子ULの主軸xは、中心軸Aと直交する面内において、外周面10oの対向する1組の面と平行に存在しており、且つ同面内に投射した対角線DL1、DL2の投射線とそれぞれ45°の角度を有して存在している。主軸yも同様に、中心軸Aと直交する面内において、外周面10oの対向するもう1組の面と平行に存在しており、且つ同面内に投射した対角線DL1、DL2の投射線とそれぞれ45°の角度を有して存在している。したがって本解析の結晶面配置においては、CaF単結晶の互いに直交する3つの{100}面のうち、主軸xと主軸yとにより画成される面(以下、適宜「xy面」と称する)と平行に存在する(001)面が、中心軸Aと直交して存在している。また、主軸yと主軸zとにより画成される面(以下、適宜「yz面」と称する)と平行に存在する(100)面が外周面10oの対向する1組の面と平行に存在しており、主軸xと主軸zとにより画成される面(以下、適宜「xz面」と称する)と平行に存在する(010)面が外周面10oの対向するもう1組の面と平行に存在している。 In the crystal plane arrangement of the optical member 10 that is the object of this analysis, as shown in FIG. 3A, the main axis z of the unit cell UL coincides with the central axis A of the optical member 10. In addition, the main axis x of the unit cell UL exists in a plane orthogonal to the central axis A in parallel with a pair of opposing surfaces of the outer peripheral surface 10o, and the diagonal lines DL1 and DL2 projected on the same plane. It exists at an angle of 45 ° with the projection line. Similarly, in the plane orthogonal to the central axis A, the main axis y exists in parallel with another set of opposing surfaces of the outer peripheral surface 10o, and the projected lines of the diagonal lines DL1 and DL2 projected on the same plane Each exists with an angle of 45 °. Therefore, in the crystal plane arrangement of this analysis, of the three {100} planes of the CaF 2 single crystal orthogonal to each other, a plane defined by the main axis x and the main axis y (hereinafter referred to as “xy plane” as appropriate) The (001) plane that exists in parallel with the center axis A exists perpendicular to the central axis A. In addition, a (100) plane that exists in parallel with a plane defined by the main axis y and the main axis z (hereinafter referred to as “yz plane” as appropriate) exists in parallel with a pair of opposing surfaces of the outer peripheral surface 10o. The (010) plane existing in parallel with the plane defined by the main axis x and the main axis z (hereinafter referred to as “xz plane” as appropriate) is in parallel with another set of facing surfaces of the outer peripheral surface 10o. Existing.

次に、上記の条件の下で行ったシミュレーションの結果について述べる。本発明者は、上記の解析条件の下で、光学部材10を形成するCaF単結晶の3つの{100}面、すなわち(100)面、(010)面、(001)面に生じる最大せん断応力の大きさ、及びせん断応力の生じる位置を推定した。 Next, the results of simulation performed under the above conditions will be described. The present inventor has found that the maximum shear that occurs on the three {100} planes of the CaF 2 single crystal forming the optical member 10, that is, the (100) plane, the (010) plane, and the (001) plane, under the above analysis conditions. The magnitude of the stress and the position where the shear stress occurs were estimated.

図4の表中に示す通り、内圧が30atmの時は、(001)面に生じる最大せん断応力が8.95MPa、(100)面に生じる最大せん断応力が0.46MPa、(010)面に生じる最大せん断応力が0.46MPaである。また、せん断応力の生じる位置は、図5に示す通りである。図5(a)が(001)面に生じるせん断応力の位置を、図5(b)が(100)面に生じるせん断応力の位置を、図5(c)が(010)面に生じるせん断応力の位置をそれぞれ示しており、目安として赤色又は紺色で表される領域において8〜10MPa程度の大きさのせん断応力が、橙色又は青色で表わされる領域において6〜8MPa程度の大きさのせん断応力が、黄色又は水色で表される領域において4〜6MPa程度の大きさのせん断応力が生じている。緑色の領域においては、これよりも小さいせん断応力が生じているか、又はせん断応力が生じていない。なお図5はカラーであるが、白黒で表示された場合は、赤色、紺色、青色で表される領域が特に色の濃い領域として、水色で表される領域がやや色の薄い領域として、黄色で表される領域が特に色の薄い領域として表示される。図4の表と図5より、光学部材10の内部に気体を封入して内圧を30atmにした場合、光学部材10の周壁内の4箇所において、(001)面にせん断応力が生じ、その最大値は内周面10i上における8.95MPaであることが推定される。   As shown in the table of FIG. 4, when the internal pressure is 30 atm, the maximum shear stress generated on the (001) plane is 8.95 MPa, and the maximum shear stress generated on the (100) plane is 0.46 MPa on the (010) plane. The maximum shear stress is 0.46 MPa. Further, the position where the shear stress occurs is as shown in FIG. 5A shows the position of the shear stress generated on the (001) plane, FIG. 5B shows the position of the shear stress generated on the (100) plane, and FIG. 5C shows the shear stress generated on the (010) plane. As a guide, a shear stress of about 8 to 10 MPa is obtained in a region represented by red or amber, and a shear stress of about 6 to 8 MPa is produced in a region represented by orange or blue. In a region represented by yellow or light blue, a shear stress of about 4 to 6 MPa is generated. In the green region, a smaller shear stress is generated or no shear stress is generated. Although FIG. 5 shows a color, when displayed in black and white, the area represented by red, dark blue, and blue is a particularly dark area, and the area represented by light blue is a slightly light area. Is displayed as a particularly light-colored area. From the table of FIG. 4 and FIG. 5, when gas is sealed in the optical member 10 and the internal pressure is set to 30 atm, shear stress is generated in the (001) plane at four locations in the peripheral wall of the optical member 10, and the maximum The value is estimated to be 8.95 MPa on the inner peripheral surface 10i.

また、図4の表中に示す通り、内圧が90atmの時は、(001)面に生じる最大せん断応力が26.85MPa、(100)面に生じる最大せん断応力が1.39MPa、(010)面に生じる最大せん断応力が1.39MPaである。また、せん断応力の生じる位置は、図6に示す通りである。図6(a)が(001)面に生じるせん断応力の位置を、図6(b)が(100)面に生じるせん断応力の位置を、図6(c)が(010)面に生じるせん断応力の位置をそれぞれ示しており、目安として赤色又は紺色で表される領域において24〜32MPa程度の大きさのせん断応力が、橙色又は青色で表わされる領域において16〜24MPa程度の大きさのせん断応力が、黄色又は水色で表される領域において8〜16MPa程度の大きさのせん断応力が生じている。緑色の領域においては、これよりも小さいせん断応力が生じているか、又はせん断応力が生じていない。なお図6はカラーであるが、白黒で表示された場合は、赤色、紺色、青色で表される領域が特に色の濃い領域として、水色で表される領域がやや色の薄い領域として、黄色で表される領域が特に色の薄い領域として表示される。図4の表と図6より、光学部材10の内部に気体を封入して内圧を90atmにした場合、光学部材10の周壁内の4箇所において(001)面にせん断応力が生じ、その最大値は、内周面10i上における26.85MPaであることが推定される。   As shown in the table of FIG. 4, when the internal pressure is 90 atm, the maximum shear stress generated on the (001) plane is 26.85 MPa, the maximum shear stress generated on the (100) plane is 1.39 MPa, and the (010) plane. The maximum shear stress generated in 1.39 MPa. Further, the position where the shear stress occurs is as shown in FIG. 6A shows the position of the shear stress generated on the (001) plane, FIG. 6B shows the position of the shear stress generated on the (100) plane, and FIG. 6C shows the shear stress generated on the (010) plane. As a guideline, a shear stress of about 24 to 32 MPa is obtained in a region represented by red or amber, and a shear stress of about 16 to 24 MPa is represented in a region represented by orange or blue. In a region represented by yellow or light blue, a shear stress of about 8 to 16 MPa is generated. In the green region, a smaller shear stress is generated or no shear stress is generated. Although FIG. 6 shows a color, when displayed in black and white, the red, dark blue, and blue areas are particularly dark areas, and the light blue area is a slightly light area. Is displayed as a particularly light-colored area. From the table of FIG. 4 and FIG. 6, when gas is sealed inside the optical member 10 and the internal pressure is 90 atm, shear stress is generated on the (001) plane at four locations in the peripheral wall of the optical member 10, and its maximum value Is estimated to be 26.85 MPa on the inner peripheral surface 10i.

上記の解析結果によれば、光学部材10においては、図7に示す通り、周壁内の4箇所において、集中的に{100}面のせん断応力が生じている。この方向は、CaF単結晶の結晶面配置に依存しており、(010)面と平行な面であって中心軸Aを含む面を中心軸A回りの一方向に45°回転した面が光学部材10の周壁と交差する位置、及び(100)面と平行な面であって中心軸Aを含む面を中心軸回りに同じ一方向に45°回転した面が光学部材10の周壁と交差する位置である。ここで、実施例1の光学部材10においては、(010)面は、外周面10oの対向する1組の面と平行であり、(010)面と平行な面であって中心軸Aを含む面は、外周面10oの対向する1組の面と平行な主軸xと中心軸Aとによって画成される面に等しい。よって(010)面と平行な面であって中心軸Aを含む面を中心軸A回りの一方向に45°回転した面は、対角線DL1、DL2のいずれか一方を含む面となる。同様に、光学部材10においては、(100)面は、外周面10oの対向するもう1組の面と平行であり、(100)面と平行な面であって中心軸Aを含む面は、外周面10oの対向するもう1組の面と平行な主軸yと中心軸Aとによって画成される面に等しい。よって(100)面と平行な面であって中心軸Aを含む面を中心軸A回りの同じ一方向に45°回転した面は、対角線DL1、DL2のいずれか他方を含む面となる。したがって、光学部材10においてせん断応力が集中的に生じる位置は、対角線DL1と光学部材10の周壁とが交差する位置、及び対角線DL2と光学部材10の周壁とが交差する位置(外表面10oの対角部)に一致している。 According to the above analysis results, in the optical member 10, as shown in FIG. 7, shear stress of {100} plane is intensively generated at four locations in the peripheral wall. This direction depends on the crystal plane arrangement of the CaF 2 single crystal, and a plane that is parallel to the (010) plane and includes a plane including the central axis A is rotated by 45 ° in one direction around the central axis A. A position intersecting the peripheral wall of the optical member 10 and a plane parallel to the (100) plane and rotated by 45 ° in the same direction around the central axis with respect to the plane including the central axis A intersects the peripheral wall of the optical member 10 It is a position to do. Here, in the optical member 10 of Example 1, the (010) plane is parallel to a pair of opposing surfaces of the outer peripheral surface 10o, is a plane parallel to the (010) plane, and includes the central axis A. The surface is equal to a surface defined by a main axis x and a central axis A parallel to a pair of opposing surfaces of the outer peripheral surface 10o. Therefore, a plane parallel to the (010) plane and rotated by 45 ° in one direction around the central axis A including the central axis A is a plane including either one of the diagonal lines DL1 and DL2. Similarly, in the optical member 10, the (100) plane is parallel to another set of opposing surfaces of the outer peripheral surface 10o, and the plane that is parallel to the (100) plane and includes the central axis A is It is equal to a surface defined by a main axis y and a central axis A parallel to another set of opposing surfaces of the outer peripheral surface 10o. Therefore, a plane parallel to the (100) plane and rotated by 45 ° in the same direction around the central axis A, including the central axis A, is a plane including either one of the diagonal lines DL1 and DL2. Therefore, the position where the shear stress is concentrated in the optical member 10 is a position where the diagonal line DL1 and the peripheral wall of the optical member 10 intersect, and a position where the diagonal line DL2 and the peripheral wall of the optical member 10 intersect (a pair of the outer surfaces 10o). Corner).

また、図5、6によれば、上記の位置において(001)面に生じるせん断応力は、(010)面と平行な面であって中心軸Aを含む面を中心軸A回りに一方向に45°回転した面が光学部材10の内周面10iと交差する位置、及び(100)面と平行な面であって中心軸Aを含む面を中心軸回りに同じ一方向に45°回転した面が光学部材10の内周面10iと交差する位置(又は対角線DL1及び対角線DL2と内周面10iとが交わる位置)において最も大きい。この最も大きいせん断応力が生じる部分を、以下適宜「最大せん断応力部」と称する。最大せん断応力部に生じるせん断応力は、図4の表より、内圧が30atmの場合には8.95MPa、内圧が90atmの場合には26.85MPaである。一方で、せん断応力の大きさは、最大せん断応力部から周方向に離れるに従い、また半径方向に離れるに従い、次第に小さくなっている(図5、6)。   Further, according to FIGS. 5 and 6, the shear stress generated on the (001) plane at the above position is a plane parallel to the (010) plane and including the central axis A in one direction around the central axis A. The surface rotated by 45 ° intersects the inner peripheral surface 10i of the optical member 10 and the surface parallel to the (100) plane and including the central axis A is rotated by 45 ° in the same direction around the central axis. It is the largest at a position where the surface intersects the inner peripheral surface 10i of the optical member 10 (or a position where the diagonal line DL1 and diagonal line DL2 intersect the inner peripheral surface 10i). The portion where the greatest shear stress is generated is hereinafter referred to as “maximum shear stress portion” as appropriate. From the table of FIG. 4, the shear stress generated in the maximum shear stress portion is 8.95 MPa when the internal pressure is 30 atm and 26.85 MPa when the internal pressure is 90 atm. On the other hand, the magnitude of the shear stress gradually decreases as the distance from the maximum shear stress portion increases in the circumferential direction and as the distance from the radial direction increases (FIGS. 5 and 6).

ここで、図8に示すとおり、CaF単結晶の{100}面、{110}面、{111}面の臨界分解せん断応力(CRSS)は、約600℃以下の温度域においては、{100}面の値がもっとも小さいことが知られている。また、{100}面の臨界分解せん断応力と、{110}面、{111}面の臨界分解せん断応力との差は、CaF単結晶に塑性変形が生じる温度(約250℃)以下の温度域において特に大きいことが知られている。したがって、600℃以下の温度領域、特に250℃以下の温度領域においては、CaF単結晶で形成された光学部材10に応力が生じた場合に光学部材10に生じる破壊は、主に、{100}面に生じるせん断応力が臨界分解せん断応力に達して、CaF単結晶内部にすべりが生じることに起因すると考えられる。 Here, as shown in FIG. 8, the critical decomposition shear stress (CRSS) of the {100} plane, {110} plane, and {111} plane of the CaF 2 single crystal is {100} in the temperature range of about 600 ° C. or less. } It is known that the surface value is the smallest. Further, the difference between the critical decomposition shear stress of the {100} plane and the critical decomposition shear stress of the {110} plane and the {111} plane is a temperature below the temperature (about 250 ° C.) at which plastic deformation occurs in the CaF 2 single crystal. It is known to be particularly large in the region. Therefore, in the temperature range of 600 ° C. or lower, particularly in the temperature range of 250 ° C. or lower, when stress is generated in the optical member 10 formed of CaF 2 single crystal, the breakdown that occurs in the optical member 10 is mainly {100 } It is considered that the shear stress generated on the surface reaches the critical decomposition shear stress and slip occurs inside the CaF 2 single crystal.

本実施例の光学部材10においては、上記の通り、最大せん断応力部に生じるせん断応力の大きさは、内圧が90atmの時には26.85MPaにも達している。この値は、図8から読み取れる25℃におけるCaF単結晶のCRSS(約13MPa)を大きく上回っており、最大せん断応力部において、CaF単結晶にすべりが生じるとも考えられる。しかしながら実施例1の光学部材10は、最大せん断応力部の半径方向の外側に十分な肉厚を有しており、図6及び図7に示す通り、最大せん断応力部から半径方向に一定距離だけ離れた位置から、外周面10oに至るまでの位置においては、{100}面にはせん断応力が生じていない。したがって最大せん断応力部の外側に位置するこの部分においては、CaF単結晶にすべりは生じない。よって、最大せん断応力部においても、その外側に位置する部分においてすべりが生じないためすべりの発生は抑制され、結果として、実施例1の光学部材10の周壁においてはすべりは生じない。 In the optical member 10 of the present embodiment, as described above, the magnitude of the shear stress generated in the maximum shear stress portion reaches 26.85 MPa when the internal pressure is 90 atm. This value greatly exceeds the CRSS (about 13 MPa) of the CaF 2 single crystal at 25 ° C., which can be read from FIG. 8, and it is considered that the CaF 2 single crystal slips at the maximum shear stress portion. However, the optical member 10 of Example 1 has a sufficient thickness on the outer side in the radial direction of the maximum shear stress portion. As shown in FIGS. 6 and 7, the optical member 10 has a certain distance in the radial direction from the maximum shear stress portion. In a position from the distant position to the outer peripheral surface 10o, no shear stress is generated on the {100} surface. Therefore, no slip occurs in the CaF 2 single crystal at this portion located outside the maximum shear stress portion. Therefore, even in the maximum shear stress portion, slip does not occur in the portion located on the outer side, so that the occurrence of slip is suppressed, and as a result, no slip occurs on the peripheral wall of the optical member 10 of Example 1.

このように、実施例1の光学部材10においては、周壁上の{100}面せん断応力が生じる位置、すなわち(010)面と平行な面であって中心軸Aを含む面を中心軸A回りに一方向に45°回転した面が光学部材10の周壁と交差する位置、及び(100)面と平行な面であって中心軸Aを含む面を中心軸A回りに同じ一方向に45°回転した面が光学部材10の周壁と交差する位置が、それぞれ外周面10oの対角部に位置しており、これらの位置における周壁の半径方向の厚さが、他の位置における厚さよりも大きくなっている。したがって光学部材10は、内圧が高くなり、内周面10i上やその近傍においてCRSSを超える{100}面せん断応力が生じた場合であっても、大きな{100}面せん断応力が生じる位置における周壁の厚みが大きいため、すべりの発生が抑制される。よって実施例1の光学部材10は、内圧に対して高い強度を備える。   As described above, in the optical member 10 of Example 1, the position where the {100} plane shear stress on the peripheral wall is generated, that is, the plane parallel to the (010) plane and including the central axis A is around the central axis A. The surface rotated 45 ° in one direction at a position intersecting the peripheral wall of the optical member 10 and a surface parallel to the (100) plane and including the central axis A is 45 ° in the same direction around the central axis A. The positions where the rotated surface intersects the peripheral wall of the optical member 10 are located at the diagonal portions of the outer peripheral surface 10o, respectively, and the radial thickness of the peripheral wall at these positions is larger than the thickness at other positions. It has become. Therefore, the optical member 10 has a high internal pressure and a peripheral wall at a position where a large {100} plane shear stress is generated even when a {100} plane shear stress exceeding CRSS occurs on or in the vicinity of the inner peripheral surface 10i. Due to the large thickness, the occurrence of slip is suppressed. Therefore, the optical member 10 of Example 1 has high strength against the internal pressure.

<比較例1、2>
次に、比較例1の光学部材11(図3(b))、比較例2の光学部材12(図3(c))の内部に収容されるガス圧(内圧)に対する強度、すなわち耐圧性又は耐久性を調べるために、次のシミュレーション(有限要素解析)を行った。
<Comparative Examples 1 and 2>
Next, the strength against the gas pressure (internal pressure) accommodated in the optical member 11 (FIG. 3B) of the comparative example 1 (FIG. 3B) and the optical member 12 of the comparative example 2 (FIG. 3C), that is, pressure resistance or In order to investigate the durability, the following simulation (finite element analysis) was performed.

比較例1、2の光学部材11、12は、それぞれ1つの結晶からなる狭義のCaF単結晶で形成されており、実施例1の光学部材10と同じ形状を有する。一方で、比較例1の光学部材11においては、CaF単結晶の{110}面が中心軸Aに直交する方向に存在しており、比較例2の光学部材12においては、CaF単結晶の{111}面が中心軸Aに直交する方向に存在している。光学部材11、12の結晶面配置については後に詳述する。 The optical members 11 and 12 of Comparative Examples 1 and 2 are each formed of a narrowly defined CaF 2 single crystal made of one crystal, and have the same shape as the optical member 10 of Example 1. On the other hand, in the optical member 11 of Comparative Example 1, the {110} plane of the CaF 2 single crystal exists in a direction orthogonal to the central axis A. In the optical member 12 of Comparative Example 2, the CaF 2 single crystal The {111} plane is present in a direction perpendicular to the central axis A. The crystal plane arrangement of the optical members 11 and 12 will be described in detail later.

<解析条件>
シミュレーションにおいては、上記の光学部材11、12を対象として、このような光学部材11、12に内圧が生じた時に、光学部材11、12を形成するCaF単結晶の{100}面に生じる最大せん断応力の値及びせん断応力の生じる位置を解析した。本シミュレーションの解析条件のうち、(1)位置拘束条件、(2)材料物性、(3)荷重条件は、実施例1の光学部材10について行ったシミュレーションと同じであるため説明を省略する。
<Analysis conditions>
In the simulation, for the optical members 11 and 12 described above, when an internal pressure is generated in the optical members 11 and 12, the maximum generated on the {100} plane of the CaF 2 single crystal forming the optical members 11 and 12. The value of shear stress and the position where shear stress occurred were analyzed. Among the analysis conditions of this simulation, (1) position constraint conditions, (2) material properties, and (3) load conditions are the same as the simulation performed for the optical member 10 of Example 1, and thus the description thereof is omitted.

(4)結晶面配置
光学部材11、12の結晶面配置について、図3を参照してより詳細に説明する。図3(b)、(c)は、図3(a)と同様に、光学部材11、12と、CaF単結晶の単位格子(立方格子)UL及び単位格子ULの主軸x、主軸y、主軸zの配置関係を示す。なお、下側の図においては、光学部材11、12の配置を表すため、光学部材11、12の中心軸A及び縮小した端面11e、12eの輪郭のみを描いた。比較例1の光学部材11においては、図3(b)に示すとおり{110}面が中心軸Aに直交する方向に存在する。なお、図3(b)における単位格子ULは、図3(a)における単位格子ULを、主軸xを中心に主軸zの正方向から主軸yの正方向に向かって45°回転した位置に配置されている。したがって単位格子ULの主軸xは、中心軸Aと直交する面内において、対角線DL1を同面内へ投射した投射線に対して45°傾いて存在しており、主軸y、zはそれぞれ、yz面内において、中心軸Aに対して135°、45°だけ傾いて存在している。比較例1の光学部材11においては、(001)面、(100)面、(010)面は、主軸x、y、zが上記の通り存在する状態において、それぞれxy面、yz面、xz面と平行に存在している。
(4) Crystal Plane Arrangement The crystal plane arrangement of the optical members 11 and 12 will be described in more detail with reference to FIG. 3B and 3C, the optical members 11 and 12, the unit lattice (cubic lattice) UL of the CaF 2 single crystal, and the principal axis x, the principal axis y of the unit lattice UL, as in FIG. The arrangement | positioning relationship of the principal axis z is shown. In the lower diagram, only the outlines of the central axis A and the reduced end faces 11e and 12e of the optical members 11 and 12 are drawn in order to represent the arrangement of the optical members 11 and 12. In the optical member 11 of Comparative Example 1, the {110} plane exists in a direction orthogonal to the central axis A as shown in FIG. The unit cell UL in FIG. 3B is arranged at a position obtained by rotating the unit cell UL in FIG. 3A around the main axis x by 45 ° from the positive direction of the main axis z toward the positive direction of the main axis y. Has been. Therefore, the principal axis x of the unit cell UL exists in a plane orthogonal to the central axis A and is inclined by 45 ° with respect to the projection line projecting the diagonal line DL1 into the same plane, and the principal axes y and z are respectively yz. In the plane, they are inclined with respect to the central axis A by 135 ° and 45 °. In the optical member 11 of Comparative Example 1, the (001) plane, the (100) plane, and the (010) plane are the xy plane, the yz plane, and the xz plane, respectively, in the state where the principal axes x, y, and z exist as described above. Exists in parallel.

比較例2の光学部材12においては、図3(c)に示すとおり{111}面が中心軸Aに直交する方向に存在する。なお、図3(c)における単位格子ULの配置は、図3(a)における単位格子ULを、主軸xを中心に主軸zの正方向から主軸yの正方向に向かって54.7359°回転した後、回転後の主軸zを中心に主軸yの正方向から主軸xの正方向に向かって45°回転し、次いで中心軸Aを中心に、上方から光学部材12を見た反時計まわりに45°回転することで得られる。したがって単位格子ULの主軸x、y、zは、中心軸Aに対してそれぞれ所定の角度だけ傾いている。比較例2の光学部材12においては、(001)面、(100)面、(010)面は、主軸x、y、zが上記の通り存在する状態において、それぞれxy面、yz面、xz面と平行に存在している。   In the optical member 12 of Comparative Example 2, the {111} plane exists in a direction orthogonal to the central axis A as shown in FIG. 3C, the unit cell UL in FIG. 3A is rotated 54.7359 ° from the positive direction of the main axis z to the positive direction of the main axis y about the main axis x. Then, it rotates 45 ° from the positive direction of the main axis y to the positive direction of the main axis x about the main axis z after rotation, and then counterclockwise when the optical member 12 is viewed from above about the central axis A Obtained by rotating 45 °. Accordingly, the main axes x, y, and z of the unit cell UL are inclined with respect to the central axis A by a predetermined angle. In the optical member 12 of Comparative Example 2, the (001) plane, the (100) plane, and the (010) plane are the xy plane, the yz plane, and the xz plane in the state where the principal axes x, y, and z exist as described above. Exists in parallel.

次に、上記の条件の下で行ったシミュレーションの結果について述べる。本発明者は、上記の解析条件の下で、光学部材11、12を形成するCaF単結晶の3つの{100}面、すなわち(100)面、(010)面、(001)面に生じる最大せん断応力の大きさ、及びせん断応力の生じる位置を推定した。 Next, the results of simulation performed under the above conditions will be described. Under the above analysis conditions, the present inventor generates three {100} planes of the CaF 2 single crystal forming the optical members 11 and 12, that is, (100) plane, (010) plane, and (001) plane. The magnitude of the maximum shear stress and the position where the shear stress occurs were estimated.

図4の表中に示す通り、比較例1の光学部材11においては、内圧が30atmの時は、(001)面に生じるせん断応力が6.5MPa、(100)面に生じるせん断応力が8.94MPa、(010)面に生じるせん断応力が6.5MPaであり、内圧が90atmの時は、(001)面に生じるせん断応力が19.49MPa、(100)面に生じるせん断応力が26.82MPa、(010)面に生じるせん断応力が19.49MPaである。またせん断応力の生じる位置は、図9(内圧が30atmの場合)、図10(内圧が90atmの場合)に示す通りである。図9(a)、図10(a)が(001)面に生じるせん断応力の位置を、図9(b)、図10(b)が(100)面に生じるせん断応力の位置を、図9(c)、図10(c)が(010)面に生じるせん断応力の位置をそれぞれ示しており、図9の読みとり方は図5と、図10の読みとり方は図6とそれぞれ同じである。   As shown in the table of FIG. 4, in the optical member 11 of Comparative Example 1, when the internal pressure is 30 atm, the shear stress generated on the (001) plane is 6.5 MPa, and the shear stress generated on the (100) plane is 8. 94 MPa, the shear stress generated on the (010) plane is 6.5 MPa, and when the internal pressure is 90 atm, the shear stress generated on the (001) plane is 19.49 MPa, the shear stress generated on the (100) plane is 26.82 MPa, The shear stress generated in the (010) plane is 19.49 MPa. Further, the position where the shear stress is generated is as shown in FIG. 9 (when the internal pressure is 30 atm) and FIG. 10 (when the internal pressure is 90 atm). 9 (a) and 10 (a) show the position of the shear stress generated on the (001) plane, and FIGS. 9 (b) and 10 (b) show the position of the shear stress generated on the (100) plane. (C) and FIG. 10 (c) show the positions of the shear stress generated on the (010) plane, respectively. The reading of FIG. 9 is the same as FIG. 5 and the reading of FIG. 10 is the same as FIG.

上記の解析結果によれば、光学部材11においては、周壁内の6か所において{100}面に大きなせん断応力が生じている(図9、10、11の領域R1、R2、R3、R4、R5、R6。領域R1〜R4は白黒の図においてはせん断応力が生じていない領域との色の濃度の差を読み取り難いが、カラー表示では橙色、水色、青色で表示されており、周囲よりも大きいせん断応力が生じていることが読み取れる)。また、光学部材11においては、対角線DL1、DL2と交差しない位置、すなわち周壁の厚さが比較的薄い位置においても、{100}面に大きなせん断応力が生じている(領域R5、R6)。その位置は、図9(b)、図10(b)より、外周壁11oの対向する2辺のそれぞれ中央部分における、外周壁11oの表面である。またその大きさは、図4の表より、26.82MPaであり、25℃におけるCRSS(約13MPa)を大きく上回っている。   According to the above analysis results, in the optical member 11, large shear stress is generated on the {100} plane at six locations in the peripheral wall (regions R1, R2, R3, R4, FIGS. 9, 10, and 11). R5 and R6 In the black and white drawings, the regions R1 to R4 are difficult to read the difference in color density from the region where no shear stress is generated, but are displayed in orange, light blue, and blue in the color display, rather than the surroundings It can be seen that there is a large shear stress). Further, in the optical member 11, large shear stress is generated on the {100} plane even at a position where the diagonal lines DL1 and DL2 do not intersect, that is, a position where the thickness of the peripheral wall is relatively thin (regions R5 and R6). The position is the surface of the outer peripheral wall 11o in the center part of each of the two opposite sides of the outer peripheral wall 11o, as shown in FIGS. 9 (b) and 10 (b). Moreover, the magnitude | size is 26.82 MPa from the table | surface of FIG. 4, and is far exceeding CRSS (about 13 MPa) in 25 degreeC.

以上より、比較例1の光学部材11においては、内圧を90atmとした場合、周壁の比較的厚さの小さい部分において、CRSSよりも大きな{100}面せん断応力が外周面11o上に生じる。したがって、比較例1の光学部材11は、実施例1の光学部材10とは異なり、90atmの内圧に耐えることができず、破断が生じる。また比較例1の光学部材11においては、周壁内の6か所において{100}面に大きなせん断応力が生じている。したがって、{100}面のせん断応力が大きくなる位置において周壁を厚く形成すれば、光学部材11の形状は複雑となり、光学特性の面で不利であるばかりでなく加工上の不都合も大きい。   As described above, in the optical member 11 of Comparative Example 1, when the internal pressure is set to 90 atm, a {100} plane shear stress larger than CRSS is generated on the outer peripheral surface 11o in a relatively small thickness portion of the peripheral wall. Therefore, unlike the optical member 10 of Example 1, the optical member 11 of Comparative Example 1 cannot withstand an internal pressure of 90 atm and breaks. Further, in the optical member 11 of Comparative Example 1, large shear stress is generated on the {100} plane at six locations in the peripheral wall. Therefore, if the peripheral wall is formed thick at a position where the shear stress of the {100} plane is increased, the shape of the optical member 11 becomes complicated, which is not only disadvantageous in terms of optical characteristics but also inconvenience in processing.

また、図4の表中に示す通り、比較例2の光学部材12においては、内圧が30atmの時は、(001)面に生じるせん断応力が9.44MPa、(100)面に生じるせん断応力が9.08MPa、(010)面に生じるせん断応力が9.08MPaであり、内圧が90atmの時は、(001)面に生じるせん断応力が28.31MPa、(100)面に生じるせん断応力が27.23MPa、(010)面に生じるせん断応力が27.43MPaである。またせん断応力の生じる位置は、図12(内圧が30atmの場合)、図13(内圧が90atmの場合)に示す通りである。図12(a)、図13(a)が(001)面に生じるせん断応力の位置を、図12(b)、図13(b)が(100)面に生じるせん断応力の位置を、図12(c)、図13(c)が(010)面に生じるせん断応力の位置をそれぞれ示しており、図12の読みとり方は図5と、図13の読みとり方は図6とそれぞれ同じである。   Further, as shown in the table of FIG. 4, in the optical member 12 of Comparative Example 2, when the internal pressure is 30 atm, the shear stress generated on the (001) plane is 9.44 MPa, and the shear stress generated on the (100) plane is When the shear stress generated on the (010) plane is 9.08 MPa and the internal pressure is 90 atm, the shear stress generated on the (001) plane is 28.31 MPa and the shear stress generated on the (100) plane is 27.MPa. The shear stress generated at 23 MPa and the (010) plane is 27.43 MPa. Further, the position where the shear stress is generated is as shown in FIG. 12 (when the internal pressure is 30 atm) and FIG. 13 (when the internal pressure is 90 atm). 12 (a) and 13 (a) show the position of the shear stress generated on the (001) plane, and FIGS. 12 (b) and 13 (b) show the position of the shear stress generated on the (100) plane. FIGS. 13C and 13C show the positions of shear stress generated on the (010) plane, respectively. The reading method of FIG. 12 is the same as that of FIG. 5 and the reading method of FIG.

上記の解析結果によれば、光学部材12においては、周壁内の6か所において{100}面に大きなせん断応力が生じている(図14)。また、光学部材12においては、対角線DL1、DL2と交差しない位置、すなわち周壁の厚さが比較的薄い位置においても、{100}面に大きなせん断応力が生じている。その位置は、図12(b)、(c)、図13(b)、(c)より、角部Cの近傍の外周壁12o表面上の4箇所である。またその大きさは、図4の表より、27.23MPa〜27.43MPa程度であり、25℃におけるCRSS(約13MPa)を大きく上回っている。   According to the above analysis result, in the optical member 12, large shear stress is generated on the {100} plane at six locations in the peripheral wall (FIG. 14). Further, in the optical member 12, a large shear stress is generated on the {100} plane even at a position that does not intersect the diagonal lines DL1 and DL2, that is, at a position where the thickness of the peripheral wall is relatively thin. The positions are four places on the surface of the outer peripheral wall 12o in the vicinity of the corner C from FIGS. 12 (b), 12 (c), 13 (b), and 13 (c). Moreover, the magnitude | size is about 27.23 MPa-27.43 MPa from the table | surface of FIG. 4, and is far exceeding CRSS (about 13 MPa) in 25 degreeC.

以上より、比較例2の光学部材12においては、内圧を90atmとした場合、周壁の比較的薄い部分において、CRSSよりも大きな{100}面せん断応力が外周面12o上に生じる。したがって、比較例2の光学部材12は、実施例1の光学部材10とは異なり、90atmの内圧に耐えることができず、破断が生じる。また比較例1の光学部材12においては、周壁内の6か所において{100}面に大きなせん断応力が生じている。したがって、{100}面のせん断応力が大きくなる位置において周壁を厚く形成すれば、光学部材12の形状は複雑となり、光学特性の面で不利であるばかりでなく加工上の不都合も大きい。   As described above, in the optical member 12 of Comparative Example 2, when the internal pressure is 90 atm, a {100} plane shear stress larger than CRSS is generated on the outer peripheral surface 12o in a relatively thin portion of the peripheral wall. Therefore, unlike the optical member 10 of Example 1, the optical member 12 of Comparative Example 2 cannot withstand an internal pressure of 90 atm and breaks. Further, in the optical member 12 of Comparative Example 1, large shear stress is generated on the {100} plane at six locations in the peripheral wall. Therefore, if the peripheral wall is formed thick at a position where the shear stress of the {100} plane is increased, the shape of the optical member 12 becomes complicated, which is not only disadvantageous in terms of optical characteristics but also inconvenience in processing.

次に、本実施形態の光学部材10の製造方法を説明する。光学部材10の材料となるCaF単結晶は、例えば、特許第4569872号、特開第2006−327837号等に記載された単結晶製造方法を用いて製造することができる。得られたCaF単結晶のインゴットに対して、X線結晶方位測定装置等を用いて結晶方位の測定を行う。 Next, the manufacturing method of the optical member 10 of this embodiment is demonstrated. The CaF 2 single crystal used as the material of the optical member 10 can be manufactured using, for example, a single crystal manufacturing method described in Japanese Patent No. 4569872, Japanese Patent Application Laid-Open No. 2006-327837, and the like. The crystal orientation of the obtained CaF 2 single crystal ingot is measured using an X-ray crystal orientation measuring device or the like.

上記の測定によってCaF単結晶インゴットにおける互いに直交する3つの{100}面の存在方向を特定した後、この3つの{100}面のいずれか1つが中心軸Aと直交する方向となるように削り出し加工を行って、断面形状が略正方形の角柱を得る。この時、角柱の直交する2つの対角線の方向と、3つの{100}面のうち、中心軸Aと直交しない2つの{100}面の存在する方向とが、それぞれ中心軸A回りに45°の傾きを有するように削り出しを行う。すなわち、角柱の対向する2組の面と、3つの{100}面のうち、中心軸Aと直交しない2つの{100}面の存在する方向とが、それぞれ平行となるように削り出しを行う。その後、更に削り出しにより角柱の中心部を削り出し、角柱の角部に所定の曲率で丸みを与え、図1に示すような筒状部材を得る。 After specifying the existence direction of three {100} planes orthogonal to each other in the CaF 2 single crystal ingot by the above measurement, so that any one of the three {100} planes is in a direction orthogonal to the central axis A. Cutting is performed to obtain a prism having a substantially square cross-sectional shape. At this time, the directions of two diagonal lines perpendicular to the prism and the directions of two {100} planes that are not orthogonal to the central axis A among the three {100} planes are 45 ° around the central axis A, respectively. It cuts out so that it may have the inclination of. That is, cutting is performed so that two pairs of opposing faces of the prism and two {100} planes that are not orthogonal to the central axis A among the three {100} planes are parallel to each other. . Thereafter, the central part of the prism is further machined out, and the corner of the prism is rounded with a predetermined curvature to obtain a cylindrical member as shown in FIG.

最後に、削り出し加工により得られた筒状部材の内周面、外周面、端面に対して光学研磨処理を施すことで、本実施形態の光学部材10を得ることができる。本実施形態における光学研磨処理には、光学部品に適用される一般的な研磨方法をそのまま用いることができ、例えば研磨パッド、研磨砂を用いて研磨することができる。   Finally, the optical member 10 of this embodiment can be obtained by performing an optical polishing process on the inner peripheral surface, the outer peripheral surface, and the end surface of the cylindrical member obtained by machining. For the optical polishing treatment in the present embodiment, a general polishing method applied to an optical component can be used as it is, and for example, polishing can be performed using a polishing pad or polishing sand.

次に、本実施形態の効果についてまとめる。   Next, the effects of this embodiment will be summarized.

本実施形態の光学部材10は、上記の通り、周壁内において{100}面に生じる最大せん断応力の値が大きくなる4箇所と、光学部材10の4つの対角部が一致している。すなわち本実施形態の光学部材10は、周壁内において{100}面に生じる最大せん断応力の値が大きくなる位置において、周壁の厚みが大きくなっている。よって本実施形態の光学部材10によれば、単純な形状であり且つ内圧に対して高い強度を有する光学部材を得ることができる。   As described above, in the optical member 10 of the present embodiment, the four diagonal portions of the optical member 10 coincide with the four locations where the value of the maximum shear stress generated on the {100} plane increases in the peripheral wall. That is, in the optical member 10 of the present embodiment, the thickness of the peripheral wall is large at a position where the value of the maximum shear stress generated on the {100} plane increases in the peripheral wall. Therefore, according to the optical member 10 of this embodiment, an optical member having a simple shape and high strength against internal pressure can be obtained.

また本実施形態の光学部材10は、断面形状が略正方形の四角筒状であるため、削り出し加工が容易であり、かつ製造後の保存、運搬等の取扱いも容易である。また角部Cに丸みが与えられているため、保存や運搬時に欠け等の欠損が生じることも防止されている。   In addition, since the optical member 10 of the present embodiment is a square tube having a substantially square cross-sectional shape, it is easy to cut out, and handling such as storage and transportation after manufacture is also easy. Moreover, since roundness is given to the corner | angular part C, it is prevented that a defect | deletion, such as a chip | tip, arises at the time of a preservation | save and conveyance.

なお、上記の実施形態においては、対角線DL1、DL2が、(010)面と平行な面であって中心軸Aを含む面、及び(100)面と平行な面であって中心軸Aを含む面に対して、それぞれ中心軸A回りに45°傾いているがこれには限られない。対角線DL1、DL2の、(010)面と平行な面であって中心軸Aを含む面、及び(100)面と平行な面であって中心軸Aを含む面に対する中心軸A回りの傾きは約45°±5°の範囲であればよい。このような配置によっても、(010)面と平行な面であって中心軸Aを含む面を中心軸A回りに所定の方向に45°回転した面が光学部材10の周壁と交差する箇所、及び(100)面と平行な面であって中心軸Aを含む面を中心軸A回りに同じ所定の方向に45°回転した面が光学部材10の周壁と交差する箇所において、光学部材10の周壁が他の箇所よりも厚くなっていれば、本発明の効果を得ることが可能である。   In the above embodiment, the diagonal lines DL1 and DL2 are planes parallel to the (010) plane and including the central axis A, and planes parallel to the (100) plane and including the central axis A. Although it is inclined 45 ° around the central axis A with respect to the surface, it is not limited to this. The inclinations of the diagonal lines DL1 and DL2 around the central axis A with respect to the plane parallel to the (010) plane and including the central axis A and the plane parallel to the (100) plane and including the central axis A are It may be in the range of about 45 ° ± 5 °. Even with such an arrangement, a plane that is a plane parallel to the (010) plane and rotated by 45 ° around the central axis A in a predetermined direction around the plane including the central axis A intersects the peripheral wall of the optical member 10; And a plane parallel to the (100) plane and rotated by 45 ° around the central axis A in the same predetermined direction around the plane including the central axis A intersects the peripheral wall of the optical member 10. If the peripheral wall is thicker than other portions, the effects of the present invention can be obtained.

なお、上記の実施形態においては、{100}面のうち(001)面が中心軸Aと直交して存在するとした。しかしながらCaF単結晶においては、(100)面、(010)面、(001)面は互いに等価であるため、CaF単結晶の結晶面は、(100)面、または(010)面が中心軸Aと直交するよう配置されていてもよい。 In the above embodiment, the (001) plane of the {100} planes is present orthogonal to the central axis A. However, in the CaF 2 single crystal, since the (100) plane, the (010) plane, and the (001) plane are equivalent to each other, the crystal plane of the CaF 2 single crystal is centered on the (100) plane or the (010) plane. You may arrange | position so that the axis | shaft A may be orthogonally crossed.

なお、上記の実施形態においては、光学部材10は、断面形状が円形の内周面10iと断面形状が略正方形の外周面10oとを備える筒形状であるものとしたがこれには限られず、筒状の形状であって、その周壁が、{100}面のいずれか1つと平行な面であって中心軸Aを含む面を中心軸A回りに所定の方向に45°回転した面と交差する箇所、及び{100}面の他の1つと平行な面であって中心軸Aを含む面を中心軸A回りに同じ所定の方向に45°回転した面と交差する箇所において他の箇所よりも厚い形状であれば、どのような形状であってもよい。一例として、円筒において周方向の4箇所の厚みを局部的に大きく形成した形状や、これらの箇所の厚みを他の箇所よりも大きく形成した略八角形の外周を有する筒形状等が挙げられる。また、中空部の断面形状も円形には限られず、例えば八角形等の多角形等でもよい。なお、厚みが大きいことが必要とされる箇所における厚みは、もっとも厚みが小さい箇所における厚みに対して約2倍から16倍程度であることが望ましい。   In the above embodiment, the optical member 10 has a cylindrical shape including the inner peripheral surface 10i having a circular cross-sectional shape and the outer peripheral surface 10o having a substantially square cross-sectional shape, but is not limited thereto. A cylindrical shape whose peripheral wall intersects with a plane that is parallel to any one of the {100} planes and that is rotated by 45 ° around the central axis A in a predetermined direction around the central axis A And other points at a point that intersects a plane that is parallel to the other {100} surface and that includes the central axis A and that is rotated by 45 ° around the central axis A in the same predetermined direction. As long as the shape is thick, any shape may be used. As an example, there are a shape in which the thickness of four locations in the circumferential direction in the cylinder is locally increased, a cylindrical shape having a substantially octagonal outer periphery in which the thickness of these locations is larger than the other locations, and the like. Further, the cross-sectional shape of the hollow portion is not limited to a circle, and may be a polygon such as an octagon. In addition, it is desirable that the thickness at a location where a large thickness is required is about 2 to 16 times the thickness at a location where the thickness is the smallest.

なお、上記の実施形態においては角部Cに所定の曲率の丸みを与えているが、角部Cに丸みをつけなくてもよい。または角部Cに面取りを施しても良い。   In the above embodiment, the corner C is rounded with a predetermined curvature, but the corner C may not be rounded. Alternatively, the corner portion C may be chamfered.

なお、上記の実施形態においては、光学部材10の両側の端部10eの開口10aに不図示の蓋を取り付けて気体を密封し、光学部材10を単独で光源用部材として用いているが、光学部材10の使用方法はこれには限られない。例えば、光学部材10と他のCaF単結晶部材とを圧着等により接合して得られるより大きな光学部材の一部として光学部材10を用いてもよい。このようにして得られるより大きな光学部材は、一例として、中心軸Aを共有する2つの光学部材10、及び中心軸A方向において該2つの光学部材10に挟まれ、且つ中心軸Aと同軸上に回転軸を有する球殻部とを有する光学部材であり得る。また例えば、光学部材10の一端に板状の蓋部を圧着し、他端に環状のフランジ部を圧着した光学部材であり得る。 In the above-described embodiment, a lid (not shown) is attached to the openings 10a on both ends 10e of the optical member 10 to seal the gas, and the optical member 10 is used alone as a light source member. The method of using the member 10 is not limited to this. For example, the optical member 10 may be used as a part of a larger optical member obtained by joining the optical member 10 and another CaF 2 single crystal member by pressure bonding or the like. The larger optical member obtained in this way is, for example, two optical members 10 sharing the central axis A, and sandwiched between the two optical members 10 in the direction of the central axis A, and coaxial with the central axis A. And an optical member having a spherical shell portion having a rotation axis. Further, for example, the optical member 10 may be an optical member in which a plate-like lid portion is crimped to one end and an annular flange portion is crimped to the other end.

なお、上記の実施形態において、気体はプラズマ光を発するための気体には限られず、エキシマ光等、真空紫外領域から赤外領域にわたる波長領域の光を発するための任意の気体であればよい。   In the above embodiment, the gas is not limited to a gas for emitting plasma light, but may be any gas for emitting light in a wavelength region ranging from the vacuum ultraviolet region to the infrared region, such as excimer light.

本発明の特徴を維持する限り、本発明は上記実施の形態に限定されるものではなく、本発明の技術的思想の範囲内で考えられるその他の形態についても、本発明の範囲内に含まれる。   As long as the characteristics of the present invention are maintained, the present invention is not limited to the above embodiments, and other forms conceivable within the scope of the technical idea of the present invention are also included in the scope of the present invention. .

本発明のフッ化カルシウム光学部材によれば、高温・高圧の環境下においても、破壊することなく好適に使用できるCaF単結晶光学部材を簡便に得ることができる。よって半導体製造装置等の様々な分野に、十分な強度を有するフッ化カルシウム光学部材を提供することが可能となる。 According to the calcium fluoride optical member of the present invention, it is possible to easily obtain a CaF 2 single crystal optical member that can be suitably used without breaking even under high temperature and high pressure environments. Therefore, it becomes possible to provide a calcium fluoride optical member having sufficient strength in various fields such as a semiconductor manufacturing apparatus.

10、11、12 光学部材
10i、11i、12i 内周面
10o、11o、12o 外周面
A 中心軸
DL1、DL2 対角線
UL 単位格子
10, 11, 12 Optical members 10i, 11i, 12i Inner peripheral surfaces 10o, 11o, 12o Outer peripheral surface A Central axes DL1, DL2 Diagonal line UL Unit lattice

Claims (11)

内部に気体を密封する気体密封用容器に用いるフッ化カルシウム光学部材であって、
単結晶フッ化カルシウムで形成され且つ筒状の形状を有し、
前記筒の中心軸と、単結晶フッ化カルシウムの互いに直交する3つの{100}結晶面のいずれか1面とが直交しており、
前記筒の周壁の半径方向の厚さが、前記3つの{100}結晶面の他のいずれか1面と平行で且つ前記筒の中心軸を含む面を前記中心軸周りの一方向に45°回転した面と前記周壁とが交わる箇所、及び前記3つの{100}結晶面の残りの1面と平行で且つ前記筒の中心軸を含む面を前記中心軸周りの前記一方向に45°回転した面と前記周壁とが交わる箇所において他の箇所より大きいフッ化カルシウム光学部材。
A calcium fluoride optical member used in a gas-sealing container that seals gas inside ,
It is formed of single crystal calcium fluoride and has a cylindrical shape,
The central axis of the cylinder and one of the three {100} crystal planes of the single crystal calcium fluoride orthogonal to each other are orthogonal to each other,
A radial thickness of the peripheral wall of the cylinder is 45 ° in one direction around the central axis with a plane parallel to any one of the three {100} crystal faces and including the central axis of the cylinder. Rotate the surface where the rotated surface and the peripheral wall intersect, and the plane parallel to the remaining one of the three {100} crystal planes and including the central axis of the cylinder by 45 ° in the one direction around the central axis Calcium fluoride optical member that is larger than the other part at the place where the finished surface and the peripheral wall intersect.
前記筒の内周面の前記中心軸に直交する断面が円形状である請求項1に記載のフッ化カルシウム光学部材。   The calcium fluoride optical member according to claim 1, wherein a cross section of the inner peripheral surface of the cylinder perpendicular to the central axis is circular. 前記筒の外周面の前記中心軸に直交する断面が略正方形である請求項1又は2に記載のフッ化カルシウム光学部材。   The calcium fluoride optical member according to claim 1 or 2, wherein a cross section of the outer peripheral surface of the cylinder perpendicular to the central axis is substantially square. 前記略正方形の断面の2組の対向する辺の一方と前記3つの{100}結晶面の他のいずれか1面が存在する方向とが平行であり、前記対向する辺の他方と前記3つの{100}結晶面の残りの1面が存在する方向とが平行である請求項3に記載のフッ化カルシウム光学部材。   One of the two opposing sides of the substantially square cross section is parallel to the direction in which any one of the three {100} crystal faces exists, and the other of the opposing sides and the three The calcium fluoride optical member according to claim 3, wherein a direction in which the remaining {100} crystal plane is present is parallel. 光源用部材として用いられる請求項1〜4のいずれか一項に記載のフッ化カルシウム光学部材。The calcium fluoride optical member according to any one of claims 1 to 4, which is used as a light source member. 請求項1〜5のいずれか一項に記載のフッ化カルシウム部材を備えた気体密封用容器。A gas-sealing container comprising the calcium fluoride member according to any one of claims 1 to 5. 気体密封用容器に用いられ、単結晶フッ化カルシウムで形成され且つ内部に気体が密封される円柱状の空間が形成された略四角筒状の光学部材であって、
前記略四角筒の対向する1組の外側面が単結晶フッ化カルシウムの互いに直交する3つの{100}面のうちの第1面と平行であり、前記略四角筒の対向する別の1組の外側面が{100}面のうちの第2面と平行であり、前記略四角筒の底面又は上面が、{100}面のうちの第3面と平行である光学部材。
An optical member having a substantially rectangular tube shape , which is used for a gas-sealing container and is formed of a single crystal calcium fluoride and has a cylindrical space in which gas is sealed .
Another set of the substantially square cylinders facing each other is parallel to a first surface of three orthogonal {100} surfaces of the single crystal calcium fluoride. An optical member whose outer surface is parallel to the second surface of the {100} surfaces, and whose bottom surface or upper surface of the substantially square tube is parallel to the third surface of the {100} surfaces.
内部に気体を密封する気体密封用容器に用いるフッ化カルシウム光学部材の製造方法であって、
単結晶フッ化カルシウムの互いに直交する3つの{100}結晶面の存在する方向を特定することと、
前記単結晶フッ化カルシウムを筒状に削り出すこととを有し、
前記削り出しは、前記筒の中心軸と、前記3つの{100}結晶面のいずれか1面とが直交し、且つ前記筒の周壁の半径方向の厚さが、前記3つの{100}結晶面の他のいずれか1面と平行で且つ前記筒の中心軸を含む面を前記中心軸周りの一方向に45°回転した面と前記周壁とが交わる箇所、及び前記3つの{100}結晶面の残りの1面と平行で且つ前記筒の中心軸を含む面を前記中心軸周りの前記一方向に45°回転した面と前記周壁とが交わる箇所において他の箇所より大きくなるように行われるフッ化カルシウム光学部材の製造方法。
A method for producing a calcium fluoride optical member used in a gas-sealing container that seals gas inside ,
Identifying the direction in which three {100} crystal planes of single crystal calcium fluoride are orthogonal to each other;
Scraping the single crystal calcium fluoride into a cylindrical shape,
In the cutting, the central axis of the cylinder and any one of the three {100} crystal faces are orthogonal to each other, and the radial thickness of the peripheral wall of the cylinder is the three {100} crystals. A surface that is parallel to any one of the other surfaces and includes the central axis of the cylinder, rotated by 45 ° in one direction around the central axis, and a portion where the peripheral wall intersects, and the three {100} crystals A plane parallel to the remaining one of the planes and including the central axis of the cylinder is made to be larger than the other part at a point where the surface rotated by 45 ° in the one direction around the central axis and the peripheral wall intersect. A method for producing a calcium fluoride optical member.
前記筒の内周面の前記中心軸に直交する断面が円形状である請求項8に記載の製造方法。   The manufacturing method according to claim 8, wherein a cross section of the inner peripheral surface of the cylinder perpendicular to the central axis is circular. 前記筒の外周面の前記中心軸に直交する断面が略正方形である請求項8又は9に記載の製造方法。   The manufacturing method according to claim 8 or 9, wherein a cross section of the outer peripheral surface of the cylinder perpendicular to the central axis is substantially square. 前記略正方形の断面の2組の対向する辺の一方と前記3つの{100}結晶面の他のいずれか1面が存在する方向とが平行であり、前記対向する辺の他方と前記3つの{100}結晶面の残りの1面が存在する方向とが平行である請求項10に記載の製造方法。   One of the two opposing sides of the substantially square cross section is parallel to the direction in which any one of the three {100} crystal faces exists, and the other of the opposing sides and the three The manufacturing method according to claim 10, wherein the direction in which the remaining {100} crystal plane is present is parallel.
JP2014046844A 2014-03-10 2014-03-10 Calcium fluoride optical member and manufacturing method thereof Active JP6264106B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014046844A JP6264106B2 (en) 2014-03-10 2014-03-10 Calcium fluoride optical member and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014046844A JP6264106B2 (en) 2014-03-10 2014-03-10 Calcium fluoride optical member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2015169911A JP2015169911A (en) 2015-09-28
JP6264106B2 true JP6264106B2 (en) 2018-01-24

Family

ID=54202651

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014046844A Active JP6264106B2 (en) 2014-03-10 2014-03-10 Calcium fluoride optical member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6264106B2 (en)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1514477A (en) * 1974-09-24 1978-06-14 Post Office Optical devices
JP2902365B2 (en) * 1996-10-22 1999-06-07 弘明 青島 Method for producing coaxial crystal composite body in which synthetic single crystal bodies having the same main component and crystal system are chemically bonded and integrated into one body
EP1408348B1 (en) * 2001-07-17 2012-12-19 Nikon Corporation Method for producing optical member
JP4263127B2 (en) * 2004-03-29 2009-05-13 篠田プラズマ株式会社 Gas discharge tube and display device
JP2006073921A (en) * 2004-09-06 2006-03-16 Komatsu Ltd Optical element for ultraviolet ray gas laser, and ultraviolet ray gas laser equipment
WO2013114718A1 (en) * 2012-02-02 2013-08-08 ウシオ電機株式会社 Excimer lamp, and method for production of arc tube for excimer lamp

Also Published As

Publication number Publication date
JP2015169911A (en) 2015-09-28

Similar Documents

Publication Publication Date Title
JP2017075886A (en) Resonator for semispherical resonance type gyro, and semispherical resonance type gyro
TWI840330B (en) Optical film
CN104155324A (en) Method for determining three-dimensional direction of single crystal
JP2015122624A5 (en)
JP6264106B2 (en) Calcium fluoride optical member and manufacturing method thereof
US10458042B2 (en) Calcium fluoride member, method for producing same, and method for pressure-bonding calcium fluoride crystal
TWI666169B (en) Calcium fluoride optical member, manufacturing method thereof, gas holding container, and light source device
Wiens et al. Simulation of force-insensitive optical cavities in cubic spacers
CN105629417A (en) Observation window assembly of reaction chamber, and reaction chamber provided with observation window assembly
JP2019203884A5 (en)
Lamontagne et al. Disruptive advancement in precision lens mounting
JP2008192762A (en) Method of manufacturing semiconductor device, and semiconductor device
JP6275753B2 (en) Method and apparatus for evaluating ductile fracture
JP3175254U (en) Attachment unit
JP2012073413A (en) Polarization conversion element and method for manufacturing polarization conversion element
JP2016017908A (en) Radiation flaw detection method and radiation flaw detection device
JP4988495B2 (en) Optical axis direction measurement method
JP2006003174A (en) Method for inspecting optical film
JP5001204B2 (en) Equatorial plane detection method
Li et al. Active edge control in the precessions polishing process for manufacturing large mirror segments
Kaufman et al. Guidelines for predicting stress in cemented doublets undergoing temperature change: theory, practice, and data
JPH07167637A (en) Measuring method of angle of two-time rotationally cut crystal body
Vasylkiv et al. Topological defects of optical indicatrix orientation in stressed glasses: spatial distribution of optical anisotropy parameters
Glazer et al. Orientation studies
TWM519276U (en) Display module for aiding view-angle inspections

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170905

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171121

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171204

R150 Certificate of patent or registration of utility model

Ref document number: 6264106

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250