JP6260963B1 - Suction and dewatering of fabric - Google Patents
Suction and dewatering of fabric Download PDFInfo
- Publication number
- JP6260963B1 JP6260963B1 JP2017170021A JP2017170021A JP6260963B1 JP 6260963 B1 JP6260963 B1 JP 6260963B1 JP 2017170021 A JP2017170021 A JP 2017170021A JP 2017170021 A JP2017170021 A JP 2017170021A JP 6260963 B1 JP6260963 B1 JP 6260963B1
- Authority
- JP
- Japan
- Prior art keywords
- fabric
- water
- suction
- dehydration
- moisture
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004744 fabric Substances 0.000 title claims abstract description 248
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 137
- 230000018044 dehydration Effects 0.000 claims abstract description 112
- 238000006297 dehydration reaction Methods 0.000 claims abstract description 112
- 239000000835 fiber Substances 0.000 claims abstract description 67
- 230000037303 wrinkles Effects 0.000 claims abstract description 27
- 238000000034 method Methods 0.000 claims description 94
- 238000012545 processing Methods 0.000 claims description 50
- 239000005871 repellent Substances 0.000 claims description 49
- 230000002940 repellent Effects 0.000 claims description 30
- 230000007480 spreading Effects 0.000 claims description 29
- 238000003892 spreading Methods 0.000 claims description 29
- 239000007788 liquid Substances 0.000 claims description 23
- 230000002209 hydrophobic effect Effects 0.000 claims description 20
- 230000008569 process Effects 0.000 claims description 12
- 239000003795 chemical substances by application Substances 0.000 claims description 10
- 238000005470 impregnation Methods 0.000 claims description 10
- 239000000126 substance Substances 0.000 claims description 5
- 239000003814 drug Substances 0.000 claims 5
- 229940079593 drug Drugs 0.000 claims 5
- HFFLGKNGCAIQMO-UHFFFAOYSA-N trichloroacetaldehyde Chemical compound ClC(Cl)(Cl)C=O HFFLGKNGCAIQMO-UHFFFAOYSA-N 0.000 claims 1
- 238000005406 washing Methods 0.000 abstract description 39
- 239000004753 textile Substances 0.000 abstract description 30
- 230000000474 nursing effect Effects 0.000 abstract description 8
- 230000000149 penetrating effect Effects 0.000 abstract description 2
- 239000000047 product Substances 0.000 description 77
- 206010016807 Fluid retention Diseases 0.000 description 67
- 210000002700 urine Anatomy 0.000 description 26
- 238000001035 drying Methods 0.000 description 12
- 238000011156 evaluation Methods 0.000 description 12
- 238000003672 processing method Methods 0.000 description 11
- 230000014759 maintenance of location Effects 0.000 description 10
- 229920001971 elastomer Polymers 0.000 description 9
- 239000000203 mixture Substances 0.000 description 9
- 229920005989 resin Polymers 0.000 description 7
- 239000011347 resin Substances 0.000 description 7
- 239000012530 fluid Substances 0.000 description 6
- 238000009472 formulation Methods 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000007654 immersion Methods 0.000 description 5
- 230000000704 physical effect Effects 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 239000004071 soot Substances 0.000 description 5
- 238000005507 spraying Methods 0.000 description 5
- 210000001124 body fluid Anatomy 0.000 description 4
- 239000010839 body fluid Substances 0.000 description 4
- 239000003599 detergent Substances 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000035515 penetration Effects 0.000 description 4
- 230000000717 retained effect Effects 0.000 description 4
- -1 urine Substances 0.000 description 4
- 239000002759 woven fabric Substances 0.000 description 4
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 238000010521 absorption reaction Methods 0.000 description 3
- 239000007864 aqueous solution Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000007664 blowing Methods 0.000 description 3
- 238000009826 distribution Methods 0.000 description 3
- 238000004043 dyeing Methods 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 230000035699 permeability Effects 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 210000004916 vomit Anatomy 0.000 description 3
- 230000008673 vomiting Effects 0.000 description 3
- 238000004078 waterproofing Methods 0.000 description 3
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920002635 polyurethane Polymers 0.000 description 2
- 239000004814 polyurethane Substances 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 239000007921 spray Substances 0.000 description 2
- 238000000967 suction filtration Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229920002972 Acrylic fiber Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 208000031481 Pathologic Constriction Diseases 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 241001147388 Uncia Species 0.000 description 1
- BZHJMEDXRYGGRV-UHFFFAOYSA-N Vinyl chloride Chemical compound ClC=C BZHJMEDXRYGGRV-UHFFFAOYSA-N 0.000 description 1
- 229920006221 acetate fiber Polymers 0.000 description 1
- 239000003570 air Substances 0.000 description 1
- 238000007605 air drying Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000052 comparative effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000002781 deodorant agent Substances 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 238000002036 drum drying Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 230000002706 hydrostatic effect Effects 0.000 description 1
- 238000010409 ironing Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229920013716 polyethylene resin Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 1
- 239000004810 polytetrafluoroethylene Substances 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 239000002893 slag Substances 0.000 description 1
- 208000037804 stenosis Diseases 0.000 description 1
- 230000036262 stenosis Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 229920006312 vinyl chloride fiber Polymers 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Landscapes
- Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
- Accessory Of Washing/Drying Machine, Commercial Washing/Drying Machine, Other Washing/Drying Machine (AREA)
Abstract
【課題】布帛や繊維製品の表面に皺を作ることなく表面に付着した水滴、水分、内部に浸透した水分を吸出し脱水・脱液装置、吸出し脱水・脱液器具を使用して効率よく除去することが可能になる。【解決手段】低保水性、易脱水性の性質を有する拡布吸出し脱水性に優れた布帛、布帛を使用した構成の一般衣料や介護衣料、シーツやカーバー等身の回り繊維製品では、拡布吸出し脱水機や吸出し脱水器具を使用してこれらの繊維製品の表面に付着した水滴や水分、繊維内部に浸透した水分を除去する場合には、従来の洗濯機、洗濯機付属の脱水機、遠心式脱水機を使用して脱水した場合に発生が裂けられなかった布帛の表面の皺発生(脱水皺)の課題が解決できる。[PROBLEMS] To efficiently remove water droplets and moisture adhering to the surface of a fabric or textile product by using a suction dehydration / drainage device and a suction dehydration / drainage device. It becomes possible. SOLUTION: A fabric having a low water retention property and easily dewatering properties, and a fabric having excellent sucking and dewatering properties, and general clothing and nursing clothing having a structure using the fabric, and a textile product such as a sheet and a carver, When removing water droplets or moisture adhering to the surface of these textile products using a suction dehydrator, or moisture penetrating inside the fiber, use a conventional washing machine, a dehydrator attached to the washing machine, or a centrifugal dehydrator. The problem of wrinkle generation (dehydration wrinkle) on the surface of the fabric that was not torn when used and dehydrated can be solved.
Description
本発明は、布帛の表面に皺を発生させずに行う拡布吸出し脱水や脱液が可能な製品向けの吸出し脱水・脱液性に優れた布帛及び吸出し脱水方法に関するものである。 The present invention relates to a fabric excellent in suction dehydration and drainage and a suction dehydration method for products capable of spreading and sucking dehydration and draining without causing wrinkles on the surface of the fabric.
水分を含む布帛や繊維製品、水分が付着した布帛や繊維製品から水分を除去する方法には、先に水分をあらかた除去した後に残った水分を風や熱で乾燥させて除去する方法が一般的である。具体的なあらかたの水分除去方法としては、吊り乾し状態で放置して、自然落下で脱水させる方法、強制的な力、例えば洗濯後に遠心力を利用し水分を振るい落とす遠心脱水方法、ゴムロール等に布帛を通過させ、布帛や製品の表面に付着した水滴、内部に浸透した水分を圧搾脱水除去する方法等がある。その後は風乾除去させるか、早く除去する為に熱を利用したドラム乾燥機等を使ってい乾燥除去させる方法が一般的である。 As a method for removing moisture from fabrics and textiles containing moisture and from fabrics and textiles to which moisture has adhered, a method of removing moisture by drying with wind or heat after removing moisture in general is generally used. It is. Specific methods for removing moisture include a method in which the product is left in a suspended state and dehydrated by natural fall, a forced force, for example, a centrifugal dehydration method in which water is shaken off using a centrifugal force after washing, a rubber roll, etc. There is a method in which a cloth is passed through, and water droplets adhering to the surface of the cloth or product, water that has permeated into the inside, and the like are squeezed and dehydrated. Thereafter, it is common to use air-drying removal or dry-drying using a drum dryer or the like that uses heat for quick removal.
強制的な力で物理的に水分を除去する遠心脱水方法は、日常生活の中で行われている洗濯後に回転するドラムの中で濡れたり、水滴の付着した布帛、繊維製品をドラム回転の遠心力を利用して水分を除去する方式が身近な脱水事例の遠心脱水方式である。
古い洗濯機には2本のゴムロールがあって、そのゴムロールには回転させるハンドルが付属しており、洗濯後に洗濯物をゴムロール隙間を調節した後、このゴムロール間に投入しハンドル操作でゴム間隙を通過させて水分、水滴を強制除去する圧搾除去する方式が身近な事例の圧搾脱水方式であった。
The centrifugal dehydration method that physically removes water with a forced force is a method in which a cloth or textile product wetted in a rotating drum or wet with water drops after washing is centrifuged in a drum. Centrifugal dehydration is a common dehydration method that uses force to remove moisture.
Old washing machines have two rubber rolls, and the rubber rolls come with a handle to rotate. After washing, adjust the gap between the rubber rolls after washing, and put the rubber gap between these rubber rolls by operating the handle. The method of squeezing and removing by passing and forcibly removing moisture and water droplets was the squeeze dehydration method in familiar cases.
遠心脱水方式では布帛や衣類は折り畳まれた状態で投入される結果、脱水後の布帛や製品には洗濯時の皺と共に脱水皺、絞り皺が新たに発生し、乾燥させた後には残存するこれらの皺を除去する為にアイロン掛け等が基本的には必要であった。
最近の洗濯機では洗濯、脱水後に熱風を使用して水分を乾燥除去するドラム乾燥方法が一般的であり、この場合には折り畳まれた状態で加熱乾燥が行なわれるので皺の固定が起こり、より取れ難くて強い皺が布帛上に固定される。特に熱可塑性の繊維の場合は固定が強く行なわれる。
更に、折り畳まれた状態で脱水される結果、布帛や製品の重なった部分では脱水が悪く、また均一ではなく、脱水斑が多くの箇所で発生する。この傾向は遠心脱水槽への洗濯物の投入量が多くなるとより起こりやすい。また布帛の通気性が悪い布帛や衣類ほど起こり易い傾向にある。
圧搾除去方式の脱水方法も洗濯後の布帛や製品はロープ状になっていたり、絡んでいたりしているので、そのままゴムロールに通して水分を圧搾除去した場合には遠心脱水方式と同等かそれ以上に皺の発生、脱水斑の発生が起こる。
更に手動で行う場合はロール圧搾方式の水分除去効率は悪い傾向にある。
In the centrifugal dehydration method, the fabric and clothing are put in a folded state. As a result, dewatered and squeezed wrinkles are newly generated in the dehydrated fabric and products together with the wrinkles during washing, and these remain after drying. Basically ironing etc. was necessary to remove the wrinkles.
In recent washing machines, a drum drying method in which moisture is dried and removed using hot air after washing and dehydration is common. In this case, heat drying is performed in a folded state, so that fixing of the bag occurs. It is difficult to remove and strong heels are fixed on the fabric. In particular, in the case of thermoplastic fibers, the fixing is strongly performed.
Furthermore, as a result of being dehydrated in a folded state, dehydration is poor at the overlapping portions of the fabric and product, and it is not uniform, and dewatering spots occur at many places. This tendency is more likely when the amount of laundry put into the centrifugal dewatering tank increases. In addition, fabrics and clothes having poor air permeability tend to occur more easily.
The dewatering method of the squeezing and removing method is also the same as or more than the centrifugal dewatering method if the cloth and product after washing are rope-like or entangled, and the water is squeezed and removed as it is. In addition, wrinkles and dehydration occur.
Furthermore, when performing manually, the water | moisture-content removal efficiency of a roll pressing system tends to be bad.
これらの脱水方法では洗濯時に発生した皺を修正する機能が無いだけでなく、脱水時に更に新たな強い皺を発生させる。
これらの脱水方式の欠点である脱水時の布帛や繊維製品に新たな皺を発生させない脱水方法、水滴を除去する方法、更に脱水斑を発生させない脱水方法、脱水滴方法が上記の作業を行なう作業現場や、布帛や繊維製品を取り扱う現場で強く求められていた。更に、熱風を利用して折り畳まれて皺のある状態で乾かすことは皺をより強く固定してしまうのでこの点での改善も求められていた。
また、今までの布帛や製品をより効果的に、より簡単に水分、水滴が除去できる布帛や繊維製品、水分含有量が少なくなるような布帛や繊維製品も併せて求められていた。
本願発明は上記のような脱水皺、脱水斑を発生させずに布帛や繊維製品から効率よく水滴、水分を除去する拡布方式の水分除去(布帛を広げたままの状態で水分、水滴の除去)とその除去方式に適した布帛や繊維製品の提供に関するものである。
本願発明は拡布状態で水分を吸出して除去する、拡布式の水分、水滴除去方法及び水滴、水分除去を容易に行える布帛、繊維製品に関するものであり、脱水、脱滴後の布帛や繊維製品上には脱水皺を発生させない特徴を有する脱水方法に関する発明ある。以下本願発明では脱水、脱水方法に関しては拡布吸出し脱水、拡布吸出し脱水方法と呼ぶ。
更に、本発明を病院や介護の分野等に応用した場合は、吸出しの物は水や水滴以外に尿や体液更に流動性の嘔吐物も対象になる。
このように布帛や繊維製品から水分、水滴以外に尿や体液更に流動性の嘔吐物の除去を容易に行なえる除去方法、これらの除去が容易に行なえる布帛や繊維製品が市場では同様に求められており、水分に関する本発明はそのままで病院や介護分野にも応用して適用可能である。
以降の本願発明の表現で水分、水滴の表現には尿、体液、流動性嘔吐物、汚物等の液状物を含むものとする。
更に、水や液体、水滴や液滴の表現は特に必要のない場合を除き水分や水滴と表現する。更に水や水滴の表現は特に必要のない場合を除き水分と表現する。
以上のように脱水、脱水性の表現には特に区別が必要な場合を除いて、脱液、脱液性及び脱液状物、脱液状物性の内容を含めたものとする。
布帛の表面に脱水皺を発生させずに行う拡布吸出し脱水が可能な製品とは、上述のような拡布状で脱水できる衣服、衣類、シーツ類、カーバー等の身の回り品の繊維製品を言う。
「拡布吸出し脱水」の表現は拡布状態で行なう吸出し脱水、製品状態のままで行なう吸出し脱水の意味であり、「拡布吸出し脱水装置」は拡布状態のまま、製品の状態のままで吸出し脱水が行なえる装置を意味する。
These dewatering methods not only have no function of correcting wrinkles generated during washing, but also generate new strong wrinkles during dehydration.
The work that the dehydration method that does not generate new wrinkles in the cloth and textiles at the time of dehydration, the method of removing water droplets, the dehydration method that does not generate dehydration spots, and the dehydration droplet method, which are the disadvantages of these dehydration methods, perform the above operations There has been a strong demand in the field and in the field where fabrics and textile products are handled. Furthermore, since the folds are folded using hot air and dried in a state with wrinkles, the wrinkles are fixed more strongly, so improvement in this respect has also been demanded.
There has also been a demand for fabrics and textiles that can remove moisture and water droplets more effectively and more easily than conventional fabrics and products, and fabrics and textiles that have a low moisture content.
The invention of the present application is a spreading type moisture removal that efficiently removes water droplets and moisture from fabrics and textile products without causing the above-mentioned dewatering soot and dewatering spots (removal of moisture and water droplets while the fabric is spread). And the provision of fabrics and textiles suitable for the removal method.
TECHNICAL FIELD The present invention relates to a cloth-type moisture, a water droplet removal method and a water-drop, fabric that can be easily removed by removing moisture in a spread state, and a textile product. Has an invention relating to a dehydration method having a feature that does not cause dehydration. In the present invention, the dehydration and dehydration method is hereinafter referred to as the spread suction dehydration and the spread suction dehydration method.
Furthermore, when the present invention is applied to the field of hospitals or nursing care, in addition to water and water droplets, spilled urine, body fluids, and fluid vomit are also targeted.
In this way, there is a similar need in the market for a removal method that can easily remove urine, body fluids and fluid vomit in addition to moisture and water droplets from fabrics and textile products, and fabrics and textile products that can be removed easily. Therefore, the present invention relating to moisture can be applied to hospitals and nursing care fields as they are.
In the following expression of the present invention, the expression of moisture and water droplets includes liquid substances such as urine, body fluid, fluid vomit, and filth.
Furthermore, the expression of water, liquid, water droplets and droplets is expressed as moisture or water droplets unless otherwise required. Furthermore, the expression of water or water droplets is expressed as moisture unless otherwise required.
As described above, contents of drainage, drainage, liquid removal, and liquid removal properties are included unless the expression of dehydration and dehydration requires special distinction.
A product capable of spreading and sucking and dehydrating without causing dehydration on the surface of the fabric refers to a textile product such as clothing, clothing, sheets, and carver that can be dehydrated in the above-described expanded state.
The expression “spreading and sucking dewatering” means sucking and dehydrating in the spread state and sucking and dehydrating in the product state. The “spreading and sucking dewatering device” can perform sucking and dewatering in the spread state and in the product state. Means a device.
本願発明の解決しようとする課題は布帛表面に付着した水や液体、繊維内部に浸透した水や液体を含んだ布帛や繊維製品から布帛や繊維製品の表面に脱水時に新たに脱水皺を作らず、かつ均一に水滴や液滴、水分や液体を除去する脱水・脱液方法に関する発明である。
洗濯機に付属または兼用の遠心脱水や、マングル絞り方式の脱水では布帛や繊維製品には洗濯時発生した皺に更に新たな脱水皺、絞り皺が発生すること、脱水斑が発生するので、これらの発生を防止することも課題の一つである。
更に、この拡布水分除去方式を容易に実施できる布帛や繊維製品を提供することがもう一つの課題である。本発明の対象とする布帛や繊維製品は一般衣料及びシーツ、カーバー等の衣料用品及び介護衣料、シーツ、カーバー等の介護衣料用品等の比較的軽量な目付け(500g/m2以下)の布帛から作られ、従来は主に家庭の洗濯機で洗濯されていた身の回り品が対象である。
The problem to be solved by the present invention is that water or liquid adhering to the surface of the fabric, water or liquid that has penetrated into the inside of the fiber, or fiber product is not newly dewatered on the surface of the fabric or fiber product at the time of dehydration. Further, the present invention relates to a dehydration / liquid removal method for removing water droplets, liquid droplets, moisture and liquid uniformly.
Centrifugal dehydration attached to the washing machine or combined with the washing machine and mangle squeeze type dehydration, fabrics and textiles may generate additional dewatering squeezed and squeezed slag that occurs during washing, and dewatering spots will occur. Preventing the occurrence of this is one of the issues.
Furthermore, it is another subject to provide a fabric and a textile product that can easily carry out this spreading water removal method. Fabrics and textile products that are the subject of the present invention are made from fabrics of relatively light weight (500 g / m2 or less) such as general clothing and sheets, clothes such as carver, and nursing clothing such as sheets and carver. Conventionally, personal items that have been washed mainly in home washing machines are the target.
本発明は水分を含んだ布帛や繊維製品、水分が付着した布帛や繊維製品の表面を拡布状のまま走査可能な吸出し脱水装置を布帛上を走査させて表面に付着した水滴や布帛内部に浸透した水分を吸出して水分を除去する方法である。
更に、水分を拡布吸出し脱水方式で除去しやすい、拡布吸出し脱水性に優れた布帛、脱水後に低保水性になる布帛、この両性能を有する布帛を開発し、これを使用した拡布吸出し脱水性に優れ、脱水後に低保水性になる繊維製品を作る。
The present invention allows a fabric or textile product containing moisture, a suction dewatering device capable of scanning the surface of a fabric or textile product to which moisture has adhered to the fabric in an expanded state to scan the fabric and penetrate water droplets or fabric attached to the surface. This is a method for removing the moisture by sucking out the moisture.
Furthermore, we developed a fabric with excellent spreading and sucking and dewatering properties that is easy to remove moisture by spreading and sucking and dewatering, a fabric that has low water retention after dehydration, and a fabric that has both of these properties. Produces excellent fiber products that have low water retention after dehydration.
本願発明品の布帛、布帛を使用した繊維製品は拡布吸出し脱水性に優れており、また吸出し脱水後の保水性が低い特徴を有する。
本発明品の布帛や繊維製品を本発明の拡布吸出し脱水方法で脱水した場合には、脱水を拡布状態で実施できるので布帛や繊維製品の表面に大きな、強い皺を脱水時に新たに発生させない特徴を有する。
更に、拡布吸出し脱水装置の小型なタイプを使用し、本願発明に規定する低保水性の布帛を使用した製品や衣服では、使用状態、着用状態のままで水分や水滴の除去が可能になり、脱水後の布帛は低保水性になるので、そのまま製品や衣類を使用し続けられる長所をも有し、新しい特徴ある製品、衣服の提供にもつなげられる。
本発明の布帛や脱水方法は一般衣料分野の水分除去だけでなく病院や介護分野での尿や体液更に流動性汚物等の液状物の除去にも有用な介護衣料や介護用身の回り品からの水分、尿や流動性汚物の除去にも有効に使用したり、利用したりすることが可能である。
The fabric of the present invention and the textile product using the fabric are excellent in spreading and sucking and dewatering, and also have low water retention after sucking and dewatering.
When the fabric or textile product of the present invention is dehydrated by the spreading and sucking dewatering method of the present invention, the dehydration can be performed in the expanded state, so that large and strong wrinkles are not newly generated on the surface of the fabric or textile product during dehydration. Have
In addition, using a small type of fabric suction and dehydration device, and products and clothes using a low water retention fabric defined in the present invention, it becomes possible to remove moisture and water droplets in the state of use and wearing, Since the fabric after dehydration has low water retention, it has the advantage that it can continue to use products and clothes as it is, and can lead to the provision of new characteristic products and clothes.
The fabric and dehydration method of the present invention is useful not only for the removal of moisture in the general clothing field, but also for the removal of liquids such as urine, body fluids and fluid filth in hospitals and nursing care fields, It can also be used and used effectively for removing urine and fluid waste.
繊維から吸出し脱水・脱液方式で除去する対象は主として水分や尿で、一つは繊維表面上にある水分や尿であり、もう一つは布帛内部に浸透した水分や尿である。布帛表面の水分や尿は水滴状であったり、布帛全面に広がった状態で付着している。これらの表面の水分や尿は布帛表面を構成している繊維と接触している。これらの水分や尿を除去する場合に繊維と接触している水分や尿は繊維と表面張力で相互作用をして付着しているので繊維と接触していない水分や尿よりは除去に要する力がより必要である。
布帛の内部に浸透した水分や尿の大部分は繊維と接触していて、水分や尿は繊維と表面張力で相互作用を行っていて水分や尿の除去に要する力は繊維と非接触の水分や尿の除去、表面に付着の水分や尿の除去より更に大きな力が必要である。特に、中心内部に浸透した水分や尿は布帛を構成する繊維間に存在し、毛細管の中に保持される状態になり、水分や尿を取り囲む様に繊維との表面張力で相互作用を受けるので表面より一層水分や尿の除去に要する力が必要になる。このため、本発明の吸出し脱水性に優れ、、吸出し脱水後が低保水性になる性質を有する布帛を作るには、構成している繊維はアセテート繊維、アクリル繊維、ナイロン繊維、ポリエステル繊維、ポリプロピレン繊維、塩化ビニール繊維等の疎水性繊維がレーヨン繊維や綿繊維のような親水性の繊維より、水や尿と繊維との結合性が小さく、水分や尿の吸出し除去性が容易である点で好ましい。
繊維表面の固有のこの性質は各種の繊維加工手段、例えば撥水加工等で変化させられるので加工により、より好ましい性質の疎水性に改良し、本願発明に適用することが可能である。疎水性繊維はより疎水性に、親水性繊維も疎水性に変化させられるので撥水加工のような疎水化加工方法は好ましい加工方法である。繊維、糸種を選び布帛組織を選択することで吸引脱水保水率を40%以下に、又は吸出し脱水保水率を30%以下に、更に疎水化加工と組合せを行なうことで、吸引脱水保水率を20%以下に、又は吸出し脱水保水率を10%以下の好ましい布帛とすることが可能になる。実機を使用して拡布脱水した場合には上記の布帛では、実機吸引脱水保水率を10%以下、好ましくは5%以下にすることが出来て、吸引脱水後殆ど濡れ感を感じることなく着用することが可能になる。吸出し脱水を容易にするためには、布帛を構成する糸構造は水分保持量、保持力に関係する糸構造の中でも特に重要な役割をする毛細管構造の分布割合が少ないほうが保水量を小さくする点で、また毛細管径の大きいほうが、また毛細管径は不均一で乱れているほうが水分の除去しやすさの点で好ましい。具体的に例示すれば、糸を構成する繊維は短繊維より長繊維の方が、糸の種類も多く、糸構造を色々な加工手段で容易に変化させ得る点、調整できる点、毛細管構造分布の割合を少なくするように構成を設計出来る点で好ましい。例えば、糸の断面形状を変更したり、断面形状の構成割合を工夫したり、顕縮加工や混繊加工を実施したり、これらの組合せを検討したりする事で取れやすさに工夫することが可能であり好ましい。長繊維使用は毛細管構造の割合が少なく、保水量を少なく選択できるので好ましい。具体的には同じ太さの糸では単糸の太さが太い糸構成のものの方が毛細構造の分布量を少なく構成出来る点からは好ましい。低保水性にする機能面のみからは単糸太さとしては1デニール以上が好ましく、2デニール以上がより好ましい。また、フィラメントの形状は直線状の糸形状より、クリンプが発生していて毛細管構造が不均一になる加工糸タイプの糸形状の方が保水量は増えるが脱水性が容易である点で好ましい。混線糸タイプも同様の理由で好ましい。混繊糸の糸構成も単一なフィラメントタイプの混繊糸より糸断面が異型なフィラメントを組み合わせて構成した混繊糸、低収縮糸と高収縮糸の混繊糸、更にこれらの組合せを行なった異型断面と異収縮糸を複合した組み合わせの混繊糸も水分等の除去し易さの点で好ましい。更に、混繊に際して2種類の糸の供給割合(オーバーフィード量)を変えて供給する混繊方式で毛細管構造を作り難くする方法との組合せは水分の除去し易さの視点で好ましい混繊方法である。
糸を撚糸して毛細管構造を短くした構造、径を小さくした構造は撚りのない糸、少ない糸よりは毛細構造の長さが短く、径が小さくなり、含水量を小さくする点で好ましい。この視点での撚り係数は3000以上が好ましく、更には5000以上がより好ましい。
撚糸を強く行なう(撚り係数を上げる)と毛細管の間隔が狭くなり、浸透した水や尿は取れ難くはなるが、保水量が少なくなる点で好ましい。取れ難くなる点の改善は繊維表面を撥水加工等で疎水化し固体表面張力を小さくすることで改善できる。毛細管の間隔が狭くなっているので撥水加工等の好ましい加工に際しては加工薬剤の狭い間隔への浸透を良くする工夫が併せて重要である。例えば浸透剤の併用、処理液の浸漬と搾り出しを繰り返し連続的に実施する連続多段処理方法、浸漬とニップ絞り処理を浴中で行なうバッチ浸漬処理方法を例示できる。これらの加工手段は撚糸のような緻密糸使いの布帛や高密度織物のような緻密な織物には好ましい加工手段である。
吸出し脱水性に優れた布帛を使用して衣服を製作する場合には50%以上、好ましくは70%以上に吸出し脱水性に優れた布帛が使用されているのが好ましい。吸出し脱水性に優れた衣服の構成は表地、裏地、中間素材のいずれにも吸出し脱水性に優れた布帛を使用するのが最も好ましい。更に各々の部分が取り外せるようにボタンやチャック、テープ等で結合するように構成されている場合には吸い出し脱水操作をパーツ部分を取り外して個別に実施できるので好ましい。
The objects to be removed from the fibers by suction and dehydration / drainage are mainly moisture and urine, one is moisture and urine on the fiber surface, and the other is moisture and urine that has penetrated into the fabric. Moisture and urine on the fabric surface are in the form of water droplets, or are attached in a state of spreading over the entire surface of the fabric. The moisture and urine on these surfaces are in contact with the fibers constituting the fabric surface. When removing moisture and urine, the moisture and urine that are in contact with the fiber are attached by interacting with the fiber by surface tension, so the force required for removal is higher than the moisture and urine that are not in contact with the fiber. Is more necessary.
Most of the moisture and urine that have penetrated into the fabric are in contact with the fiber, and the moisture and urine interact with the fiber by surface tension, and the force required to remove the moisture and urine is moisture that is not in contact with the fiber. More power is required than the removal of urine and urine and the removal of water adhering to the surface and urine. In particular, moisture and urine that have penetrated into the center are present between the fibers that make up the fabric and are held in the capillaries, and interact with the surface tension with the fibers so as to surround the moisture and urine. More force is needed to remove moisture and urine than the surface. For this reason, in order to make a fabric having excellent sucking and dewatering properties and low water retention after sucking and dewatering according to the present invention, the constituent fibers are acetate fiber, acrylic fiber, nylon fiber, polyester fiber, polypropylene. Hydrophobic fibers such as fibers and vinyl chloride fibers have a lower binding property between water and urine and fibers than hydrophilic fibers such as rayon fiber and cotton fiber, and are easier to absorb and remove moisture and urine. preferable.
This inherent property of the fiber surface can be changed by various fiber processing means such as water repellent processing, so that it can be improved to a more preferable property of hydrophobicity by processing and applied to the present invention. Since hydrophobic fibers can be made more hydrophobic and hydrophilic fibers can also be made hydrophobic, a hydrophobic processing method such as water repellent processing is a preferred processing method. By selecting the fiber and thread type and selecting the fabric structure, the suction dewatering water retention is 40% or less, or the suction dewatering water retention is 30% or less. It becomes possible to obtain a preferable fabric having a suction dewatering water retention of 10% or less, or 20% or less. When the cloth is dehydrated and spread using an actual machine, the above-mentioned cloth can be reduced to a water retention rate of 10% or less, preferably 5% or less. It becomes possible. In order to facilitate sucking and dewatering, the yarn structure constituting the fabric has a smaller distribution ratio of the capillary structure, which plays a particularly important role among the yarn structures related to moisture retention and retention. In addition, it is preferable that the capillary diameter is large, and that the capillary diameter is not uniform and disordered from the viewpoint of easy removal of moisture. Specifically, the fibers constituting the yarn are longer fibers than short fibers, and there are more types of yarns, the yarn structure can be easily changed by various processing means, the points that can be adjusted, the capillary structure distribution This is preferable in that the configuration can be designed so as to reduce the ratio. For example, change the cross-sectional shape of the yarn, devise the composition ratio of the cross-sectional shape, implement stenosis processing or mixed fiber processing, or consider these combinations to devise ease of removal Is possible and preferred. The use of long fibers is preferable because the ratio of the capillary structure is small and the amount of water retention can be selected. Specifically, in the case of yarns having the same thickness, a yarn having a thick single yarn is preferable from the viewpoint that the distribution amount of the capillary structure can be reduced. From the viewpoint of low water retention, the single yarn thickness is preferably 1 denier or more, and more preferably 2 denier or more. Further, the shape of the filament is preferably a processed yarn type in which crimps are generated and the capillary structure is non-uniform, rather than a linear yarn shape, in that the water retention amount increases but dewaterability is easy. The mixed yarn type is also preferable for the same reason. The yarn composition of the blended yarn was also a blended yarn composed of a combination of filaments having a different cross section than a single filament type blended yarn, a blended yarn of low shrinkage yarn and high shrinkage yarn, and combinations of these. A blended yarn in which a modified cross section and different shrinkage yarn are combined is also preferable in terms of easy removal of moisture and the like. In addition, a combination with a method that makes it difficult to create a capillary structure with a mixing method that changes the supply ratio (overfeed amount) of two types of yarns during mixing is preferable from the viewpoint of easy removal of moisture. It is.
A structure in which the capillary structure is shortened by twisting the yarn and a structure in which the diameter is reduced are preferable from the viewpoint that the length of the capillary structure is shorter, the diameter is reduced, and the water content is smaller than the untwisted yarn and the less yarn. The twist coefficient from this viewpoint is preferably 3000 or more, and more preferably 5000 or more.
Strong twisting (increasing the twisting coefficient) narrows the space between the capillaries and makes it difficult to remove permeated water and urine, but is preferable in that the amount of water retained is reduced. Improvement of the point that is difficult to remove can be improved by making the fiber surface hydrophobic by water repellent treatment or the like and reducing the solid surface tension. Since the interval between the capillaries is narrow, a device for improving the penetration of the processing agent into the narrow interval is important for preferable processing such as water repellent processing. For example, it is possible to exemplify a continuous multi-stage treatment method in which the combined use of the penetrant, the immersion and squeezing of the treatment liquid are continuously carried out, and the batch immersion treatment method in which the immersion and the nip drawing treatment are carried out in a bath. These processing means are preferable for dense fabrics such as twisted yarns and dense fabrics such as high density fabrics.
When a garment is manufactured using a fabric having excellent sucking and dewatering properties, it is preferable to use a fabric having excellent sucking and dewatering properties by 50% or more, preferably 70% or more. As for the structure of the garment having excellent sucking and dewatering properties, it is most preferable to use a fabric having excellent sucking and dewatering properties for any of the outer material, the lining and the intermediate material. Further, it is preferable that each part is connected by a button, a chuck, a tape or the like so that it can be removed, because the sucking and dehydrating operation can be carried out separately by removing the parts.
本願発明の主な構成の一つは拡布吸出し脱水性に優れ、脱水後の保水性が小さい布帛、この布帛を使用した製品に関する発明である。布帛からの吸出し脱水性に優れるとは、水分が容易に脱水されやすい性質を持つ布帛であることや布帛を構成する糸構造が脱水されやすい糸構造糸なっていること及び拡布吸出し脱水後の保水量が小さいことを意味している。水分の取れやすさに関係する因子は繊維糸構造、特に毛細管糸構造等の物理的因子が影響することは具体的な例示で上述した通りである。構造的構成要因が同じ場合は繊維表面の性質、特に繊維の表面張力(固体界面張力)の影響が大きく、親水性の大きな固体界面張力より疎水性の小さい固体界面張力を有する繊維からなる糸を使用した布帛の方が水分が除去されやすいので好ましい。この場合繊維表面の疎水化加工は好ましい加工方法である。保水量に関しては元々大きくても吸出し脱水操作で取れ易い布帛や元々保水量の小さい布帛も吸出し脱水性の優れた布帛となりうる。保水量を小さくする手段としても繊維表面の疎水化加工は好ましい加工方法である。吸出し脱水性を良くする加工方法としては上述のように繊維の疎水化加工が好ましく、親水性繊維の疎水化加工、疎水性繊維の一層の疎水化加工は吸出し脱水性、吸引脱水性の保水値を小さくする。保水量を少なくし、拡布吸出し脱水を容易にするので好ましい加工法である。具体的にはシリコーン樹脂、ポリエチレン樹脂等を使用した繊維加工や樹脂加工での繊維の疎水化や、撥水剤を使用した撥水加工方による繊維の撥水加工(疎水化加工)方法は、疎水化で繊維表面の固体界面張力を小さくするので、好ましい加工方法として例示できる。更に、繊維に例えばウレタン系の樹脂やアクリル系の樹脂を含浸させたり、布帛の裏面に防水性のウレタン系の樹脂フイルム、ポリテトラエチレン系の樹脂フイルムをラミネートして得られる防水性の加工布帛は布帛への水の浸透を防止したり、少なく抑えることが可能で保水量を少なくすることが出来る。そのため布帛内部からの水分除去量がそれだけ少なくなり、主に表面に付着した水分の除去だけですむので好ましい加工法である。更に部分的にこれら樹脂を布帛内部に浸透させることで毛細管構造の容積割合を少なくすることも可能であり、保水量を少なくする点で好ましい加工方法である。これら防水性の加工を吸い出し脱水性に優れ、保水性の小さな低保水性の布帛に実施することでより好ましい効果が相乗的(保水量を抑え、脱水し易い構造体にする相乗効果)に得られるので好ましい。好ましい糸構成の糸を使用し、好ましい疎水化加工法を採用し、更に防水加工をして得られる拡布吸出し脱水性に優れ、更に防水性の布帛はスポーツ衣料、ユニホーム衣料分野だけでなく、身の回り品、特に介護分野でのシーツやベッドカバー用品にも広く適用できる。この場合は水分や尿、液状の流動性汚物等の裏面への浸透も防止できるので本願発明用の好ましい布帛で有ると共に好ましい適用事例である。裏面への浸透を防止する為の布帛の防水性は300mm以上が好ましく、更に好ましくは1000mm以上である。裏面に防水性のポリウレタン系樹脂がコーティングされた布帛や防水性のポリウレタン系フイルムやボリテトラフルオロエチレン系のフイルムがラミネートされている布帛で防水性が300mm以上、好ましくは5000mm以上の布帛がこれらの用途には最も好ましく利用可能である。
繊維内部に浸透した水分をより容易に吸出し除去できる、拡布吸出し脱水性に優れた布帛にするためには、上述の疎水化加工、撥水加工を繊維内部の構成繊維にまで、むら無く均一に実施することが好ましい。特に緻密な布帛や緻密な糸構成(例えば強撚糸)の糸使用の布帛の場合にはこのことは特に重要である。布帛を構成する糸の繊維内部、布帛断面の中心内部まで均一に加工するには疎水化剤や撥水剤の布帛への浸透を良くするための加工方法が好ましい。例示すれば、疎水化剤や撥水剤をパッディング方法で布帛に含浸させる時に浸透剤を併用使用してパッディングする、パディング処理(浸漬とマングル搾り)を複数回繰り返しを連続処理方式で実施する、疎水化剤や撥水剤を含む液中で、例えば洗絨機を使用してニップと含浸処理を繰り返しバッチ処理方式で実施する、含浸時間を長くする等の加工手段は特に本発明の効果を十分に効果的にする上で好ましい加工手段である。洗絨機を使用する場合、ロープ状で布帛を処理するロープ式洗絨機より拡布状態で布帛を処理する拡布式洗絨機の方が布帛表面に皺を発生させない点で、処理斑が少ない点で、処理液量を少なく出来経済的である点で好ましい。
特に緻密な繊維構成の布帛、具体的には総カバーファクターの大きな、例えば経糸と緯糸の合計カバーファクターが1000以上、好ましくは1500以上ある高密度織物のような布帛には有用で、重要な加工方法である。更に、織物が緻密な場合には効果的であると記述したが、布帛が緻密でない場合でも、その布帛を構成している糸が、例えば強く撚糸(撚り係数で3000以上)されていて、糸を構成しいる単糸が緻密になっているような場合にもパディング処理(浸漬とマングル搾り)を複数回繰り返し実施する繰り返しパッディング処理方法、ニップと含浸を液中で繰り返し実施する方法は特に好ましく、布帛の保水性を小さくする、除去性を容易にするための好ましい加工手段(連続処理方式の多段処理加工、バッチ処理方式の繰り返しニップ含浸処理加工)である。この事から緻密糸を使用した緻密な布帛の場合には最も効果を発揮できるので好ましい。
布帛の糸構成で保水性の役割を果たす毛細管の構成割合が少ない布帛は本発明には好ましいが、毛細管径を小さくした構造糸、例えば撚糸係数が3000以上、好ましくは5000以上の糸を使用した織物に上述の多段処理を実施した場合には特に保水性が小さくなるだけでなく、本願測定の抱水性は5%よりも更に小さな値にすることが出来る、濡れ感を感じさせない布帛とすることを実施例で確認できた。更にこの多段処理加工や繰り返しニップ含浸処理加工を行なうことで生地の内部まで疎水化剤が塗布される結果、表面が汚れ等で撥水性能が劣化しても、また洗濯や摩擦等で削り取られても内部の疎水化剤はこれらの影響を受けがたく上述のように低保水性、易脱水性、低抱水性の性能にプラスして水漏れ機能(漏水性能)が大きく改善されることがわかった。この性能が改善されることは実施例で明確にした。漏水性の評価基準である漏水に至る時間は生地上に投入する水量(水圧)、生地の緻密さの程度で大きく変るのは言うまでもない。この水漏れ機能(漏水性能)の改善はテント、作業着、アウトドアーで使用する商品、例えば釣り用途向けの帽子、ゴルフウエア、登山用途向けのウエアー等に新たな機能を付与できる。
糸構成、布帛構成、加工手段を選んで、本願発明の表面に皺を作らない拡布吸出し脱水性に優れた布帛を作るだけでなく、抱水率を5%以下にすることが可能になる。抱水率が5%以下の布帛は濡れ感を感じさせずに、洗濯後に遠心脱水するだけで着用できる新たな衣服の提供にもつながるものである。洗濯時の皺の発生は避けられないが通常の洗濯、脱水後の洗濯脱水に相当する抱水率が小さい布帛が提供できる点は脱水するだけ着用できる長所以外に、熱的乾燥が不要乃至は最小限の省エネ型布帛の提供にも繋げられる。カバーファクターが1000以上の高密度織物や撚り係数が3000以上、好ましくは5000以上の疎水性の長繊維強撚糸を使用した織編物からなる布帛に上述の多段処理加工、またはニップと含浸を液中で繰り返し実施するバッチ処理加工を実施た布帛では吸引脱水保水率の値を20%以下、吸出し脱水保水率10%以下の本発明の好ましい布帛とすることが出来る。一例として実施例に示した理想的な場合には吸出し脱水保水率を1%以下にすることを可能とする好ましい組合せであるといえる。
One of the main constitutions of the present invention is an invention relating to a fabric that is excellent in spreading and sucking and dewatering and having low water retention after dehydration, and a product using this fabric. Excellent suction and dehydration from the fabric means that the fabric is easily dehydrated, that the yarn structure constituting the fabric is a yarn structure yarn that is easy to dehydrate, and that It means that the amount of water is small. As described above in the specific example, the factors relating to the ease of moisture removal are influenced by physical factors such as the fiber yarn structure, particularly the capillary yarn structure. If the structural structural factors are the same, the fiber surface properties, particularly the fiber surface tension (solid interfacial tension) are greatly affected, and the yarn made of fibers having a solid interfacial tension that is less hydrophobic than the solid interfacial tension that is highly hydrophilic The fabric used is preferable because moisture is easily removed. In this case, hydrophobic processing of the fiber surface is a preferable processing method. Even if the water retention amount is originally large, a fabric that can be easily removed by the suction and dehydration operation or a fabric that originally has a small water retention amount can be a fabric having excellent suction and dewaterability. Hydrophobic processing of the fiber surface is a preferable processing method as a means for reducing the water retention amount. As described above, hydrophobic processing of fibers is preferable as a processing method for improving suction and dewatering properties. Hydrophobizing processing of hydrophilic fibers, and one hydrophobic processing of hydrophobic fibers is a water retention value of suction dehydrating and suction dehydrating properties. Make it smaller. This is a preferred processing method because it reduces the amount of water retained and facilitates spreading and suction dehydration. Specifically, fiber processing using silicone resin, polyethylene resin, etc., and hydrophobicity of fibers in resin processing, and water-repellent processing (hydrophobization processing) of fibers by water-repellent processing using water-repellent agents, Since the solid interfacial tension on the fiber surface is reduced by hydrophobization, it can be exemplified as a preferred processing method. Further, a waterproof processed cloth obtained by impregnating a fiber with, for example, a urethane-based resin or an acrylic resin, or laminating a waterproof urethane-based resin film or a polytetraethylene-based resin film on the back surface of the cloth. Can prevent water from penetrating into the fabric, or can reduce the water retention amount. Therefore, it is a preferable processing method because the amount of moisture removed from the inside of the fabric is reduced, and only the removal of moisture mainly attached to the surface is required. Furthermore, it is possible to reduce the volume ratio of the capillary structure by partially infiltrating these resins into the fabric, which is a preferable processing method in terms of reducing the water retention amount. By applying these waterproofing processes to a low water retention fabric that sucks out and has excellent dewaterability, a more favorable effect can be obtained synergistically (a synergistic effect that reduces water retention and makes the structure easy to dehydrate). This is preferable. Uses a preferred yarn composition, adopts a preferred hydrophobizing method, and is excellent in spreading and sucking dewaterability obtained by waterproofing. Further, waterproof fabrics are used not only in the field of sports clothing and uniform clothing, It can be widely applied to products, especially sheets and bed cover products in the nursing field. In this case, since penetration of moisture, urine, liquid fluid filth, etc. into the back surface can be prevented, this is a preferred fabric for the present invention and a preferred application example. The waterproofness of the fabric for preventing penetration into the back surface is preferably 300 mm or more, more preferably 1000 mm or more. A cloth having a waterproof polyurethane-based resin coated on the back surface, a cloth laminated with a waterproof polyurethane-based film or a polytetrafluoroethylene-based film and having a waterproof property of 300 mm or more, preferably 5000 mm or more. It is most preferably available for use.
In order to create a fabric with excellent spreading and sucking and dehydrating properties that can more easily suck and remove moisture that has penetrated inside the fiber, the above-mentioned hydrophobic processing and water repellent processing can be applied evenly to the constituent fibers inside the fiber. It is preferable to implement. This is particularly important in the case of a dense fabric or a fabric using a dense yarn structure (for example, a strong twisted yarn). A processing method for improving the penetration of the hydrophobizing agent or water repellent into the fabric is preferable for uniformly processing the inside of the fiber constituting the fabric and the center of the cross section of the fabric. For example, when padding a fabric with a hydrophobizing agent or water repellent, padding is performed using a penetrant, and padding treatment (immersion and mangle squeezing) is repeated multiple times using a continuous treatment method. In a liquid containing a hydrophobizing agent or a water repellent, for example, a processing means such as repeating a nip and an impregnation treatment by a batch processing method using a washing machine, extending an impregnation time, etc. This is a preferable processing means in order to make the effect sufficiently effective. When using a washing machine, there is less processing spots in that the spreading type washing machine that treats the fabric in the expanded state does not cause wrinkles on the fabric surface than the rope type washing machine that processes the fabric in the form of a rope. In this respect, it is preferable in that the amount of the treatment liquid can be reduced and it is economical.
Particularly useful for fabrics with a dense fiber structure, particularly for fabrics such as high-density fabrics with a large total cover factor, such as high-density fabrics with a total cover factor of warp and weft of 1000 or more, preferably 1500 or more. Is the method. Furthermore, although it is described that it is effective when the woven fabric is dense, even when the fabric is not dense, the yarn constituting the fabric is strongly twisted yarn (twisting coefficient is 3000 or more), for example, Especially when the single yarn constituting the yarn is dense, the padding treatment (immersion and mangle squeezing) is repeatedly performed several times, and the nip and impregnation method is repeatedly performed in the liquid. Preferably, it is a preferable processing means (continuous processing type multi-stage processing, batch processing type repeated nip impregnation processing) for reducing the water retention of the fabric and facilitating removal. In view of this, a dense fabric using dense yarn is preferable because it is most effective.
A fabric having a small proportion of capillaries that play a role of water retention in the yarn configuration of the fabric is preferable for the present invention. However, a structural yarn having a small capillary diameter, for example, a yarn having a twist coefficient of 3000 or more, preferably 5000 or more was used. When the above-mentioned multi-stage treatment is performed on the fabric, not only the water retention becomes particularly small, but also the water retention measured in the present application can be set to a value smaller than 5%, so that the fabric does not feel wet. Was confirmed in the Examples. Furthermore, as a result of applying the hydrophobizing agent to the inside of the fabric by performing this multi-stage processing and repeated nip impregnation processing, even if the surface is soiled and the water repellency is deteriorated, it is scraped off by washing or friction. However, the internal hydrophobizing agent is not affected by these effects, and as described above, the water leakage function (water leakage performance) can be greatly improved in addition to the low water retention, easy dehydration, and low water holding performance. all right. It was clarified in the examples that this performance was improved. Needless to say, the time to water leakage, which is an evaluation standard for water leakage, varies greatly depending on the amount of water (water pressure) charged onto the fabric and the degree of density of the fabric. This improvement in water leakage function (water leakage performance) can add new functions to tents, work clothes, products used outdoors, such as hats for fishing, golf wear, and mountain wear.
By selecting the yarn configuration, the fabric configuration, and the processing means, it is possible not only to produce a fabric excellent in spreading and sucking and dehydrating properties that does not form wrinkles on the surface of the present invention, but also to reduce the water retention rate to 5% or less. A fabric having a water retention rate of 5% or less leads to provision of a new garment that can be worn only by centrifugal dehydration after washing without feeling wet. The generation of wrinkles during washing is inevitable, but the point of being able to provide a fabric with a low water retention rate equivalent to normal washing and washing and dehydration after dehydration is that thermal drying is not necessary or necessary in addition to the advantage that it can be worn only by dehydration It can also lead to the provision of minimal energy-saving fabrics. The above-mentioned multi-stage processing, or nip and impregnation, are applied to a fabric composed of a high-density fabric having a cover factor of 1000 or more and a woven or knitted fabric using a hydrophobic long-fiber twisted yarn having a twist coefficient of 3000 or more, preferably 5000 or more. In the fabric subjected to the batch processing repeatedly performed in step 1, a preferred dewatering water retention rate of 20% or less and a suction dehydration water retention rate of 10% or less can be obtained. In the ideal case shown in the examples as an example, it can be said that this is a preferable combination that makes it possible to make the sucked and dehydrated water retention rate 1% or less.
布帛を拡布した状態で水分を吸い出し脱水させるには通常の湿気や水分吸い取り能力を有する掃除機で布帛表面を走査して行う。ここに言う布帛表面とは布帛を構成する表面及び裏面の両方を含めた表現である。具体的な掃除機の例としてバキュウムポンプを使用したバキューム吸引方式の掃除機を例示できる。
これら掃除機は通常は吸引力で水分等を取り出す方法で除去性は通気性を有する布帛の方が空気の移動に伴って水分を除去する方式であるので内部へ浸透している水分も除去しやすい。低通気性の高密度織物、コーティングやラミネートした布帛のような通気性が小さい布帛や柔らかい布帛は吸引力を強くすると布帛そのものを吸い込んでしまい布帛に皺を発生させたり、水分除去の為の布帛の表面走査が出来なかったりしてトラブルを起こしやすい。従来からカーペット等ではカーペットの上にこぼした水分の除去等に水分吸い取り能力のある掃除機が使用されているが、カーペットは生地の厚みが大きく目付けも大きく、更に通常裏張りとして樹脂がコーティングされていて硬いので掃除機の吸い込み口に吸い込みこまれるトラブルは発生しない。又カーペットの表面は凹凸が大きく吸い込み口とカーペットの間には空気の通路が確保されるのでカーペットが吸い込まれることも起こらない。
一方、本発明品の布帛は衣服等の衣料や衣料用品、ベッドカバーやシーツ等の身の回り品に用いられる軽量(通常400g/m2以下)で柔らかく、カーペットに比べて比較にならない位に薄くて柔らかいものであり、更に表面も平坦であるため、吸い込み口に吸い寄せられ吸い付いてしまうことも起こる。吸い付いた場合、特に通気性が小さい布帛の場合、吸い込み口に吸い付き、水分除去機の吸い込み口の布帛表面走査による水分除去動作そのものが出来なくなる。このような場合には吸い込み口を小さくしたり、吸い込み口周辺に切り込みを入れたり、凹凸を作ったりして、布帛の吸い付きが起こらないように空気の通路を確保した形状の吸い込み口に改良することで、既存の込み式掃除機を好ましく利用できる。このような空気通路を確保した形状の吸い込み口を有する水分除去機能掃除機は布帛表面の水分除去走査をスムーズに実施出来るので本願発明の実施に利用可能な好ましい吸い込み口を有する水分除去掃除機である。
吸い込み口を小さくすると水分除去効率が悪くなるので、吸い込み口の大きさを確保して、吸い込み口を目の粗い格子状や網状の太い糸からなるネットや編地、目の粗い金属金網で被覆した吸い込み口を有する吸い込み式の水分除去掃除機も空気の通路が確保でき、吸い込み口の布帛表面の走査による水分除去動作がスムーズに実施出来るので好まし吸い込み口を有する水分除去掃除機である。
このように通常の水分除去機能掃除機の吸い込み口に目の粗い格子状や網状の太い糸からなるネットや編地を被覆したり、目の粗い金属金網を被覆して吸い込まれないように工夫して布帛表面を走査すれば布帛が吸引口へ吸い込まれることのトラブルを回避して効率よく布帛の水分除去が可能となり好ましい水分除去方法である。
通常の水分除去機能掃除機を使用して平坦で、広い表面積の布帛から水分や水滴を除去する場合においては、布帛表面に針金やプラスッチク製の変形しにくい硬い材質のネット状の網物や金網を布帛と掃除機の吸引口の間に配置することで、布帛が吸引口に引き込まれることによるトラブルが解消されるので広い面積の布帛から効率よく水分の除去を行なう好ましい方法である。
本願の発明においては、通常の水分吸い取り能力を有する掃除機が使用可能であるが、水分吸い取り能力を向上させる目的で空気等の気体を吹きつけながら水分の吸い取りを行なう水分除去掃除機を使用することは応用的に使用可能である。(ブロアー機能付き水分吸い取り掃除機)空気が加熱されていればより効率的に水分の吸い取りが可能になり好ましい。又、水分を除去することを主目的とするが、汚れを取る目的で水分を吹きつけながら、または水分を吹き付けた後に水分の吸い取りを行なう水分除去掃除機、水分吹き付けと吸い取り機能を併せ持ったヘッドの水分除去掃除機も利用可能である。更に汚れ除去機能を向上させる目的で洗剤等の汚れ除去剤そのもの、汚れ除去剤を含んだ水を、吹きつけながら、または先にこれらを吹きつけた後に水分の吸い上げを行なう水分除去掃除機を使用することも無論応用的に実施可能である。さらにまた、エアー吹きつけ式水分吸い取り掃除機において、熱風を吹きつけながら行なうことでより効率的な水分除去機を行うことも無論可能である。熱風を併用しての水分除去掃除機において、布帛部分を押さえながら吸引除去を行なえば皺を新たに発生させないだけでなく、水分除去前に発生した皺を伸ばしながらの水分除去が可能になる。本願発明の特徴を生かし、更に皺伸ばしも行なえる好ましい利用方法である。
この時に吸引口の材質を金属等比熱が2以上の好ましくは4以上の大きい素材を使った吸い込み口にすることで、熱容量が大きくなるので押さえ込みながらの水分の吸引除去を実施出来るだけでなく、洗濯後の水分除去掃除機ノズルとして適用した場合には水分除去前に発生した皺の軽減化や皺の除去も行なえるので好ましい吸引口を有する吸出し脱水方式の水分除去掃除機と成し得る。
洗剤や汚れ除去剤を使用する場合には布帛や製品上に洗剤や汚れ除去剤が残らないよう水分の吹きつけを十分に行なうことが再使用の場合に必要である。これらの薬剤が布帛上に残ってしまうと、次回使用に際して水分吸水性を高め、水分除去性を阻害するので残らないように除去を完全にすることが重要である。また、皮膚への安全性の視点からも重要である。吸出し水分除去掃除機を使用するに際しては上記のような空気、熱風、水、洗剤等を併用して使用する場合を例示したが抗菌剤、消臭剤、撥水剤等を併用使用することは水分除去を主目的とする掃除機の応用の範囲で、目的に応じて組合せて使用することは可能である。
水分吸出し機能を有する掃除機の水分除去能力は掃除機の吸引力に影響を受けるが吸引力が大きすぎると上述したように本願発明の布帛や製品が吸い付くトラブルになるので吸引力を適宜調整できるタイプの水分除去掃除機が好ましい。
In order to suck out and dehydrate moisture in a state where the fabric is spread, the surface of the fabric is scanned with a vacuum cleaner having normal moisture and moisture absorption capability. The fabric surface mentioned here is an expression including both the front surface and the back surface constituting the fabric. As a specific example of the vacuum cleaner, a vacuum suction type vacuum cleaner using a vacuum pump can be exemplified.
These vacuum cleaners usually take out moisture and the like by suction force, and the removable fabric is a system that removes moisture with the movement of air, so moisture that has penetrated inside is also removed. Cheap. Low-breathable high-density fabrics, fabrics with low breathability such as coatings and laminated fabrics, and soft fabrics, when the suction force is increased, the fabric itself is sucked, causing wrinkles in the fabric, and for removing moisture It is easy to cause troubles because the surface of the surface cannot be scanned. Traditionally, vacuum cleaners have been used to remove moisture spilled on the carpet, etc., but the carpet is thick and has a large fabric weight and is usually coated with a resin as the backing. Because it is hard, there is no problem of being sucked into the suction port of the vacuum cleaner. Further, the carpet surface has large irregularities, and an air passage is secured between the suction port and the carpet, so that the carpet is not sucked.
On the other hand, the fabric of the present invention is soft and lightweight (usually 400 g / m 2 or less) used for personal items such as clothes and apparel, clothes such as clothes, bed covers and sheets, and is thin and soft compared to carpets. In addition, since the surface is flat, it may be sucked into and sucked into the suction port. In the case of sticking, especially in the case of a fabric with low air permeability, it sticks to the suction port, and the moisture removal operation itself by scanning the fabric surface of the suction port of the moisture removing machine cannot be performed. In such a case, the suction port can be made smaller, cut into the periphery of the suction port, or irregularities can be created to improve the shape of the suction port so that air passages are secured to prevent the fabric from sticking. By doing so, the existing built-in vacuum cleaner can be preferably used. Since the moisture removing function vacuum cleaner having a suction port having such a shape that secures an air passage can smoothly perform moisture removal scanning on the surface of the fabric, it is a moisture removing cleaner having a preferred suction port that can be used in the practice of the present invention. is there.
Since the moisture removal efficiency decreases when the suction port is made smaller, the size of the suction port is secured, and the suction port is covered with a net or knitted fabric made of a grid-like or net-like thick thread, or a metal mesh with a coarse mesh. The suction-type moisture removal cleaner having the suction port is also a moisture removal cleaner having a preferred suction port because an air passage can be secured and the moisture removal operation by scanning the fabric surface of the suction port can be performed smoothly.
In this way, the vacuum cleaner's suction port is covered with a net or knitted fabric made of a thick grid or mesh thread, or a metal mesh with a coarse mesh so that it cannot be sucked in. If the surface of the fabric is scanned, it is possible to avoid the trouble of the fabric being sucked into the suction port and efficiently remove the moisture from the fabric, which is a preferable moisture removal method.
When removing moisture and water droplets from a flat, large surface area fabric using a normal vacuum cleaner, a net-like net or wire net made of wire or plastic that is hard to deform and hard on the fabric surface Since the trouble due to the fabric being drawn into the suction port is solved by disposing between the fabric and the suction port of the vacuum cleaner, this is a preferable method for efficiently removing moisture from a wide area of fabric.
In the invention of the present application, a vacuum cleaner having a normal moisture absorption capability can be used, but a moisture removal vacuum cleaner that absorbs moisture while blowing a gas such as air is used for the purpose of improving the moisture absorption capability. It can be used in an applied manner. (Built-in Moisture Absorbing Vacuum Cleaner) If the air is heated, moisture can be absorbed more efficiently, which is preferable. The main purpose is to remove moisture, but a moisture removal vacuum cleaner that absorbs moisture while spraying moisture for the purpose of removing dirt, or after spraying moisture, and a head that has both moisture spraying and suction functions. Other moisture removal vacuum cleaners are also available. In order to further improve the dirt removal function, use a moisture removal cleaner that sucks up moisture while spraying water containing a stain remover itself or detergent, or after spraying water first. Of course, it can also be implemented in an applied manner. Furthermore, in an air blowing type moisture suction cleaner, it is of course possible to carry out a more efficient moisture removing machine by blowing hot air. In a moisture removal vacuum cleaner using hot air in combination, if suction removal is performed while pressing the fabric portion, not only new wrinkles will be generated, but also moisture removal while stretching the wrinkles generated before moisture removal will be possible. This is a preferred method of utilization that can make use of the features of the present invention and can further stretch the koji.
At this time, by making the suction port material a suction port using a large material with a specific heat of 2 or more, preferably 4 or more, the heat capacity becomes large, so not only water can be sucked and removed while pressing, When applied as a water removal vacuum cleaner nozzle after washing, it is possible to reduce the wrinkles generated before water removal and to remove the wrinkles, so that it can be a suction dehydration type water removal vacuum cleaner having a preferable suction port.
In the case of using a detergent or stain remover, it is necessary to sufficiently spray moisture so that the detergent or stain remover does not remain on the fabric or product. If these chemicals remain on the fabric, it is important to complete the removal so as not to remain because the water absorbability is increased and the water removability is inhibited in the next use. It is also important from the viewpoint of skin safety. When using a vacuum cleaner to remove moisture, the case of using air, hot air, water, detergent, etc. in combination as described above is exemplified, but using antibacterial agents, deodorants, water repellents, etc. in combination It can be used in combination according to the purpose within the range of application of a vacuum cleaner whose main purpose is moisture removal.
The moisture removal ability of a vacuum cleaner with a moisture suction function is affected by the suction force of the cleaner, but if the suction force is too large, as described above, the fabric or product of the present invention will become a trouble that will be sucked, so the suction force is adjusted accordingly. A possible type of moisture removal vacuum cleaner is preferred.
本願発明に記述の物性値評価は下記の方法で行なった。
布帛に投入、吸水された水分は布帛を構成する繊維構造体に吸収されるか布帛上に残るが、この水分が吸引操作後もどの程度残存して布帛内部に保水されたままになるかの程度割合を吸引脱水保水率として下記の通り実行して評価した。
ろ過瓶にアズワン社扱いのビフネルロート、型番AF3(内径約10cm、ホール数271個、ホール径約1.55mm)のロート部に配置する直径10cmの大きさの布帛を準備する。この布帛の重量W0を測定した後にロート部に設置する。その上に水を100cc注入した後直ちに吸引ろ過を行う。吸引はアルバック社製のポータブルアスピレータ(MDA006)を用いて減圧稼動を開始し1分間の吸引を行う。MDA006の到達減圧度はカタログ記載によれば6600パスカルである。
吸引ろ過後に布帛を取り出し、布帛の重量W1を測定する。吸引脱水保水性(吸引脱水保水率)は下記の1式で算出した値である。
(W1−W0)/W0*100・・・・(1)
測定に際して、ロートと布はくの間に吸引を均一にする目的で株式会社ヤマニ社製の線径55ミクロンのポリエステルモノフィラメントメッシュ生地(T120-55)を配置して計測を行なった。
布帛表面や内部に存在する水分が、吸出し脱水操作を行なった後もどの程度の割合で吸出し脱水出来ずに布帛内部の繊維構造体に残存して保水されたままになるかの程度割合を吸出し脱水保水率として下記の通り実行して測定した。
ピンで固定した布帛上に5ccの水を投与して5分間静置した後、ヌッチェ接続部分のビニール管(内径9mm)をヌッチェから外して、このゴム管先端を布帛にあて、湿潤部分を走査して水を吸引させる。走査速度約3m/分で3回実施する。その後走査部分を10cm*10cmの大きさにカットし重量W2を測定する。乾燥後の生地重量W0を測定し、下記の2式で算出した値を吸出し脱水保水率とする。疎水化加工した布帛を評価する時は水の代わりに液体アタック(花王石鹸株式会社製)を0.1%含む水溶液を使用する。
(W2−W0)/W0*100・・・・(2)
生地がゴム管の先端に吸い付くのを防止する為にゴム管表面に上記のメッシュ生地(T120−55)を被覆し、生地はピンで吸引操作で剥がれないように固定して水分、水滴の吸出し除去を実施した。
家庭での洗濯後の遠心脱水操作後も布帛を構成する繊維構造体に残存する水分量の程度割合を想定する指標としての布帛抱水性の測定を下記の通り実行する。
布帛(重量W0)を液体アタック(花王石鹸株式会社製)を0.1%含む水溶液に30分間浸漬した後、洗濯機(日立社製 型番 PS−513 )の脱水槽で10分間の遠心脱水を行い布帛の重量W3を測定し、下記の3式で算出した値を布帛抱水性として算出する。
(W3−W0)/W0*100・・・・(3)
発明品の実用上の価値を評価をする為の評価試験はアクアシステム株式会社製吸引脱水掃除機(EVC−550)で行い、吸引掃除機による実機脱水保水率として算出した。吸引は内径32mmの芯線入り軟式塩化ビニールチューブノズルを直接使用して行なった。本EVC−550の到達真空度はカタログ記載によれば210パスカルである。
ピンで固定した布帛上に5ccの水を投与して5分間静置した後、上記掃除機で水滴が付着した部分、浸透した部分を下側から5回走査(約90秒間)吸引を行う。その後走査部分を10cm*10cmの大きさにカットし重量W4を測定する。乾燥後の生地重量W0を測定し、下記の4式で算出した値を実機吸出し脱水保水率とする。疎水化加工した布帛を評価する時は水の代わりに液体アタック(花王石鹸株式会社製)を0.1%含む水溶液を使用する。
(W4−W0)/W0*100・・・・(4)
下記に記述するJIS規定の防水性は非常に短い測定時間での布帛の防水機能を評価する方法である。実用上で布帛を使用する場合は長時間に亘っての防水性が必要となる場合がある。長時間に亘っての防水性を評価する指標としてJIS規定の防水性評価に代わって、下記の通り実施して測定した漏水性で評価した。200ccのプラスチック製ビーカ上に生地を緩めに固定し、その上に100ccの水を注入する。水はビーカからこぼれない程度の高さで維持する。水が生地から漏れ出すまでの時間、日数を測定する。例えば、100cc注入し、1日経過後に漏水すれば生地の漏水性機能は100cc*1日の耐漏水性と表現する。
通常の防水性の測定はJIS L 1092の 耐水度試験(静水圧法) A法(低水圧法)、またはB法(高水圧法)に記載の方法で実施した。
撥水性の測定はJIS L 1092に記載のスプレー法で実施した。
通気性の測定はJIS L 1096A法(フラジール法) に記載の方法で実施した。
洗濯の実施はJIS L 0217 103法に記載の方法で実施した。
撚係数は下記式により算出した。
撚係数=T×(デニール)1/2
ここで、Tは撚糸回数(T/m)であり、Dは糸条の総繊度(デニール)である。
総カバーファクターは下記式により算出した。
総カバーファクター=(DWp)1/2×MWp+(DWf)1/2×MWf
ただし、DWpは経糸総繊度(デニール)、MWpは経糸織密度(本/2.54cm)、DWfは緯糸総繊度(デニール)、MWfは緯糸織密度(本/2.54cm)である。
The physical property values described in the present invention were evaluated by the following methods.
Moisture charged into and absorbed by the fabric is absorbed by the fiber structure constituting the fabric or remains on the fabric, but how much this moisture remains after the suction operation to keep water inside the fabric. The degree was evaluated as the suction dehydration water retention rate as follows.
A fabric having a diameter of 10 cm to be arranged in a funnel part of a bifnel funnel, model number AF3 (inner diameter: about 10 cm, number of holes: 271, hole diameter: about 1.55 mm) handled by ASONE is prepared in a filter bottle. After measuring the weight W0 of this fabric, it is installed in the funnel. Suction filtration is performed immediately after 100 cc of water is injected thereon. For suction, a vacuum aspiration operation is started using a ULVAC portable aspirator (MDA006) and suction is performed for 1 minute. The ultimate pressure reduction of MDA006 is 6600 Pascal according to the catalog description.
After suction filtration, the fabric is taken out and the weight W1 of the fabric is measured. The suction dewatering water retention (suction dehydration water retention rate) is a value calculated by the following one formula.
(W1-W0) / W0 * 100 (1)
At the time of measurement, a polyester monofilament mesh fabric (T120-55) having a wire diameter of 55 microns manufactured by Yamani Co., Ltd. was arranged for the purpose of making suction uniform between the funnel and the cloth foil.
Draw out the proportion of moisture that is present on the fabric surface and in the interior and remains in the fiber structure inside the fabric without being able to suck out and dehydrate after the suction and dehydration operation. The dehydration water retention rate was measured as follows.
After 5 cc of water is dispensed onto the fabric fixed with a pin and allowed to stand for 5 minutes, the vinyl tube (inner diameter 9 mm) of the Nutsche connection portion is removed from the Nutsche, the tip of the rubber tube is applied to the fabric, and the wet portion is scanned. And suck the water. Carry out three times at a scanning speed of about 3 m / min. Thereafter, the scanning portion is cut into a size of 10 cm * 10 cm, and the weight W2 is measured. The dough weight after drying W0 is measured, and the value calculated by the following two formulas is used as the suction dehydration water retention rate. When evaluating a hydrophobized fabric, an aqueous solution containing 0.1% of a liquid attack (manufactured by Kao Soap Co., Ltd.) is used instead of water.
(W2-W0) / W0 * 100 (2)
In order to prevent the fabric from sticking to the tip of the rubber tube, the surface of the rubber tube is coated with the mesh fabric (T120-55), and the fabric is fixed so that it does not peel off by suction with a pin. Suction removal was performed.
Measurement of fabric water repellency as an index that assumes the proportion of the amount of moisture remaining in the fiber structure constituting the fabric even after centrifugal dehydration after washing at home is performed as follows.
After immersing the fabric (weight W0) in an aqueous solution containing 0.1% liquid attack (made by Kao Soap Co., Ltd.) for 30 minutes, centrifugal dehydration is carried out for 10 minutes in a dehydration tank of a washing machine (model number PS-513, manufactured by Hitachi). The weight W3 of the fabric is measured, and the value calculated by the following three formulas is calculated as the fabric water repellency.
(W3-W0) / W0 * 100 (3)
The evaluation test for evaluating the practical value of the invention product was performed with a suction dehydration cleaner (EVC-550) manufactured by Aqua System Co., Ltd., and was calculated as an actual dehydration water retention rate by the suction cleaner. Suction was performed directly using a soft vinyl chloride tube nozzle with a core wire having an inner diameter of 32 mm. The ultimate vacuum of this EVC-550 is 210 Pascal according to the catalog description.
After 5 cc of water is administered onto the cloth fixed with a pin and left to stand for 5 minutes, the portion where water droplets adhere and the portion that has penetrated are scanned from the lower side five times (about 90 seconds) by the vacuum cleaner. Thereafter, the scanning portion is cut into a size of 10 cm * 10 cm, and the weight W4 is measured. The dough weight W0 after drying is measured, and the value calculated by the following four formulas is used as the actual machine suction and dewatering retention rate. When evaluating a hydrophobized fabric, an aqueous solution containing 0.1% of a liquid attack (manufactured by Kao Soap Co., Ltd.) is used instead of water.
(W4-W0) / W0 * 100 (4)
The waterproof property specified in JIS described below is a method for evaluating the waterproof function of a fabric in a very short measurement time. When a fabric is used in practice, waterproofing may be required for a long time. As an index for evaluating the waterproofness over a long period of time, instead of the waterproof evaluation of JIS regulations, the water leakage was measured as follows. A dough is loosely fixed on a 200 cc plastic beaker, and 100 cc of water is poured thereon. Maintain water at a height that does not spill from the beaker. Measure the time and days until water leaks from the dough. For example, if 100 cc is injected and the water leaks after 1 day, the water leakage function of the fabric is expressed as 100 cc * 1 days of water resistance.
Ordinary waterproofness was measured by the method described in JIS L 1092 water resistance test (hydrostatic pressure method) method A (low water pressure method) or method B (high water pressure method).
The water repellency was measured by the spray method described in JIS L 1092.
The air permeability was measured by the method described in JIS L 1096A method (Fragile method).
Laundry was carried out by the method described in JIS L 0217 103 method.
The twist coefficient was calculated by the following formula.
Twist factor = T x (denier) 1/2
Here, T is the number of twisted yarns (T / m), and D is the total fineness (denier) of the yarn.
The total cover factor was calculated by the following formula.
Total cover factor = (DWp) 1/2 × MWp + (DWf) 1/2 × MWf
However, DWp is the total warp fineness (denier), MWp is the warp weave density (main / 2.54 cm), DWf is the total weft fineness (denier), and MWf is the weft weave density (main / 2.54 cm).
経糸及び緯糸に50デニール、144フィラメントで撚糸数1500回/メータの経マット組織の織物を通常の染色加工工程で染色加工を実施して青色の染色物を得た。染色物の経糸密度は268本/インチ、緯糸密度は114本/インチであった。総カバーファクターは2701、糸のより係数は10607であった。
本染色織物を下記処方の撥水剤処方の液で、浸漬とマングル絞りを10回繰り返し実施した後に通常の方法で乾燥、熱処理を実施して本願発明品1を作成した。同様の織物を上記処理液で通常の方法で浸漬とマングル絞りを1回実施した後に通常の方法で乾燥、熱処理を実施して本願発明品2を作成した。
本願発明品1及び2の物性を第1表に示す。本発明品1、2の目付けはそれぞれ127、128 g/m2であった。
撥水処方:
ユニカガード LK−633P(ユニオン化学社製)10%、
ユニカ フィクサーUG−1030(ユニオン化学社製)2%の溶液、ピックアップ率 59%。
A warp and weft yarn of 50 denier, 144 filaments and a warp mat with a twist of 1500 times / meter was dyed in a normal dyeing process to obtain a blue dyed product. The warp density of the dyed product was 268 yarns / inch, and the weft density was 114 yarns / inch. The total cover factor was 2701 and the yarn twist coefficient was 10607.
The dyed woven fabric was dipped and mangled ten times repeatedly with a water repellent formulation liquid having the following formulation, and then dried and heat-treated by ordinary methods to prepare the product 1 of the present invention. A similar woven fabric was dipped and mangled once with the above treatment solution in the usual manner, and then dried and heat treated in the usual manner to produce Invention Product 2.
The physical properties of Invention Products 1 and 2 are shown in Table 1. The fabric weights of the inventive products 1 and 2 were 127 and 128 g / m 2 , respectively.
Water repellent prescription:
UNIKA GUARD LK-633P (Union Chemical Co., Ltd.) 10%,
Unica Fixer UG-1030 (Union Chemical Co., Ltd.) 2% solution, pickup rate 59%.
第1表
参考:撥水加工前の生地の吸引保水率は12%であった。
本願発明品は吸出し脱水保水率が低く、吸引保水率も低い。
更に、抱水率も非常に小さく、特に撥水処理を繰り返し100回行なったものは特に抱水率が小さく手で触っても濡れを余り感じない程度であった。更に洗濯耐久性にも優れていた。
Table 1
Reference: The water retention rate of the fabric before water repellent finish was 12%.
The product of the present invention has a low suction dehydration water retention rate and a low suction water retention rate.
Furthermore, the water retention rate was very small. Especially, the water repellent treatment was repeated 100 times, and the water retention rate was particularly small, so that even when touched with a hand, it did not feel much wet. Furthermore, it was excellent in washing durability.
経糸及び緯糸に50デニール、144フィラメントの仮より加工糸の平織り組織の織物を通常の染色加工工程で染色加工を実施して茶色の染色物を得た。染色物の経糸密度は147本/インチ、緯糸密度は134本/インチであった。
本染色織物を実施例1に記載の撥水剤処方の液で、通常の撥水加工を1回実施し、通常の方法で乾燥、熱処理を実施して撥水有り品を作成した。
撥水処理をしないものと撥水無し品とした。
得られた撥水有り品、撥水無し品の物性を第2表に示す。
The warp and weft yarns were dyed in a normal dyeing process for a plain weave fabric of 50 denier and 144 filaments to obtain a brown dyed product. The warp density of the dyed product was 147 yarns / inch, and the weft density was 134 yarns / inch.
The dyed fabric was treated with the water repellent formulation described in Example 1 and subjected to normal water repellent treatment once, followed by drying and heat treatment by a conventional method to produce a product with water repellent properties.
A product without water repellent treatment and a product without water repellent treatment were used.
Table 2 shows the physical properties of the obtained water-repellent and non-water-repellent products.
第2表
吸出し脱水保保水率は破水有り品で著しく低い値となる。
第3表に吸引掃除機での実機脱水、従来の洗濯機での洗濯脱水実施時の脱水斑、外観観察評価結果を示す。
Table 2
The suction and dehydration retention rate is extremely low for products with water breakage.
Table 3 shows the actual machine dehydration in the suction cleaner, the dewatering spots at the time of washing dehydration in the conventional washing machine, and the appearance observation evaluation results.
第3表
撥水有り品は従来の洗濯及び脱水時に発生する皺や脱水斑が少ないことがわかる。
また、実機脱水保水率は撥水無し品でも低く、撥水加工品では非常に低い保水値まで脱水され、濡れ感が無い程度に脱水乾燥されている。
Table 3
It can be seen that the water repellent product has less wrinkles and dewatering spots generated during conventional washing and dehydration.
Moreover, the actual machine dehydrated water retention rate is low even in the product without water repellency, and the water repellent processed product is dehydrated to a very low water retention value, and dehydrated and dried to such an extent that there is no wet feeling.
下記の3種類の生地を使用して撥水処理工程の違いによる生地の水分保持特性を評価した。使用した加工上がりの生地の内容を第4表に示す。 The following three types of fabrics were used to evaluate the moisture retention characteristics of the fabrics due to differences in the water repellent treatment process. Table 4 shows the contents of the finished fabric used.
第4表
これらの織物は通常の方法で精錬、リラックス、乾燥と熱セット後、染色をした生地に実施例1に記載の方法と同様の方法でパッディング処理を1回、実施したもの(通常処理)、パッディング処理を繰り返し10回実施したもの(多段処理)を実施した。撥水剤処理後は通常の方法で乾燥、熱処理を行なって通常処理品、多段処理品を作成し、評価を実施した。
評価結果を第5表及び第6表に示す。
Table 4
These fabrics were refined, relaxed, dried and heat-set by a normal method, and then subjected to a padding treatment once in the same manner as described in Example 1 on the dyed fabric (normal treatment), The padding process was repeated 10 times (multistage process). After the treatment with the water repellent, drying and heat treatment were performed in a usual manner to prepare a normal treated product and a multi-stage treated product, and evaluation was performed.
The evaluation results are shown in Tables 5 and 6.
第5表
生地3は撚糸係数が10607の緻密糸、総カバーファクターが2701の高密度な緻密織物であり多段処理撥水加工と通常処理の効果の違いが抱水性で顕著に現れている。
Table 5
The fabric 3 is a dense yarn with a twist coefficient of 10607 and a high density dense fabric with a total cover factor of 2701, and the difference between the effects of the multistage water-repellent treatment and the normal treatment is remarkable due to water retention.
第6表
実機脱水保水率(%)
実機で拡布吸引脱水を行なったが皺は全く発生しなかった。生地見本では撥水の有無に関わず低い保水性値まで脱水されること、撥水加工品はすべての生地見本が1%以下の低保水率まで吸引脱水出来ることがわかった。
Table 6 Dehydration retention rate of actual machine (%)
Spreading suction dehydration was performed on the actual machine, but no wrinkles occurred. It was found that the fabric samples were dehydrated to a low water retention value regardless of the presence or absence of water repellency, and that all the water repellent processed products could be suction dehydrated to a low water retention rate of 1% or less.
下記フイルム処方で織物裏面に貼り付けるフイルムを作成し、ついでグラビアロールで下記接剤処方の接着剤をフイルムに塗布した後に実施例1で作成した発明品2の織物とラミネートしてラミネート織物を作成し本発明品を作成した。加工後の物性は第7表に示す。
フイルム処方:
クリスボン NYT−18(大日本インキ株式会社製)100部、ハウラックA−COLOR (大日本インキ株式会社製)15部、DMF 25部
接着剤処方:
クリスボン AD−865HV(大日本インキ株式会社製)100部、バーノック DN−950(大日本インキ株式会社製)10部、クリスボン アクセルT(大日本インキ株式会社製)3部、トルエン 2部
Create a film to be pasted on the back of the fabric with the following film formulation, then apply the adhesive with the following adhesive formulation to the film with a gravure roll, and then laminate with the fabric of Invention 2 created in Example 1 to create a laminated fabric The present invention product was prepared. The physical properties after processing are shown in Table 7.
Film prescription:
Crisbon NYT-18 (Dainippon Ink Co., Ltd.) 100 parts, Howlac A-COLOR (Dainippon Ink Co., Ltd.) 15 parts, DMF 25 parts
Crisbon AD-865HV (Dainippon Ink Co., Ltd.) 100 parts, Barnock DN-950 (Dainippon Ink Co., Ltd.) 10 parts, Crisbon Accel T (Dainippon Ink Co., Ltd.) 3 parts, Toluene 2 parts
第7表
吸出し脱水抱水率は0.1 %以下、実機脱水保水率も0.8と非常に低く脱水後は濡れ感を感ずることなくそのまま使用続けられることを示している。。
Table 7
The suction and dehydration water retention rate is 0.1% or less, and the actual machine dehydration water retention rate is also very low, 0.8, indicating that it can be used as it is without feeling wet after dehydration. .
経糸及び緯糸に80デニール、156フィラメントの異収縮混繊糸の平織り組織の織物を通常の染色加工工程で染色加工を実施して青色の染色物を得た。染色物の経糸密度は122本/インチ、緯糸密度は100本/インチであった。
本染色織物を実施例1に記載の撥水剤処方の液で、通常の撥水加工を1回及び10回の多段処理した後、通常の方法で乾燥、熱処理を実施して本願発明品を作成した。
得られた発明品、比較品の物性を第8表に示す
A warp and weft yarn of 80 denier, a plain weave fabric of 156 filaments of different shrinkage mixed yarn was dyed by a normal dyeing process to obtain a blue dyed product. The warp density of the dyed product was 122 yarns / inch and the weft density was 100 yarns / inch.
The dyed fabric was treated with the water repellent formulation liquid described in Example 1 and subjected to normal and water-repellent processing once and 10 times, followed by drying and heat treatment in the usual manner to obtain the product of the present invention. Created.
Table 8 shows the physical properties of the obtained invention products and comparative products.
第8表
10回の多段処理品の耐漏水機能は処理1回の通常撥水処理加工品に比べて100cc漏水性で10倍長い漏水性能の改善が見られること、耐水圧も大きく向上されることが明らかになった。更に洗濯耐久性も優れていることも明らかとなった。
Table 8
It is clear that the water leakage resistance of the multi-stage treated product of 10 times shows an improvement of the water leakage performance 10 times longer at 100 cc water leakage than the normal water repellent treated product of one treatment, and the water pressure resistance is also greatly improved. Became. It was also revealed that the washing durability was excellent.
本発明の布帛や繊維製品を使用してスポーツ衣料等の一般衣料、介護衣服、ベッドカバーやシーツ等の介護用品、水着、傘、テント等多岐の繊維製品とした場合には、拡布吸出し脱水が可能な繊維製品とすることが可能である。
拡布吸出し脱水が行こなえるので布帛上に新たな脱水皺を発生させない。
更に拡布脱水作業の長所として繊維製品を着用したまま、使用したままで実施することを可能にする。
When the fabric or textile product of the present invention is used to make a wide range of textile products such as general clothing such as sports clothing, nursing clothes, nursing products such as bed covers and sheets, swimwear, umbrellas, tents, etc. Possible textile products.
Since the spread fabric can be sucked out and dewatered, no new dewatered soot is generated on the fabric.
Furthermore, it is possible to carry out the process while wearing the fiber product as an advantage of the spreading and dewatering operation.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017170021A JP6260963B1 (en) | 2017-09-05 | 2017-09-05 | Suction and dewatering of fabric |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017170021A JP6260963B1 (en) | 2017-09-05 | 2017-09-05 | Suction and dewatering of fabric |
Publications (2)
Publication Number | Publication Date |
---|---|
JP6260963B1 true JP6260963B1 (en) | 2018-01-17 |
JP2019044304A JP2019044304A (en) | 2019-03-22 |
Family
ID=60989207
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2017170021A Active JP6260963B1 (en) | 2017-09-05 | 2017-09-05 | Suction and dewatering of fabric |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6260963B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111877017A (en) * | 2020-07-10 | 2020-11-03 | 温州厚德服饰有限公司 | Waterproof cotton-padded clothes |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007191812A (en) * | 2006-01-17 | 2007-08-02 | Seiren Co Ltd | Water-repellant fiber fabric |
JP2011137253A (en) * | 2009-12-28 | 2011-07-14 | Toray Ind Inc | Fiber structure and method for producing the same, and clothes formed with the same |
JP2014194098A (en) * | 2013-03-29 | 2014-10-09 | Toray Ind Inc | Fiber structure |
-
2017
- 2017-09-05 JP JP2017170021A patent/JP6260963B1/en active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007191812A (en) * | 2006-01-17 | 2007-08-02 | Seiren Co Ltd | Water-repellant fiber fabric |
JP2011137253A (en) * | 2009-12-28 | 2011-07-14 | Toray Ind Inc | Fiber structure and method for producing the same, and clothes formed with the same |
JP2014194098A (en) * | 2013-03-29 | 2014-10-09 | Toray Ind Inc | Fiber structure |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111877017A (en) * | 2020-07-10 | 2020-11-03 | 温州厚德服饰有限公司 | Waterproof cotton-padded clothes |
Also Published As
Publication number | Publication date |
---|---|
JP2019044304A (en) | 2019-03-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
RU2527367C1 (en) | Leatherette with ultrathin fibres and method of its manufacture | |
CN100350090C (en) | Raising method for elastic non-woven base fabric | |
JP3183130U (en) | Polyester and polyamide composite fiber microfiber towel fabric | |
JP4269178B2 (en) | Antifouling fiber structure with interlining | |
JP5112183B2 (en) | Nonwoven fabric for feather bags and clothing using the same | |
CN106087250A (en) | A kind of containing Flos Rosae Rugosae quintessence oil, can continuously releasing negative oxygen ion containing bamboo filament fibre non-woven fabrics and preparation method thereof | |
US3968571A (en) | Drying process | |
JP6101231B2 (en) | Knitted fabric for clothing | |
JP2006515905A (en) | Textile finishes containing fluorochemicals exhibiting wash-resistant soil release and moisture absorption properties | |
WO1995019461A1 (en) | Cloth of hollow fibers and method of manufacturing same | |
JP6260963B1 (en) | Suction and dewatering of fabric | |
CN101444337B (en) | Preparation method of sprayable twinset and household cleaning method thereof | |
JP3765147B2 (en) | Deodorant molded product and method for producing the same | |
JP2013256736A (en) | Method for producing polyester-polyamide composite microfiber towel cloth and the towel cloth | |
JP2005068571A (en) | Garment stuffed with feather | |
JP2004137617A (en) | Stain-resistant wear | |
CN210696967U (en) | Medical quilt | |
JPH0655999B2 (en) | Method for producing suede-like artificial leather | |
KR20040042072A (en) | A water proof and quick absorption, dry fabric using the difference of surface area | |
TWI284160B (en) | Method for treating and manufacturing textile capable of improving bonding forces of water-repellant fabrics | |
JPS6014778Y2 (en) | Thin knitted fabric for clothing | |
JPS58220844A (en) | Offset water absorbing fabric | |
JP6958829B1 (en) | fabric | |
CN215620508U (en) | High-strength tear-resistant blended fabric | |
JP2001001437A (en) | Nonwoven fabric composite and production thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A975 | Report on accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A971005 Effective date: 20171023 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20171031 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171113 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20171128 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20171204 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6260963 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313114 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |