JP6255234B2 - Method for measuring biotin or related substances in biological samples - Google Patents

Method for measuring biotin or related substances in biological samples Download PDF

Info

Publication number
JP6255234B2
JP6255234B2 JP2013262185A JP2013262185A JP6255234B2 JP 6255234 B2 JP6255234 B2 JP 6255234B2 JP 2013262185 A JP2013262185 A JP 2013262185A JP 2013262185 A JP2013262185 A JP 2013262185A JP 6255234 B2 JP6255234 B2 JP 6255234B2
Authority
JP
Japan
Prior art keywords
biotin
sample
plasma
waste liquid
column
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013262185A
Other languages
Japanese (ja)
Other versions
JP2015118029A (en
Inventor
正子 藤原
正子 藤原
安藤 一郎
一郎 安藤
司郎 小熊
司郎 小熊
成明 八木
成明 八木
学 西澤
学 西澤
英生 長瀬
英生 長瀬
秀俊 松澤
秀俊 松澤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IRYOHOUJIN KOUJINKAI
Tohoku University NUC
Fuso Pharmaceutical Industries Ltd
Original Assignee
IRYOHOUJIN KOUJINKAI
Tohoku University NUC
Fuso Pharmaceutical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IRYOHOUJIN KOUJINKAI, Tohoku University NUC, Fuso Pharmaceutical Industries Ltd filed Critical IRYOHOUJIN KOUJINKAI
Priority to JP2013262185A priority Critical patent/JP6255234B2/en
Publication of JP2015118029A publication Critical patent/JP2015118029A/en
Application granted granted Critical
Publication of JP6255234B2 publication Critical patent/JP6255234B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Description

本発明は、生体試料中のビオチンまたはその関連物質の測定方法、より詳細には、高速液体クロマトグラフィー(HPLC)を利用した生体試料(例えば、血漿、透析廃液、尿)中のビオチンまたはその関連物質の測定方法に関する。   The present invention relates to a method for measuring biotin or a related substance in a biological sample, and more particularly, biotin or a related substance in a biological sample (eg, plasma, dialysis waste liquid, urine) using high performance liquid chromatography (HPLC). It relates to a method for measuring substances.

ビオチンは、ビタミンB群に属する水溶性ビタミンの一種であり、ビタミンB7またはビタミンHとも呼ばれている。ビオチンは、生体内でカルボキシラーゼ反応の補酵素として、呼吸系、β-酸化、脂肪酸生合成などにおいて機能することが知られている。   Biotin is a kind of water-soluble vitamin belonging to the vitamin B group and is also called vitamin B7 or vitamin H. Biotin is known to function in the respiratory system, β-oxidation, fatty acid biosynthesis and the like as a coenzyme for carboxylase reaction in vivo.

近年、ビオチンと種々の疾患との関係が明らかになりつつある。例えば、ビオチンは、アトピー性皮膚炎、掌蹠膿疱症等の皮膚疾患の治療に有効であること、血液透析による四肢の痙攣に対する抑制・予防効果があること、肝硬変患者における高アンモニア血症改善、耐糖能およびインスリン抵抗性の改善、血圧上昇抑制などの効果があることが知られている。他にも、先天的なビオチン代謝酵素欠損や抗痙攣薬の長期投与、特殊調製粉乳の摂取乳児等にビオチン欠乏症が発症することが知られている(特許文献1、非特許文献1〜10など)。
したがって、健康管理や疾患の診断、ビオチンの体内動態に関する研究のため、血漿や透析廃液、尿などの生体試料中のビオチンおよびビオチン関連物質を迅速かつ簡便に高感度で測定することが必要とされている。
In recent years, the relationship between biotin and various diseases is becoming clear. For example, biotin is effective in the treatment of skin diseases such as atopic dermatitis and palmoplantar pustulosis, has an inhibitory / preventive effect on limb spasms caused by hemodialysis, improves hyperammonemia in patients with cirrhosis, It is known to have effects such as improvement of glucose tolerance and insulin resistance and suppression of blood pressure increase. In addition, it is known that biotin deficiency develops in congenital biotin-metabolizing enzyme deficiency, long-term administration of anticonvulsants, infants taking specially prepared milk powder, etc. (Patent Document 1, Non-Patent Documents 1-10, etc.) ).
Therefore, it is necessary to measure biotin and biotin-related substances in biological samples such as plasma, dialysis waste fluid, and urine quickly and easily with high sensitivity for research on health care, disease diagnosis, and biotin pharmacokinetics. ing.

一方、ビオチンの測定法としては、微生物学的定量法、結合アッセイ法、HPLC法、光学的測定法などが知られている。しかしながら、微生物学的定量法は精度が低い、操作が煩雑で時間を要することなどの問題があり、結合アッセイ法はビオチン関連物質(例えば、ビオチン代謝物)とも非特異的に反応するなどの問題があり、光学的測定法およびHPLC法は感度が低いなどの問題がある(非特許文献11)。
また、HPLC法で感度を高めるため、プレカラムやポストカラムによる誘導体化などが採用されているが(特許文献2など)、工程が煩雑であり、簡便ではなかった。
On the other hand, as a biotin measurement method, a microbiological quantification method, a binding assay method, an HPLC method, an optical measurement method, and the like are known. However, the microbiological quantification method has problems such as low accuracy, complicated operation, and time. The binding assay method also reacts non-specifically with biotin-related substances (for example, biotin metabolites). However, the optical measurement method and the HPLC method have problems such as low sensitivity (Non-patent Document 11).
In addition, derivatization with a pre-column or a post-column has been adopted in order to increase sensitivity in the HPLC method (Patent Document 2, etc.), but the process is complicated and not easy.

また、高速液体クロマトグラフ/質量分析法(LC/MS)または高速液体クロマトグラフ/タンデム質量分析法(LC/MS/MS)を用いたビオチンの測定法も知られている(非特許文献12〜23)。しかしながら、これらの文献に記載の測定法は、主として食品などを対象としたものであり、また、血漿や透析廃液、尿などの生体試料中のビオチンおよびビオチン関連物質を迅速かつ簡便に高感度で測定することができるものではなかった。   In addition, a biotin measurement method using high performance liquid chromatography / mass spectrometry (LC / MS) or high performance liquid chromatography / tandem mass spectrometry (LC / MS / MS) is also known (Non-Patent Documents 12- 23). However, the measurement methods described in these documents are mainly intended for foods and the like, and biotin and biotin-related substances in biological samples such as plasma, dialysis waste liquid, and urine are rapidly and easily and highly sensitive. It could not be measured.

国際公開2012/029655号International Publication 2012/029655 特開2012-122769JP2012-122769

Tohoku J Exp Med. (2012) 227 217-223.Tohoku J Exp Med. (2012) 227 217-223. Acta Pediatr Scand. (1988) 77 762-3.Acta Pediatr Scand. (1988) 77 762-3. 診断と治療、80巻 1397-1402 1992Diagnosis and treatment, 80 1397-1402 1992 医学のあゆみ、Vol.186 No.2 156-7 1998History of Medicine, Vol.186 No.2 156-7 1998 Ren Fail. (1996) 18(1) 131-137Ren Fail. (1996) 18 (1) 131-137 J Clin Biochem Nutr. (1995) 18, 35-42.J Clin Biochem Nutr. (1995) 18, 35-42. British Journal of Nutrition. (2008) 99, 756-63British Journal of Nutrition. (2008) 99, 756-63 ビタミン、86巻、12号、678-84、2012Vitamins, 86, 12, 678-84, 2012 Adv Pediatr. (1991) 1-21Adv Pediatr. (1991) 1-21 Neulrology. (1997) 49 1444-7Neulrology. (1997) 49 1444-7 A Government Chemist Programme Report LGC Limited 2011.9A Government Chemist Program Report LGC Limited 2011.9 Agro Food Ind Hi-Tech. (2010) 21(6) 39-41.Agro Food Ind Hi-Tech. (2010) 21 (6) 39-41. Anal Bioanal Chem. (2010) 397(2) 471-81.Anal Bioanal Chem. (2010) 397 (2) 471-81. Chromatographia. (2009) 69 629-35.Chromatographia. (2009) 69 629-35. Rapid Commun Mass Spectrom. (2008) 22(13) 2029-43.Rapid Commun Mass Spectrom. (2008) 22 (13) 2029-43. J Chromatogr Sci. (2008) 46 225-32.J Chromatogr Sci. (2008) 46 225-32. Anal Bioanal Chem. (2007) 387 2441-2448.Anal Bioanal Chem. (2007) 387 2441-2448. J Chromatography A. (2007) 1142 231-35.J Chromatography A. (2007) 1142 231-35. Curr Eye Res. (2006) 31(10) 797-809.Curr Eye Res. (2006) 31 (10) 797-809. J Chromatography B. (2006) 831 8-16.J Chromatography B. (2006) 831 8-16. Anal Commun. (1996) 33 159-162.Anal Commun. (1996) 33 159-162. ASEAN Food Journal. (1991) 6(4) 163-4.ASEAN Food Journal. (1991) 6 (4) 163-4. J Chromatogr. (1984) 303(1) 272-6.J Chromatogr. (1984) 303 (1) 272-6.

本発明は、血漿や透析廃液、尿などの生体試料中のビオチンおよびビオチン関連物質を迅速かつ簡便に高感度で測定する方法を提供することを課題とするものである。   An object of the present invention is to provide a method for measuring biotin and biotin-related substances in biological samples such as plasma, dialysis waste liquid, and urine quickly and easily with high sensitivity.

本発明者らは、上記課題を解決するために鋭意検討した結果、生体試料中のタンパク質を除去した後、高速液体クロマトグラフ/タンデム質量分析法を用いて測定することで、生体試料中のビオチンおよびビオチン関連物質を迅速かつ簡便に高感度で測定することができることを見出し、本発明を完成させるに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventors have removed biotin in a biological sample and then measured it using high performance liquid chromatograph / tandem mass spectrometry, thereby obtaining biotin in the biological sample. Furthermore, the present inventors have found that biotin-related substances can be measured quickly and easily with high sensitivity, and the present invention has been completed.

したがって、本発明は、以下の態様を含む。
[1] 生体試料中のビオチンまたはビオチン関連物質を測定する方法であって、
(1)生体試料中のタンパク質を除去する工程と、
(2)工程(1)で得られた試料中のビオチンまたはビオチン関連物質を、高速液体クロマトグラフ/タンデム質量分析法を用いて測定する工程と
を含む、方法。
[2] 生体試料が血漿、透析廃液または尿である、上記[1]に記載の方法。
[3] 生体試料が血漿である、上記[2]に記載の方法。
[4] 生体試料が透析廃液である、上記[2]に記載の方法。
[5] 生体試料が尿である、上記[2]に記載の方法。
[6] 血漿が血液透析患者由来の血漿である、上記[3]に記載の方法。
[7] 透析廃液が血液透析患者由来の透析廃液である、上記[4]に記載の方法。
[8] 透析廃液が血液透析濾過患者由来の透析廃液である、上記[4]に記載の方法。
[9] 透析廃液が腹膜透析患者由来の透析廃液である、上記[4]に記載の方法。
[10] 尿が腎不全患者由来の尿である、上記[5]に記載の方法。
[11] 尿がタンパク尿である、上記[5]に記載の方法。
[12] 工程(1)が、メタノールを用いてタンパク質を沈殿させることにより除去する工程である、上記[1]〜[11]のいずれかに記載の方法。
[13] 高速液体クロマトグラフに使用するカラムが、疎水性相互作用、双極子-双極子相互作用、およびπ-π相互作用により分離するカラムである、上記[1]〜[12]のいずれかに記載の方法。
[14] カラム担体の官能基が、ペンタフルオロフェニル基が結合した直鎖または分岐鎖のアルキル基を含む、上記[12]に記載の方法。
[15] 生体試料中のビオチンまたはビオチン関連物質を測定するための測定用キットであって、
(1)生体試料中のタンパク質を除去する工程に使用するための試薬と、
(2)高速液体クロマトグラフ/タンデム質量分析法に使用するための機器
を含む、キット。
Accordingly, the present invention includes the following aspects.
[1] A method for measuring biotin or a biotin-related substance in a biological sample,
(1) removing a protein in the biological sample;
(2) measuring the biotin or biotin-related substance in the sample obtained in step (1) using high performance liquid chromatography / tandem mass spectrometry.
[2] The method according to [1] above, wherein the biological sample is plasma, dialysis waste liquid or urine.
[3] The method according to [2] above, wherein the biological sample is plasma.
[4] The method according to [2] above, wherein the biological sample is a dialysis waste liquid.
[5] The method according to [2] above, wherein the biological sample is urine.
[6] The method according to [3] above, wherein the plasma is plasma derived from a hemodialysis patient.
[7] The method according to [4] above, wherein the dialysis waste liquid is a dialysis waste liquid derived from a hemodialysis patient.
[8] The method according to [4] above, wherein the dialysis waste liquid is a dialysis waste liquid derived from a hemodiafiltration patient.
[9] The method according to [4] above, wherein the dialysis waste liquid is a dialysis waste liquid derived from a peritoneal dialysis patient.
[10] The method according to [5] above, wherein the urine is urine derived from a patient with renal failure.
[11] The method according to [5] above, wherein the urine is proteinuria.
[12] The method according to any one of [1] to [11] above, wherein the step (1) is a step of removing the protein by precipitation using methanol.
[13] Any of the above [1] to [12], wherein the column used for the high performance liquid chromatograph is a column that is separated by hydrophobic interaction, dipole-dipole interaction, and π-π interaction. The method described in 1.
[14] The method according to [12] above, wherein the functional group of the column carrier includes a linear or branched alkyl group to which a pentafluorophenyl group is bonded.
[15] A measurement kit for measuring biotin or a biotin-related substance in a biological sample,
(1) a reagent for use in the step of removing proteins in a biological sample;
(2) A kit comprising equipment for use in high performance liquid chromatograph / tandem mass spectrometry.

本発明の測定法によれば、生体試料中のビオチンおよびビオチン関連物質を迅速かつ簡便に高感度で測定することができる。
すなわち、本発明の測定法の感度は、市販されている代表的な結合アッセイキットと同等の感度でビオチンおよびビオチン関連物質を測定が可能である。また、HPLCでの分離に加えて、MRM法(Multiple Reaction Monitoring:多重反応モニタリング)で分子量によるフィルタリングも行なっているので、微生物学的定量法や結合アッセイなどのように、ビオチンとビオチン関連物質(ビオチン代謝物など)との交差性はほとんどないと考えられる。
また、試料の前処理は、除タンパク質法であり、従来のHPLCによるビオチン血漿測定法の前処理において使用されていた誘導体化などが不要であるので、容易かつ短時間で前処理を行うことができる。
従来のHPLC法では、ヒト血漿の場合、ビオチンの保持時間は早いものでも7〜8分であり、1検体の測定にほとんどが数十分から1時間程度の時間を要していたが、本発明の測定法では、1検体の分析サイクルは5分程度(ビオチンの保持時間は2分未満)と短いため、効率的な多検体処理が可能である。
According to the measurement method of the present invention, biotin and a biotin-related substance in a biological sample can be measured quickly and easily with high sensitivity.
That is, the sensitivity of the measurement method of the present invention can measure biotin and a biotin-related substance with the same sensitivity as a typical binding assay kit commercially available. In addition to HPLC separation, MRM (Multiple Reaction Monitoring) is also used to filter by molecular weight, so biotin and biotin-related substances (such as microbiological quantification and binding assays) It is considered that there is little cross-reactivity with biotin metabolites.
In addition, sample pretreatment is a deproteinization method, and derivatization that has been used in pretreatment for biotin plasma measurement by conventional HPLC is not necessary, so pretreatment can be performed easily and in a short time. it can.
In the conventional HPLC method, in the case of human plasma, the retention time of biotin is 7 to 8 minutes at the earliest, and most of the measurement of one sample takes several tens of minutes to one hour. In the measurement method of the invention, since the analysis cycle of one sample is as short as about 5 minutes (the retention time of biotin is less than 2 minutes), efficient multi-sample processing is possible.

血漿試料および検量線試料(0.1ng/mL)のクロマトグラムを示す(分析カラム:ACQUITY UPLC HSS T3)。A:検量線試料中ビオチンピーク(定量下限(LLOQ)、0.1ng/mL)、B:ヒト血漿中ビオチンピーク、C:検量線試料中racビオチン-d4内標準物質(IS)ピーク(2ng/mL)、D:ヒト血漿中racビオチン-d4 ISピークThe chromatogram of a plasma sample and a calibration curve sample (0.1 ng / mL) is shown (analysis column: ACQUITY UPLC HSS T3). A: Biotin peak in calibration curve sample (lower limit of quantification (LLOQ), 0.1 ng / mL), B: Biotin peak in human plasma, C: rac biotin-d4 internal standard substance (IS) peak in calibration curve sample (2 ng / mL), D: rac biotin-d4 IS peak in human plasma 検量線の結果を示す(分析カラム:ACQUITY UPLC HSS T3)。The result of a calibration curve is shown (analysis column: ACQUITY UPLC HSS T3). ビオチンおよびracビオチン-d4添加血漿試料のMRMクロマトグラムを示す(分析カラム:ACQUITY UPLC HSS T3)。A:ビオチンのMRMクロマトグラム(添加量0.5ng/mL)、B:racビオチン-d4のMRMクロマトグラム(添加量2ng/mL)The MRM chromatogram of the biotin and rac biotin-d4 addition plasma sample is shown (analysis column: ACQUITY UPLC HSS T3). A: MRM chromatogram of biotin (addition amount 0.5 ng / mL), B: MRM chromatogram of rac biotin-d4 (addition amount 2 ng / mL) 血漿試料および検量線試料(0.05ng/mL)のクロマトグラムを示す(分析カラム:Ascentis Express F5 HPLC Column)。A:検量線試料中ビオチンピーク(LLOQ、0.05ng/mL)、B:ヒト血漿中ビオチンピーク、C:検量線試料中racビオチン-d4(IS)ピーク(40ng/mL)、D:ヒト血漿中racビオチン-d4(IS)ピークThe chromatogram of a plasma sample and a calibration curve sample (0.05 ng / mL) is shown (analysis column: Ascentis Express F5 HPLC Column). A: Biotin peak in calibration curve sample (LLOQ, 0.05 ng / mL), B: Biotin peak in human plasma, C: rac biotin-d4 (IS) peak in calibration curve sample (40 ng / mL), D: Human plasma Medium rac biotin-d4 (IS) peak 検量線の結果を示す(分析カラム:Ascentis Express F5 HPLC Column)。The result of a calibration curve is shown (analysis column: Ascentis Express F5 HPLC Column). ビオチンおよびracビオチン-d4添加血漿試料のMRMクロマトグラムを示す(分析カラム:Ascentis Express F5 HPLC Column)。A: ビオチンのMRMクロマトグラム(添加量0.5ng/mL)、B:racビオチン-d4のMRMクロマトグラム(添加量40ng/mL)The MRM chromatogram of the biotin and rac biotin-d4 addition plasma sample is shown (analysis column: Ascentis Express F5 HPLC Column). A: MRM chromatogram of biotin (addition amount 0.5 ng / mL), B: MRM chromatogram of rac biotin-d4 (addition amount 40 ng / mL) 血液透析患者血漿中のビオチン測定における、固定相がODS(C18)であるカラム(ACQUITY UPLC HSS T3)を用いた分析法とペンタフルオロフェニル(PFP)カラム(Ascentis Express F5 HPLC column)を用いた分析法によるMRMクロマトグラムの比較を示す。Analysis method using a column (ACQUITY UPLC HSS T3) whose stationary phase is ODS (C18) and analysis using a pentafluorophenyl (PFP) column (Ascentis Express F5 HPLC column) in biotin measurement in hemodialysis patient plasma 2 shows a comparison of MRM chromatograms by method. 血液透析廃液試料および検量線試料(0.5ng/mL)のクロマトグラムを示す(分析カラム:Ascentis Express F5 HPLC Column)。A:検量線試料中ビオチンピーク(0.5ng/mL)、B:ビオチン測定用血液透析廃液(HD3)中ビオチンピーク、C:検量線試料中racビオチン-d4(IS)ピーク(40ng/mL)、D: 妨害ピーク確認用血液透析廃液(HD3)中racビオチン-d4(IS)ピークThe chromatogram of a hemodialysis waste liquid sample and a calibration curve sample (0.5 ng / mL) is shown (analysis column: Ascentis Express F5 HPLC Column). A: Biotin peak in calibration curve sample (0.5 ng / mL), B: Biotin peak in hemodialysis waste liquid for biotin measurement (HD3), C: rac biotin-d4 (IS) peak in calibration curve sample (40 ng / mL) , D: rac biotin-d4 (IS) peak in hemodialysis waste liquid (HD3) for confirmation of interference peak 血液透析濾過廃液試料および検量線試料(0.5ng/mL)のクロマトグラムを示す(分析カラム:Ascentis Express F5 HPLC Column)。A:検量線試料中ビオチンピーク(0.5ng/mL)、B:ビオチン測定用血液透析濾過廃液(HDF廃液)中ビオチンピーク、C:検量線試料中racビオチン-d4(IS)ピーク(40ng/mL)、D: 妨害ピーク確認用血液透析濾過廃液(HDF廃液)中racビオチン-d4(IS)ピークThe chromatogram of a hemodiafiltration waste liquid sample and a calibration curve sample (0.5 ng / mL) is shown (analysis column: Ascentis Express F5 HPLC Column). A: Biotin peak in calibration curve sample (0.5 ng / mL), B: Biotin peak in hemodiafiltration waste liquid for biotin measurement (HDF waste liquid), C: rac biotin-d4 (IS) peak in calibration curve sample (40 ng / mL), D: rac biotin-d4 (IS) peak in the hemodiafiltration waste liquid for confirmation of interference peak (HDF waste liquid) 腹膜透析廃液試料中および検量線試料(0.5ng/mL)のクロマトグラムを示す(分析カラム:Ascentis Express F5 HPLC Column)。A:検量線試料中ビオチンピーク(0.5ng/mL)、B:ビオチン測定用腹膜透析廃液(PD廃液)中ビオチンピーク、C:検量線試料中racビオチン-d4(IS)ピーク(40ng/mL)、D: 妨害ピーク確認用腹膜透析廃液(PD廃液)中racビオチン-d4(IS)ピークThe chromatogram of a peritoneal dialysis waste liquid sample and a calibration curve sample (0.5 ng / mL) is shown (analysis column: Ascentis Express F5 HPLC Column). A: Biotin peak in calibration curve sample (0.5 ng / mL), B: Biotin peak in peritoneal dialysis waste liquid for biotin measurement (PD waste liquid), C: rac biotin-d4 (IS) peak in calibration curve sample (40 ng / mL) ), D: rac biotin-d4 (IS) peak in peritoneal dialysis waste liquid (PD waste liquid) for checking interference peak 尿試料および検量線試料(0.5ng/mL)のクロマトグラムを示す(分析カラム:Ascentis Express F5 HPLC Column)。A:検量線試料中ビオチンピーク(2.0ng/mL)、B:ビオチン測定用尿(尿3)中ビオチンピーク、C:検量線試料中racビオチン-d4(IS)ピーク(40ng/mL)、D: 妨害ピーク確認用 尿中(尿3)中racビオチン-d4(IS)ピークThe chromatogram of a urine sample and a calibration curve sample (0.5 ng / mL) is shown (analysis column: Ascentis Express F5 HPLC Column). A: Biotin peak in calibration curve sample (2.0 ng / mL), B: Biotin peak in urine for biotin measurement (urine 3), C: rac biotin-d4 (IS) peak in calibration curve sample (40 ng / mL), D: For confirmation of interference peak rac biotin-d4 (IS) peak in urine (urine 3)

本発明は、生体試料中のビオチンまたはビオチン関連物質を測定する方法であって、
(1)生体試料中のタンパク質を除去する工程と、
(2)工程(1)で得られた試料中のビオチンまたはビオチン関連物質を、高速液体クロマトグラフ/タンデム質量分析法を用いて測定する工程と
を含む、方法に関するものである。
The present invention is a method for measuring biotin or a biotin-related substance in a biological sample,
(1) removing a protein in the biological sample;
(2) The method includes measuring the biotin or biotin-related substance in the sample obtained in step (1) using high performance liquid chromatography / tandem mass spectrometry.

本発明における「生体試料」とは、ヒト、動物、または植物から得られる、尿、血液、血漿、組織、細胞などの材料を含む試料を意味し、本発明の方法により測定可能な試料であれば特に限定されない。なかでも、血漿および尿が好ましく、血漿が特に好ましい。さらに、透析廃液のように、生体由来成分が含まれる試料も本発明の「生体試料」として好適に用いられる。
なかでも、ヒト由来の生体試料が好ましい。ヒトとしては、健常者であっても、種々の疾患を患う患者、例えば、腎不全患者、血液透析患者、血液透析濾過患者、腹膜透析患者、ビオチン欠乏症患者などであってもよいが、ビオチン量の欠乏および過剰による影響を受けやすいことから、特に血液透析患者、血液透析濾過患者、腹膜透析患者が挙げられる。
血漿は、血液に含まれる液体成分の一つで血液の55%を占める。血清とフィブリノーゲンから成り、物質の輸送、ガス交換、血液凝固、免疫に関与するほか、浸透圧や水素イオン濃度の調節などによって内部環境を整えるのに重要な役割を果たしている。
本発明における「血漿」としては、特に限定されず、ヒト、ラット、マウス、イヌ、サルなどの哺乳動物の血液由来のものが挙げられる。また、その調製方法も特に限定されず、従来既知の方法を用いることができる。好ましくは、採血後、抗凝固剤(ヘパリンナトリウム、EDTA-2Na、EDTA-2K等)入りのプラスチックチューブに移し、氷冷化で保存し、4℃で遠心分離後、採取する。なかでも、ヒトの血漿が好ましい。ヒトとしては、健常者、血液透析患者、ビオチン欠乏症患者等が挙げられ、特に血液透析患者が挙げられる。
透析廃液は、血液浄化療法により透析患者血液中の老廃物の除去や電解質濃度の調整等を行った後の透析液であり、透析患者血液中の低分子代謝物等が含まれている。血液透析患者は合併症として貧血症状を有しており、採血は最小限にすることが望ましいとされている。そのため、非侵襲性に採取可能な透析廃液で透析患者の血中代謝物濃度を測定することは患者に負担を与えることがなく、さらに、高分子フィルターを通過した除蛋白試料であることから分析が容易であるといった利点がある。しかしながら、これまで透析廃液中のビオチンを測定した例はなかった。
本発明における「透析廃液」としては、特に限定されず、腎不全患者、血液透析患者、血液透析濾過患者、腹膜透析患者、ビオチン欠乏症患者などの血液浄化療法が必要な患者に対する、血液透析、腹膜透析、血液濾過、血液透析濾過(HDF)、持続的血液透析濾過などの血液浄化療法から生じる廃液が挙げられる。
尿は、腎臓において血液が濾過されることにより作られる排泄物であり、体内で生産される老廃物の除去や体内の水分量を調整する働きを持つ。成分のほとんどが水分であり、他に尿素や電解質等を含む。
本発明における「尿」としては、特に限定されず、ヒト、ラット、マウス、イヌ、サルなどの哺乳動物由来のものが挙げられる。なかでも、ヒトの尿が好ましい。ヒトとしては、健常者、排尿が確認される初期の腎不全患者や血液透析患者、血液透析濾過患者、腹膜透析患者、ビオチン欠乏症患者等が挙げられ、特に腎不全患者が挙げられる。
The “biological sample” in the present invention means a sample containing materials such as urine, blood, plasma, tissue, and cells obtained from humans, animals, or plants, and can be measured by the method of the present invention. If it does not specifically limit. Of these, plasma and urine are preferable, and plasma is particularly preferable. Furthermore, a sample containing a biological component such as dialysis waste liquid is also preferably used as the “biological sample” of the present invention.
Of these, a human-derived biological sample is preferable. The human may be a healthy person or a patient suffering from various diseases such as renal failure patient, hemodialysis patient, hemodiafiltration patient, peritoneal dialysis patient, biotin deficiency patient, etc. In particular, hemodialysis patients, hemodiafiltration patients, and peritoneal dialysis patients are included because they are easily affected by deficiency and excess.
Plasma is one of the liquid components contained in blood and accounts for 55% of blood. Consisting of serum and fibrinogen, it plays an important role in regulating the internal environment by regulating osmotic pressure and hydrogen ion concentration in addition to being involved in substance transport, gas exchange, blood coagulation and immunity.
The “plasma” in the present invention is not particularly limited, and examples thereof include those derived from blood of mammals such as humans, rats, mice, dogs and monkeys. Moreover, the preparation method is not particularly limited, and a conventionally known method can be used. Preferably, after blood collection, it is transferred to a plastic tube containing an anticoagulant (heparin sodium, EDTA-2Na, EDTA-2K, etc.), stored on ice, and centrifuged at 4 ° C. and collected. Of these, human plasma is preferred. Examples of humans include healthy individuals, hemodialysis patients, biotin deficiency patients, and the like, and particularly hemodialysis patients.
The dialysis waste liquid is a dialysis liquid after removing waste products in the blood of the dialysis patient and adjusting the electrolyte concentration by blood purification therapy, and includes low-molecular metabolites and the like in the dialysis patient blood. Hemodialysis patients have anemia as a complication and it is desirable to minimize blood collection. Therefore, measuring the metabolite concentration in the blood of a dialysis patient with dialysis waste liquid that can be collected non-invasively does not give a burden to the patient, and it is analyzed because it is a deproteinized sample that has passed through a polymer filter There is an advantage that it is easy. However, there has been no example of measuring biotin in the dialysis waste liquid until now.
The “dialysis waste fluid” in the present invention is not particularly limited, and hemodialysis and peritoneum for patients requiring blood purification therapy such as renal failure patients, hemodialysis patients, hemodiafiltration patients, peritoneal dialysis patients, biotin deficiency patients and the like. Examples include effluents from blood purification therapies such as dialysis, hemofiltration, hemodiafiltration (HDF), continuous hemodiafiltration.
Urine is excretion produced by filtering blood in the kidney, and has the function of removing waste products produced in the body and adjusting the amount of water in the body. Most of the components are moisture, and other components include urea and electrolytes.
The “urine” in the present invention is not particularly limited, and examples thereof include those derived from mammals such as humans, rats, mice, dogs, monkeys and the like. Of these, human urine is preferable. Examples of humans include healthy subjects, early renal failure patients with confirmed urination, hemodialysis patients, hemodiafiltration patients, peritoneal dialysis patients, biotin deficiency patients, and the like, particularly renal failure patients.

ビオチンは、下記の構造式で示される化合物(分子式:C1016S、分子量:244.31)であり、ビタミンB群に属する水溶性ビタミンの一種であり、ビタミンB7またはビタミンHとも呼ばれている。
ビオチンの構造式:

Figure 0006255234
本発明における「ビオチン関連物質」としては、例えば、ビオチンスルフォキシド、ビオチンスルフォン、ビスノルビオチン、ビスノルビオチンメチルケトン、ビオシチン、α-デヒドロビオチン、ホモビオチン、ノルビオチンなどのビオチンの代謝物、誘導体、類縁体などが挙げられる。
また、上記「ビオチン」および「ビオチン関連物質」の各種の塩も本発明の測定法の対象となる。 Biotin is a compound represented by the following structural formula (molecular formula: C 10 H 16 N 2 O 3 S, molecular weight: 244.31), and is a kind of water-soluble vitamin belonging to the vitamin B group, such as vitamin B7 or vitamin Also called H.
Structural formula of biotin:
Figure 0006255234
Examples of the “biotin-related substance” in the present invention include biotin metabolites and derivatives such as biotin sulfoxide, biotin sulfone, bisnorbiotin, bisnorbiotin methyl ketone, biocytin, α-dehydrobiotin, homobiotin, norbiotin and the like. And analogs.
In addition, various salts of the above “biotin” and “biotin-related substance” are also subject to the measurement method of the present invention.

上記工程(1)は、生体試料中に含まれるタンパク質を除去する工程である。試料中にタンパク質が多量に存在すると、上記工程(2)におけるビオチンまたはビオチン関連物質の測定が困難になるためである。工程(1)としては、特に限定されないが、例えば、タンパク質の変性による不溶化、物理的な除去、浸透制限充填剤の利用などの方法が挙げられる。
「タンパク質の変性による不溶化」としては、例えば、過塩素酸、トリクロロ酢酸、メタリン酸のような酸の添加;アセトン、アセトニトリル、メタノール、エタノールのような有機溶媒の添加;加熱;冷却などの方法が挙げられる。
「物理的な除去」としては、例えば、メンブレンフィルターなどを使用した限外ろ過、透析チューブなどを使用した透析、超遠心分離などが挙げられる。
上記タンパク質を除去方法は、1種の方法のみでも2種以上の方法を組み合わせてもよい。
The step (1) is a step of removing proteins contained in the biological sample. This is because when a large amount of protein is present in the sample, it is difficult to measure biotin or a biotin-related substance in the step (2). Although it does not specifically limit as process (1), For example, methods, such as insolubilization by protein modification | denaturation, a physical removal, and the utilization of a permeation restriction | limiting filler, are mentioned.
Examples of “insolubilization by protein denaturation” include methods such as addition of acids such as perchloric acid, trichloroacetic acid, and metaphosphoric acid; addition of organic solvents such as acetone, acetonitrile, methanol, and ethanol; heating; and cooling. Can be mentioned.
Examples of “physical removal” include ultrafiltration using a membrane filter, dialysis using a dialysis tube, and ultracentrifugation.
The method for removing the protein may be a single method or a combination of two or more methods.

工程(1)としては、タンパク質と結合したビオチンを遊離させる点から、特に、有機溶媒の添加によりタンパク質を不溶化(沈殿)させ、除去することが好ましい。有機溶媒としては、特に、ビオチンの回収率の点から、メタノールが好ましい。
生体試料中に有機溶媒(例えばメタノール)を添加してタンパク質を除去する場合、例えば、以下の手順および条件で行うことが好ましい。
まず、生体試料中に対して所定量のメタノールを混合し、該混合物を所定の時間撹拌する。メタノールの添加量は生体試料の量に基づいて定めることができる。通常、生体試料に対して、メタノールを通常等量〜100倍量、好ましくは等量〜10倍量使用するが、生体試料の使用量、除タンパク効率、上清採取量および蒸発乾固後の再溶解量の点から、好ましくは生体試料50〜500μLに対して、メタノールを生体試料の3〜10倍量使用することができる。撹拌時間および温度は、特に限定されないが、例えば、撹拌時間は10秒〜1分間、温度は15〜30℃とすることができる。その後、遠心分離して沈殿を除き、上清を採取する。遠心分離は、特に限定されないが、例えば、8,000〜15,000×gで、4℃〜30℃、10〜15分間の条件で行うことができる。
As the step (1), it is preferable to insolubilize (precipitate) and remove the protein by adding an organic solvent, particularly from the viewpoint of releasing biotin bound to the protein. As the organic solvent, methanol is particularly preferable from the viewpoint of biotin recovery.
When an organic solvent (for example, methanol) is added to a biological sample to remove a protein, it is preferably performed, for example, according to the following procedure and conditions.
First, a predetermined amount of methanol is mixed into a biological sample, and the mixture is stirred for a predetermined time. The amount of methanol added can be determined based on the amount of the biological sample. Usually, methanol is usually used in an equivalent amount to 100 times, preferably 10 to 10 times the amount of the biological sample. However, the amount of biological sample used, the protein removal efficiency, the amount of supernatant collected, and the amount after evaporation to dryness From the viewpoint of the re-dissolution amount, methanol can be used in an amount 3 to 10 times that of the biological sample, preferably for 50 to 500 μL of the biological sample. Although stirring time and temperature are not specifically limited, For example, stirring time can be 10 second-1 minute, and temperature can be 15-30 degreeC. Thereafter, the precipitate is removed by centrifugation, and the supernatant is collected. Centrifugation is not particularly limited, but can be performed, for example, under conditions of 8,000 to 15,000 × g and 4 ° C. to 30 ° C. for 10 to 15 minutes.

上記工程(2)は、工程(1)で得られたタンパク質除去後の試料中のビオチンまたはビオチン関連物質を、高速液体クロマトグラフ/タンデム質量分析法(以下、「LC/MS/MS」と称する)を用いて測定する工程である。
LC/MS/MSは、試料をHPLCで分離し、溶出成分をイオン化室に導入し、イオン化してマススペクトルを得、これを第1段目の質量分析計(MS)でイオン(分子イオンの付加体)を選択し、コリジョンセルと呼ばれる衝突室で不活性ガスを衝突させてイオンを解離させて、第2段目のMSで分析する方法である。
In the step (2), biotin or a biotin-related substance in the sample after protein removal obtained in the step (1) is referred to as high performance liquid chromatograph / tandem mass spectrometry (hereinafter referred to as “LC / MS / MS”). ) To measure.
In LC / MS / MS, a sample is separated by HPLC, an elution component is introduced into an ionization chamber, and ionized to obtain a mass spectrum, which is ionized by a first-stage mass spectrometer (MS) (of molecular ions). This is a method in which an adduct is selected, an inert gas is collided in a collision chamber called a collision cell, ions are dissociated, and analysis is performed by the second-stage MS.

本発明におけるLC/MS/MSに使用する機器としては、特に限定されず、例えば、液体クロマトグラフ用の機器としては、Nexera(島津製作所製)、ACQUITY UPLC(ウォーターズ製)などが挙げられ、タンデム質量分析用の機器としては、例えば、QTRAP 5500(エービー・サイエックス製)、TSQ Vantage(サーモフィッシャーサイエンティフィック製)などが挙げられる。   The instrument used for LC / MS / MS in the present invention is not particularly limited. Examples of the instrument for liquid chromatography include Nexera (manufactured by Shimadzu Corporation), ACQUITY UPLC (manufactured by Waters), and the like. Examples of the instrument for mass spectrometry include QTRAP 5500 (manufactured by AB Scientific), TSQ Vantage (manufactured by Thermo Fisher Scientific), and the like.

上記工程(2)におけるHPLC用のカラムとしては、例えば、疎水性相互作用、双極子-双極子相互作用およびπ-π相互作用から選択される少なくとも1種の作用により分離するカラムが挙げられる。
疎水性相互作用により分離するカラムとしては、例えば、カラム担体の官能基としてオクタデシル基を含むカラム(C18カラム)、具体的には、ACQUITY UPLCTM HSS T3(ウォーターズ製)、YMC―Triart C18(ワイエムシィ製)などが挙げられる。
双極子-双極子相互作用により分離するカラムとしては、例えば、カラム担体の官能基としてフッ素が結合した直鎖または分岐鎖のアルキル基(例えば炭素数3〜9個、特に炭素数3個)を含むカラム、具体的には、Fluofix-II 120E(和光純薬工業製)、Fluophase RP(サーモフィッシャーサイエンティフィック製)、Fluophase WP(サーモフィッシャーサイエンティフィック製)などが挙げられる。
π-π相互作用により分離するカラムとしては、例えば、カラム担体の官能基として芳香環基(フェニル基、ビフェニル基など)を含むカラム、具体的には、Xselect CSH Fluoro―Phenylカラム(ウォーターズ製)、Allure Biphenyl カラム(レステック製)、Inertsil Ph―3(ジーエルサイエンス製)、YMC―Pack Ph(ワイエムシィ製)、XBridge BEH Phenyl (ウォーターズ製)などが挙げられる。
疎水性相互作用、双極子-双極子相互作用およびπ-π相互作用により分離するカラムとしては、例えば、カラム担体の官能基としてペンタフルオロフェニル基が結合した直鎖または分岐鎖のアルキル基(例えば炭素数3〜9個、特に炭素数3個)を含むカラム、具体的には、Ascentis Express F5(シグマ-アルドリッチ製)、TCI Stella PFP(東京化成製)、Kinetex2.6μmミニボアカラム(フェノメネクス製)、CAPCELL CORE(資生堂製)、Pursuit PFP(アジレント・テクノロジー製)、XSelect HSS PFP XP Column(ウォーターズ製)、YMC―Triart PFP(ワイエムシィ製)、Hypersil GOLD PFP(サーモフィッシャーサイエンティフィック製)などが挙げられる。
本発明においては、ビオチンおよびビオチン関連物質と他の成分とを明確に分離することができることから、疎水性相互作用、双極子-双極子相互作用およびπ-π相互作用により分離するカラムが好ましく、特にカラム担体の官能基としてペンタフルオロフェニル基が結合した直鎖または分岐鎖のアルキル基(例えば炭素数3〜9個、特に炭素数3個)を含むカラムが好ましい。
Examples of the HPLC column in the step (2) include a column that is separated by at least one action selected from a hydrophobic interaction, a dipole-dipole interaction, and a π-π interaction.
As a column separated by hydrophobic interaction, for example, a column containing an octadecyl group as a functional group of a column carrier (C18 column), specifically, ACQUITY UPLC HSS T3 (manufactured by Waters), YMC-Triart C18 (YMC) Manufactured).
As a column to be separated by dipole-dipole interaction, for example, a linear or branched alkyl group (for example, having 3 to 9 carbon atoms, particularly 3 carbon atoms) bonded with fluorine as a functional group of the column carrier is used. Examples of the column include Fluofix-II 120E (manufactured by Wako Pure Chemical Industries), Fluophase RP (manufactured by Thermo Fisher Scientific), Fluophase WP (manufactured by Thermo Fisher Scientific), and the like.
As a column separated by π-π interaction, for example, a column containing an aromatic ring group (phenyl group, biphenyl group, etc.) as a functional group of the column carrier, specifically, an Xselect CSH Fluoro-Phenyl column (manufactured by Waters) Allure Biphenyl column (manufactured by Restec), Inertsil Ph-3 (manufactured by GL Science), YMC-Pack Ph (manufactured by YMC), XBridge BEH Phenyl (manufactured by Waters), and the like.
As a column separated by hydrophobic interaction, dipole-dipole interaction and π-π interaction, for example, a linear or branched alkyl group to which a pentafluorophenyl group is bonded as a functional group of the column carrier (for example, A column containing 3 to 9 carbon atoms, particularly 3 carbon atoms, specifically, Ascentis Express F5 (manufactured by Sigma-Aldrich), TCI Stella PFP (manufactured by Tokyo Chemical Industry), Kintex 2.6 μm minibore column (manufactured by Phenomenex), CAPCELL CORE (manufactured by Shiseido), Pursuit PFP (manufactured by Agilent Technologies), XSelect HSS PFP XP Column (manufactured by Waters), YMC-Triart PFP (manufactured by YMC), Hypersil GOLD PFP (thermo fisher sien Tiffic).
In the present invention, since biotin and biotin-related substances and other components can be clearly separated, a column that separates by hydrophobic interaction, dipole-dipole interaction and π-π interaction is preferable. In particular, a column containing a linear or branched alkyl group (for example, having 3 to 9 carbon atoms, particularly 3 carbon atoms) to which a pentafluorophenyl group is bonded as a functional group of the column carrier is preferable.

HPLCの条件は、特に限定されず、使用するカラムに応じて、移動相、流速、カラム温度、などを決定すればよい。
例えばカラム担体の官能基としてペンタフルオロフェニル基が結合した直鎖または分岐鎖のアルキル基(例えば炭素数3〜9個、特に炭素数3個)を含むカラムを使用する場合、例えば以下の条件で行うことが好ましい。
移動相としては、ギ酸、酢酸等の揮発性の酸および/またはギ酸アンモニウムや酢酸アンモニウムなど揮発性の塩を用いて、pHを2〜8に調整した溶液と、メタノールやアセトニトリルなどの有機溶媒との混液を使用することができる。カラム温度および流速並びに試料注入量は特に限定されないが、カラムや装置の性能に合わせて、カラム温度は20〜50℃、流速は0.2〜0.6mL/min、試料注入量は1〜20μLの条件で行うことができる。
The HPLC conditions are not particularly limited, and the mobile phase, flow rate, column temperature, etc. may be determined according to the column used.
For example, when using a column containing a linear or branched alkyl group (for example, 3 to 9 carbon atoms, particularly 3 carbon atoms) to which a pentafluorophenyl group is bonded as a functional group of the column carrier, for example, under the following conditions: Preferably it is done.
As a mobile phase, a volatile acid such as formic acid and acetic acid and / or a volatile salt such as ammonium formate and ammonium acetate and a pH adjusted to 2 to 8; an organic solvent such as methanol and acetonitrile; Can be used. The column temperature and flow rate, and the sample injection amount are not particularly limited, but the column temperature is 20 to 50 ° C., the flow rate is 0.2 to 0.6 mL / min, and the sample injection amount is 1 to 20 μL according to the performance of the column and the apparatus. Can be performed under the following conditions.

本発明の測定法は、上記工程(1)および(2)の二工程のみを必須工程とするものであり、従来のHPLCによるビオチン血漿測定法の前処理において使用されていた誘導体化などの工程が不要であるので、生体試料中のビオチンおよびビオチン関連物質を迅速かつ簡便に高感度で測定することができる。本発明の測定法では、1検体の分析サイクルは、通常、5分程度である。したがって、効率的な多検体処理が可能であり、健康管理や疾患の診断、ビオチンの体内動態に関する研究において、有利に使用することができる。   The measurement method of the present invention comprises only the above-mentioned steps (1) and (2) as essential steps, and the steps such as derivatization used in the pretreatment of the conventional biotin plasma measurement method by HPLC. Therefore, biotin and biotin-related substances in a biological sample can be measured quickly and easily with high sensitivity. In the measurement method of the present invention, the analysis cycle of one specimen is usually about 5 minutes. Therefore, efficient multi-sample processing is possible, and it can be advantageously used in research on health care, diagnosis of diseases, and biokinetics of biotin.

本発明はまた、生体試料中のビオチンまたはビオチン関連物質を測定するための測定用キットであって、
(1)生体試料中のタンパク質を除去する工程に使用するための試薬と、
(2)高速液体クロマトグラフ/タンデム質量分析法に使用するための機器
を含む、キットに関する。
当該キットに使用するための試薬(1)および機器(2)としては、上記本発明の測定法に使用する試薬および機器が挙げられる。
The present invention also provides a measurement kit for measuring biotin or a biotin-related substance in a biological sample,
(1) a reagent for use in the step of removing proteins in a biological sample;
(2) It relates to a kit including an instrument for use in high performance liquid chromatograph / tandem mass spectrometry.
Examples of the reagent (1) and the instrument (2) for use in the kit include the reagent and instrument used in the measurement method of the present invention.

以下、本発明の測定法を、実施例を参照して説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, although the measuring method of this invention is demonstrated with reference to an Example, this invention is not limited to these Examples.

実施例1
1. 標準溶液および内標準溶液の調製
1.1 標準原液
ビオチン(分子式:C1016S、分子量:244.31、サンケミカル株式会社製)10mgを正確に量り、メタノールでメスフラスコにて10mLとし超音波洗浄器で溶解して1mg/mLの標準原液を調製した。
ビオチンの構造式:

Figure 0006255234

1.2 検量線用標準溶液
標準原液を下表1に従いシリコンコーティングされたガラス試験管を用いてメタノールで希釈し、検量線用標準溶液を調製した。 Example 1
1. Preparation of standard solution and internal standard solution 1.1 Standard stock solution Biotin (molecular formula: C 10 H 16 N 2 O 3 S, molecular weight: 244.31, manufactured by Sun Chemical Co., Ltd.) is accurately weighed and measured in methanol with methanol. A standard stock solution of 1 mg / mL was prepared by dissolving with an ultrasonic cleaner to 10 mL in a flask.
Structural formula of biotin:
Figure 0006255234

1.2 Standard Solution for Calibration Curve A standard stock solution was diluted with methanol using a silicon-coated glass test tube according to Table 1 below to prepare a calibration curve standard solution.

Figure 0006255234
Figure 0006255234

1.3. 内標準原液および内標準溶液
rac ビオチン-d4(分子式:C1012S、分子量:248.34、トロントリサーチケミカルズ製)の1mg入り製品の容器にメタノールを1mL添加し、超音波洗浄器で溶解して1mg/mLの内標準原液を調製した。
rac ビオチン-d4の構造式:

Figure 0006255234

この内標準原液200μLを20mLのメスフラスコに採取して、メタノールで20mLにメスアップし、10μg/mLの内標準溶液(ISS-1)を調製した。
ISS-1を下表2に従いメスフラスコを用いてメタノールで希釈し、内標準溶液(ISS-3)を調製した。なお、調製量の増減は可とし、必要量に応じて同比率にて調製した。 1.3. Add 1 mL of methanol to a 1 mg product container of internal standard stock solution and internal standard solution rac biotin-d4 (molecular formula: C 10 H 12 D 4 N 2 O 3 S, molecular weight: 248.34, manufactured by Toronto Research Chemicals) An internal standard stock solution of 1 mg / mL was prepared by dissolving with an ultrasonic cleaner.
rac biotin-d4 structural formula:
Figure 0006255234

200 μL of this internal standard stock solution was collected in a 20 mL volumetric flask and made up to 20 mL with methanol to prepare a 10 μg / mL internal standard solution (ISS-1).
According to Table 2 below, ISS-1 was diluted with methanol using a volumetric flask to prepare an internal standard solution (ISS-3). It should be noted that the amount of preparation could be increased or decreased, and the amount was adjusted according to the required amount.

Figure 0006255234
Figure 0006255234

2. 分析法検証用試料の調製
2.1. 検量線用試料
検量線用標準溶液SS-5〜SS-10を30μLずつ採取し、D-PBS(-)(細胞培養用、和光純薬工業製) 300μLを添加し、検量線用試料を調製した(調製濃度2、1、0.5、0.4、0.2および0.1ng/mL)。
ブランク試料およびゼロ試料はメタノール30μLにD-PBS(-)300μLを添加した。
2.2. 血漿試料
正常ヒト血漿・プール(コスモバイオ製、抗凝固剤:ヘパリンナトリウム、以下、「ヒト血漿」と称する)300μLにメタノール30μLを添加し、血漿試料を調製した。
2.3. ビオチン添加血漿試料
検量線用標準溶液SS-4(100ng/L)をメタノールで2倍に希釈して50ng/mL溶液を調製後、10mLのメスフラスコに100μL採取し、ヒト血漿で正確にメスアップしたビオチン濃度0.5ng/mLの溶液300μLにメタノールを30μLを添加し、ビオチン添加血漿試料を調製した。
2. Preparation of analytical method verification sample 2.1. Sample for calibration curve Collect 30 μL each of standard solutions SS-5 to SS-10 for calibration curve, add 300 μL of D-PBS (-) (for cell culture, manufactured by Wako Pure Chemical Industries), and prepare a sample for calibration curve (Preparation concentrations 2, 1, 0.5, 0.4, 0.2 and 0.1 ng / mL).
As for the blank sample and the zero sample, 300 μL of D-PBS (−) was added to 30 μL of methanol.
2.2. Plasma Sample 30 μL of methanol was added to 300 μL of normal human plasma / pool (manufactured by Cosmo Bio, anticoagulant: heparin sodium, hereinafter referred to as “human plasma”) to prepare a plasma sample.
2.3. Biotin-added plasma sample A calibration curve standard solution SS-4 (100 ng / L) was diluted 2-fold with methanol to prepare a 50 ng / mL solution, and then 100 μL was collected in a 10 mL volumetric flask. 30 μL of methanol was added to 300 μL of a biotin concentration of 0.5 ng / mL that was accurately measured to prepare a biotin-added plasma sample.

3. 試料前処理法
以下の手順で試料の前処理を行った。
(1)検量線用試料、ゼロ試料およびビオチン添加血漿試料には内標準溶液ISS-3を30μL添加した。ブランク試料および血漿試料にはメタノールを30μL添加した。
(2)各試料にメタノールを1.2mL添加し、血漿を含まない試料は約5〜10秒間、血漿を含む試料は約1分間撹拌した。
(3)血漿を含まない試料は1mLを採取し、血漿を含む試料は4℃、10,000rpm(9175×g)で10分間遠心し、上清を1mL採取した。
(4)50℃で窒素ガスによる蒸発乾固を行い、残渣に10%メタノール200μLを添加し、超音波洗浄器で15分間溶解した。
(5)溶解後、HPLCバイアルに移し、血漿を含まない試料はそのままLC/MS/MSで分析した。血漿を含む試料は0.2μmのフィルター(マイレクス-LHフィルターユニット、フィルター直径4mm、フィルター孔径0.20μm、PTFE、親水性、ミリポア製)でろ過後、HPLCバイアルに移し、LC/MS/MSで分析した。
3. Sample pretreatment The sample was pretreated by the following procedure.
(1) 30 μL of the internal standard solution ISS-3 was added to the calibration curve sample, zero sample, and biotin-added plasma sample. 30 μL of methanol was added to the blank sample and the plasma sample.
(2) 1.2 mL of methanol was added to each sample, the sample not containing plasma was stirred for about 5 to 10 seconds, and the sample containing plasma was stirred for about 1 minute.
(3) 1 mL of the sample containing no plasma was collected, and the sample containing plasma was centrifuged at 10,000 rpm (9175 × g) for 10 minutes at 4 ° C., and 1 mL of the supernatant was collected.
(4) Evaporation to dryness was performed with nitrogen gas at 50 ° C., 200 μL of 10% methanol was added to the residue, and dissolved in an ultrasonic cleaner for 15 minutes.
(5) After dissolution, the sample was transferred to an HPLC vial, and the sample containing no plasma was directly analyzed by LC / MS / MS. Samples containing plasma were filtered through a 0.2 μm filter (Mirex-LH filter unit, filter diameter 4 mm, filter pore size 0.20 μm, PTFE, hydrophilic, manufactured by Millipore), transferred to an HPLC vial, and LC / MS / MS analyzed.

4. 分析条件
分析には以下の機器を使用した。
4. Analysis conditions The following equipment was used for analysis.

Figure 0006255234
Figure 0006255234

4.1. HPLCの移動相の調製
ギ酸アンモニウム630.6mgを正確に量り、精製水でメスフラスコにて1000mLとし、10mmol/Lギ酸アンモニウム溶液を調製した。これにギ酸を添加してpH3.0に調整して移動相A液とした。
4.2. HPLC条件
分析カラム:ACQUITY UPLC HSS T3 (1.8μm、2.1×100mm)(ウォーターズ製)
ガードフィルター:KrudKatcher Ultra In-Line Filter(フェノメネクス製)
カラム温度:50℃
移動相:A液:10mmol/Lギ酸アンモニウム(pH 3.0)、B液:アセトニトリル
タイムプログラム:
0→1.5min:20%B
1.5→3.0min:80%B
3.0→5.0min:20%B(分析サイクル:5分)
流速:0.4mL/min
4.3. オートサンプラー条件
オートサンプラー設定温度:4℃
洗浄溶媒:10%メタノール
注入量:15μL
4.4. MS/MS条件
イオン化法:ESI法(ポジティブイオンモード)
イオンスプレイ電圧:5500V
ターボヒーター:700℃
カーテンガス:30psi
ネブライザーガス:30psi
デソルベーションガス:80psi
測定法:MRM
モニターイオン:
ビオチン:m/z 245>227(CE19)
rac biotin-d4:m/z 249>231(CE19)
4.1. Preparation of HPLC mobile phase 630.6 mg of ammonium formate was accurately weighed and made up to 1000 mL in a volumetric flask with purified water to prepare a 10 mmol / L ammonium formate solution. To this was added formic acid to adjust the pH to 3.0 to obtain mobile phase A solution.
4.2. HPLC conditions Analysis column: ACQUITY UPLC HSS T3 (1.8 μm, 2.1 × 100 mm) (manufactured by Waters)
Guard filter: KrudKatcher Ultra In-Line Filter (Phenomenex)
Column temperature: 50 ° C
Mobile phase: Liquid A: 10 mmol / L ammonium formate (pH 3.0), Liquid B: acetonitrile Time program:
0 → 1.5min: 20% B
1.5 → 3.0min: 80% B
3.0 → 5.0min: 20% B (analysis cycle: 5 minutes)
Flow rate: 0.4mL / min
4.3. Autosampler conditions Autosampler set temperature: 4 ° C
Washing solvent: 10% methanol Injection volume: 15μL
4.4. MS / MS conditions Ionization method: ESI method (positive ion mode)
Ion spray voltage: 5500V
Turbo heater: 700 ℃
Curtain gas: 30psi
Nebulizer gas: 30psi
Desolvation gas: 80psi
Measurement method: MRM
Monitor ion:
Biotin: m / z 245> 227 (CE19)
rac biotin-d4: m / z 249> 231 (CE19)

5. 濃度算出法
検量線用試料(6濃度:0.1、0.2、0.4、0.5、1および2ng/mL、各濃度n=1)を調製し、測定した。測定には内標準物質(ISS-3)とのピーク面積比による内標準法により行った。定量値は、Analyst Ver.1.6.1(エービー・サイエックス製)により算出した。検量線の重み付けには1/xを用いた。
5. Concentration calculation method Calibration curve samples (6 concentrations: 0.1, 0.2, 0.4, 0.5, 1 and 2 ng / mL, each concentration n = 1) were prepared and measured. The measurement was performed by the internal standard method based on the peak area ratio with the internal standard substance (ISS-3). Quantitative values were analyzed using Analyst Ver. It was calculated according to 1.6.1 (manufactured by AB SciX). The weighting of the calibration curve using 1 / x 2.

6. 結果
6.1. 血漿試料
図1に血漿試料および検量線試料(0.05ng/mL)のクロマトグラムを示す。内標準物質について、血漿中に妨害と成り得るピークは確認できなかった。
6.2. 検量線
図2に典型的な検量線の結果を示す。0.1〜2ng/mLの濃度範囲において、検量線の直線性は3回の測定において相関係数(r)がそれぞれ0.9996、0.9996および0.9998、相対誤差(%RE)はそれぞれ-2.0〜+3.0%、-2.8〜+2.4%、-2.3〜+1.5%であり、判断基準(r:0.99以上、%RE:定量下限濃度で±20%以内、その他で±15%以内)を満たしていた。また、定量限界値は0.1ng/mLであった。
6.3. ビオチンおよびrac ビオチン-d4添加血漿試料
図4にビオチンおよびracビオチン-d4添加血漿試料のクロマトグラムを示す。
また、表4に得られたビオチン添加血漿試料の定量値から血漿試料(ブランク)の定量値の平均値を差し引き、真度(%RE)、精度(%CV)および回収率(%)を下記式(1)〜(3)により算出した結果を示した。0.5ng/mL添加試料において、精度(%CV)は2.2%、真度(%RE)は-3.4%であり、判断基準(%CV:15.0%以下、%RE:±15.0%以内)を満たしていた。

Figure 0006255234
6. Results 6.1. Plasma Sample FIG. 1 shows chromatograms of a plasma sample and a calibration curve sample (0.05 ng / mL). For the internal standard, no peak that could interfere with the plasma was confirmed.
6.2. Calibration curve Fig. 2 shows the results of a typical calibration curve. In the concentration range of 0.1 to 2 ng / mL, the linearity of the calibration curve is 0.9996, 0.9996, and 0.9998, respectively, and the relative error (% RE) is 3 times in three measurements. -2.0 to + 3.0%, -2.8 to + 2.4%, and -2.3 to + 1.5%, respectively. Judgment criteria (r: 0.99 or more,% RE: lower limit of quantification) Within ± 20%, and within ± 15% in other cases). Moreover, the quantitative limit value was 0.1 ng / mL.
6.3. Plasma samples with biotin and rac biotin-d4 added Figure 4 shows chromatograms of plasma samples with biotin and rac biotin-d4 added.
In addition, the average value of the quantitative value of the plasma sample (blank) is subtracted from the quantitative value of the biotin-added plasma sample obtained in Table 4, and the accuracy (% RE), accuracy (% CV), and recovery rate (%) are shown below. The results calculated by equations (1) to (3) are shown. In the sample added with 0.5 ng / mL, the accuracy (% CV) is 2.2% and the accuracy (% RE) is −3.4%, and the judgment criteria (% CV: 15.0% or less,% RE: Within ± 15.0%).
Figure 0006255234

Figure 0006255234
Figure 0006255234

実施例2
1. 標準溶液および内標準溶液の調製
1.1. 標準原液
ビオチン10mgを正確に量り、メタノールでメスフラスコにて10mLとし超音波洗浄器で溶解して1mg/mLの標準原液を調製した。
1.2. 検量線用標準溶液
標準原液を下表5に従いシリコンコーティングされたガラス試験管を用いてメタノールで希釈し、検量線用標準溶液を調製した。
Example 2
1. Preparation of Standard Solution and Internal Standard Solution 1.1. Standard Stock Solution 10 mg of biotin was accurately weighed and made into 10 mL with methanol in a volumetric flask and dissolved with an ultrasonic cleaner to prepare a 1 mg / mL standard stock solution.
1.2. Standard solution for calibration curve The standard stock solution was diluted with methanol using a silicon-coated glass test tube according to Table 5 below to prepare a calibration curve standard solution.

Figure 0006255234
Figure 0006255234

1.3. 内標準原液および内標準溶液
実施例1で調製した内標準溶液(ISS-1)200μLを5mLのメスフラスコに採取して、メタノールで5mLにメスアップし、400ng/mLの内標準溶液(ISS-4)を調製した。
1.3. Internal standard stock solution and internal standard solution 200 μL of the internal standard solution (ISS-1) prepared in Example 1 was collected in a 5 mL volumetric flask, made up to 5 mL with methanol, and 400 ng / mL internal standard. A solution (ISS-4) was prepared.

2. 分析法検証用試料の調製
2.1. 検量線用試料
検量線用標準溶液SS-5〜SS-7およびSS-9〜SS-11を30μLずつ採取し、D-PBS(-)300μLを添加し、検量線用試料を調製した(調製濃度2、1、0.5、0.2、0.1および0.05ng/mL)。
ブランク試料およびゼロ試料はメタノール30μLにD-PBS(-)300μLを添加した。
2.2. 血漿試料
ヒト血漿300μLにメタノール30μLを添加し、血漿試料を調製した。
2.3. ビオチン添加血漿試料
検量線用標準溶液SS-4(100ng/L)をメタノールで2倍に希釈して50ng/mL溶液を調製し、10mLのメスフラスコに100μL採取し、ヒト血漿で正確にメスアップしたビオチン濃度0.5ng/mLの溶液300μLにメタノールを30μL添加し、ビオチン添加血漿試料を調製した。
2. Preparation of sample for verification of analytical method 2.1. Sample for calibration curve 30 μL each of standard solution for calibration curve SS-5 to SS-7 and SS-9 to SS-11 was collected and 300 μL of D-PBS (−) Were added to prepare calibration curve samples (preparation concentrations of 2, 1, 0.5, 0.2, 0.1 and 0.05 ng / mL).
As for the blank sample and the zero sample, 300 μL of D-PBS (−) was added to 30 μL of methanol.
2.2. Plasma Sample A plasma sample was prepared by adding 30 μL of methanol to 300 μL of human plasma.
2.3. Biotin-added plasma sample A standard solution for calibration curve SS-4 (100 ng / L) was diluted 2-fold with methanol to prepare a 50 ng / mL solution, and 100 μL was collected in a 10-mL volumetric flask. 30 μL of methanol was added to 300 μL of a biotin concentration of 0.5 ng / mL that had been accurately measured to prepare a biotin-added plasma sample.

3. 試料前処理法
以下の手順で試料の前処理を行った。
(1)検量線用試料、ゼロ試料およびビオチン添加血漿試料には内標準溶液ISS-4を30μL添加した。ブランク試料および血漿試料にはメタノールを30μL添加した。
(2)各試料にメタノールを1.2mL添加し、血漿を含まない試料は約5〜10秒間、血漿を含む試料は約1分間撹拌した。
(3)血漿を含まない試料は1mLを採取し、血漿を含む試料は4℃、10,000rpmで10分間遠心し、上清を1mL採取した。
(4)50℃で窒素ガスによる蒸発乾固を行い、残渣に1%ギ酸/メタノール(9/1)200μLを添加し、超音波洗浄器で15分間溶解した。
(5)溶解後、HPLCバイアルに移し、血漿を含まない試料はそのままLC/MS/MSで分析した。血漿を含む試料は0.45μmのフィルター(マイレクス-LHフィルターユニット、フィルター直径4mm、フィルター孔径0.45μm、PTFE、親水性、ミリポア製)でろ過し、HPLCバイアルに移し、LC/MS/MSで分析した。
3. Sample pretreatment The sample was pretreated by the following procedure.
(1) 30 μL of the internal standard solution ISS-4 was added to the calibration curve sample, zero sample, and biotin-added plasma sample. 30 μL of methanol was added to the blank sample and the plasma sample.
(2) 1.2 mL of methanol was added to each sample, the sample not containing plasma was stirred for about 5 to 10 seconds, and the sample containing plasma was stirred for about 1 minute.
(3) 1 mL of the sample not containing plasma was collected, and the sample containing plasma was centrifuged at 10,000 rpm for 10 minutes at 4 ° C., and 1 mL of the supernatant was collected.
(4) Evaporation to dryness was performed with nitrogen gas at 50 ° C., and 200 μL of 1% formic acid / methanol (9/1) was added to the residue, and dissolved in an ultrasonic cleaner for 15 minutes.
(5) After dissolution, the sample was transferred to an HPLC vial, and the sample containing no plasma was directly analyzed by LC / MS / MS. Samples containing plasma were filtered with a 0.45 μm filter (Mirex-LH filter unit, filter diameter 4 mm, filter pore size 0.45 μm, PTFE, hydrophilic, manufactured by Millipore), transferred to an HPLC vial, and LC / MS / MS analyzed.

4. 分析条件
分析には以下の機器を使用した。
4. Analysis conditions The following equipment was used for analysis.

Figure 0006255234
Figure 0006255234

4.1. HPLCの移動相の調製
ギ酸アンモニウム630.6mgを正確に量り、精製水でメスフラスコにて1000mLとし、10mmol/Lギ酸アンモニウム溶液を調製した。また、ギ酸500μLをメスフラスコを用いて精製水で10mLとして、5%ギ酸溶液を調製した。ギ酸アンモニウム溶液1000mLに5%ギ酸溶液を2.8mL添加して撹拌し、pHが約4.1であることを確認し、これを移動相A液とした。
4.2. HPLC条件
分析カラム:Ascentis Express F5 HPLC Column (2.7μm、2.1×100mm)(シグマ-アルドリッチ製)
ガードフィルター:KrudKatcher Ultra In-Line Filter(フェノメネクス製)
カラム温度:50℃
移動相:A液:10mmol/Lギ酸アンモニウム(pH4.1)、B液:アセトニトリル
タイムプログラム:
0→2.5min:7%B
2.5→4.0min:70%B
4.0→5.0min:7%B(分析サイクル:5分)
流速:0.6mL/min
4.3. オートサンプラー条件
オートサンプラー設定温度:4℃
洗浄溶媒:10%メタノール
注入量:20μL
4.4. MS/MS条件
イオン化法:ESI法(ポジティブイオンモード)
イオンスプレイ電圧:5500V
ターボヒーター:700℃
カーテンガス:30psi
ネブライザーガス:30psi
デソルベーションガス:80psi
測定法:MRM
モニターイオン:
ビオチン:m/z 245 > 227 (CE19)
rac ビオチン-d4:m/z 249 > 231 (CE19)
4.1. Preparation of HPLC mobile phase 630.6 mg of ammonium formate was accurately weighed and made up to 1000 mL in a volumetric flask with purified water to prepare a 10 mmol / L ammonium formate solution. Moreover, 5% formic acid solution was prepared by making 500 mL of formic acid 10 mL with purified water using a volumetric flask. 2.8 mL of 5% formic acid solution was added to 1000 mL of ammonium formate solution and stirred to confirm that the pH was about 4.1, and this was used as mobile phase A solution.
4.2. HPLC conditions Analysis column: Ascentis Express F5 HPLC Column (2.7 μm, 2.1 × 100 mm) (manufactured by Sigma-Aldrich)
Guard filter: KrudKatcher Ultra In-Line Filter (Phenomenex)
Column temperature: 50 ° C
Mobile phase: Solution A: 10 mmol / L ammonium formate (pH 4.1), Solution B: acetonitrile Time program:
0 → 2.5min: 7% B
2.5 → 4.0min: 70% B
4.0 → 5.0min: 7% B (analysis cycle: 5 minutes)
Flow rate: 0.6mL / min
4.3. Autosampler conditions Autosampler set temperature: 4 ° C
Washing solvent: 10% methanol Injection volume: 20μL
4.4. MS / MS conditions Ionization method: ESI method (positive ion mode)
Ion spray voltage: 5500V
Turbo heater: 700 ℃
Curtain gas: 30psi
Nebulizer gas: 30psi
Desolvation gas: 80psi
Measurement method: MRM
Monitor ion:
Biotin: m / z 245> 227 (CE19)
rac biotin-d4: m / z 249> 231 (CE19)

5. 濃度算出法
検量線用試料(6濃度:0.05、0.1、0.2、0.5、1および2ng/mL、各濃度n=1)を調製し、測定した。測定には内標準物質(ISS-4)とのピーク面積比による内標準法により行った。定量値は、Analyst Ver.1.6.1(エービー・サイエックス)により算出した。検量線の重み付けには1/xを用いた。
5. Concentration Calculation Method Samples for calibration curves (6 concentrations: 0.05, 0.1, 0.2, 0.5, 1 and 2 ng / mL, each concentration n = 1) were prepared and measured. The measurement was performed by the internal standard method based on the peak area ratio with the internal standard substance (ISS-4). The quantitative value was calculated by Analyst Ver. 1.6.1 (Abbex). The weighting of the calibration curve using 1 / x 2.

6. 結果
6.1. 血漿試料
図4に血漿試料および検量線試料(0.1ng/mL)のクロマトグラムを示した。内標準物質について、血漿中に妨害と成り得るピークは確認できなかった。
6.2. 検量線
図5に典型的な検量線の結果を示した。0.05〜2ng/mLの濃度範囲において、検量線の直線性は3回の測定において相関係数(r)がそれぞれ0.9997、0.9993および0.9997、相対誤差(%RE)はそれぞれ-4.0〜+2.0%、-4.0〜+3.2%、-3.5〜+2.3%であり、判断基準(r:0.99以上、%RE:定量下限濃度で±20%以内、その他で±15%以内)を満たしていた。また、定量限界値は0.05ng/mLであった。
6.3. ビオチンおよびracビオチン-d4添加血漿試料
図6にビオチンおよびracビオチン-d4添加血漿試料のクロマトグラムを示す。
また、表7に得られたビオチン添加血漿試料の定量値から血漿試料(ブランク)の定量値の平均値を差し引き、真度(%RE)、精度(%CV)および回収率(%)を上記式(1)〜(3)により算出した結果を示した。0.5ng/mL添加試料において、精度(%CV)は2.2%、真度(%RE)は-3.4%であり、判断基準(%CV:15.0%以下、%RE:±15.0%以内)を満たしていた。
6. Results 6.1. Plasma Sample FIG. 4 shows chromatograms of a plasma sample and a calibration curve sample (0.1 ng / mL). For the internal standard, no peak that could interfere with the plasma was confirmed.
6.2. Calibration curve Fig. 5 shows the results of a typical calibration curve. In the concentration range of 0.05 to 2 ng / mL, the linearity of the calibration curve is 0.9997, 0.9993, and 0.9997 for the correlation coefficient (r) in three measurements, and the relative error (% RE) is -4.0 to + 2.0%, -4.0 to + 3.2%, and -3.5 to + 2.3%, respectively. Judgment criteria (r: 0.99 or more,% RE: lower limit of quantification) Within ± 20%, and within ± 15% in other cases). The quantitative limit value was 0.05 ng / mL.
6.3. Plasma sample with biotin and rac biotin-d4 added FIG. 6 shows a chromatogram of the plasma sample with biotin and rac biotin-d4 added.
In addition, the average value of the plasma sample (blank) quantification value was subtracted from the quantification value of the biotin-added plasma sample obtained in Table 7, and the accuracy (% RE), accuracy (% CV), and recovery rate (%) were calculated as above. The results calculated by equations (1) to (3) are shown. In the sample added with 0.5 ng / mL, the accuracy (% CV) is 2.2% and the accuracy (% RE) is −3.4%, and the judgment criteria (% CV: 15.0% or less,% RE: Within ± 15.0%).

Figure 0006255234
Figure 0006255234

実施例3
健常人および透析患者の血漿中ビオチン濃度を固定相がオクタデシルシリル(ODS)(C18)であるカラム(ACQUITY UPLC HSS T3、ウォーターズ製)を用いた分析法(以下、「ODS法」)、ペンタフルオロフェニル(PFP)カラム(Ascentis Express F5 HPLC column、シグマ-アルドリッチ製)を用いた分析法(以下、「PFP法」)により測定した。
Example 3
Analysis method of biotin concentration in healthy and dialysis patients using column (ACQUITY UPLC HSS T3, manufactured by Waters) whose stationary phase is octadecylsilyl (ODS) (C18) (hereinafter referred to as “ODS method”), pentafluoro It measured by the analysis method (henceforth "PFP method") using the phenyl (PFP) column (Ascentis Express F5 HPLC column, the product made from Sigma-Aldrich).

1. 実験方法
血漿試料は、健常人および透析患者より採血し、分離した血漿300μLにメタノール30μLを添加したものを使用した。
検量線用試料の調製は、ODS法、PFP法共に実施例2の条件にて行った。また、分析方法は、ODS法は実施例1、PFP法は実施例2の条件にしたがって測定した。
試料前処理法については、検量線用試料、ゼロ試料および血漿試料には内標準溶液(ISS-3)を30μL添加し、ブランク試料にはメタノールを30μL添加した。その後は実施例2の3.(2)〜(5)の手順に従い行った。
1. Experimental Method As a plasma sample, a sample obtained by collecting blood from a healthy person and a dialysis patient and adding 30 μL of methanol to 300 μL of separated plasma was used.
The calibration curve sample was prepared under the conditions of Example 2 for both the ODS method and the PFP method. Moreover, the analysis method measured according to the conditions of Example 1 for the ODS method and Example 2 for the PFP method.
Regarding the sample pretreatment method, 30 μL of the internal standard solution (ISS-3) was added to the calibration curve sample, zero sample, and plasma sample, and 30 μL of methanol was added to the blank sample. After that, the second example 3. This was performed according to the procedures (2) to (5).

2. 結果
2.1. ビオチンピークの分離
図7に示されるように、ODS法では、MRMクロマトグラム上でビオチンのピークに夾雑ピークが重なりピークの分離が困難であった。特に透析患者の血漿においてこの傾向が強く見られた。一方、PFP法を用いた場合、ビオチンのピークを分離することができた。
2.2. イオン化抑制
表8に示されるように、ODS法では、マトリックス効果によるイオン化抑制が強く、内標準物質で比較すると、透析患者の血漿において、標準液のピーク面積に対して50%以下の面積値となる血漿試料が散見されたが、PFP法ではイオン化抑制が改善された。これにより、低濃度の血漿中ビオチンピークを検出することができた。
2.3. 定量限界値
上記のように、PFP法は、ODS法に比べてビオチンピークの分離およびイオン化抑制の点で改善されていた。これにより、ビオチンの定量限界値は、ODS法が0.1ng/mLであるのに対して、PFP法は0.05ng/mLであり、高感度であった。
2. Results 2.1. Separation of Biotin Peaks As shown in FIG. 7, in the ODS method, it was difficult to separate peaks by overlapping a biotin peak on the MRM chromatogram. This tendency was particularly strong in the plasma of dialysis patients. On the other hand, when the PFP method was used, the biotin peak could be separated.
2.2. Suppression of ionization As shown in Table 8, in the ODS method, the suppression of ionization due to the matrix effect is strong. Compared with the internal standard substance, the plasma of dialysis patients has 50% or less of the peak area of the standard solution. Although some plasma samples with an area value of 2 were observed, ionization suppression was improved by the PFP method. Thereby, a biotin peak in plasma at a low concentration could be detected.
2.3. Limit of Quantification As described above, the PFP method was improved in terms of separation of biotin peaks and suppression of ionization compared to the ODS method. Thereby, the quantification limit value of biotin was 0.1 ng / mL in the ODS method, and 0.05 ng / mL in the PFP method, which was highly sensitive.

Figure 0006255234
Figure 0006255234

実施例4
血液透析患者の血液透析(HD)廃液中ビオチン濃度をPFP法により測定した。
1. 実験方法
血液透析廃液試料は、血液透析患者の血液透析廃液(HD廃液1〜4)300μLにメタノール30μLを添加したものを使用した。
検量線用試料の調製および分析方法は、実施例2の条件にて行った。また、試料前処理法については、検量線試料およびビオチン測定用血液透析廃液試料には内標準物質(ISS-4)30μLを、妨害ピーク確認用血液透析廃液試料についてはメタノール30μLを添加し、以後は実施例2の3.(2)〜(5)に従い行った。
2. 結果
2.1. 血液透析廃液試料中妨害ピークの確認
図8に血液透析廃液試料および検量線試料(0.5ng/mL)のクロマトグラムを示した。また、内標準物質であるracビオチン-d4について、血液透析廃液中に妨害と成り得るピークは確認できなかった(図8D)。
2.2. 血液透析廃液試料中ビオチン濃度
表9に血液透析廃液中ビオチン濃度の測定結果を示した。
Example 4
The biotin concentration in the hemodialysis (HD) waste solution of hemodialysis patients was measured by the PFP method.
1. Experimental Method As a hemodialysis waste liquid sample, 300 μL of hemodialysis waste liquid (HD waste liquid 1 to 4) of a hemodialysis patient was added with 30 μL of methanol.
The calibration curve sample was prepared and analyzed under the conditions of Example 2. For the sample pretreatment method, 30 μL of internal standard substance (ISS-4) was added to the calibration curve sample and the hemodialysis waste liquid sample for biotin measurement, and 30 μL of methanol was added to the hemodialysis waste liquid sample for checking the interference peak. 2 in Example 2. (2) to (5).
2. Results 2.1. Confirmation of Interference Peak in Hemodialysis Waste Solution Sample FIG. 8 shows chromatograms of the hemodialysis waste solution sample and the calibration curve sample (0.5 ng / mL). In addition, for rac biotin-d4, which is an internal standard substance, no peak that could interfere with the hemodialysis waste liquid could be confirmed (FIG. 8D).
2.2. Biotin concentration in hemodialysis waste liquid sample Table 9 shows the measurement results of biotin concentration in hemodialysis waste liquid.

Figure 0006255234
Figure 0006255234

実施例5
血液透析濾過(HDF)廃液中のビオチン濃度をPFP法により測定した。
1. 実験方法
血液透析濾過試料は血液透析濾過患者の廃液(HDF廃液)300μLにメタノール30μLを添加したものを使用した。
検量線用試料の調整および分析方法については、実施例2の条件にて行った。また、試料前処理法については実施例4に従って行った。
2. 結果
2.1. 血液透析濾過試料中妨害ピークの確認
図9に血液透析濾過廃液試料および検量線試料(0.5ng/mL)のクロマトグラムを示した。内標準物質であるracビオチン-d4について、血液透析濾過廃液中に妨害と成り得るピークは確認できなかった(図9D)。
2.2. 血液透析濾過廃液試料中ビオチン濃度
表10に血液透析濾過廃液中ビオチン濃度の測定結果を示した。
Example 5
The biotin concentration in the hemodiafiltration (HDF) waste solution was measured by the PFP method.
1. Experimental method The hemodiafiltration sample used was obtained by adding 30 μL of methanol to 300 μL of a hemodiafiltration patient waste liquid (HDF waste liquid).
The calibration curve sample preparation and analysis method were performed under the conditions of Example 2. The sample pretreatment method was performed according to Example 4.
2. Result 2.1. Confirmation of interference peak in hemodiafiltration sample FIG. 9 shows chromatograms of the hemodiafiltration waste solution sample and the calibration curve sample (0.5 ng / mL). For rac biotin-d4, which is an internal standard substance, no peak that could interfere with hemodiafiltration was not confirmed (FIG. 9D).
2.2. Biotin concentration in hemodiafiltration waste liquid sample Table 10 shows the measurement results of biotin concentration in hemodiafiltration waste liquid.

Figure 0006255234
Figure 0006255234

実施例6
腹膜透析廃液中のビオチン濃度をPFP法により測定した。
1. 実験方法
腹膜透析廃液試料は、腹膜透析患者の廃液(PD廃液)300μLにメタノール30μLを添加したものを使用した。
検量線用試料の調整および分析方法については、実施例2の条件にて行った。試料前処理法は、実施例4の条件にて行った。
2. 結果
2.1. 腹膜透析廃液試料中妨害ピークの確認
図10に腹膜透析廃液試料および検量線試料(2.0ng/mL)のクロマトグラムを示した。内標準物質であるracビオチン-d4について、腹膜透析廃液中に妨害と成り得るピークは確認できなかった(図10D)。
2.2. 腹膜透析廃液試料中ビオチン濃度
表11に腹膜透析廃液中ビオチン濃度の測定結果を示した。
Example 6
The biotin concentration in the peritoneal dialysis waste liquid was measured by the PFP method.
1. Experimental Method The peritoneal dialysis waste liquid sample used was a peritoneal dialysis patient waste liquid (PD waste liquid) 300 μL added with 30 μL of methanol.
The calibration curve sample preparation and analysis method were performed under the conditions of Example 2. The sample pretreatment method was performed under the conditions of Example 4.
2. Results 2.1. Confirmation of Interference Peak in Peritoneal Dialysis Waste Solution Sample FIG. 10 shows chromatograms of the peritoneal dialysis waste solution sample and the calibration curve sample (2.0 ng / mL). For rac biotin-d4, which is an internal standard substance, no peak that could interfere with peritoneal dialysis waste liquid could be confirmed (FIG. 10D).
2.2. Biotin concentration in peritoneal dialysis waste liquid sample Table 11 shows the measurement results of biotin concentration in peritoneal dialysis waste liquid.

Figure 0006255234
Figure 0006255234

実施例7
尿中のビオチン濃度をPFP法により測定した。
1. 実験方法
検量線用試料の調整および分析方法については、実施例2の条件にて行った。尿試料は、血液透析患者の尿(尿1:透析治療歴約1年の糖尿病患者、尿2:透析治療歴約3年の非糖尿病患者)および蛋白尿(尿3:尿蛋白2+)各300μLにメタノール30μLを添加したものを使用した。試料前処理法は、実施例4の条件にて行った。
2. 結果
2.1. 透析廃液試料中妨害ピークの確認
図11に尿試料および検量線試料(2.0ng/mL)のクロマトグラムを示した。内標準物質であるracビオチン-d4について、尿中に妨害と成り得るピークは確認できなかった(図11D)。
2.2. 尿試料中ビオチン濃度
表12に尿中ビオチン濃度の測定結果を示した。
Example 7
The biotin concentration in urine was measured by the PFP method.
1. Experimental Method The calibration curve sample was prepared and analyzed under the conditions of Example 2. The urine samples were 300 μL each of urine from hemodialysis patients (urine 1: diabetic patient with about 1 year of dialysis treatment, urine 2: non-diabetic patient with about 3 years of dialysis treatment) and proteinuria (urine 3: urine protein 2+). To which 30 μL of methanol was added was used. The sample pretreatment method was performed under the conditions of Example 4.
2. Results 2.1. Confirmation of interference peak in dialysis waste liquid sample FIG. 11 shows chromatograms of a urine sample and a calibration curve sample (2.0 ng / mL). For rac biotin-d4, which is an internal standard substance, no peak that could interfere with urine could be confirmed (FIG. 11D).
2.2. Biotin concentration in urine sample Table 12 shows the measurement results of biotin concentration in urine.

Figure 0006255234
Figure 0006255234

Claims (14)

生体試料中のビオチンまたはビオチン関連物質を測定する方法であって、
(1)メタノールを用いて生体試料中のタンパク質を沈殿させることにより除去する工程と、
(2)工程(1)で得られた試料中のビオチンまたはビオチン関連物質を、高速液体クロマトグラフ/タンデム質量分析法を用いて測定する工程と
を含む、方法。
A method for measuring biotin or a biotin-related substance in a biological sample,
(1) removing the protein in the biological sample by precipitation using methanol ;
(2) measuring the biotin or biotin-related substance in the sample obtained in step (1) using high performance liquid chromatography / tandem mass spectrometry.
生体試料が血漿、透析廃液または尿である、請求項1に記載の方法。   The method according to claim 1, wherein the biological sample is plasma, dialysis waste liquid or urine. 生体試料が血漿である、請求項2に記載の方法。   The method of claim 2, wherein the biological sample is plasma. 生体試料が透析廃液である、請求項2に記載の方法。   The method according to claim 2, wherein the biological sample is dialysis waste liquid. 生体試料が尿である、請求項2に記載の方法。   The method according to claim 2, wherein the biological sample is urine. 血漿が血液透析患者由来の血漿である、請求項3に記載の方法。   4. The method of claim 3, wherein the plasma is plasma from a hemodialysis patient. 透析廃液が血液透析患者由来の透析廃液である、請求項4に記載の方法。   The method according to claim 4, wherein the dialysis waste liquid is a dialysis waste liquid derived from a hemodialysis patient. 透析廃液が血液透析濾過患者由来の透析廃液である、請求項4に記載の方法。   The method according to claim 4, wherein the dialysis waste liquid is a dialysis waste liquid derived from a hemodiafiltration patient. 透析廃液が腹膜透析患者由来の透析廃液である、請求項4に記載の方法。   The method according to claim 4, wherein the dialysis waste liquid is a dialysis waste liquid derived from a peritoneal dialysis patient. 尿が腎不全患者由来の尿である、請求項5に記載の方法。   The method according to claim 5, wherein the urine is urine derived from a renal failure patient. 尿がタンパク尿である、請求項5に記載の方法。   6. The method according to claim 5, wherein the urine is proteinuria. 高速液体クロマトグラフに使用するカラムが、疎水性相互作用、双極子-双極子相互作用、およびπ-π相互作用により分離するカラムである、請求項1〜11
のいずれかに記載の方法。
Column used in the high performance liquid chromatograph, hydrophobic interactions, dipole - a column for separating the dipole interaction, and [pi-[pi interaction, claim 1-11
The method in any one of.
カラム担体の官能基が、ペンタフルオロフェニル基が結合した直鎖または分岐鎖のアルキル基を含む、請求項12に記載の方法。   The method according to claim 12, wherein the functional group of the column carrier comprises a linear or branched alkyl group to which a pentafluorophenyl group is bonded. 生体試料中のビオチンまたはビオチン関連物質を測定するための測定用キットであって、
(1)生体試料中のタンパク質を除去する工程に使用するための、メタノールを含む試薬と、
(2)高速液体クロマトグラフ/タンデム質量分析法に使用するための機器
を含む、キット。
A measurement kit for measuring biotin or a biotin-related substance in a biological sample,
(1) a reagent containing methanol for use in the step of removing proteins in a biological sample;
(2) A kit comprising equipment for use in high performance liquid chromatograph / tandem mass spectrometry.
JP2013262185A 2013-12-19 2013-12-19 Method for measuring biotin or related substances in biological samples Active JP6255234B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013262185A JP6255234B2 (en) 2013-12-19 2013-12-19 Method for measuring biotin or related substances in biological samples

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013262185A JP6255234B2 (en) 2013-12-19 2013-12-19 Method for measuring biotin or related substances in biological samples

Publications (2)

Publication Number Publication Date
JP2015118029A JP2015118029A (en) 2015-06-25
JP6255234B2 true JP6255234B2 (en) 2017-12-27

Family

ID=53530873

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013262185A Active JP6255234B2 (en) 2013-12-19 2013-12-19 Method for measuring biotin or related substances in biological samples

Country Status (1)

Country Link
JP (1) JP6255234B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110887913B (en) * 2019-12-27 2020-10-20 上虞新和成生物化工有限公司 HPLC detection method of biotin intermediate diamino substance
CN113092640B (en) * 2021-03-29 2023-05-02 河北常山生化药业股份有限公司 Method for detecting benzyl alcohol and benzaldehyde in heparin sodium injection
CN114371243A (en) * 2021-12-28 2022-04-19 湖南中晟全肽生化有限公司 HPLC detection method of d-biotin
CN114674954A (en) * 2022-03-25 2022-06-28 浙江工商大学 Method for detecting Maillard reaction products in different stages in processed food
CN117347530B (en) * 2023-12-04 2024-02-13 天津玉健生物工程有限公司 Detection method of plasticizer in vitamin B2

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008093762A1 (en) * 2007-01-31 2008-08-07 Chugai Seiyaku Kabushiki Kaisha Sensitive determination method for low molecular weight peptide
JP5119053B2 (en) * 2008-06-06 2013-01-16 株式会社日立ハイテクノロジーズ Biological sample separation method, biological sample detection method, biological sample separation system, and biological sample separation / detection system
WO2012026569A1 (en) * 2010-08-26 2012-03-01 株式会社日立ハイテクノロジーズ Filler for liquid chromatography, separation column, and liquid chromatography device
JP2014520265A (en) * 2011-06-16 2014-08-21 ベイラー リサーチ インスティテュート Analysis of total homocysteine and methylmalonic acid in plasma obtained from a plasma separation device (PSD) by LC-MS / MS
CN109270155B (en) * 2011-12-28 2021-09-10 英国质谱有限公司 System and method for rapid evaporative ionization of liquid phase samples

Also Published As

Publication number Publication date
JP2015118029A (en) 2015-06-25

Similar Documents

Publication Publication Date Title
JP6255234B2 (en) Method for measuring biotin or related substances in biological samples
Niwa Update of uremic toxin research by mass spectrometry
Thornalley et al. Quantitative screening of advanced glycation endproducts in cellular and extracellular proteins by tandem mass spectrometry
Dualde et al. Determination of four parabens and bisphenols A, F and S in human breast milk using QuEChERS and liquid chromatography coupled to mass spectrometry
Randell et al. Measurement of methylglyoxal in rat tissues by electrospray ionization mass spectrometry and liquid chromatography
Sai et al. Simultaneous detection of residues of 25 β2-agonists and 23 β-blockers in animal foods by high-performance liquid chromatography coupled with linear ion trap mass spectrometry
Baranowska et al. Rapid UHPLC method for simultaneous determination of vancomycin, terbinafine, spironolactone, furosemide and their metabolites: application to human plasma and urine
Anguizola et al. Development of affinity microcolumns for drug–protein binding studies in personalized medicine: interactions of sulfonylurea drugs with in vivo glycated human serum albumin
Balgoma et al. Quantification of lipid mediator metabolites in human urine from asthma patients by electrospray ionization mass spectrometry: controlling matrix effects
Fabresse et al. Quantification of free and protein bound uremic toxins in human serum by LC-MS/MS: comparison of rapid equilibrium dialysis and ultrafiltration
Rueth et al. Guanidinylations of albumin decreased binding capacity of hydrophobic metabolites
Birjandi et al. Application of solid phase microextraction for quantitation of polyunsaturated fatty acids in biological fluids
CN104020241A (en) Synchronous analysis method for trace nicotine in blood-brain samples of animal and main metabolites thereof
Suzuki et al. Determination of creatinine-related molecules in saliva by reversed-phase liquid chromatography with tandem mass spectrometry and the evaluation of hemodialysis in chronic kidney disease patients
CN111024843A (en) Combined marker for diagnosing Parkinson's disease and detection kit
Xiang et al. Determination of gouty arthritis' biomarkers in human urine using reversed-phase high-performance liquid chromatography
CN106770865B (en) A kind of organic acid content testing method in ginkgo biloba p.e
CN108802250B (en) Method for detecting 11 neurotransmitters in brain microdialysis solution by ultra-high performance liquid chromatography-mass spectrometry
Capriotti et al. Ultra-high-performance liquid chromatography-tandem mass spectrometry for the analysis of free and conjugated natural estrogens in cow milk without deconjugation
Wang et al. Application of online microdialysis coupled with liquid chromatography-tandem mass spectrometry method in assessing neuroprotective effect of Rhizoma coptidis on diabetic rats
KR101476144B1 (en) Highly sensitive method of determining the quantity of herbal medicine-derived components
Koizumi et al. Influence of glycosylation on the drug binding of human serum albumin
Sitar et al. Asymmetric dimethylarginine (ADMA) in human blood: effects of extended haemodialysis in the critically ill patient with acute kidney injury, protein binding to human serum albumin and proteolysis by thermolysin
Tahara et al. Determination of antihyperglycemic biguanides in serum and urine using an ion‐pair solid‐phase extraction technique followed by HPLC‐UV on a pentafluorophenylpropyl column and on an octadecyl column
Wirkus et al. Development and application of novelty pretreatment method for the concurrent quantitation of eleven water-soluble B vitamins in ultrafiltrates after renal replacement therapy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160826

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160826

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170425

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170428

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170620

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171128

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171204

R150 Certificate of patent or registration of utility model

Ref document number: 6255234

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250