JP6261111B2 - Method for reducing arenesulfonamide and method for producing arenesulfonic acid - Google Patents

Method for reducing arenesulfonamide and method for producing arenesulfonic acid Download PDF

Info

Publication number
JP6261111B2
JP6261111B2 JP2013148664A JP2013148664A JP6261111B2 JP 6261111 B2 JP6261111 B2 JP 6261111B2 JP 2013148664 A JP2013148664 A JP 2013148664A JP 2013148664 A JP2013148664 A JP 2013148664A JP 6261111 B2 JP6261111 B2 JP 6261111B2
Authority
JP
Japan
Prior art keywords
acid
reaction
mhz
compound
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013148664A
Other languages
Japanese (ja)
Other versions
JP2015020961A (en
Inventor
石原 一彰
一彰 石原
学 波多野
学 波多野
圭祐 西川
圭祐 西川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagoya University NUC
Tokai National Higher Education and Research System NUC
Original Assignee
Nagoya University NUC
Tokai National Higher Education and Research System NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagoya University NUC, Tokai National Higher Education and Research System NUC filed Critical Nagoya University NUC
Priority to JP2013148664A priority Critical patent/JP6261111B2/en
Publication of JP2015020961A publication Critical patent/JP2015020961A/en
Application granted granted Critical
Publication of JP6261111B2 publication Critical patent/JP6261111B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Description

本発明は、アレーンスルホンアミドの還元方法、アレーンスルホン酸の製法及びビナフチルジスルホン酸に関する。   The present invention relates to a method for reducing arenesulfonamide, a method for producing arenesulfonic acid, and binaphthyl disulfonic acid.

1,1’−ビナフチル−2,2’−ジスルホン酸(BINSA)は、アレーンスルホン酸の一種であるが、例えばピリジニウム塩として不斉マンニッヒ触媒として利用可能であることが知られている(特許文献1)。BINSAの合成方法としては、ビナフトールの2,2’位のOH基をO−チオカルバモイルに変換し、それを転移反応によってS−チオカルバモイルに変換後、スルホン酸基へ導くものが報告されている(非特許文献1)。   1,1′-binaphthyl-2,2′-disulfonic acid (BINSA) is a kind of arenesulfonic acid, and is known to be usable as an asymmetric Mannich catalyst, for example, as a pyridinium salt (Patent Document) 1). As a method for synthesizing BINSA, a method has been reported in which the OH group at the 2,2 ′ position of binaphthol is converted to O-thiocarbamoyl, which is converted to S-thiocarbamoyl by a transfer reaction and then led to a sulfonic acid group. (Non-Patent Document 1).

ところで、アレーンスルホンアミドは、化学的に安定であり、激しい反応条件に耐え得るため、アミンの保護基として、有機合成的に幅広く用いられている。スルホンアミドの保護の主体はアミンであるため、スルホンアミドの脱保護によりアミンを製造する方法は多数確立されている。スルホンアミドの脱保護には、例えば、強酸(HBr,HClO4,トリフルオロ酢酸など)、強塩基(KOH,NaOHなど)、ヨウ化サマリウム、塩化チタン(III)、Bu3SnH/AIBN、金属リチウム/ナフタレン、光反応、電気分解などが用いられる。これらは、スルホンアミドのスルホン部位を、例えば二酸化硫黄(SO2)などに分解しながら脱保護するため、スルフィン酸やスルホン酸として取り出すことは原理的にできなかった。一方、スルホンアミドの脱保護をKPPh2によって行うことにより、スルフィン酸とアミンを得る例も報告されている(非特許文献2)。この非特許文献2では、スルフィン酸は不安定であるとして単離していない。更に、N−トリフリルアジリジンをNaAlH2(OC24OCH32(Red−Alという)で還元してトリフリル基が脱保護されたアジリジンを得た例が報告されている(非特許文献3)。この非特許文献3では、スルホン部位については言及されていない。 By the way, arenesulfonamides are chemically stable and can withstand harsh reaction conditions, and thus are widely used as organic protecting groups for organic synthesis. Since the main component of sulfonamide protection is an amine, many methods for producing an amine by deprotection of the sulfonamide have been established. For deprotection of sulfonamide, for example, strong acid (HBr, HClO 4 , trifluoroacetic acid, etc.), strong base (KOH, NaOH, etc.), samarium iodide, titanium (III) chloride, Bu 3 SnH / AIBN, metallic lithium / Naphthalene, photoreaction, electrolysis, etc. are used. Since these deprotect the sulfone moiety of the sulfonamide while decomposing it into, for example, sulfur dioxide (SO 2 ) or the like, it was not possible in principle to take it out as sulfinic acid or sulfonic acid. On the other hand, an example of obtaining sulfinic acid and an amine by deprotecting sulfonamide with KPPh 2 has been reported (Non-patent Document 2). In this non-patent document 2, sulfinic acid is not isolated as being unstable. Furthermore, an example in which N-trifurylaziridine was reduced with NaAlH 2 (OC 2 H 4 OCH 3 ) 2 (referred to as Red-Al) to obtain aziridine in which the trifuryl group was deprotected has been reported (Non-patent Document). 3). This Non-Patent Document 3 does not mention the sulfone moiety.

国際公開第2009/54240号パンフレットInternational Publication No. 2009/54240 Pamphlet

Angew. Chem., Int. Ed. 2009, vol48, p4363Angew. Chem., Int. Ed. 2009, vol48, p4363 J. Am. Chem. Soc. 2012, vol34, p19358J. Am. Chem. Soc. 2012, vol34, p19358 J. Org. Chem. 1972, vol37, p2208J. Org. Chem. 1972, vol37, p2208

上述したように、アレーンスルホンアミドの脱保護によりアミンを製造する方法は知られているものの、アレーンスルホンアミドからそれに対応するスルフィン酸などの還元体を製造する方法は知られていなかった。   As described above, although a method for producing an amine by deprotection of arenesulfonamide is known, a method for producing a corresponding reduced form such as sulfinic acid from arenesulfonamide has not been known.

本発明はこのような課題を解決するためになされたものであり、アレーンスルホンアミドから対応する還元体を収率よく得ることを主目的とする。   The present invention has been made to solve such problems, and a main object of the present invention is to obtain a corresponding reduced product from arenesulfonamide in a high yield.

上述した目的を達成するために、本発明者らは、N,N−ジメチル−2−ナフタレンスルホンアミドをモデル基質として用い、種々の還元剤を用いて還元反応を試みたところ、Red−Alを用いたときに、過剰還元によって生成するナフタレンの副生を抑制しつつ、対応する還元体が収率よく得られることを見いだし、本発明を完成するに至った。   In order to achieve the above-mentioned object, the present inventors tried reduction reaction using various reducing agents using N, N-dimethyl-2-naphthalenesulfonamide as a model substrate. When used, it was found that the corresponding reductant was obtained in good yield while suppressing the by-product of naphthalene produced by excessive reduction, and the present invention was completed.

即ち、本発明のアレーンスルホンアミドの還元方法は、ArSO2NR12(Arは置換基を有していてもよいアレーンであり、R1及びR2は同じでも異なっていてもよいアルキル基である)で表されるアレーンスルホンアミドを、MAlH4−n(Mはアルカリ金属であり、nは1〜3のいずれかの整数であり、Rはアルコキシ基又はアルコキシアルコキシ基である)で表される還元剤で還元することにより、対応するスルフィン酸、スルフェン酸、ジスルフィド及びチオールの少なくとも1つの還元体を得るものである。 That is, in the method for reducing an arenesulfonamide of the present invention, ArSO 2 NR 1 R 2 (Ar is an arene which may have a substituent, and R 1 and R 2 may be the same or different alkyl groups. MALH n R 4-n (M is an alkali metal, n is an integer of 1 to 3, and R is an alkoxy group or an alkoxyalkoxy group) To obtain at least one reduced form of the corresponding sulfinic acid, sulfenic acid, disulfide and thiol.

本発明のアレーンスルホンアミドの還元方法によれば、アレーンスルホンアミドから対応する還元体を収率よく得ることができる。また、得られた還元体は、酸素又は過酸化水素で酸化することにより、対応するアレーンスルホン酸に容易に変換することができる。   According to the method for reducing an arenesulfonamide of the present invention, a corresponding reduced product can be obtained from the arenesulfonamide with a high yield. The obtained reduced product can be easily converted to the corresponding arenesulfonic acid by oxidation with oxygen or hydrogen peroxide.

本発明のアレーンスルホンアミドの還元方法では、ArSO2NR12で表されるアレーンスルホンアミドを反応基質として用いる。ここで、Arは置換基を有していてもよいアレーンである。アレーンとしては、ベンゼン、1−ナフタレン、2−ナフタレン、1−アントラセン、2−アントラセン、9−アントラセン、1−フェナントレン、2−フェナントレン、3−フェナントレン、4−フェナントレン、9−フェナントレン、ビフェニル、ビナフチルなどが挙げられる。アレーンは1つ以上の置換基を有していてもよい。その場合、置換基としては、ハロゲン原子、アルキル基、アリール基、スルホン酸エステル基などが挙げられる。R1及びR2は同じでも異なっていてもよいアルキル基である。アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基などが挙げられる。 In the arenesulfonamide reduction method of the present invention, arenesulfonamide represented by ArSO 2 NR 1 R 2 is used as a reaction substrate. Here, Ar is an arene which may have a substituent. Examples of arenes include benzene, 1-naphthalene, 2-naphthalene, 1-anthracene, 2-anthracene, 9-anthracene, 1-phenanthrene, 2-phenanthrene, 3-phenanthrene, 4-phenanthrene, 9-phenanthrene, biphenyl, and binaphthyl. Is mentioned. The arene may have one or more substituents. In that case, examples of the substituent include a halogen atom, an alkyl group, an aryl group, and a sulfonate group. R 1 and R 2 are alkyl groups which may be the same or different. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group.

本発明のアレーンスルホンアミドの還元方法では、MAlH4−n(Mはアルカリ金属であり、nは1〜3のいずれかの整数であり、Rはアルコキシ基又はアルコキシアルコキシ基である)で表される還元剤を用いる。ここで、Mとしては、Li,Na,Kなどが挙げられ、このうちNaが好ましい。nは、2であることが好ましい。アルコキシ基としては、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、n−ブトキシ基、イソブトキシ基、sec−ブトキシ基、tert−ブトキシ基などが挙げられる。アルコキシアルコキシ基としては、メトキシメトキシ基、2−メトキシエトキシ基、2−メトキシプロポキシ基、3−メトキシプロポキシ基などが挙げられ、このうち2−メトキシエトキシ基が好ましい。こうした還元剤としては、Red−AlすなわちNaAlH2(OC24OCH32が好ましい。還元剤の使用量は、スルホンアミドに対して1〜20当量の範囲で設定するのが好ましく、3〜10当量の範囲で設定するのがより好ましく、5〜10当量の範囲で設定するのが更に好ましい。 In the arenesulfonamide reduction method of the present invention, MAlH n R 4-n (M is an alkali metal, n is an integer of 1 to 3, and R is an alkoxy group or an alkoxyalkoxy group). The reducing agent represented is used. Here, examples of M include Li, Na, K and the like, and among these, Na is preferable. n is preferably 2. Examples of the alkoxy group include a methoxy group, an ethoxy group, a propoxy group, an isopropoxy group, an n-butoxy group, an isobutoxy group, a sec-butoxy group, and a tert-butoxy group. Examples of the alkoxyalkoxy group include a methoxymethoxy group, a 2-methoxyethoxy group, a 2-methoxypropoxy group, and a 3-methoxypropoxy group, and among them, a 2-methoxyethoxy group is preferable. As such a reducing agent, Red-Al, that is, NaAlH 2 (OC 2 H 4 OCH 3 ) 2 is preferable. The amount of the reducing agent used is preferably set in the range of 1 to 20 equivalents relative to the sulfonamide, more preferably in the range of 3 to 10 equivalents, and in the range of 5 to 10 equivalents. Further preferred.

本発明のアレーンスルホンアミドの還元方法では、溶媒を用いることが好ましい。溶媒としては、例えば、エーテル系溶媒が挙げられる。エーテル系溶媒としては、ジエチルエーテル、ジイソプロピルエーテル、メチル−tert−ブチルエーテル、テトラヒドロフラン、1,2−ジメトキシエタン、1,2−ジエトキシエタン、ジオキサン、シクロペンチルメチルエーテルなどが挙げられる。反応溶媒の使用量は、基質の濃度が0.001〜0.5mol/Lとなるように設定するのが好ましく、0.01〜0.1mol/Lとなるように設定するのがより好ましい。   In the method for reducing arenesulfonamide of the present invention, it is preferable to use a solvent. Examples of the solvent include ether solvents. Examples of the ether solvent include diethyl ether, diisopropyl ether, methyl-tert-butyl ether, tetrahydrofuran, 1,2-dimethoxyethane, 1,2-diethoxyethane, dioxane, cyclopentylmethyl ether and the like. The amount of reaction solvent used is preferably set so that the concentration of the substrate is 0.001 to 0.5 mol / L, and more preferably 0.01 to 0.1 mol / L.

本発明のアレーンスルホンアミドの還元方法では、反応温度は、−10℃〜100℃が好ましく、0〜50℃がより好ましい。反応系の雰囲気は、窒素ガスやアルゴンガスなどの不活性雰囲気が好ましい。反応時間は、反応基質や還元剤、反応温度に応じて適宜設定すればよい。還元反応は、アレーンスルホンアミドが消失するまで行ってもよいが、副反応が起こりやすい場合には、アレーンスルホンアミドが消失する前に終了してもよい。   In the arenesulfonamide reduction method of the present invention, the reaction temperature is preferably -10 ° C to 100 ° C, more preferably 0 to 50 ° C. The atmosphere of the reaction system is preferably an inert atmosphere such as nitrogen gas or argon gas. What is necessary is just to set reaction time suitably according to a reaction substrate, a reducing agent, and reaction temperature. The reduction reaction may be performed until the arenesulfonamide disappears, but may be terminated before the arenesulfonamide disappears when side reactions are likely to occur.

本発明のアレーンスルホンアミドの還元方法では、還元体としてアレーンスルホンアミドに対応するスルフィン酸(−SO2H)を選択的に得ることが好ましい。スルフェン酸(−SOH)やジスルフィド(−S−S−)やチオール(−SH)まで還元してしまうと、次に酸化でスルホン酸に変換する場合に酸化剤が多く必要になってしまうからである。スルフィン酸を選択的に得るには、例えば還元剤の使用量をスルホンアミドの5〜10当量とするのが好ましい。こうすれば、過剰な還元反応を抑制することができる。 In the arenesulfonamide reduction method of the present invention, it is preferable to selectively obtain sulfinic acid (—SO 2 H) corresponding to arenesulfonamide as a reduced form. If sulfenic acid (—SOH), disulfide (—S—S—), and thiol (—SH) are reduced, a large amount of oxidizing agent is required for the subsequent conversion to sulfonic acid by oxidation. is there. In order to selectively obtain sulfinic acid, for example, the amount of reducing agent used is preferably 5 to 10 equivalents of sulfonamide. In this way, excessive reduction reaction can be suppressed.

本発明のアレーンスルホン酸の製法では、上述したアレーンスルホンアミドの還元方法によって得られた前記還元体を、酸素又は過酸化水素で酸化することにより、対応するスルホン酸を得る。   In the process for producing arenesulfonic acid of the present invention, the corresponding sulfonic acid is obtained by oxidizing the reduced product obtained by the above-described method for reducing arenesulfonamide with oxygen or hydrogen peroxide.

酸素で酸化する場合、酸素ガスを用いてもよいし空気中の酸素を用いてもよいが、酸素ガスを用いることが好ましい。酸素圧は、特に限定するものではないが、例えば1〜10atmの範囲で適宜設定すればよい。酸素で酸化する場合、溶媒は、酸素に不活性な溶媒であればよく、例えば、HMPAやDMF、DMSO、アセトニトリル、アセトンなどの極性非プロトン性溶媒が挙げられる。また、水酸化カリウムなどの塩基の存在下で酸化を行ってもよい。過酸化水素で酸化する場合、過酸化水素水を用いることが好ましい。その場合、溶媒は、過酸化水素に不活性な溶媒であればよく、例えば、酢酸メチルや酢酸エチルなどのエステル系溶媒が挙げられる。反応温度は、−10℃〜100℃が好ましく、0〜50℃がより好ましい。反応時間は、反応基質や酸化剤、反応温度に応じて適宜設定すればよい。酸化反応は、アレーンスルホンアミドの還元体が消失するまで行ってもよいが、副反応が起こりやすい場合には、還元体が消失する前に終了してもよい。   When oxidizing with oxygen, oxygen gas or oxygen in the air may be used, but oxygen gas is preferably used. The oxygen pressure is not particularly limited, but may be appropriately set within a range of 1 to 10 atm, for example. When oxidizing with oxygen, the solvent may be any solvent inert to oxygen, and examples thereof include polar aprotic solvents such as HMPA, DMF, DMSO, acetonitrile, and acetone. Moreover, you may oxidize in presence of bases, such as potassium hydroxide. When oxidizing with hydrogen peroxide, it is preferable to use aqueous hydrogen peroxide. In that case, the solvent may be any solvent inert to hydrogen peroxide, and examples thereof include ester solvents such as methyl acetate and ethyl acetate. The reaction temperature is preferably -10 ° C to 100 ° C, more preferably 0 to 50 ° C. What is necessary is just to set reaction time suitably according to a reaction substrate, an oxidizing agent, and reaction temperature. The oxidation reaction may be performed until the reduced form of arenesulfonamide disappears. However, if a side reaction is likely to occur, the oxidation reaction may be completed before the reduced form disappears.

本発明のアレーンスルホン酸の製法では、式(1)で表される光学活性スルホンアミドを、前記還元剤による還元とそれに続く酸化によって、式(2)で表される光学活性ジスルホン酸を得るようにしてもよい。式(2)で表される光学活性ジスルホン酸は、種々の有機合成反応の触媒としての利用が期待される。   In the process for producing arenesulfonic acid of the present invention, an optically active disulfonic acid represented by the formula (2) is obtained by reducing the optically active sulfonamide represented by the formula (1) with the reducing agent and subsequent oxidation. It may be. The optically active disulfonic acid represented by the formula (2) is expected to be used as a catalyst for various organic synthesis reactions.

式(1),(2)中、R1及びR2は前述の通りである。R3はアルキル基である。アルキル基としては、メチル基、エチル基、プロピル基、イソプロピル基、n−ブチル基、イソブチル基、sec−ブチル基、tert−ブチル基などが挙げられる。R4及びR5は同じであっても異なっていてもよく、水素原子、ハロゲン原子又は置換基を有していてもよいアリール基である。ハロゲン原子としては、塩素原子、臭素原子、ヨウ素原子などが挙げられる。アリール基としては、フェニル基、1−ナフチル基、2−ナフチル基、1−アントラセニル基、2−アントラセニル基、5−アントラセニル基、1−フェナントレニル基、2−フェナントレニル基、3−フェナントレニル基、4−フェナントレニル基、9−フェナントレニル基などが挙げられる。アリール基は1つ以上の置換基を有していてもよい。その場合、置換基としては、ハロゲン原子やアルキル基、アリール基、アルコキシ基などが挙げられる。これらの具体例については、既に説明したとおりである。 In formulas (1) and (2), R 1 and R 2 are as described above. R 3 is an alkyl group. Examples of the alkyl group include a methyl group, an ethyl group, a propyl group, an isopropyl group, an n-butyl group, an isobutyl group, a sec-butyl group, and a tert-butyl group. R 4 and R 5 may be the same or different and are a hydrogen atom, a halogen atom or an aryl group which may have a substituent. Examples of the halogen atom include a chlorine atom, a bromine atom, and an iodine atom. As the aryl group, phenyl group, 1-naphthyl group, 2-naphthyl group, 1-anthracenyl group, 2-anthracenyl group, 5-anthracenyl group, 1-phenanthrenyl group, 2-phenanthrenyl group, 3-phenanthrenyl group, 4- Examples thereof include a phenanthrenyl group and a 9-phenanthrenyl group. The aryl group may have one or more substituents. In that case, examples of the substituent include a halogen atom, an alkyl group, an aryl group, and an alkoxy group. These specific examples are as already described.

本発明のアレーンスルホン酸の製法によれば、3,3’位に種々の置換基(特にアリール基)を有する光学活性ビナフチルジスルホン酸を合成することができる。例えば、式(3)で表される新規なビナフチルジスルホン酸を合成することができる。   According to the process for producing arenesulfonic acid of the present invention, it is possible to synthesize optically active binaphthyl disulfonic acid having various substituents (particularly aryl groups) at the 3,3 ′ positions. For example, a novel binaphthyl disulfonic acid represented by the formula (3) can be synthesized.

[実施例1]
窒素置換した反応容器に、N,N−ジメチルナフタレン−2−スルホンアミド(23.5mg,0.10mmol)とTHF(4mL)を加えて、0℃に冷却し、Red−Al(65wt%トルエン溶液、0.30mL,1.0mmol)を加えた。同混合物を40℃で22時間加熱した。反応終了をTLCで確認し、0℃に冷却した後、激しく撹拌しながら硫酸ナトリウムの飽和水溶液を適量加え、酢酸エチル(10mL×2)を用いて通常の分液処理を行った。抽出した有機層は飽和塩化ナトリウム水溶液(5mL)で洗浄し、硫酸マグネシウムで乾燥後、ろ過、濃縮した。得られた濃縮物は、精製せずにそのまま以降の操作を続けた。得られた濃縮物にヘキサメチルリン酸トリアミド(HMPA)(1mL)、水酸化カリウム(33.7mg,0.60mmol)を加え、約5気圧(0.5MPa)の酸素を封入した。この混合物を80℃で10時間加熱した。反応終了後、室温まで冷却し、そのままシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=1:1)にて生成物を分取し、目的の2−ナフタレンスルホン酸カリウム塩を収率71%(17.8mg)で得た。得られた2−ナフタレンスルホン酸カリウム塩のスペクトルデータは以下のとおり。
[Example 1]
N, N-dimethylnaphthalene-2-sulfonamide (23.5 mg, 0.10 mmol) and THF (4 mL) were added to the reaction vessel purged with nitrogen, cooled to 0 ° C., and Red-Al (65 wt% toluene solution). , 0.30 mL, 1.0 mmol) was added. The mixture was heated at 40 ° C. for 22 hours. After completion of the reaction was confirmed by TLC and cooled to 0 ° C., an appropriate amount of a saturated aqueous solution of sodium sulfate was added with vigorous stirring, and normal liquid separation treatment was performed using ethyl acetate (10 mL × 2). The extracted organic layer was washed with a saturated aqueous sodium chloride solution (5 mL), dried over magnesium sulfate, filtered and concentrated. The obtained concentrate was continued without further purification. Hexamethylphosphoric triamide (HMPA) (1 mL) and potassium hydroxide (33.7 mg, 0.60 mmol) were added to the obtained concentrate, and oxygen at about 5 atm (0.5 MPa) was enclosed. The mixture was heated at 80 ° C. for 10 hours. After completion of the reaction, the reaction mixture was cooled to room temperature, and the product was fractionated by silica gel column chromatography (chloroform: methanol = 1: 1) as it was to obtain the desired 2-naphthalenesulfonic acid potassium salt in a yield of 71% (17.8 mg). ). The spectrum data of the obtained 2-naphthalenesulfonic acid potassium salt are as follows.

1H NMR (400 MHz, CD3OD) δ 7.55 (m, 2H), 7.85-8.00 (m, 4H), 8.34 (s, 1H). 13C NMR (100 MHz, d6-DMSO:D2O = 3:1) δ 124.0, 126.0, 128.5, 129.0, 129.1, 129.8, 129.9, 133.1, 134.7, 143.1. IR (KBr) 3422, 1624, 1230, 1186, 1101, 1045 cm-1. HRMS (FAB-) calcd for C10H7O3S [M-K]- 207.0116, found 207.0118. 1 H NMR (400 MHz, CD 3 OD) δ 7.55 (m, 2H), 7.85-8.00 (m, 4H), 8.34 (s, 1H). 13 C NMR (100 MHz, d 6 -DMSO: D 2 O = 3: 1) δ 124.0, 126.0, 128.5, 129.0, 129.1, 129.8, 129.9, 133.1, 134.7, 143.1.IR (KBr) 3422, 1624, 1230, 1186, 1101, 1045 cm -1 .HRMS (FAB-) calcd for C 10 H 7 O 3 S [MK] - 207.0116, found 207.0118.

[比較例1〜3]
実施例1のRed−Alの代わりに、比較例1ではDIBAL(水素化ジイソブチルアルミニウム)、比較例2ではLiAlH4(水素化リチウムアルミニウム)、比較例3ではAlH3(水素化アルミニウム)を用いた以外は、実施例1と同様にして反応を行った。具体的な反応条件及び結果を表1に示す。比較のために実施例1の反応条件及び結果も表1に示した。
[Comparative Examples 1-3]
In place of Red-Al of Example 1, DIBAL (diisobutylaluminum hydride) was used in Comparative Example 1, LiAlH 4 (lithium aluminum hydride) was used in Comparative Example 2, and AlH 3 (aluminum hydride) was used in Comparative Example 3. The reaction was carried out in the same manner as in Example 1 except that. Specific reaction conditions and results are shown in Table 1. For comparison, the reaction conditions and results of Example 1 are also shown in Table 1.

表1に示すように、還元剤としてDIBALを用いた比較例1では、還元反応が進行せず、未反応のスルホンアミドが定量的に回収された。また、還元剤としてLiAlH4やAlH3を用いた比較例2,3では、還元反応及びそれに続く酸化反応の後に、対応するスルホン酸カリウムがそれぞれ収率46%,49%で得られた。この比較例2,3では、還元反応でC−S結合が切断されたナフタレンが約30%副生し、これがスルホン酸カリウムの収率を中程度にとどめた原因となった。これに対して、還元剤としてRed−Alを用いた実施例1では、ナフタレンの副生を約5%にまで抑制することができ、目的とするスルホン酸カリウムが収率71%で得られた。 As shown in Table 1, in Comparative Example 1 using DIBAL as the reducing agent, the reduction reaction did not proceed and unreacted sulfonamide was quantitatively recovered. In Comparative Examples 2 and 3 using LiAlH 4 or AlH 3 as the reducing agent, the corresponding potassium sulfonates were obtained in a yield of 46% and 49%, respectively, after the reduction reaction and the subsequent oxidation reaction. In Comparative Examples 2 and 3, about 30% of the naphthalene with the C—S bond cleaved by the reduction reaction was by-produced, which caused the yield of potassium sulfonate to be moderate. On the other hand, in Example 1 using Red-Al as the reducing agent, the by-product of naphthalene could be suppressed to about 5%, and the target potassium sulfonate was obtained in a yield of 71%. .

[実施例2〜5]
実施例2〜5では、N,N−ジメチルナフタレン−2−スルホンアミドを下記式に記載した条件で実施例1に準じて還元及び酸化を行い、更にアンバーライトでイオン交換を行うことにより、目的の2−ナフタレンスルホン酸を高収率で得た。
[Examples 2 to 5]
In Examples 2 to 5, N, N-dimethylnaphthalene-2-sulfonamide was reduced and oxidized according to Example 1 under the conditions described in the following formula, and further ion exchange was performed with amberlite. Of 2-naphthalenesulfonic acid was obtained in high yield.

[実施例6]
実施例6では、下記式に示すように、N,N−ジメチルナフタレン−2−スルホンアミドをRed−Alで還元して対応するスルフィン酸を単離し、その後、単離したスルフィン酸を酸素で酸化して対応するスルホン酸を得た。以下にその実験手順を説明する。
[Example 6]
In Example 6, as shown in the following formula, N, N-dimethylnaphthalene-2-sulfonamide was reduced with Red-Al to isolate the corresponding sulfinic acid, and then the isolated sulfinic acid was oxidized with oxygen. The corresponding sulfonic acid was obtained. The experimental procedure will be described below.

[6−1]還元反応
窒素置換した反応容器に、N,N−ジメチルナフタレン−2−スルホンアミド(23.5mg,0.10mmol)とTHF(4mL)を加えて、0℃に冷却し、Red−Al(65wt%トルエン溶液、0.15mL,0.50mmol)を加えた。同混合物を室温で5時間撹拌した。反応終了をTLCで確認し、0℃に冷却した後、激しく撹拌しながら硫酸ナトリウムの飽和水溶液を適量加え、酢酸エチル(10mL×2)を用いて通常の分液処理を行った。抽出した有機層を飽和塩化ナトリウム水溶液(5mL)で洗浄し、硫酸マグネシウムで乾燥後、ろ過、濃縮し、目的の2−ナフタレンスルフィン酸を収率95%(18.4mg)で得た。得られた2−ナフタレンスルフィン酸のスペクトルデータは以下のとおり。
[6-1] Reduction Reaction N, N-dimethylnaphthalene-2-sulfonamide (23.5 mg, 0.10 mmol) and THF (4 mL) were added to a nitrogen-substituted reaction vessel, cooled to 0 ° C., and Red. -Al (65 wt% toluene solution, 0.15 mL, 0.50 mmol) was added. The mixture was stirred at room temperature for 5 hours. After completion of the reaction was confirmed by TLC and cooled to 0 ° C., an appropriate amount of a saturated aqueous solution of sodium sulfate was added with vigorous stirring, and normal liquid separation treatment was performed using ethyl acetate (10 mL × 2). The extracted organic layer was washed with a saturated aqueous sodium chloride solution (5 mL), dried over magnesium sulfate, filtered and concentrated to obtain the desired 2-naphthalenesulfinic acid in a yield of 95% (18.4 mg). The spectrum data of the obtained 2-naphthalenesulfinic acid are as follows.

1H NMR (400 MHz, CD3OD) δ 7.55 (m, 2H), 7.85-8.00 (m, 4H), 8.34 (s, 1H). 13C NMR (100 MHz, d6-DMSO:D2O = 3:1) δ 124.0, 126.0, 128.5, 129.0, 129.1, 129.8, 129.9, 133.1, 134.7, 143.1. 1 H NMR (400 MHz, CD 3 OD) δ 7.55 (m, 2H), 7.85-8.00 (m, 4H), 8.34 (s, 1H). 13 C NMR (100 MHz, d 6 -DMSO: D 2 O = 3: 1) δ 124.0, 126.0, 128.5, 129.0, 129.1, 129.8, 129.9, 133.1, 134.7, 143.1.

[6−2]酸化反応
続いて、窒素置換した反応容器に、2−ナフタレンスルフィン酸(96.1mg,0.50mmol)、ジメチルホルムアミド(DMF)(5mL)を加え、風船の酸素を封入した(1気圧)。この混合物を60℃で28時間加熱した。反応終了後、室温まで冷却し、溶媒を留去して、減圧乾燥(1〜2Torr)し、目的の2−ナフタレンスルホン酸を収率95%(100mg)で得た。
[6-2] Oxidation Reaction Subsequently, 2-naphthalenesulfinic acid (96.1 mg, 0.50 mmol) and dimethylformamide (DMF) (5 mL) were added to a nitrogen-substituted reaction vessel, and balloon oxygen was sealed ( 1 atm). The mixture was heated at 60 ° C. for 28 hours. After completion of the reaction, the reaction mixture was cooled to room temperature, the solvent was distilled off, and the residue was dried under reduced pressure (1-2 Torr) to obtain the desired 2-naphthalenesulfonic acid in a yield of 95% (100 mg).

[実施例7]
下記式にしたがって、ジスルホンイミド(化合物10)を出発物質として、目的とする3,3’−ジフェニル−1,1’−ビナフチル−2,2’ジスルホン酸(化合物22)を合成した。なお、化合物10は文献Eur. J. Org. Chem. 2010, p4181の記載にしたがって合成した。
[Example 7]
According to the following formula, the target 3,3′-diphenyl-1,1′-binaphthyl-2,2′disulfonic acid (Compound 22) was synthesized using disulfonimide (Compound 10) as a starting material. Compound 10 was synthesized as described in the literature Eur. J. Org. Chem. 2010, p4181.

[7−1]ステップ1
窒素置換したシュレンク反応容器に、化合物10(R体、328.6mg,0.60mmol)、炭酸カリウム(249mg,1.80mmol)、塩化メチレン(10mL)を加えて、0℃に冷却した。トリメチルオキソニウムテトラフルオロボラート(266.2mg,1.80mmol)を加えた後、室温まで昇温し、4時間撹拌した。反応終了をTLCで確認した後、飽和塩化アンモニウム水溶液(5mL)を加え、酢酸エチル(15mL×2)を用いて通常の分液処理を行った。抽出した有機層を飽和塩化ナトリウム水溶液(10mL)で洗浄し、硫酸マグネシウムで乾燥後、ろ過、濃縮した。得られた濃縮物からシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=3:1)にて生成物を分取し、目的の化合物12(R体)を収率>99%(337.0mg)で得た。化合物12のスペクトルデータは以下のとおり。
[7-1] Step 1
To a Schlenk reaction vessel purged with nitrogen, compound 10 (R-form, 328.6 mg, 0.60 mmol), potassium carbonate (249 mg, 1.80 mmol), and methylene chloride (10 mL) were added, and the mixture was cooled to 0 ° C. Trimethyloxonium tetrafluoroborate (266.2 mg, 1.80 mmol) was added, and the mixture was warmed to room temperature and stirred for 4 hours. After confirming the completion of the reaction by TLC, a saturated aqueous ammonium chloride solution (5 mL) was added, and normal liquid separation treatment was performed using ethyl acetate (15 mL × 2). The extracted organic layer was washed with a saturated aqueous sodium chloride solution (10 mL), dried over magnesium sulfate, filtered and concentrated. The product was fractionated from the obtained concentrate by silica gel column chromatography (hexane: ethyl acetate = 3: 1) to obtain the desired compound 12 (R form) in a yield> 99% (337.0 mg). It was. The spectral data of Compound 12 is as follows.

1H NMR (400 MHz, CDCl3) δ 2.95 (s, 3H), 7.25 (d, J = 8.2 Hz, 2H), 7.39-7.48 (m, 12H), 7.68 (t, J = 7.3 Hz, 2H), 7.98 (d, J = 8.2 Hz, 2H), 8.06 (s, 2H). 13C NMR (100 MHz, CDCl3) δ 30.7, 127.3 (2C), 127.8 (2C), 127.9 (2C), 128.3 (2C), 128.4 (2C), 128.5 (2C), 128.7 (2C), 130.0 (2C), 130.4 (2C), 131.8 (2C), 132.2 (2C), 133.8 (2C), 134.5 (2C), 138.0 (2C), 139.0 (2C), 139.8 (2C). M.p. 278℃ (decomposed). IR (KBr) 3056, 2932, 1366, 1349, 1176, 1029 cm-1. [α]D 24= 38.8 (c 1.0, CHCl3, (R)). HRMS (FAB+) calcd for C33H24NO4S2 [M+H]+ 562.1147, found 562.1150. 1 H NMR (400 MHz, CDCl 3 ) δ 2.95 (s, 3H), 7.25 (d, J = 8.2 Hz, 2H), 7.39-7.48 (m, 12H), 7.68 (t, J = 7.3 Hz, 2H) , 7.98 (d, J = 8.2 Hz, 2H), 8.06 (s, 2H). 13 C NMR (100 MHz, CDCl 3) δ 30.7, 127.3 (2C), 127.8 (2C), 127.9 (2C), 128.3 ( 2C), 128.4 (2C), 128.5 (2C), 128.7 (2C), 130.0 (2C), 130.4 (2C), 131.8 (2C), 132.2 (2C), 133.8 (2C), 134.5 (2C), 138.0 ( 2C), 139.0 (2C), 139.8 (2C). Mp 278 ° C (decomposed). IR (KBr) 3056, 2932, 1366, 1349, 1176, 1029 cm -1 . [Α] D 24 = 38.8 (c 1.0, CHCl 3 , (R)). HRMS (FAB +) calcd for C 33 H 24 NO 4 S 2 [M + H] + 562.1147, found 562.1150.

[7−2]ステップ2
化合物12(561.1mg,1.0mmol)に対して、水酸化ナトリウム(8.0g,200mmol)、メタノール(100mL)を加えた。同反応溶液を70℃で15時間加熱した。室温に冷却し、反応終了をTLCで確認した後、メタノールを減圧留去したのち、酢酸エチル(30mL)と飽和塩化アンモニウム水溶液(20mL)を加え、酢酸エチル(15mL×2)を用いて通常の分液処理を行った。抽出した有機層を飽和塩化ナトリウム水溶液(10mL)で洗浄し、硫酸マグネシウムで乾燥後、ろ過、濃縮した。得られた濃縮物からシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=5:1)にて生成物を分取し、目的の化合物14(R体)を収率99%(601.7mg)で得た。化合物14のスペクトルデータは以下のとおり。
[7-2] Step 2
Sodium hydroxide (8.0 g, 200 mmol) and methanol (100 mL) were added to compound 12 (561.1 mg, 1.0 mmol). The reaction solution was heated at 70 ° C. for 15 hours. After cooling to room temperature and confirming the completion of the reaction by TLC, methanol was distilled off under reduced pressure, and then ethyl acetate (30 mL) and a saturated aqueous ammonium chloride solution (20 mL) were added, followed by normal use with ethyl acetate (15 mL × 2). Liquid separation treatment was performed. The extracted organic layer was washed with a saturated aqueous sodium chloride solution (10 mL), dried over magnesium sulfate, filtered and concentrated. The product was fractionated from the obtained concentrate by silica gel column chromatography (chloroform: methanol = 5: 1) to obtain the target compound 14 (R form) in a yield of 99% (601.7 mg). The spectral data of Compound 14 is as follows.

1H NMR (400 MHz, CD3OD) δ 2.30 (s, 3H), 6.96 (d, J = 8.7 Hz, 1H), 7.16-7.38 (m, 6H), 7.39-7.48 (m, 4H), 7.51 (t, J = 7.3 Hz, 1H), 7.57-7.69 (m, 4H), 7.76 (s, 1H), 7.80 (s, 1H), 7.85 (d, J = 9.1 Hz, 1H), 7.87 (d, J = 8.2 Hz, 1H). 13C NMR (100 MHz, CD3OD) δ 28.9, 127.3, 127.4, 127.7, 127.9, 128.2, 128.4, 128.5, 128.6, 129.4, 130.9, 131.2, 131.3, 132.8, 134.0, 134.5, 134.7, 135.4, 136.1, 138.7, 140.3, 140.4, 142.4, 142.7, 144.6. M.p. 273 ℃ (decomposed). IR (KBr) 3376, 1494, 1326, 1170, 1041 cm-1. [α]D 23 = 155 (c 1.0, CH3OH, (R)). HRMS (FAB+) calcd forC33H24NNa2O5S2 [M+Na]+624.0891, found 624.0899. 1 H NMR (400 MHz, CD 3 OD) δ 2.30 (s, 3H), 6.96 (d, J = 8.7 Hz, 1H), 7.16-7.38 (m, 6H), 7.39-7.48 (m, 4H), 7.51 (t, J = 7.3 Hz, 1H), 7.57-7.69 (m, 4H), 7.76 (s, 1H), 7.80 (s, 1H), 7.85 (d, J = 9.1 Hz, 1H), 7.87 (d, J = 8.2 Hz, 1H). 13 C NMR (100 MHz, CD 3 OD) δ 28.9, 127.3, 127.4, 127.7, 127.9, 128.2, 128.4, 128.5, 128.6, 129.4, 130.9, 131.2, 131.3, 132.8, 134.0, 134.5, 134.7, 135.4, 136.1, 138.7, 140.3, 140.4, 142.4, 142.7, 144.6. Mp 273 ° C (decomposed). IR (KBr) 3376, 1494, 1326, 1170, 1041 cm -1 . [Α] D 23 = 155 (c 1.0, CH 3 OH, (R)). HRMS (FAB +) calcd forC 33 H 24 NNa 2 O 5 S 2 [M + Na] + 624.0891, found 624.0899.

[7−3]ステップ3
化合物14(120.3mg,0.20mmol)に、炭酸カリウム(69.1mg,0.50mmol)、塩化メチレン(7.5mL)を加えて、0℃に冷却した。トリエチルオキソニウムテトラフルオロボラート(1M塩化メチレン溶液、0.50mL,0.50mmol)を加えた後、室温まで昇温し、20時間撹拌した。反応終了をTLCで確認した後、飽和塩化アンモニウム水溶液(5mL)を加え、酢酸エチル(15mL×2)を用いて通常の分液処理を行った。抽出した有機層を飽和塩化ナトリウム水溶液(10mL)で洗浄し、硫酸マグネシウムで乾燥後、ろ過、濃縮した。得られた濃縮物からシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=4:1)にて生成物を分取し、目的の化合物16(R体)を収率98%(119.3mg)で得た。化合物16のスペクトルデータは以下のとおり。
[7-3] Step 3
To compound 14 (120.3 mg, 0.20 mmol), potassium carbonate (69.1 mg, 0.50 mmol) and methylene chloride (7.5 mL) were added and cooled to 0 ° C. After adding triethyloxonium tetrafluoroborate (1M methylene chloride solution, 0.50 mL, 0.50 mmol), the mixture was warmed to room temperature and stirred for 20 hours. After confirming the completion of the reaction by TLC, a saturated aqueous ammonium chloride solution (5 mL) was added, and normal liquid separation treatment was performed using ethyl acetate (15 mL × 2). The extracted organic layer was washed with a saturated aqueous sodium chloride solution (10 mL), dried over magnesium sulfate, filtered and concentrated. The product was fractionated from the obtained concentrate by silica gel column chromatography (hexane: ethyl acetate = 4: 1) to obtain the target compound 16 (R form) in a yield of 98% (119.3 mg). . The spectral data of Compound 16 is as follows.

1H NMR (400 MHz, CDCl3) δ 0.93 (t, J = 7.2 Hz, 3H), 2.33 (d, J = 5.0 Hz, 3H), 3.29 (q, J = 5.0 Hz, 1H), 3.70 (dq, J = 9.6, 6.9 Hz, 1H), 3.86 (dq, J = 9.6, 6.9 Hz, 1H), 7.25 (d, J = 8.2 Hz, 1H), 7.29 (d, J = 8.7 Hz, 1H), 7.37-7.55 (m, 8H), 7.57-7.74 (m, 5H), 7.79 (m, 1H), 7.91 (d, J = 8.2 Hz, 2H), 7.93 (s, 1H), 7.94 (s 1H). 13C NMR (100 MHz, CDCl3) δ 14.4, 28.8, 66.2, 127.2, 127.54, 127.56, 127.61, 127.91, 127.94, 128.0, 128.3, 128.5, 128.8, 129.1, 129.1, 130.0, 132.1, 132.3, 132.5, 132.6, 132.7, 133.5, 133.9, 134.8, 136.1, 137.4, 138.5, 139.6, 140.0, 140.6. M.p. 140-142℃. IR (KBr) 3372, 3055, 1332, 1183, 1000 cm-1. [α]D 25 = 186.4 (c 1.0, CHCl3, (R)). HRMS (FAB+) calcd for C33H30NO5S2 [M+H]+ 608.1565, found 608.1555. 1 H NMR (400 MHz, CDCl 3 ) δ 0.93 (t, J = 7.2 Hz, 3H), 2.33 (d, J = 5.0 Hz, 3H), 3.29 (q, J = 5.0 Hz, 1H), 3.70 (dq , J = 9.6, 6.9 Hz, 1H), 3.86 (dq, J = 9.6, 6.9 Hz, 1H), 7.25 (d, J = 8.2 Hz, 1H), 7.29 (d, J = 8.7 Hz, 1H), 7.37 -7.55 (m, 8H), 7.57-7.74 (m, 5H), 7.79 (m, 1H), 7.91 (d, J = 8.2 Hz, 2H), 7.93 (s, 1H), 7.94 (s 1H). 13 C NMR (100 MHz, CDCl 3 ) δ 14.4, 28.8, 66.2, 127.2, 127.54, 127.56, 127.61, 127.91, 127.94, 128.0, 128.3, 128.5, 128.8, 129.1, 129.1, 130.0, 132.1, 132.3, 132.5, 132.6, 132.7, 133.5, 133.9, 134.8, 136.1, 137.4, 138.5, 139.6, 140.0, 140.6. Mp 140-142 ℃. IR (KBr) 3372, 3055, 1332, 1183, 1000 cm -1 . [Α] D 25 = 186.4 (c 1.0, CHCl 3 , (R)). HRMS (FAB +) calcd for C 33 H 30 NO 5 S 2 [M + H] + 608.1565, found 608.1555.

[7−4]ステップ4
化合物16(30.4mg,0.050mmol)に、炭酸カリウム(13.8mg,1.0mmol)、1,2−ジクロロエタン(2mL)を加えて、0℃に冷却した。トリメチルオキソニウムテトラフルオロボラート(14.8mg,0.10mmol)を加えた後、90℃まで昇温し、52時間撹拌した。反応終了をTLCで確認した後、飽和塩化アンモニウム水溶液(5mL)を加え、酢酸エチル(10mL×2)を用いて通常の分液処理を行った。抽出した有機層を飽和塩化ナトリウム水溶液(10mL)で洗浄し、硫酸マグネシウムで乾燥後、ろ過、濃縮した。得られた濃縮物からシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=4:1)にて生成物を分取し、目的の化合物18(R体)を収率85%(26.6mg)で得た。化合物18のスペクトルデータは以下のとおり。
[7-4] Step 4
To compound 16 (30.4 mg, 0.050 mmol), potassium carbonate (13.8 mg, 1.0 mmol) and 1,2-dichloroethane (2 mL) were added and cooled to 0 ° C. Trimethyloxonium tetrafluoroborate (14.8 mg, 0.10 mmol) was added, and then the temperature was raised to 90 ° C. and stirred for 52 hours. After confirming the completion of the reaction by TLC, a saturated aqueous ammonium chloride solution (5 mL) was added, and normal liquid separation treatment was performed using ethyl acetate (10 mL × 2). The extracted organic layer was washed with a saturated aqueous sodium chloride solution (10 mL), dried over magnesium sulfate, filtered and concentrated. The product was fractionated from the obtained concentrate by silica gel column chromatography (hexane: ethyl acetate = 4: 1) to obtain the target compound 18 (R form) in a yield of 85% (26.6 mg). . The spectral data of Compound 18 is as follows.

1H NMR (400 MHz, CDCl3) δ 0.94 (t, J = 7.3 Hz, 3H), 2.10 (s, 6H), 3.73 (m, 1H), 3.90 (m, 1H), 7.27-7.32 (m, 2H), 7.33-7.50 (m, 8H), 7.53-7.78 (m, 6H), 7.86 (s, 1H), 7.88 (d, J = 8.6 Hz, 1H), 7.90 (d, J = 8.6 Hz, 1H), 7.94 (s, 1H). 13C NMR (100 MHz, CDCl3) δ 14.5, 34.5, 66.3, 127.2, 127.3, 127.4, 127.5, 127.6, 127.7, 127.8, 127.9, 128.4, 128.9, 129.2, 129.8, 132.1, 132.2, 132.5, 132.6, 133.1, 133.7, 134.1, 135.1, 137.5, 137.7, 139.6, 139.9, 140.7, 141.4. IR (KBr) 3057, 2927, 1355, 1325, 1183, 1137 cm-1. [α]D 24 = 337.5 (c 1.0, CHCl3, (R)). HRMS (FAB+) calcd for C36H33NO5S2 [M+H]+ 622.1722, found 622.1711. 1 H NMR (400 MHz, CDCl 3 ) δ 0.94 (t, J = 7.3 Hz, 3H), 2.10 (s, 6H), 3.73 (m, 1H), 3.90 (m, 1H), 7.27-7.32 (m, 2H), 7.33-7.50 (m, 8H), 7.53-7.78 (m, 6H), 7.86 (s, 1H), 7.88 (d, J = 8.6 Hz, 1H), 7.90 (d, J = 8.6 Hz, 1H ), 7.94 (s, 1H) . 13 C NMR (100 MHz, CDCl 3) δ 14.5, 34.5, 66.3, 127.2, 127.3, 127.4, 127.5, 127.6, 127.7, 127.8, 127.9, 128.4, 128.9, 129.2, 129.8, 132.1, 132.2, 132.5, 132.6, 133.1, 133.7, 134.1, 135.1, 137.5, 137.7, 139.6, 139.9, 140.7, 141.4. IR (KBr) 3057, 2927, 1355, 1325, 1183, 1137 cm -1 . [Α] D 24 = 337.5 (c 1.0, CHCl 3 , (R)). HRMS (FAB +) calcd for C 36 H 33 NO 5 S 2 [M + H] + 622.1722, found 622.1711.

[7−5]ステップ5
化合物18(69.7mg,0.112mmol)にTHF(4mL)を加えて、0℃に冷却し、Red−Al(65wt%トルエン溶液、0.30mL,1.0mmol)を加えた。同混合物を40℃で6時間加熱した。反応終了をTLCで確認し、0℃に冷却した後、激しく撹拌しながら硫酸ナトリウムの飽和水溶液を適量加え、酢酸エチル(10mL×2)を用いて通常の分液処理を行った。抽出した有機層を飽和塩化ナトリウム水溶液(5mL)で洗浄し、硫酸マグネシウムで乾燥後、ろ過、濃縮した。得られた濃縮物は、精製せずにそのまま以降の操作を続けた。得られた濃縮物にヘキサメチルリン酸トリアミド(HMPA)(1mL)、水酸化カリウム(33.7mg,0.60mmol)を加え、約5気圧(0.5MPa)の酸素を封入した。この混合物を80℃で10時間加熱した。反応終了後、室温まで冷却し、そのままシリカゲルカラムクロマトグラフィー(クロロホルム:メタノール=1:1)にて生成物を分取し、目的の化合物20(R体)を収率53%(38.2mg)で得た。化合物20のスペクトルデータは以下のとおり。
[7-5] Step 5
THF (4 mL) was added to compound 18 (69.7 mg, 0.112 mmol), cooled to 0 ° C., and Red-Al (65 wt% toluene solution, 0.30 mL, 1.0 mmol) was added. The mixture was heated at 40 ° C. for 6 hours. After completion of the reaction was confirmed by TLC and cooled to 0 ° C., an appropriate amount of a saturated aqueous solution of sodium sulfate was added with vigorous stirring, and normal liquid separation treatment was performed using ethyl acetate (10 mL × 2). The extracted organic layer was washed with a saturated aqueous sodium chloride solution (5 mL), dried over magnesium sulfate, filtered and concentrated. The obtained concentrate was continued without further purification. Hexamethylphosphoric triamide (HMPA) (1 mL) and potassium hydroxide (33.7 mg, 0.60 mmol) were added to the obtained concentrate, and oxygen at about 5 atm (0.5 MPa) was enclosed. The mixture was heated at 80 ° C. for 10 hours. After completion of the reaction, the reaction mixture was cooled to room temperature, and the product was fractionated as it was by silica gel column chromatography (chloroform: methanol = 1: 1) to obtain the target compound 20 (R form) in a yield of 53% (38.2 mg). I got it. The spectral data of Compound 20 is as follows.

1H NMR (400 MHz, CD3OD) δ 7.06 (d, J = 8.6 Hz, 2H), 7.18 (t, J = 8.0 Hz, 2H), 7.26-7.35 (m, 6H), 7.41 (t, J = 7.6 Hz, 2H), 7.66 (d, J = 7.6 Hz, 4H), 7.69 (s, 2H), 7.81 (d, J = 8.2 Hz, 2H). 13C NMR (100 MHz, CD3OD) δ 127.0 (2C), 127.1 (2C), 127.6 (4C), 127.8 (2C), 128.3 (2C), 129.2 (2C), 131.4 (4C), 132.2 (2C), 134.2 (2C), 134.3 (2C), 138.1 (2C), 140.3 (2C), 140.4 (2C), 145.2 (2C). IR (KBr) 3056, 1231, 1186, 1038 cm-1. [α]D 24 = 91.3 (c 0.80, CH3OH, (R)). HRMS (FAB+) calcd for C32H21Na2O6S2 [M-2K+2Na+H]+611.0575, found 611.0584; (FAB-) calcd for C32H20NaO6S2 [M-2K+Na]-587.0599, found 587.0608. 1 H NMR (400 MHz, CD 3 OD) δ 7.06 (d, J = 8.6 Hz, 2H), 7.18 (t, J = 8.0 Hz, 2H), 7.26-7.35 (m, 6H), 7.41 (t, J = 7.6 Hz, 2H), 7.66 (d, J = 7.6 Hz, 4H), 7.69 (s, 2H), 7.81 (d, J = 8.2 Hz, 2H). 13 C NMR (100 MHz, CD 3 OD) δ 127.0 (2C), 127.1 (2C), 127.6 (4C), 127.8 (2C), 128.3 (2C), 129.2 (2C), 131.4 (4C), 132.2 (2C), 134.2 (2C), 134.3 (2C), 138.1 (2C), 140.3 (2C), 140.4 (2C), 145.2 (2C). IR (KBr) 3056, 1231, 1186, 1038 cm -1 . [Α] D 24 = 91.3 (c 0.80, CH 3 OH, (R)). HRMS (FAB +) calcd for C 32 H 21 Na 2 O 6 S 2 [M-2K + 2Na + H] + 611.0575, found 611.0584; (FAB-) calcd for C 32 H 20 NaO 6 S 2 [M-2K + Na] - 587.0599, found 587.0608.

[7−6]ステップ6
化合物20(37.9mg,0.059mmol)を陽イオン交換樹脂(アンバーライトIR120H、100cm3)に通した。次いで、回収液からメタノールを減圧留去し、トルエンにて共沸脱水を行った。その後、1〜2Torrにて12時間減圧乾燥し、化合物22(R体)を収率>99%(34.4mg)で得た。化合物22のスペクトルデータは以下のとおり。
[7-6] Step 6
Compound 20 (37.9 mg, 0.059 mmol) was passed through a cation exchange resin (Amberlite IR120H, 100 cm 3 ). Subsequently, methanol was distilled off from the recovered liquid under reduced pressure, and azeotropic dehydration was performed with toluene. Then, it dried under reduced pressure at 1-2 Torr for 12 hours, and obtained compound 22 (R body) with yield> 99% (34.4 mg). The spectral data of Compound 22 is as follows.

1H NMR (400 MHz, CD3OD) δ 7.07 (d, J = 8.6 Hz, 2H), 7.25 (t, J = 7.3 Hz, 2H), 7.29-7.43 (m, 6H), 7.50 (t, J = 6.9 Hz, 2H), 7.61 (d, J = 7.0 Hz, 4H), 7.80 (s, 2H), 7.89 (d, J = 7.8 Hz, 2H). 13C NMR (100 MHz, CD3OD) δ 127.5 (2C), 127.6 (2C), 127.9 (4C), 128.6 (2C), 128.7 (2C), 129.0 (2C), 131.0 (4C), 132.8 (2C), 134.0 (2C), 134.5 (2C), 138.4 (2C), 138.6 (2C), 140.0 (2C), 144.2 (2C). IR (KBr) 3420, 3053, 1229, 1182, 1035 cm-1. [α]D 24 = 121 (c 1.0, MeOH, (R)). HRMS (FAB+) calcd for C32H22O6S2 [M]+ 566.0858, found 566.0862.
[7−7]ステップ7
窒素置換したシュレンク反応容器に、化合物22(31.0mg,0.055mmol)、炭酸カリウム(69.1mg,0.50mmol)、塩化メチレン(2mL)を加えて、0℃に冷却した。トリエチルオキソニウムテトラフルオロボラート(1M塩化メチレン溶液、0.50mL,0.50mmol)を加えた後、室温まで昇温し、15時間撹拌した。反応終了をTLCで確認した後、飽和塩化アンモニウム水溶液(5mL)を加え、酢酸エチル(15mL×2)を用いて通常の分液処理を行った。抽出した有機層を飽和塩化ナトリウム水溶液(10mL)で洗浄し、硫酸マグネシウムで乾燥後、ろ過、濃縮した。得られた濃縮物からシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=3:1)にて生成物を分取し、目的の化合物24(R体)を収率84%(28.8mg)で得た。化合物24の光学純度は、HPLCで決定し、>99%eeであることを確認した[ダイセルキラルカラムIA,ヘキサン:イソプロパノール=9:1,1.0mL/min,tR=9.0min(S),16.9min(R)]。化合物24のスペクトルデータは以下のとおり。
1 H NMR (400 MHz, CD 3 OD) δ 7.07 (d, J = 8.6 Hz, 2H), 7.25 (t, J = 7.3 Hz, 2H), 7.29-7.43 (m, 6H), 7.50 (t, J = 6.9 Hz, 2H), 7.61 (d, J = 7.0 Hz, 4H), 7.80 (s, 2H), 7.89 (d, J = 7.8 Hz, 2H). 13 C NMR (100 MHz, CD 3 OD) δ 127.5 (2C), 127.6 (2C), 127.9 (4C), 128.6 (2C), 128.7 (2C), 129.0 (2C), 131.0 (4C), 132.8 (2C), 134.0 (2C), 134.5 (2C), 138.4 (2C), 138.6 (2C), 140.0 (2C), 144.2 (2C). IR (KBr) 3420, 3053, 1229, 1182, 1035 cm -1 . [Α] D 24 = 121 (c 1.0, MeOH, (R)). HRMS (FAB +) calcd for C 32 H 22 O 6 S 2 [M] + 566.0858, found 566.0862.
[7-7] Step 7
Compound 22 (31.0 mg, 0.055 mmol), potassium carbonate (69.1 mg, 0.50 mmol), and methylene chloride (2 mL) were added to a nitrogen-substituted Schlenk reaction vessel and cooled to 0 ° C. After adding triethyloxonium tetrafluoroborate (1M methylene chloride solution, 0.50 mL, 0.50 mmol), the mixture was warmed to room temperature and stirred for 15 hours. After confirming the completion of the reaction by TLC, a saturated aqueous ammonium chloride solution (5 mL) was added, and normal liquid separation treatment was performed using ethyl acetate (15 mL × 2). The extracted organic layer was washed with a saturated aqueous sodium chloride solution (10 mL), dried over magnesium sulfate, filtered and concentrated. The product was separated from the obtained concentrate by silica gel column chromatography (hexane: ethyl acetate = 3: 1) to obtain the target compound 24 (R form) in a yield of 84% (28.8 mg). . The optical purity of compound 24 was determined by HPLC and confirmed to be> 99% ee [Daicel chiral column IA, hexane: isopropanol = 9: 1, 1.0 mL / min, t R = 9.0 min (S) , 16.9 min (R)]. The spectral data of Compound 24 is as follows.

1H NMR (400 MHz, CDCl3) δ 0.94 (t, J = 6.9 Hz, 6H), 3.66-3.75 (m, 2H), 3.79-3.88 (m, 2H), 7.25 (d, J = 8.7 Hz, 2H), 7.39-7.75 (m, 14H), 7.92 (d, J = 8.2 Hz, 2H), 7.96 (s, 2H).13C NMR (100 MHz, CDCl3) δ14.5, 66.3, 127.5, 127.8, 127.9, 128.1, 129.3, 129.7, 130.3, 132.2, 132.7, 133.0, 134.1, 137.7, 138.9, 140.6. IR (KBr) 3056, 2984, 2256, 1580, 1493, 1444, 1354, 1185, 1001 cm-1. [α]D 24 = 112.0 (c 0.20, CHCl3, (R)). HRMS (FAB+) calcd for C36H31O6S2 [M+H]+ 623.1562, found 623.1563. 1 H NMR (400 MHz, CDCl 3 ) δ 0.94 (t, J = 6.9 Hz, 6H), 3.66-3.75 (m, 2H), 3.79-3.88 (m, 2H), 7.25 (d, J = 8.7 Hz, 2H), 7.39-7.75 (m, 14H ), 7.92 (d, J = 8.2 Hz, 2H), 7.96 (s, 2H). 13 C NMR (100 MHz, CDCl 3) δ14.5, 66.3, 127.5, 127.8 , 127.9, 128.1, 129.3, 129.7, 130.3, 132.2, 132.7, 133.0, 134.1, 137.7, 138.9, 140.6.IR (KBr) 3056, 2984, 2256, 1580, 1493, 1444, 1354, 1185, 1001 cm -1 . [α] D 24 = 112.0 (c 0.20, CHCl 3 , (R)). HRMS (FAB +) calcd for C 36 H 31 O 6 S 2 [M + H] + 623.1562, found 623.1563.

[比較例4〜7]
表2に示すように、前出の化合物10,12,14,16につき、実施例7のステップ5,6と同様の還元・酸化反応及びイオン交換反応を試みたところ、目的とする化合物22は全く得られなかった。
[Comparative Examples 4 to 7]
As shown in Table 2, when the same reduction / oxidation reaction and ion exchange reaction as in Steps 5 and 6 of Example 7 were tried for the above-mentioned compounds 10, 12, 14, and 16, the target compound 22 was It was not obtained at all.

[実施例8]
下記式にしたがって、ジスルホンイミド(化合物26(S体))を出発物質として、目的とする3,3’−ジアリール−1,1’−ビナフチル−2,2’ジスルホン酸(化合物40a〜40c)を合成した。なお、化合物26は文献Eur. J. Org. Chem. 2010, p4181の記載にしたがって合成した。
[Example 8]
According to the following formula, starting from disulfonimide (compound 26 (S form)), the desired 3,3′-diaryl-1,1′-binaphthyl-2,2′disulfonic acid (compounds 40a to 40c) is obtained. Synthesized. Compound 26 was synthesized as described in the literature Eur. J. Org. Chem. 2010, p4181.

[8−1]ステップ1
窒素置換したシュレンク反応容器に、化合物26(27.7mg,0.050mmol)、炭酸カリウム(20.7mg,0.15mmol)、塩化メチレン(2mL)を加えて、0℃に冷却した。トリメチルオキソニウムテトラフルオロボラート(22.2mg,0.15mmol)を加えた後、室温まで昇温し、20時間撹拌した。反応終了をTLCで確認した後、飽和塩化アンモニウム水溶液(5mL)を加え、クロロホルム(15mL×2)を用いて通常の分液処理を行った。抽出した有機層を飽和塩化ナトリウム水溶液(10mL)で洗浄し、硫酸マグネシウムで乾燥後、ろ過、濃縮した。得られた濃縮物からシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=6:1〜3:1)にて生成物を分取し、目的の化合物28(S体)を収率>99%(28.3mg)で得た。化合物28のスペクトルデータは以下のとおり。
[8-1] Step 1
Compound 26 (27.7 mg, 0.050 mmol), potassium carbonate (20.7 mg, 0.15 mmol), and methylene chloride (2 mL) were added to a Schlenk reaction vessel purged with nitrogen, and cooled to 0 ° C. After adding trimethyloxonium tetrafluoroborate (22.2 mg, 0.15 mmol), the mixture was warmed to room temperature and stirred for 20 hours. After confirming the completion of the reaction by TLC, a saturated aqueous ammonium chloride solution (5 mL) was added, and normal liquid separation treatment was performed using chloroform (15 mL × 2). The extracted organic layer was washed with a saturated aqueous sodium chloride solution (10 mL), dried over magnesium sulfate, filtered and concentrated. The product was fractionated from the obtained concentrate by silica gel column chromatography (hexane: ethyl acetate = 6: 1 to 3: 1) to obtain the desired compound 28 (S form) in a yield> 99% (28. 3 mg). The spectral data of Compound 28 is as follows.

1HNMR (400 MHz, CDCl3) δ 3.36 (s, 3H), 7.00 (d, J = 8.7 Hz, 2H), 7.36 (t, J = 7.3 Hz, 2H), 7.66 (t, J = 7.6 Hz, 2H), 7.91 (d, J = 8.1 Hz, 2H), 8.51 (s, 2H). 13CNMR (100 MHz, CDCl3) δ 31.5, 114.1 (2C), 127.6 (2C), 128.4 (2C), 128.7 (2C), 130.7 (2C), 131.2 (2C), 135.5 (2C), 137.3 (4C), 140.8 (2C). M.p. 283℃ (decomposed). IR (KBr) 3419, 1551, 1372, 1348, 1183, 1156, 1132, 1044 cm-1. [α]D 25 = 131.2 (c 0.20, CHCl3, (S)). HRMS (EI+) calcd for C21H13Br2NO4S2 [M+H]+564.8653, found 564.8657. 1 HNMR (400 MHz, CDCl 3 ) δ 3.36 (s, 3H), 7.00 (d, J = 8.7 Hz, 2H), 7.36 (t, J = 7.3 Hz, 2H), 7.66 (t, J = 7.6 Hz, 2H), 7.91 (d, J = 8.1 Hz, 2H), 8.51 (s, 2H). 13 CNMR (100 MHz, CDCl 3) δ 31.5, 114.1 (2C), 127.6 (2C), 128.4 (2C), 128.7 (2C), 130.7 (2C), 131.2 (2C), 135.5 (2C), 137.3 (4C), 140.8 (2C). Mp 283 ° C (decomposed). IR (KBr) 3419, 1551, 1372, 1348, 1183, 1156, 1132, 1044 cm -1 . [Α] D 25 = 131.2 (c 0.20, CHCl 3 , (S)). HRMS (EI +) calcd for C 21 H 13 Br 2 NO 4 S 2 [M + H] + 564.8653, found 564.8657.

[8−2]ステップ2
窒素置換した反応容器に、化合物28(567mg,1.0mmol)、フェニルボロン酸(366mg,3mmol)テトラキス(トリフェニルホスフィン)パラジウム(0)(116mg,0.1mmol)、炭酸カリウム(1.38g,10mmol)、THF(20mL),水(5mL)を加えて、85℃に加熱して12時間撹拌した。反応終了をTLCで確認した後、飽和塩化アンモニウム水溶液(20mL)を加え、クロロホルム(30mL×2)を用いて通常の分液処理を行った。抽出した有機層を飽和塩化ナトリウム水溶液(30mL)で洗浄し、硫酸ナトリウムで乾燥後、ろ過、濃縮した。得られた濃縮物からシリカゲルカラムクロマトグラフィー(ヘキサン:酢酸エチル=6:1〜3:1)にて生成物を分取し、目的の化合物30a(S体)を収率87%(490mg)で得た。また、化合物30b(S体),30c(S体)については、フェニルボロン酸の代わりに、それぞれ4−ビフェニルボロン酸及び3,5−ジフェニルフェニルボロン酸を用いることにより、収率89%及び90%で得た。化合物30b,30cのスペクトルデータは以下のとおり。
[8-2] Step 2
In a reaction vessel purged with nitrogen, compound 28 (567 mg, 1.0 mmol), phenylboronic acid (366 mg, 3 mmol), tetrakis (triphenylphosphine) palladium (0) (116 mg, 0.1 mmol), potassium carbonate (1.38 g, 10 mmol), THF (20 mL), and water (5 mL) were added, and the mixture was heated to 85 ° C. and stirred for 12 hours. After confirming the completion of the reaction by TLC, a saturated aqueous ammonium chloride solution (20 mL) was added, and normal liquid separation treatment was performed using chloroform (30 mL × 2). The extracted organic layer was washed with a saturated aqueous sodium chloride solution (30 mL), dried over sodium sulfate, filtered and concentrated. The product was fractionated from the obtained concentrate by silica gel column chromatography (hexane: ethyl acetate = 6: 1 to 3: 1) to obtain the target compound 30a (S form) in a yield of 87% (490 mg). Obtained. For compounds 30b (S-form) and 30c (S-form), instead of phenylboronic acid, 4-biphenylboronic acid and 3,5-diphenylphenylboronic acid were used, respectively, yields of 89% and 90%. %. The spectrum data of compounds 30b and 30c are as follows.

化合物30b:1H NMR (400 MHz, CDCl3) δ 3.00 (s, 3H), 7.27 (d, J = 8.7 Hz, 2H), 7.35 (t, J = 7.3 Hz, 2H), 7.39-7.49 (m, 6H), 7.51-7.60 (m, 4H), 7.62-7.74 (m, 10H), 8.00 (d, J = 8.2 Hz, 2H), 8.07 (s, 2H). 13C NMR (100 MHz, CDCl3) δ 30.7, 125.8, 126.5, 127.1, 127.4, 128.2, 128.4, 128.7, 129.1, 129.9, 130.8, 131.6, 131.9, 133.8, 134.4, 137.5, 138.7, 138.9, 140.3, 140.5. M.p. 194-196℃. IR (KBr) 3028, 1576, 1487, 1369, 1349, 1177 cm-1. [α]D 23 = 12.8 (c 0.50, CHCl3, (S)). HRMS (FAB+) calcd for C45H31NO4S2 [M]+ 713.1694, found 713.1702. Compound 30b: 1 H NMR (400 MHz, CDCl 3 ) δ 3.00 (s, 3H), 7.27 (d, J = 8.7 Hz, 2H), 7.35 (t, J = 7.3 Hz, 2H), 7.39-7.49 (m , 6H), 7.51-7.60 (m, 4H), 7.62-7.74 (m, 10H), 8.00 (d, J = 8.2 Hz, 2H), 8.07 (s, 2H). 13 C NMR (100 MHz, CDCl 3 ) δ 30.7, 125.8, 126.5, 127.1, 127.4, 128.2, 128.4, 128.7, 129.1, 129.9, 130.8, 131.6, 131.9, 133.8, 134.4, 137.5, 138.7, 138.9, 140.3, 140.5. Mp 194-196 ° C. IR ( KBr) 3028, 1576, 1487, 1369, 1349, 1177 cm -1 . [Α] D 23 = 12.8 (c 0.50, CHCl 3 , (S)). HRMS (FAB +) calcd for C 45 H 31 NO 4 S 2 [M] + 713.1694, found 713.1702.

化合物30c:1H NMR (400 MHz, CDCl3) δ 3.00 (s, 3H), 7.30-7.40 (m, 6H), 7.40-7.50 (m, 10H), 7.66-7.76 (m, 14H), 7.87 (m, 2H), 8.01 (d, J = 8.2 Hz, 2H), 8.16 (s, 2H). 13CNMR (100 MHz, CDCl3) δ 30.7, 125.3, 126.4, 127.2, 127.4, 127.5, 127.6, 128.2, 128.3, 128.8, 128.9, 130.0, 131.7, 132.0, 133.9, 134.4, 137.6, 139.1, 140.6, 140.7, 141.2. M.p. 194-196℃. IR (KBr) 2940, 1593, 1574, 1496, 1370, 1349, 1177, 1028 cm-1. [α]D 24 = -30.0 (c 0.50, CHCl3, (S)). HRMS (EI+) calcd for C57H39NNaO4S2 [M]+ 865.2321, found 865.2336. Compound 30c: 1 H NMR (400 MHz, CDCl 3 ) δ 3.00 (s, 3H), 7.30-7.40 (m, 6H), 7.40-7.50 (m, 10H), 7.66-7.76 (m, 14H), 7.87 ( m, 2H), 8.01 (d , J = 8.2 Hz, 2H), 8.16 (s, 2H). 13 CNMR (100 MHz, CDCl 3) δ 30.7, 125.3, 126.4, 127.2, 127.4, 127.5, 127.6, 128.2, 128.3, 128.8, 128.9, 130.0, 131.7, 132.0, 133.9, 134.4, 137.6, 139.1, 140.6, 140.7, 141.2. Mp 194-196 ° C. IR (KBr) 2940, 1593, 1574, 1496, 1370, 1349, 1177, 1028 cm -1 . [Α] D 24 = -30.0 (c 0.50, CHCl 3 , (S)). HRMS (EI +) calcd for C 57 H 39 NNaO 4 S 2 [M] + 865.2321, found 865.2336.

[8−3]ステップ3
実施例7のステップ2と同様にして、化合物30a〜30cから化合物32a〜32c(いずれもS体)をそれぞれ収率93%,96%,90%で得た。化合物32b,32cのスペクトルデータは以下のとおり。
[8-3] Step 3
In the same manner as in Step 2 of Example 7, Compounds 32a to 32c (both S forms) were obtained from Compounds 30a to 30c in yields of 93%, 96%, and 90%, respectively. The spectrum data of the compounds 32b and 32c are as follows.

化合物32b:1H NMR (400 MHz, d8-THF) δ 2.10 (s, 3H), 4.30 (br, 1H), 6.90 (d, J = 8.6 Hz, 1H), 7.12 (t, J = 7.3 Hz, 1H), 7.16-7.22 (m, 2H), 7.23-7.32 (m, 2H), 7.32-7.46 (m, 6H), 7.55-7.84 (m, 16H). 13C NMR (100 MHz, d8-THF) δ 28.8, 126.1, 126.3 126.9, 127.3, 127.6, 128.1, 128,2, 128.4, 129.0, 129.4, 129.6, 131.0, 131.4, 131.7, 132.5, 132.6, 133.8, 134.2, 134.4, 135.5, 135.9, 137.6, 139.3, 139.8, 140.8, 141.1, 141.2, 141.3, 141.9, 142.7, 144.0. M.p. 284-286℃. IR (KBr) 3373, 3065, 1486, 1393, 1329, 1229, 1203, 1042 cm-1. [α]D 22 = -81.9 (c 0.20, CHCl3, (S)). HRMS (ESI-) calcd for C45H32NO5S2 [M-Na]- 730.1727, found 7301723. Compound 32b: 1 H NMR (400 MHz, d8-THF) δ 2.10 (s, 3H), 4.30 (br, 1H), 6.90 (d, J = 8.6 Hz, 1H), 7.12 (t, J = 7.3 Hz, 1H), 7.16-7.22 (m, 2H), 7.23-7.32 (m, 2H), 7.32-7.46 (m, 6H), 7.55-7.84 (m, 16H). 13 C NMR (100 MHz, d8-THF) δ 28.8, 126.1, 126.3 126.9, 127.3, 127.6, 128.1, 128,2, 128.4, 129.0, 129.4, 129.6, 131.0, 131.4, 131.7, 132.5, 132.6, 133.8, 134.2, 134.4, 135.5, 135.9, 137.6, 139.3, 139.8, 140.8, 141.1, 141.2, 141.3, 141.9, 142.7, 144.0. Mp 284-286 ° C. IR (KBr) 3373, 3065, 1486, 1393, 1329, 1229, 1203, 1042 cm -1 . [Α] D 22 = -81.9 (c 0.20, CHCl 3 , (S)) HRMS (ESI-) calcd for C 45 H 32 NO 5 S 2 [M-Na] -. 730.1727, found 7301723.

化合物32c:1H NMR (400 MHz, d8-THF) δ 2.18 (s, 3H), 4.10 (br, 1H), 7.03 (d, J = 8.7 Hz, 1H), 7.14 (m, 2H), 7.20 (t, J = 7.8 Hz, 1H), 7.24-7.50 (m, 14H), 7.68-8.05 (m, 18H). 13CNMR (100 MHz, d8-THF) δ 28.9, 124.4, 125.6, 127.3, 127.6, 127.9, 128.0, 128.1, 128.3, 128.4, 129.0, 129.4, 129.6, 129.7, 132.6, 133.1, 134.0, 134.2, 134.3, 136.3, 136.5, 138.3, 139.5, 139.9, 140.8, 141.4, 141.7, 141.9, 142.2, 143.7, 145.2. M.p. 282-284℃. IR (KBr) 3374, 3058, 1593, 1496, 1330, 1232, 1169, 1040 cm-1. [α]D 23 = -125.2 (c 0.20, CHCl3, (S)). HRMS (ESI-) calcd for C57H40NO5S2 [M-Na]- 882.2353, found 882.2367. Compound 32c: 1 H NMR (400 MHz, d8-THF) δ 2.18 (s, 3H), 4.10 (br, 1H), 7.03 (d, J = 8.7 Hz, 1H), 7.14 (m, 2H), 7.20 ( t, J = 7.8 Hz, 1H ), 7.24-7.50 (m, 14H), 7.68-8.05 (m, 18H). 13 CNMR (100 MHz, d8-THF) δ 28.9, 124.4, 125.6, 127.3, 127.6, 127.9 , 128.0, 128.1, 128.3, 128.4, 129.0, 129.4, 129.6, 129.7, 132.6, 133.1, 134.0, 134.2, 134.3, 136.3, 136.5, 138.3, 139.5, 139.9, 140.8, 141.4, 141.7, 141.9, 142.2, 143.7, 145.2 Mp 282-284 ℃. IR (KBr) 3374, 3058, 1593, 1496, 1330, 1232, 1169, 1040 cm -1 . [Α] D 23 = -125.2 (c 0.20, CHCl 3 , (S)). HRMS (ESI-) calcd for C 57 H 40 NO 5 S 2 [M-Na] - 882.2353, found 882.2367.

[8−4]ステップ4
実施例7のステップ3と同様にして、化合物32a〜32cから化合物34a〜34c(いずれもS体)をそれぞれ収率68%,78%,78%で得た。化合物34b,34cのスペクトルデータは以下のとおり。
[8-4] Step 4
In the same manner as in Step 3 of Example 7, compounds 34a to 34c (all of the S isomers) were obtained from compounds 32a to 32c in yields of 68%, 78%, and 78%, respectively. The spectrum data of the compounds 34b and 34c are as follows.

化合物34b:1H NMR (400 MHz, CDCl3) δ 0.95 (t, J = 7.8 Hz, 3H), 2.38 (d, J = 4.9 Hz, 3H), 3.48 (q, J = 5.0 Hz, 1H), 3.77 (dq, J = 10.1, 7.1 Hz, 1H), 3.92 (dq, J = 10.1, 7.1 Hz, 1H), 7.25-7.53 (m, 10H), 7.60-7.83 (m, 13H), 7.88 (d, J = 7.8 Hz, 1H), 7.94 (d, J = 8.2 Hz, 2H), 7.99 (s, 1H), 8.01 (s, 1H). 13C NMR (100 MHz, CDCl3) δ 14.9, 28.8, 66.3, 126.0, 126.6, 126.9, 127.1, 127.2, 127.3, 127.4, 127.6, 127.7, 127.8, 128.0, 128.1, 128.8, 128.9, 129.0, 129.2, 129.6, 130.6, 132.2, 132.4, 132.7, 132.8, 133.6, 134.1, 134.8, 135.9, 137.2, 138.7, 139.1, 139.8, 140.0, 140.3, 140.7, 141.2. M.p. 163-165℃. IR (KBr) 3373, 3030, 1487, 1353, 1331, 1183 cm-1. [α]D 23 = -76.0 (c 0.20, CHCl3, (S)). HRMS (FAB+) calcd for C47H38NO5S2 [M+H]+ 760.2191, found 760.2203. Compound 34b: 1 H NMR (400 MHz, CDCl 3 ) δ 0.95 (t, J = 7.8 Hz, 3H), 2.38 (d, J = 4.9 Hz, 3H), 3.48 (q, J = 5.0 Hz, 1H), 3.77 (dq, J = 10.1, 7.1 Hz, 1H), 3.92 (dq, J = 10.1, 7.1 Hz, 1H), 7.25-7.53 (m, 10H), 7.60-7.83 (m, 13H), 7.88 (d, J = 7.8 Hz, 1H), 7.94 (d, J = 8.2 Hz, 2H), 7.99 (s, 1H), 8.01 (s, 1H). 13 C NMR (100 MHz, CDCl 3 ) δ 14.9, 28.8, 66.3 , 126.0, 126.6, 126.9, 127.1, 127.2, 127.3, 127.4, 127.6, 127.7, 127.8, 128.0, 128.1, 128.8, 128.9, 129.0, 129.2, 129.6, 130.6, 132.2, 132.4, 132.7, 132.8, 133.6, 134.1, 134.8 , 135.9, 137.2, 138.7, 139.1, 139.8, 140.0, 140.3, 140.7, 141.2. Mp 163-165 ° C. IR (KBr) 3373, 3030, 1487, 1353, 1331, 1183 cm -1 . [Α] D 23 = -76.0 (c 0.20, CHCl 3 , (S)). HRMS (FAB +) calcd for C 47 H 38 NO 5 S 2 [M + H] + 760.2191, found 760.2203.

化合物34c:1H NMR (400 MHz, CDCl3) δ 0.85 (t, J = 7.0 Hz, 3H), 2.40 (d, J = 5.0 Hz, 3H), 3.56 (q, J = 5.5 Hz, 1H), 3.75 (m, 1H), 3.86 (m, 1H), 7.29-7.54 (m, 16H), 7.59-7.67 (m, 2H), 7.70-7.80 (m, 8H), 7.82-8.00 (m, 7H), 8.03 (m, 1H), 8.08 (s, 1H), 8.10 (s 1H). 13C NMR (100 MHz, CDCl3) δ 14.6, 29.2, 66.4, 125.3, 126.2, 126.9, 127.5, 127.7, 127.9, 128.5, 128.6, 129.2, 129.3, 129.4, 129.6, 132.6, 132.8, 132.9, 133.0, 133.9, 134.3, 135.2, 136.3 137.6, 139.0, 140.1, 140.3, 140.4, 140.8, 141.0, 141.1, 141.2, 141.4, 141.7, 141.8, 142.0. M.p. 193-194℃. IR (KBr) 3376, 3034, 1593, 1496, 1330, 1182 cm-1. [α]D 22 = -112.0 (c 0.20, CHCl3, (S)). HRMS (FAB+) calcd for C59H46NO5S2 [M+H]+ 912.2817, found 912.2814. Compound 34c: 1 H NMR (400 MHz, CDCl 3 ) δ 0.85 (t, J = 7.0 Hz, 3H), 2.40 (d, J = 5.0 Hz, 3H), 3.56 (q, J = 5.5 Hz, 1H), 3.75 (m, 1H), 3.86 (m, 1H), 7.29-7.54 (m, 16H), 7.59-7.67 (m, 2H), 7.70-7.80 (m, 8H), 7.82-8.00 (m, 7H), 8.03 (m, 1H), 8.08 (s, 1H), 8.10 (s 1H). 13 C NMR (100 MHz, CDCl 3) δ 14.6, 29.2, 66.4, 125.3, 126.2, 126.9, 127.5, 127.7, 127.9, 128.5 , 128.6, 129.2, 129.3, 129.4, 129.6, 132.6, 132.8, 132.9, 133.0, 133.9, 134.3, 135.2, 136.3 137.6, 139.0, 140.1, 140.3, 140.4, 140.8, 141.0, 141.1, 141.2, 141.4, 141.7, 141.8, 142.0. Mp 193-194 ℃. IR (KBr) 3376, 3034, 1593, 1496, 1330, 1182 cm -1 . [Α] D 22 = -112.0 (c 0.20, CHCl 3 , (S)). HRMS (FAB + ) calcd for C 59 H 46 NO 5 S 2 [M + H] + 912.2817, found 912.2814.

[8−5]ステップ5
実施例7のステップ4と同様にして、化合物34a〜34cから化合物36a〜36c(いずれもS体)をそれぞれ収率91%,>99%,98%で得た。化合物36b,36cのスペクトルデータは以下のとおり。
[8-5] Step 5
In the same manner as in Step 4 of Example 7, Compounds 36a to 36c (both S forms) were obtained from Compounds 34a to 34c in yields of 91%,> 99%, and 98%, respectively. The spectrum data of the compounds 36b and 36c are as follows.

化合物36b:1H NMR (400 MHz, CDCl3) δ 0.97 (t, J = 6.9 Hz, 3H), 2.16 (s, 6H), 3.79 (dq, J = 10.1, 7.3 Hz, 1H), 3.79 (dq, J = 10.1, 7.3 Hz, 1H), 7.30-7.52 (m, 10H), 7.58-7.80 (m, 14H), 7.79-7.96 (m, 3H), 7.99 (s, 1H). 13C NMR (100 MHz, CDCl3) δ 14.5, 34.5, 66.3, 126.0, 126.4, 126.9, 127.1, 127.4, 127.5, 127.6, 127.7, 127.9, 128.0, 128.8, 128.9, 129.2, 130.3, 132.2, 132.3, 132.5, 132.8, 133.1, 133.7, 134.1, 135.2, 137.1, 137.4, 139.8, 139.9, 140.1, 140.3, 140.4, 140.5, 140.7. M.p. 171-173℃. IR (KBr) 3029, 1487, 1355, 1324, 1136, 1067 cm-1. [α]D 24 = -91.9 (c 0.20, CHCl3, (S)). HRMS (FAB+) calcd for C48H40NO5S2 [M+H]+ 774.2348, found 774.2359. Compound 36b: 1 H NMR (400 MHz, CDCl 3 ) δ 0.97 (t, J = 6.9 Hz, 3H), 2.16 (s, 6H), 3.79 (dq, J = 10.1, 7.3 Hz, 1H), 3.79 (dq , J = 10.1, 7.3 Hz, 1H), 7.30-7.52 (m, 10H), 7.58-7.80 (m, 14H), 7.79-7.96 (m, 3H), 7.99 (s, 1H). 13 C NMR (100 MHz, CDCl 3 ) δ 14.5, 34.5, 66.3, 126.0, 126.4, 126.9, 127.1, 127.4, 127.5, 127.6, 127.7, 127.9, 128.0, 128.8, 128.9, 129.2, 130.3, 132.2, 132.3, 132.5, 132.8, 133.1, 133.7, 134.1, 135.2, 137.1, 137.4, 139.8, 139.9, 140.1, 140.3, 140.4, 140.5, 140.7. Mp 171-173 ° C. IR (KBr) 3029, 1487, 1355, 1324, 1136, 1067 cm -1 . α] D 24 = -91.9 (c 0.20, CHCl 3 , (S)). HRMS (FAB +) calcd for C 48 H 40 NO 5 S 2 [M + H] + 774.2348, found 774.2359.

化合物36c:1H NMR (400 MHz, CDCl3) δ 0.86 (t, J = 6.9 Hz, 3H), 2.20 (s, 6H), 3.77 (m, 1H), 3.90 (m, 1H), 7.30-7.52 (m, 16H), 7.59-7.68 (m, 2H), 7.70-8.03 (m, 17H), 8.09 (s, 1H). 13CNMR (100 MHz, CDCl3) δ 14.4, 34.8, 66.2, 124.7, 125.1, 126.0, 127.2, 127.3, 127.4, 127.5, 127.7, 127.9, 128.0, 128.9, 129.0, 129.1, 129.3, 132.3, 132.7, 133.1, 133.7, 134.1, 135.2, 137.3, 137.4, 139.9, 140.1, 140.6, 140.8, 140.9, 141.2, 141.6, 142.3. M.p. 189-191℃. IR (KBr) 3035, 1593, 1576, 1497, 1355, 1322, 1183, 1137 cm-1. [α]D 23 = -93.9 (c 0.20, CHCl3, (S)). HRMS (FAB+) calcd for C60H48NO5S2 [M+H]+ 926.2974, found 926.2969. Compound 36c: 1 H NMR (400 MHz, CDCl 3 ) δ 0.86 (t, J = 6.9 Hz, 3H), 2.20 (s, 6H), 3.77 (m, 1H), 3.90 (m, 1H), 7.30-7.52 (m, 16H), 7.59-7.68 ( m, 2H), 7.70-8.03 (m, 17H), 8.09 (s, 1H). 13 CNMR (100 MHz, CDCl 3) δ 14.4, 34.8, 66.2, 124.7, 125.1 , 126.0, 127.2, 127.3, 127.4, 127.5, 127.7, 127.9, 128.0, 128.9, 129.0, 129.1, 129.3, 132.3, 132.7, 133.1, 133.7, 134.1, 135.2, 137.3, 137.4, 139.9, 140.1, 140.6, 140.8, 140.9 , 141.2, 141.6, 142.3. Mp 189-191 ℃. IR (KBr) 3035, 1593, 1576, 1497, 1355, 1322, 1183, 1137 cm -1 . [Α] D 23 = -93.9 (c 0.20, CHCl 3 HRMS (FAB +) calcd for C 60 H 48 NO 5 S 2 [M + H] + 926.2974, found 926.2969.

[8−6]ステップ6
実施例7のステップ5と同様にして、化合物36a〜36cから化合物38a〜38c(いずれもS体)をそれぞれ収率55%,66%,57%で得た。化合物38b,38cのスペクトルデータは以下のとおり。また、このステップ6の別例として、Red−Alによる還元反応をTHF中、40℃で行い、続く酸化反応をDMF中、水酸化カリウム存在下、約1気圧(0.1MPa)の酸素を封入して60℃で24時間行った。そうしたところ、化合物36a〜36cから化合物38a〜38c(いずれもS体)がそれぞれ収率39%,52%,43%で得られた。このように汎用性の高いDMFを用いて1気圧という緩和した条件で酸化反応を行った場合でも、円滑に反応が進行することがわかった。
[8-6] Step 6
In the same manner as in Step 5 of Example 7, compounds 38a to 38c (all of S isomers) were obtained from compounds 36a to 36c in yields of 55%, 66%, and 57%, respectively. The spectrum data of the compounds 38b and 38c are as follows. As another example of Step 6, a reduction reaction with Red-Al is carried out in THF at 40 ° C., and the subsequent oxidation reaction is encapsulated with oxygen at about 1 atm (0.1 MPa) in DMF in the presence of potassium hydroxide. And performed at 60 ° C. for 24 hours. As a result, compounds 38a to 38c (all in S form) were obtained from compounds 36a to 36c in yields of 39%, 52%, and 43%, respectively. Thus, it was found that the reaction proceeds smoothly even when the oxidation reaction is performed under the relaxed condition of 1 atm using the versatile DMF.

化合物38b:1H NMR (400 MHz, CD3OD) δ 7.04 (m, 2H), 7.18 (t, J = 8.2 Hz, 2H), 7.30 (t, J = 7.3 Hz, 2H), 7.42 (t, J = 7.6 Hz, 6H), 7.59 (d, J = 8.2 Hz, 4H), 7.66 (d, J = 7.8 Hz, 4H), 7.72-7.81 (m, 6H), 7.83 (d, J = 7.8 Hz, 2H). 13C NMR (100 MHz, CD3OD) δ 126.4, 127.2, 127.9, 128.0, 128.1, 128.4, 129.2, 129.7, 131.7, 132.3, 134.2, 134.4, 138.3, 139.8, 140.2, 142.7, 144.2. IR (KBr) 3371, 1620, 1485, 1220, 1175, 1036 cm-1. [α]D 23 = -10.0 (c 0.20, CH3OH, (S)). HRMS (FAB-) calcd for C44H28NaO6S2 [M-2K+Na]- 739.1225, found 739.1205. Compound 38b: 1 H NMR (400 MHz, CD 3 OD) δ 7.04 (m, 2H), 7.18 (t, J = 8.2 Hz, 2H), 7.30 (t, J = 7.3 Hz, 2H), 7.42 (t, J = 7.6 Hz, 6H), 7.59 (d, J = 8.2 Hz, 4H), 7.66 (d, J = 7.8 Hz, 4H), 7.72-7.81 (m, 6H), 7.83 (d, J = 7.8 Hz, 13 C NMR (100 MHz, CD 3 OD) δ 126.4, 127.2, 127.9, 128.0, 128.1, 128.4, 129.2, 129.7, 131.7, 132.3, 134.2, 134.4, 138.3, 139.8, 140.2, 142.7, 144.2.IR (KBr) 3371, 1620, 1485, 1220, 1175, 1036 cm -1 . [Α] D 23 = -10.0 (c 0.20, CH3OH, (S)). HRMS (FAB-) calcd for C 44 H 28 NaO 6 S 2 [M-2K + Na ] - 739.1225, found 739.1205.

化合物38c:1H NMR (400 MHz, CD3OD) δ 7.10 (m, 2H), 7.24 (t, J = 7.3 Hz, 2H), 7.32 (t, J = 7.3 Hz, 4H), 7.40-7.53 (m, 10H), 7.73-7.85 (m, 10H), 7.86-8.00 (m, 8H). 13CNMR (100 MHz, CD3OD) δ 124.8, 127.4, 128.1, 128.4, 128.5, 129.2, 129.3, 129.7, 132.5, 134.3, 134.4, 138.3, 139.8, 141.4, 143.0, 146.0. IR (KBr) 3406, 1594, 1215, 1182, 1038 cm-1. [α]D 23 = -72.0 (c 0.20, CH3OH, (S)). HRMS (FAB-) calcd for C56H36NaO6S2 [M-2K+Na]- 891.1851, found 891.1841. Compound 38c: 1 H NMR (400 MHz, CD 3 OD) δ 7.10 (m, 2H), 7.24 (t, J = 7.3 Hz, 2H), 7.32 (t, J = 7.3 Hz, 4H), 7.40-7.53 ( m, 10H), 7.73-7.85 (m , 10H), 7.86-8.00 (m, 8H). 13 CNMR (100 MHz, CD 3 OD) δ 124.8, 127.4, 128.1, 128.4, 128.5, 129.2, 129.3, 129.7, 132.5, 134.3, 134.4, 138.3, 139.8, 141.4, 143.0, 146.0. IR (KBr) 3406, 1594, 1215, 1182, 1038 cm -1 . [Α] D 23 = -72.0 (c 0.20, CH 3 OH, ( . S)) HRMS (FAB-) calcd for C 56 H 36 NaO 6 S 2 [M-2K + Na] - 891.1851, found 891.1841.

[8−7]ステップ7
実施例7のステップ6と同様にして、化合物38a〜38cから化合物40a〜40c(いずれもS体)をいずれも収率>99%で得た。化合物40b,40cのスペクトルデータは以下のとおり。
[8-7] Step 7
In the same manner as in Step 6 of Example 7, compounds 40a to 40c (both S forms) were obtained from compounds 38a to 38c in a yield> 99%. The spectrum data of compounds 40b and 40c are as follows.

化合物40b:1H NMR (400 MHz, CD3OD) δ 7.10 (d, J = 8.6 Hz, 2H), 7.27 (t, J = 7.0 Hz, 2H), 7.33 (t, J = 7.3 Hz, 2H), 7.44 (t, J = 7.8 Hz, 4H), 7.51 (t, J = 7.8 Hz, 2H), 7.62-7.67 (m, 4H), 7.68-7.74 (m, 8H), 7.86 (s, 2H), 7.91 (d, J = 8.2 Hz, 2H). 13CNMR (100 MHz, CD3OD) δ 126.5, 127.7, 127.9, 128.1, 128.7, 128.8, 129.1, 129.8, 131.6, 132.9, 134.1, 134.6, 138.5, 138.7, 139.7, 140.6, 142.4, 143.3. IR (KBr) 3382, 1697, 1486, 1220, 1164, 1033 cm-1. [α]D 22 = -20.8 (c 1.0, MeOH, (S)). HRMS (FAB-) calcd for C44H29O6S2 [M-H]- 717.1406, found 717.1391. Compound 40b: 1 H NMR (400 MHz, CD 3 OD) δ 7.10 (d, J = 8.6 Hz, 2H), 7.27 (t, J = 7.0 Hz, 2H), 7.33 (t, J = 7.3 Hz, 2H) , 7.44 (t, J = 7.8 Hz, 4H), 7.51 (t, J = 7.8 Hz, 2H), 7.62-7.67 (m, 4H), 7.68-7.74 (m, 8H), 7.86 (s, 2H), 7.91 (d, J = 8.2 Hz , 2H). 13 CNMR (100 MHz, CD 3 OD) δ 126.5, 127.7, 127.9, 128.1, 128.7, 128.8, 129.1, 129.8, 131.6, 132.9, 134.1, 134.6, 138.5, 138.7 , 139.7, 140.6, 142.4, 143.3. IR (KBr) 3382, 1697, 1486, 1220, 1164, 1033 cm -1 . [Α] D 22 = -20.8 (c 1.0, MeOH, (S)). HRMS (FAB -) calcd for C 44 H 29 O 6 S 2 [MH] - 717.1406, found 717.1391.

化合物40c:1H NMR (400 MHz, CD3OD) δ 7.16 (br, 2H), 7.27 (t, J = 7.3 Hz, 2H), 7.32 (t, J = 7.3 Hz, 4H), 7.40-7.53 (m, 10H), 7.73-7.85 (m, 10H), 7.86-8.00 (m, 8H). 13CNMR (100 MHz, CD3OD) δ 124.9, 127.6, 128.2, 128.4, 128.5, 128.6, 129.2, 129.3, 129.7, 132.7, 134.2, 134.5, 139.9, 141.5, 142.8, 145.4. IR (KBr) 3389, 1497, 1218, 1186, 1035 cm-1. [α]D 23 = -69.2 (c 0.20, CH3OH, (S)). HRMS (FAB-) calcd for C56H37O6S2 [M-H]- 869.2032, found 869.2014. Compound 40c: 1 H NMR (400 MHz, CD 3 OD) δ 7.16 (br, 2H), 7.27 (t, J = 7.3 Hz, 2H), 7.32 (t, J = 7.3 Hz, 4H), 7.40-7.53 ( m, 10H), 7.73-7.85 (m , 10H), 7.86-8.00 (m, 8H). 13 CNMR (100 MHz, CD 3 OD) δ 124.9, 127.6, 128.2, 128.4, 128.5, 128.6, 129.2, 129.3, 129.7, 132.7, 134.2, 134.5, 139.9, 141.5, 142.8, 145.4.IR (KBr) 3389, 1497, 1218, 1186, 1035 cm -1 . [Α] D 23 = -69.2 (c 0.20, CH 3 OH, ( . S)) HRMS (FAB-) calcd for C 56 H 37 O 6 S 2 [MH] - 869.2032, found 869.2014.

[実施例9]
実施例8のステップ6の代わりに、下記式のように、ステップ1で化合物36a〜36cのスルホン酸エステルをスルホン酸ナトリウム塩(化合物37a〜37c)に変換し、そのナトリウム塩を単離せず、ステップ2でRed−Alによる還元反応をTHF中、35℃で行い、更に酸化反応をDMF中、水酸化カリウム存在下、約1気圧(0.1MPa)の酸素を封入して60℃で38時間行うことにより、化合物38a〜38cを得た。なお、ステップ2は、実施例8のステップ6の別例と同様である。ステップ3では、実施例8のステップ7(実施例7のステップ6)と同様にして、化合物40a〜40cを得た。以下には、ステップ1の手順について、化合物36aを化合物37aに変換する場合を例に挙げて説明する。
[Example 9]
Instead of Step 6 of Example 8, the sulfonate esters of compounds 36a-36c were converted to sodium sulfonate salts (compounds 37a-37c) in step 1 as shown below, and the sodium salt was not isolated, In Step 2, the reduction reaction with Red-Al is carried out in THF at 35 ° C., and the oxidation reaction is further carried out in DMF in the presence of potassium hydroxide with about 1 atm (0.1 MPa) of oxygen sealed at 60 ° C. for 38 hours. This gave compounds 38a-38c. Step 2 is the same as another example of step 6 of the eighth embodiment. In Step 3, in the same manner as in Step 7 of Example 8 (Step 6 of Example 7), compounds 40a to 40c were obtained. Hereinafter, the procedure of Step 1 will be described with reference to an example in which compound 36a is converted to compound 37a.

反応容器に、化合物36a(124.4mg,0.20mmol)と水酸化ナトリウム(1.60g,40mmol)とメタノール(20mL)を加えて、70℃に加熱し、5時間撹拌した。溶媒を減圧留去し、2M塩酸で中和した。酢酸エチル(20mL×3)を用いて通常の分液処理を行った。抽出した有機層は硫酸マグネシウムで乾燥後、ろ過、濃縮し、目的とする化合物37aをほぼ定量的に得た。この化合物37aは精製せずに次の反応(連続的還元・酸化)に用いた。化合物37b,37cもこれと同様にして得た。化合物37a〜37cのスペクトルデータは以下のとおり。   To the reaction vessel, compound 36a (124.4 mg, 0.20 mmol), sodium hydroxide (1.60 g, 40 mmol) and methanol (20 mL) were added, heated to 70 ° C. and stirred for 5 hours. The solvent was distilled off under reduced pressure and neutralized with 2M hydrochloric acid. Ordinary liquid separation treatment was performed using ethyl acetate (20 mL × 3). The extracted organic layer was dried over magnesium sulfate, filtered and concentrated to obtain the target compound 37a almost quantitatively. This compound 37a was used for the next reaction (continuous reduction / oxidation) without purification. Compounds 37b and 37c were obtained in the same manner. The spectrum data of the compounds 37a to 37c are as follows.

化合物37a:1H NMR (400 MHz, CD3OD) δ 2.12 (s, 6H), 6.98 (d, J = 8.7 Hz, 1H), 7.20-7.39 (m, 7H), 7.40-7,50 (m, 3H), 7.51-7.60 (m, 3H), 7.63 (d, J = 6.9 Hz, 2H), 7.75 (s, 1H), 7.76 (s, 1H), 7.87 (d, J = 7.9 Hz, 1H), 7.88 (d, J = 8.2 Hz, 1H). 13C NMR (100 MHz, CD3OD) Many peaks overlapped. δ 35.5, 127.3, 127.4, 127.7, 128.0, 128.1, 128.2, 128.3, 128.4, 128.5, 128.7, 129.5, 129.6, 130.5, 130.9, 131.4, 132.8, 133.3, 133.7, 134.3, 134.5, 135.0, 135.6, 136.1, 139.2, 140.5, 143.4, 143.8, 144.6. M.p. 283℃ (decomposed). IR (KBr) 3444, 3054, 2923, 1491, 1322, 1188, 1135, 1042 cm-1. [α]D 22= 88.8 (c 1.0, CH3OH, (R)). HRMS (FAB-) calcd for C34H26NO5S2 [M-Na]- 592.1252, found 592.1252. Compound 37a: 1 H NMR (400 MHz, CD 3 OD) δ 2.12 (s, 6H), 6.98 (d, J = 8.7 Hz, 1H), 7.20-7.39 (m, 7H), 7.40-7,50 (m , 3H), 7.51-7.60 (m, 3H), 7.63 (d, J = 6.9 Hz, 2H), 7.75 (s, 1H), 7.76 (s, 1H), 7.87 (d, J = 7.9 Hz, 1H) , 7.88 (d, J = 8.2 Hz, 1H). 13 C NMR (100 MHz, CD 3 OD) Many peaks overlapped. δ 35.5, 127.3, 127.4, 127.7, 128.0, 128.1, 128.2, 128.3, 128.4, 128.5, 128.7 , 129.5, 129.6, 130.5, 130.9, 131.4, 132.8, 133.3, 133.7, 134.3, 134.5, 135.0, 135.6, 136.1, 139.2, 140.5, 143.4, 143.8, 144.6.Mp 283 ℃ (decomposed). IR (KBr) 3444, 3054, 2923, 1491, 1322, 1188, 1135, 1042 cm -1 . [Α] D 22 = 88.8 (c 1.0, CH 3 OH, (R)). HRMS (FAB-) calcd for C 34 H 26 NO 5 S 2 [M-Na] - 592.1252, found 592.1252.

化合物37b: 1H NMR (400 MHz, d8-THF) δ 1.91 (s, 6H), 6.77 (br, 1H), 6.90 (d, J = 8.7 Hz, 1H), 7.09-7.27 (m, 8H), 7.30-7.39 (m, 5H), 7.42-7.47 (m, 4H), 7.52-7.53 (m, 4H), 7.60-7.65 (m, 2H), 7.78-7.85 (m, 4H). 13C NMR (100 MHz, d8-THF) Many peaks overlapped. δ 33.9, 124.9, 125.8, 126.5, 126.6, 126.7, 126.8, 127.1, 127.5, 127.7, 128.3, 128.4, 128.7, 130.8, 131.4, 131.7, 131.9, 132.8, 133.0, 133.9, 134.3, 134.8, 137.8, 138.7, 138.9, 140.3, 140.5, 140.8, 141.4, 142.8, 143.0. M.p. 289-292℃ (decomposed). IR (KBr) 3422, 3029, 1619, 1487, 1322, 1190, 1041 cm-1. HRMS (FAB-) calcd for C46H34NO5S2[M-Na]- 744.1878, found 744.1878. Compound 37b: 1 H NMR (400 MHz, d 8 -THF) δ 1.91 (s, 6H), 6.77 (br, 1H), 6.90 (d, J = 8.7 Hz, 1H), 7.09-7.27 (m, 8H) , 7.30-7.39 (m, 5H), 7.42-7.47 (m, 4H), 7.52-7.53 (m, 4H), 7.60-7.65 (m, 2H), 7.78-7.85 (m, 4H). 13 C NMR ( 100 MHz, d 8 -THF) Many peaks overlapped.δ 33.9, 124.9, 125.8, 126.5, 126.6, 126.7, 126.8, 127.1, 127.5, 127.7, 128.3, 128.4, 128.7, 130.8, 131.4, 131.7, 131.9, 132.8, 133.0 , 133.9, 134.3, 134.8, 137.8, 138.7, 138.9, 140.3, 140.5, 140.8, 141.4, 142.8, 143.0. Mp 289-292 ° C (decomposed). IR (KBr) 3422, 3029, 1619, 1487, 1322, 1190, . 1041 cm -1 HRMS (FAB-) calcd for C 46 H 34 NO 5 S 2 [M-Na] - 744.1878, found 744.1878.

化合物37c: 1H NMR (400 MHz, d8-THF) δ2.00 (s, 6H), 6.98 (d, J = 8.7 Hz, 1H), 7.14-7.34 (m, 13H), 7.37-7.45 (m, 4H), 7.66-7.88 (m, 18H), 7.95 (br, 1H). 13C NMR (100 MHz, d8-THF) Many peaks overlapped. δ34.5, 123.2, 124.0, 126.0, 126.6, 126.9, 127.1, 127.1, 127.3, 127.5, 128.2, 128.5, 128.7, 129.0, 131.9, 132.7, 133.1, 133.3, 133.7, 135.0, 137.6, 138.7, 139.8, 140.0, 140.5, 140.7, 140.9, 141.1, 141.5, 142.8, 143.2, 144.7. M.p. 293-296℃ (decomposed). IR (KBr) 3407, 3057, 3033, 2923, 1594, 1497, 1319, 1188, 1041 cm-1. HRMS (FAB-) calcd for C58H42NO5S2 [M-Na]-896.2504, found 896.2504. Compound 37c: 1 H NMR (400 MHz, d 8 -THF) δ2.00 (s, 6H), 6.98 (d, J = 8.7 Hz, 1H), 7.14-7.34 (m, 13H), 7.37-7.45 (m , 4H), 7.66-7.88 (m, 18H), 7.95 (br, 1H). 13 C NMR (100 MHz, d 8 -THF) Many peaks overlapped. δ34.5, 123.2, 124.0, 126.0, 126.6, 126.9, 127.1, 127.1, 127.3, 127.5, 128.2, 128.5, 128.7, 129.0, 131.9, 132.7, 133.1, 133.3, 133.7, 135.0, 137.6, 138.7, 139.8, 140.0, 140.5, 140.7, 140.9, 141.1, 141.5, 142.8, 143.2, 144.7. Mp 293-296 ℃ (decomposed). IR (KBr) 3407, 3057, 3033, 2923, 1594, 1497, 1319, 1188, 1041 cm -1 .HRMS (FAB-) calcd for C 58 H 42 NO 5 S 2 [M-Na] - 896.2504 , found 896.2504.

化合物36a〜36cから化合物38a〜38cへの変換効率は、実施例8よりも実施例9の方が高い。その理由は、以下のように考えられる。化合物36a〜36cのRed−Alによる還元反応では、ビナフチル化合物のスルホンアミド部位はスルフィン酸に、スルホン酸エステル部位はスルホン酸に変換されるのが、次の酸化反応で最も効率よく酸化される。しかし、実際には、Red−Alによる還元反応では、スルホン酸エステル部位はチオールやジスルフィドに変換されてしまうことが確認されている。実施例9では、スルホン酸エステル部位をスルホン酸ナトリウム塩にすることで、これらの還元反応が抑制され、スルホン酸への選択的な変換効率が上がったと考えれる。   The conversion efficiency from compounds 36a to 36c to compounds 38a to 38c is higher in Example 9 than in Example 8. The reason is considered as follows. In the reduction reaction of compounds 36a to 36c with Red-Al, the sulfonamide site of the binaphthyl compound is converted to sulfinic acid, and the sulfonic acid ester site is converted to sulfonic acid, which is most efficiently oxidized by the subsequent oxidation reaction. However, in practice, it has been confirmed that in the reduction reaction with Red-Al, the sulfonic acid ester moiety is converted to thiol or disulfide. In Example 9, it is considered that these reduction reactions were suppressed by making the sulfonic acid ester moiety a sulfonic acid sodium salt, and the selective conversion efficiency to sulfonic acid was increased.

本発明によって得られるアリールスルホンアミドの還元体は、対応するアリールスルホン酸の合成中間体として有用である。また、アリールスルホン酸は、例えば有機合成反応の触媒などに利用可能である。   The reduced form of arylsulfonamide obtained by the present invention is useful as a synthetic intermediate for the corresponding arylsulfonic acid. Aryl sulfonic acid can be used, for example, as a catalyst for organic synthesis reaction.

Claims (3)

ArSO2NR12(Arは置換基を有していてもよいアリールであり、R1及びR2は同じでも異なっていてもよいアルキル基である)で表されるアレーンスルホンアミドを、NaAlH 2 (OC 2 4 OCH 3 2 で表される還元剤で還元することにより、対応するスルフィン酸を得る、アレーンスルホンアミドの還元方法。 ArSO 2 NR 1 R 2 (Ar is aryl which may have a substituent, R 1 and R 2 are an alkyl group which may be the same or different) arene sulfonamide represented by, NaAlH A method for reducing arenesulfonamides, wherein the corresponding sulfinic acid is obtained by reduction with a reducing agent represented by 2 (OC 2 H 4 OCH 3 ) 2 . 請求項1に記載のアレーンスルホンアミドの還元方法によって得られた前記スルフィン酸を、酸素又は過酸化水素で酸化することにより、対応するスルホン酸を得る、アレーンスルホン酸の製法。 A process for producing arenesulfonic acid , wherein the sulfinic acid obtained by the method for reducing arenesulfonamide according to claim 1 is oxidized with oxygen or hydrogen peroxide to obtain the corresponding sulfonic acid. 前記アレーンスルホンアミドとして式(1)で表される光学活性スルホンアミドを用い、式(2)で表される光学活性ジスルホン酸を得る、請求項に記載のアレーンスルホン酸の製法。
(式(1),(2)中、R1及びR2は前述の通りであり、R3はアルキル基であり、R4及びR5は同じであっても異なっていてもよく水素原子、ハロゲン原子又は置換基を有していてもよいアリール基である)
The method for producing arenesulfonic acid according to claim 2 , wherein the optically active sulfonamide represented by the formula (1) is used as the arenesulfonamide to obtain the optically active disulfonic acid represented by the formula (2).
(In the formulas (1) and (2), R 1 and R 2 are as described above, R 3 is an alkyl group, R 4 and R 5 may be the same or different, and may be a hydrogen atom, A halogen atom or an aryl group optionally having a substituent)
JP2013148664A 2013-07-17 2013-07-17 Method for reducing arenesulfonamide and method for producing arenesulfonic acid Expired - Fee Related JP6261111B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013148664A JP6261111B2 (en) 2013-07-17 2013-07-17 Method for reducing arenesulfonamide and method for producing arenesulfonic acid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013148664A JP6261111B2 (en) 2013-07-17 2013-07-17 Method for reducing arenesulfonamide and method for producing arenesulfonic acid

Publications (2)

Publication Number Publication Date
JP2015020961A JP2015020961A (en) 2015-02-02
JP6261111B2 true JP6261111B2 (en) 2018-01-17

Family

ID=52485718

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013148664A Expired - Fee Related JP6261111B2 (en) 2013-07-17 2013-07-17 Method for reducing arenesulfonamide and method for producing arenesulfonic acid

Country Status (1)

Country Link
JP (1) JP6261111B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115304520A (en) * 2021-05-06 2022-11-08 上海科技大学 Polybasic sulfonic acid compound, intermediate and application thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3224155A1 (en) * 1982-06-29 1983-12-29 Bayer Ag, 5090 Leverkusen METHOD FOR PRODUCING 1-AMINOBENZOL-2-SULPHONIC ACIDS
JP4407062B2 (en) * 2001-02-14 2010-02-03 宇部興産株式会社 Method for producing diphenyl disulfide derivative
JP2003026652A (en) * 2001-05-08 2003-01-29 Toray Ind Inc Method for manufacturing aromatic disulfide
WO2010101204A1 (en) * 2009-03-04 2010-09-10 国立大学法人名古屋大学 Novel binaphthyldisulfonic acid compound
JP5482233B2 (en) * 2010-01-27 2014-05-07 宇部興産株式会社 Method for producing diaryl disulfide compound
WO2013080049A2 (en) * 2011-11-30 2013-06-06 Scinopharm Taiwan, Ltd. A process for the manufacture of chiral catalysts and their salts

Also Published As

Publication number Publication date
JP2015020961A (en) 2015-02-02

Similar Documents

Publication Publication Date Title
TWI454471B (en) Processes to make apoptosis promoters
JP5381718B2 (en) Halopolycyclic aromatic compound and method for producing the same
CN101863880B (en) Fasudil hydrochloride compound and novel method thereof
JP2019519474A (en) Heterocyclic carboxamide ligands and their use in copper-catalyzed coupling of aryl halides
WO2013014665A1 (en) Intermediate compounds and process for the preparation of lurasidone and salts thereof
JPWO2012147944A1 (en) Method for producing diamine compound
CN105820098A (en) Diaryl thioether compound, and synthetic method and application thereof
JP6261111B2 (en) Method for reducing arenesulfonamide and method for producing arenesulfonic acid
JP4528123B2 (en) Process for the production of nitrooxy derivatives of naproxen
JP4407062B2 (en) Method for producing diphenyl disulfide derivative
CN104961664A (en) Method for synthesizing E-alkenyl sulfone compound
CN103694162B (en) (1S, 2R)-1-phenyl 2-(phthalimide) methyl-N, the preparation method of N-diethyl-ring propyl formamide
JP5663482B2 (en) Method for producing pyrimidinylacetonitrile derivative and synthetic intermediate thereof
JP2014151285A (en) New optically active imidazoline-phosphoric acid catalyst and derivative thereof
ES2786555T3 (en) Process for preparing 2-alkyl-4-trifluoromethyl-3-alkylsulfonylbenzoic acids
KR102365411B1 (en) Novel sulfonamide intermediates and processes for preparing silodosin using the same
WO2011111423A1 (en) Method for producing iodinated aromatic compound
JP2001233849A (en) Method for producing sulfonimide
CN118344272A (en) Method for synthesizing diaryl sulfide derivative by taking calcium carbide as alkynyl source
JP2007509161A (en) Improved process for producing benzohydrylthioacetamide
CN118359521A (en) Preparation method of thioether or thioester compound
JP2001122847A (en) Production of binaphthyl derivative
CN105348263B (en) A kind of preparation method of dabigatran etexilate intermediate
CN104744337A (en) Synthetic method of aryl sulphonic acid alkyl ester compound
JP3174968B2 (en) Method for producing 2-halogeno-6-substituted thiobenzonitrile

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160719

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170404

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20170605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170613

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171211

R150 Certificate of patent or registration of utility model

Ref document number: 6261111

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees