JP6255193B2 - Heat transfer brazing method - Google Patents

Heat transfer brazing method Download PDF

Info

Publication number
JP6255193B2
JP6255193B2 JP2013186084A JP2013186084A JP6255193B2 JP 6255193 B2 JP6255193 B2 JP 6255193B2 JP 2013186084 A JP2013186084 A JP 2013186084A JP 2013186084 A JP2013186084 A JP 2013186084A JP 6255193 B2 JP6255193 B2 JP 6255193B2
Authority
JP
Japan
Prior art keywords
heat transfer
brazing
gas
mold
temporary assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013186084A
Other languages
Japanese (ja)
Other versions
JP2015051449A (en
Inventor
岩井 一郎
一郎 岩井
長野 喜隆
喜隆 長野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2013186084A priority Critical patent/JP6255193B2/en
Publication of JP2015051449A publication Critical patent/JP2015051449A/en
Application granted granted Critical
Publication of JP6255193B2 publication Critical patent/JP6255193B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Description

本発明は、接合界面にろう材を介在させた被接合部材に加熱した金型を接触させて接合部を加熱する伝熱ろう付方法およびその関連技術に関する。   The present invention relates to a heat transfer brazing method and a related technique in which a heated mold is brought into contact with a member to be joined having a brazing material interposed at a bonding interface to heat a bonded portion.

アルミニウムのろう付方法はフラックスの使用の有無、加熱方法、加熱雰囲気等によって種々分類される(非特許文献1参照)。   Various methods of brazing aluminum are classified according to the presence / absence of use of a flux, a heating method, a heating atmosphere, and the like (see Non-Patent Document 1).

また、重ね継ぎ手のろう付方法としては、被接合部材間にろう材を介在させ、加圧しながら加熱した金型を接触させて接合部を加熱する伝熱ろう付法が知られている。伝熱ろう付法は接触による熱伝導を利用した加熱方法であるから接合部が急速に加熱されて短時間でろう付できるというメリットがあり、抵抗スポット溶接法、トーチろう付法、高周波ろう付法に代わるろう付法として注目されている(特許文献1参照)。   Further, as a method for brazing a lap joint, a heat transfer brazing method is known in which a brazing material is interposed between members to be joined, and a heated mold is brought into contact with the brazed material to heat the joint. The heat transfer brazing method is a heating method that uses heat conduction by contact, so it has the advantage that the joint is heated rapidly and can be brazed in a short time, such as resistance spot welding, torch brazing, high frequency brazing. It attracts attention as a brazing method that replaces the law (see Patent Document 1).

伝熱ろう付には被接合部材の形状やろう付面積に応じた加熱用金型が用いられる。例えば、特許文献1の図面に記載されている加熱用金型はスポット溶接に代わる部分接合用であり、被接合部材への授熱面の面積は小さい。また、インナーフィンを有する熱交換器のろう付は、冷媒室の外殻となるアルミニウム板と波形のフィンとの接合であるから、アルミニウム板の面積相当の授熱面を有する加熱用金型を用いる。   For heat transfer brazing, a heating die corresponding to the shape of the member to be joined and the brazing area is used. For example, the heating die described in the drawing of Patent Document 1 is for partial joining instead of spot welding, and the area of the heat transfer surface to the member to be joined is small. Also, the brazing of the heat exchanger having the inner fins is the joining of the aluminum plate that becomes the outer shell of the refrigerant chamber and the corrugated fins, so that a heating mold having a heat transfer surface equivalent to the area of the aluminum plate is used. Use.

特開平7−9124号公報Japanese Patent Laid-Open No. 7-9124

川瀬寛、アルミニウムのろう付、軽金属、1986年8月号、514〜524頁Hiroshi Kawase, brazing of aluminum, light metal, August 1986, pages 514-524

伝熱ろう付では、高い伝熱効率を得る上で加熱用金型と被接合部材とが隙間なく接触していることが望ましく、金型の授熱面が平滑であることが求められる。しかし、金型の繰り返し使用によって、熱変形や摩耗等によって授熱面の平滑性が損なわれることは避け難い。金型の授熱面と被接合部材との間に僅かな隙間ができると、熱伝導が妨げられてろう付に時間がかかるようになる。繰り返し使用した金型に対しては、研磨等によって平滑性を回復させるメンテナンスが行われる。   In heat transfer brazing, in order to obtain high heat transfer efficiency, it is desirable that the heating die and the member to be joined are in contact with each other without any gap, and the heat transfer surface of the die is required to be smooth. However, it is unavoidable that the smoothness of the heat transfer surface is impaired due to thermal deformation or wear due to repeated use of the mold. If a slight gap is formed between the heat transfer surface of the mold and the member to be joined, heat conduction is hindered and brazing takes time. Maintenance for restoring smoothness by polishing or the like is performed on the molds used repeatedly.

特に、前記熱交換器のろう付に使用する授熱面の面積の大きい金型においては、隙間による熱伝達の低下による影響が大きく、かつ平滑性を回復させるためのメンテナンスにも手間がかかる。   In particular, in a mold having a large heat transfer surface area used for brazing of the heat exchanger, the effect of a decrease in heat transfer due to the gap is great, and maintenance for recovering smoothness is troublesome.

本発明は上述した技術背景に鑑み、授熱面の平滑性が低下した金型を用いた場合でも、伝熱効率を低下させることなく急速加熱を実現できる伝熱ろう付方法およびその関連技術を提供するものである。   In view of the above-described technical background, the present invention provides a heat transfer brazing method and related technology capable of realizing rapid heating without reducing the heat transfer efficiency even when a mold having a reduced heat transfer surface smoothness is used. To do.

即ち、本発明は下記[1]〜[7]に記載の構成を有する。   That is, this invention has the structure as described in following [1]-[7].

[1]被接合部材の接合界面にろう材を介在させて組み立てた仮組体に、加熱用金型の授熱面を接触させるとともに、前記授熱面に設けられた開口部からガスを噴出させることにより、ろう材を溶融して被接合部材をろう付すること特徴とする伝熱ろう付方法。   [1] The heat transfer surface of the heating mold is brought into contact with the temporary assembly assembled by interposing the brazing material at the bonding interface of the members to be bonded, and gas is ejected from the opening provided in the heat transfer surface. A heat transfer brazing method comprising melting a brazing material and brazing a member to be joined.

[2]前記開口部は授熱面の周縁近傍に設けられている前項1に記載の伝熱ろう付方法。   [2] The heat transfer brazing method according to item 1, wherein the opening is provided near the periphery of the heat transfer surface.

[3]前記ガスは不活性ガスである前項1または2に記載の伝熱ろう付方法。   [3] The heat transfer brazing method according to item 1 or 2, wherein the gas is an inert gas.

[4]前記ガスは加熱されたガスである前項1〜3のうちのいずれか1項に記載の伝熱ろう付方法。   [4] The heat transfer brazing method according to any one of items 1 to 3, wherein the gas is a heated gas.

[5]前記ガスの流速は5m/sec以下である前項1〜4のうちのいずれか1項に記載の伝熱ろう付方法。   [5] The heat transfer brazing method according to any one of items 1 to 4, wherein the gas has a flow velocity of 5 m / sec or less.

[6]前記仮組体が、対向配置した2つの部材の間にフィンを挟んでろう付する熱交換器である前項1〜5のうちのいずれか1項に記載の伝熱ろう付方法。   [6] The heat transfer brazing method according to any one of the above items 1 to 5, wherein the temporary assembly is a heat exchanger that brazes fins between two members arranged to face each other.

[7]被接合部材の接合界面にろう材を介在させて組み立てた仮組体に接触させる授熱面に、ガスを噴出させる開口部が設けられていることを特徴とする伝熱ろう付の加熱用金型。   [7] A heat transfer brazing method characterized in that an opening for ejecting gas is provided on a heat transfer surface to be brought into contact with a temporary assembly assembled by interposing a brazing material at a bonding interface of a member to be bonded. Mold for heating.

[1]に記載の伝熱ろう付方法によれば、仮組体の表面と加熱用金型の授熱面との間に形成される隙間において、加熱用金型の授熱面から噴出させたガスが強制対流を起こして伝熱効率を向上させる。このため、授熱面の平滑性が低下した加熱用金型を用いた場合でも仮組体を急速加熱して短時間で良好なろう付を達成できる。また、繰り返し使用によって平滑性が低下した授熱面を研磨して平滑性を回復させるメンテナンスの回数を減らすことができる。   According to the heat transfer brazing method described in [1], the heat transfer surface of the heating mold is ejected in the gap formed between the surface of the temporary assembly and the heat transfer surface of the heating mold. Gas causes forced convection to improve heat transfer efficiency. For this reason, even when using a heating mold with reduced smoothness of the heat transfer surface, the temporary assembly can be rapidly heated to achieve good brazing in a short time. Further, it is possible to reduce the number of times of maintenance for restoring the smoothness by polishing the heat transfer surface whose smoothness has been lowered by repeated use.

[2]に記載の発明によれば、隙間が生じやすい授熱面の周縁部にガスを噴出させることにより伝熱効率を高めることができる。   According to the invention described in [2], heat transfer efficiency can be improved by jetting gas to the peripheral portion of the heat transfer surface where a gap is likely to occur.

[3]に記載の発明によれば、接合部の酸化を防いで良好なろう付を達成できる。   According to the invention described in [3], it is possible to achieve good brazing by preventing oxidation of the joint.

[4]に記載の発明によれば、金型の形状やヒータの位置や種類等に左右されることなく、伝熱効率の向上効果を高めることができる。   According to the invention described in [4], the effect of improving the heat transfer efficiency can be enhanced without being influenced by the shape of the mold, the position or type of the heater, or the like.

[5]に記載の発明によれば、隙間に十分に強制対流を起こさせることができる。   According to the invention described in [5], forced convection can be sufficiently generated in the gap.

[6]に記載の発明によれば、フィンをろう付する熱交換器のろう付において上記効果を奏することができる。   According to invention of [6], the said effect can be show | played in the brazing of the heat exchanger which brazes a fin.

[7]に記載の伝熱ろう付の加熱用金型発明によれば、加熱用金型の授熱面の開口部からガスを噴出させることにより、仮組体の表面と加熱用金型の授熱面との間に形成される隙間に強制対流を起こして伝熱効率を向上させることができる。このため、授熱面の平滑性が低下した加熱用金型を用いた場合でも仮組体を急速加熱して短時間で良好なろう付を達成できる。また、繰り返し使用によって平滑性が低下した授熱面を研磨して平滑性を回復させるメンテナンスの回数を減らすことができる。   According to the heat transfer brazing heating die described in [7], gas is ejected from the opening of the heat transfer surface of the heating die so that the surface of the temporary assembly and the heating die are Heat transfer efficiency can be improved by causing forced convection in a gap formed between the heat transfer surface and the heat transfer surface. For this reason, even when using a heating mold with reduced smoothness of the heat transfer surface, the temporary assembly can be rapidly heated to achieve good brazing in a short time. Further, it is possible to reduce the number of times of maintenance for restoring the smoothness by polishing the heat transfer surface whose smoothness has been lowered by repeated use.

本発明の伝熱ろう付方法の一例を示す断面図である。It is sectional drawing which shows an example of the heat-transfer brazing method of this invention. 本発明の加熱用金型の平面図である。It is a top view of the metal mold | die for heating of this invention. 図1の部分拡大図である。It is the elements on larger scale of FIG. 熱交換器の伝熱ろう付方法を示す断面図である。It is sectional drawing which shows the heat-transfer brazing method of a heat exchanger.

図1〜3は本発明の伝熱ろう付方法を模式的に示す断面図である。   1 to 3 are sectional views schematically showing the heat transfer brazing method of the present invention.

ろう付用の仮組体(1)は、下板(11)と上板(12)との間に波形のフィン(13)を挟んだものである。前記下板(11)および上板(12)はアルミニウムのベア材であり、フィン(13)は心材の両面にろう材をクラッドした両面ブレージングシートである。前記仮組体(1)における接合予定部(14)(15)は、下板(11)とフィン(13)の下端部との接触部、上板(12)とフィン(13)の上端部との接触部であり、それぞれライン状である。   The temporary assembly (1) for brazing includes a corrugated fin (13) sandwiched between a lower plate (11) and an upper plate (12). The lower plate (11) and the upper plate (12) are aluminum bare materials, and the fin (13) is a double-sided brazing sheet in which a brazing material is clad on both sides of a core material. The joint portions (14) and (15) in the temporary assembly (1) are a contact portion between the lower plate (11) and the lower end portion of the fin (13), and an upper end portion of the upper plate (12) and the fin (13). Are in contact with each other, and each has a line shape.

なお、本発明はろう材の供給方法をブレージングシートに限定するものではない。他のろう材供給方法として、ろう材箔や粉末ろう材のスプレーを例示できる。また、図示例の仮組体(1)のろう付では、下板(11)および上板(12)をブレージングシートで作製し、フィン(13)をベア材で作製しても良い。   In addition, this invention does not limit the supply method of a brazing material to a brazing sheet. Other brazing material supply methods include spraying brazing material foil and powder brazing material. Further, in the illustrated example of the temporary assembly (1), the lower plate (11) and the upper plate (12) may be made of a brazing sheet, and the fin (13) may be made of a bare material.

前記接合予定部(14)(15)はライン状であるが、フィン(13)は波形であり多数の上端部および下端部を有しているので、下板(11)および上板(12)のフィン側の面の全域に所定間隔で複数の接合予定部(14)(15)が存在している。このような仮組体(1)を伝熱ろう付においては、前記下板(11)および上板(12)の全面を加熱する。   Although the said joining plan part (14) (15) is a line shape, since a fin (13) is a waveform and has many upper end parts and lower end parts, a lower board (11) and an upper board (12) A plurality of planned joining portions (14) and (15) are present at predetermined intervals over the entire surface of the fin side. In the heat transfer brazing of such a temporary assembly (1), the entire surfaces of the lower plate (11) and the upper plate (12) are heated.

図1および図2に示すように、加熱用金型(20)は厚板からなる下金型(21)および上金型(22)で構成され、授熱面(23)(24)の寸法は下板(11)および上板(12)の寸法に対応している。前記下金型(21)および上金型(22)は、それぞれのヒータ(図示省略)と熱的に結合されることによって加熱される。前記下金型(21)および上金型(22)の授熱面(23)(24)には、金型の厚み方向に貫通して授熱面(23)(24)に開口する5個の円形孔(25a)(25b)が中心および四隅の近傍に設けられている。前記円形孔(25a)(25b)はパイプを介して図外のガス供給部に接続され、該ガス供給部においてガスの供給および停止の切り換え、ガスの流速調節が行われる。   As shown in FIGS. 1 and 2, the heating mold (20) is composed of a lower mold (21) and an upper mold (22) made of thick plates, and the dimensions of the heat transfer surfaces (23) and (24). Corresponds to the dimensions of the lower plate (11) and the upper plate (12). The lower mold (21) and the upper mold (22) are heated by being thermally coupled to respective heaters (not shown). On the heat transfer surfaces (23) and (24) of the lower mold (21) and the upper mold (22), there are five pieces penetrating in the thickness direction of the mold and opening to the heat transfer surfaces (23) and (24). Circular holes (25a) and (25b) are provided near the center and the four corners. The circular holes (25a) and (25b) are connected to a gas supply unit (not shown) through pipes, and the gas supply unit switches between gas supply and stop, and adjusts the gas flow rate.

前記下金型(21)および上金型(22)は仮組体(1)を上下方向に挟む態様で配置され、さらに押圧して授熱面(23)(24)を上板(11)および下板(12)の表面に密着させる。このとき、授熱面(23)(24)の平滑性が低下していると、図3に参照されるように、授熱面(23)(24)が下板(11)および上板(12)に接触しない部分が生じ、両者間に生じた僅かな隙間(30)が下金型(21)および上金型(22)から下板(11)および上板(12)への伝達を妨げる。   The lower mold (21) and the upper mold (22) are arranged in such a manner that the temporary assembly (1) is sandwiched in the vertical direction, and further pressed so that the heat transfer surfaces (23) and (24) are placed on the upper plate (11). And adhere to the surface of the lower plate (12). At this time, if the smoothness of the heat transfer surfaces (23) and (24) is lowered, as shown in FIG. 3, the heat transfer surfaces (23) and (24) are moved to the lower plate (11) and the upper plate (11). 12) There is a part that does not come into contact, and the slight gap (30) created between them prevents the transmission from the lower mold (21) and upper mold (22) to the lower plate (11) and upper plate (12). Hinder.

本発明では、前記円形孔(25a)(25b)を通じて授熱面(23)(24)からガス(G)を噴出させて隙間(30)にガス(G)を流すことによって、下板(11)および上板(12)の授熱面(23)(24)が接触しない部分への加熱を促す。ガス供給部から供給されるガス(G)は下金型(21)および上金型(22)の円形孔(25a)(25b)を通る間に加熱され、噴出後は授熱面(23)(24)からの熱を受けるので、隙間(30)には加熱されたガス(G)が流れることになり、この加熱されたガス(G)が下板(11)および上板(12)を加熱する。前記隙間(30)にはろう付の雰囲気ガスが存在しているので、ガス(G)を噴出させなくても雰囲気ガスが授熱面(23)(24)で加熱されて自然対流を生じるので下板(11)および上板(12)は加熱されるが、ガス(G)を噴出させて強制対流させることによって伝熱効率を高めることができる。   In the present invention, the gas (G) is ejected from the heat transfer surfaces (23) and (24) through the circular holes (25a) and (25b), and the gas (G) is caused to flow through the gap (30). ) And the heat transfer surfaces (23) and (24) of the upper plate (12) are urged to be heated. The gas (G) supplied from the gas supply unit is heated while passing through the circular holes (25a) and (25b) of the lower mold (21) and the upper mold (22), and after the ejection, the heat transfer surface (23) Since the heat from (24) is received, the heated gas (G) flows through the gap (30), and this heated gas (G) passes through the lower plate (11) and the upper plate (12). Heat. Since the brazing atmosphere gas exists in the gap (30), the atmosphere gas is heated on the heat transfer surfaces (23) and (24) without causing the gas (G) to be ejected, so that natural convection occurs. Although the lower plate (11) and the upper plate (12) are heated, the heat transfer efficiency can be increased by jetting the gas (G) to cause forced convection.

なお、図3は仮組体(1)の上金型(22)の授熱面(24)と仮組体(1)の上板(12)との間の隙間(30)およびガス(G)の噴出を示しているが、下板(11)と下金型(21)の授熱面(23)との隙間およびガスの噴出も同様である。   3 shows a gap (30) between the heat transfer surface (24) of the upper mold (22) of the temporary assembly (1) and the upper plate (12) of the temporary assembly (1) and gas (G ), The gap between the lower plate (11) and the heat transfer surface (23) of the lower mold (21) and the gas ejection are the same.

前記加熱用金型(20)は繰り返し使用する工具であり、ろう付温度への加熱と室温への冷却が繰り返される。加熱用金型(20)はこのような温度昇降が繰り返され、かつ仮組体(1)への押圧を伴う接触が繰り返されるので、熱変形や摩耗によって僅かではあるが授熱面(23)(24)の平滑性が低下していくことは避けられない。本発明の伝熱ろう付方法によれば、このような平滑性が低下した加熱用金型(20)を用いた場合に、授熱面(23)(24)からガス(G)を噴出させることによって、平滑性低下による伝熱効率の低下を補うことができる。また、授熱面(23)(24)の平滑性が低下した加熱用金型(20)は研磨等のメンテナンスによって平滑性を回復させることができるが、ガス(G)を噴出させて伝熱効率の低下を補うことでメンテナンス回数を減らすことができる。   The heating mold (20) is a tool used repeatedly, and heating to brazing temperature and cooling to room temperature are repeated. Since the heating mold (20) is repeatedly raised and lowered in temperature and contacted with the temporary assembly (1) is repeated, the heat transfer surface (23) is slightly affected by thermal deformation and wear. It is unavoidable that the smoothness of (24) decreases. According to the heat transfer brazing method of the present invention, when such a heating mold (20) with reduced smoothness is used, the gas (G) is ejected from the heat transfer surface (23) (24). As a result, a decrease in heat transfer efficiency due to a decrease in smoothness can be compensated. In addition, the heating mold (20) with reduced smoothness of the heat transfer surfaces (23) and (24) can be restored to smoothness by maintenance such as polishing. However, the heat transfer efficiency is improved by jetting gas (G). The number of maintenance can be reduced by compensating for the decrease in

前記ガス(G)の種類は限定されないが、接合部の酸化を抑制して良好なろう付を達成するために、窒素ガスやアルゴンガス等の不活性ガスを使用することが好ましい。また仮組体(1)および加熱用金型(20)を不活性ガス雰囲気中に配置して伝熱ろう付を不活性ガス雰囲気中で行うことも好ましい。   The type of the gas (G) is not limited, but it is preferable to use an inert gas such as nitrogen gas or argon gas in order to suppress the oxidation of the joint and achieve good brazing. It is also preferable to place the temporary assembly (1) and the heating mold (20) in an inert gas atmosphere and perform heat transfer brazing in the inert gas atmosphere.

また、前記ガス(G)は、常温のガスを供給した場合でも加熱用金型(20)の授熱面(23)(24)から噴出させることで自ずと加熱されるが、伝熱効率を高めるためには、ガス(G)の温度がろう付温度に達しているか、あるいはろう付温度に近い温度であることが好ましい。噴出するガス(G)の温度を高める方法として、金型(20)との接触時間が長くなるようなガス供給路を設定したり、ヒータの近傍を通るガス供給路を設定する方法を例示できる。また、予め加熱したガスを供給しても良い。予め加熱したガスを用いれば、金型の形状やヒータの位置や種類等に左右されることなくガス温度を制御できる。   In addition, the gas (G) is naturally heated by being ejected from the heat transfer surface (23) (24) of the heating mold (20) even when normal temperature gas is supplied, but in order to increase the heat transfer efficiency. It is preferable that the temperature of the gas (G) reaches the brazing temperature or is close to the brazing temperature. Examples of a method of increasing the temperature of the gas (G) to be ejected include a method of setting a gas supply path that makes the contact time with the mold (20) longer, or a method of setting a gas supply path that passes near the heater. . Further, a preheated gas may be supplied. If a preheated gas is used, the gas temperature can be controlled without being influenced by the shape of the mold, the position and type of the heater, and the like.

また、前記授熱面(23)(24)から噴出させるガスの流速は5m/sec以下が好ましい。隙間(30)に強制対流を起こすには5m/secの流速でガスを噴出させれば十分であり、5m/sec以下が好ましい理由は、隙間が小さいため大きな流速が必要ないためである。特に好ましい流速は0.5〜3m/secである。   The flow rate of the gas ejected from the heat transfer surfaces (23) and (24) is preferably 5 m / sec or less. In order to cause forced convection in the gap (30), it is sufficient to eject gas at a flow rate of 5 m / sec, and 5 m / sec or less is preferable because a large flow rate is not necessary because the gap is small. A particularly preferred flow rate is 0.5 to 3 m / sec.

前記授熱面(23)(24)において、ガスを噴出させる開口部(25a)(25b)の数や位置は限定されないが、隙間が生じ易い部分に設けられていることが好ましい。図3に示すように、加熱用金型(20)は繰り返し使用によって周縁部が反り上がるような変形を起こすことが多いので、開口部は授熱面(23)(24)の周縁の近傍に設けることが好ましい。角形の授熱面(23)(24)の場合は、授熱面(23)(24)の周縁から開口部(25b)までの距離(d)が対角線(D)の長さの5〜20%となる位置に設けることが好ましい。図1、2に示した加熱用金型(20)は、コーナーから対角線(D)上で距離(d)の位置に開口部(25b)を設けた例である。また、周縁近傍の開口部(25b)に加えて、中央部にも開口部(25a)を設けることが好ましい。   In the heat transfer surfaces (23) and (24), the number and position of the openings (25a) and (25b) through which the gas is ejected are not limited, but are preferably provided in a portion where a gap is easily generated. As shown in FIG. 3, the heating mold (20) is often deformed so that the peripheral edge is warped by repeated use, so that the opening is in the vicinity of the peripheral edge of the heat transfer surface (23) (24). It is preferable to provide it. In the case of the rectangular heat transfer surface (23) (24), the distance (d) from the periphery of the heat transfer surface (23) (24) to the opening (25b) is 5 to 20 of the length of the diagonal line (D). It is preferable to provide in the position which becomes%. The heating mold (20) shown in FIGS. 1 and 2 is an example in which an opening (25b) is provided at a distance (d) on a diagonal line (D) from a corner. In addition to the opening (25b) in the vicinity of the periphery, it is preferable to provide the opening (25a) in the center.

また、前記開口部(25a)(25b)の形状および寸法は限定されないが、ガスが流通すれば足りるので、円相当直径が5mm以下であることが好ましい。   Further, the shape and dimensions of the openings (25a) and (25b) are not limited, but it is sufficient that gas flows, and therefore, the equivalent circle diameter is preferably 5 mm or less.

本発明の伝熱ろう付方法は仮組体の対向する2面に加熱用金型を接触させる場合に限定されない。加熱用金型の個数や接触位置は接合予定部の位置や形状に対応して任意に設定することができる。また、複数個の加熱用金型を用いる伝熱ろう付において、少なくとも1個の金型の授熱面からガスを噴出させるろう付は本発明に含まれる。   The heat transfer brazing method of the present invention is not limited to the case where the heating mold is brought into contact with two opposing surfaces of the temporary assembly. The number and contact position of the heating mold can be arbitrarily set in accordance with the position and shape of the planned joining portion. In addition, in the heat transfer brazing using a plurality of heating molds, brazing for ejecting gas from the heat transfer surface of at least one mold is included in the present invention.

本発明の伝熱ろう付方法は、接合面積の大きいろう付品や複数の接合部が広い領域に分散しているろう付品のように、授熱面積の大きい加熱用金型を用いるろう付に適している。例えばフィンをろう付する熱交換器のろう付に適している。図1の仮組体のように、平板と波形のフィンをとろう付する熱交換器は種々の形状のものがある。図4に示す熱交換器(40)は、底板となる下板(41)と、中央に膨出部(43)を有する上板(42)とを対向させて波形のフィン(45)を挟むことにより、下板(41)と上板(42)との間に形成される冷媒室(44)の内部にフィン(45)を装填したものである。前記熱交換器(40)は、下板(41)と上板(43)の周縁部(46)をろう付するとともに、フィン(45)の上端部および下端部を冷媒室(44)の内面にろう付することにより作製される。前記熱交換器(40)の伝熱ろう付は、下板(41)の全面および上板(42)の膨出部(43)に加熱用金型(51)(52)の授熱面(53)(54)を接触させて、これらの授熱面(53)(54)に開口する孔(55)を通じてガスを噴出させて行う。   The heat transfer brazing method of the present invention uses a heating die having a large heat transfer area, such as a brazed product having a large joint area or a brazed product in which a plurality of joints are dispersed in a wide area. Suitable for For example, it is suitable for brazing of a heat exchanger for brazing fins. As in the temporary assembly of FIG. 1, there are various types of heat exchangers for brazing the flat plate and the corrugated fins. The heat exchanger (40) shown in FIG. 4 has a corrugated fin (45) sandwiched between a lower plate (41) serving as a bottom plate and an upper plate (42) having a bulging portion (43) in the center. As a result, the fin (45) is loaded inside the refrigerant chamber (44) formed between the lower plate (41) and the upper plate (42). The heat exchanger (40) brazes the peripheral edge (46) of the lower plate (41) and the upper plate (43), and the upper end and lower end of the fin (45) are connected to the inner surface of the refrigerant chamber (44). It is made by brazing. The heat exchanger brazing of the heat exchanger (40) is performed on the entire surface of the lower plate (41) and the bulging portion (43) of the upper plate (42) on the heat transfer surface of the heating dies (51) (52) ( 53) and (54) are brought into contact with each other, and gas is ejected through holes (55) opened in these heat transfer surfaces (53) and (54).

図1〜3に示す加熱用金型(20)を用いて仮組体(1)のろう付試験を行った。   The temporary assembly (1) was brazed using the heating mold (20) shown in FIGS.

前記仮組体(1)を構成する下板(11)および上板(12)はJIS 3003からなり、3000mm×100mm×厚さ5mmのアルミニウム平板である。また、フィン(13)は、ブレージングシートを300mm×100mm×高さ30mmの波形に成形したものである。前記ブレージングシートはJIS 3003からなる心材の両面にJIS 4045をからなるろう材をクラッドした、厚さ0.5mm、各面のクラッド率5%の両面ブレージングシートである。前記フィン(13)の両面に10g/mのフッ化物系フラックスを付着させ、このフィン(13)を下板(11)と上板(12)との間に挟んで仮組体(1)を組み立てた。 The lower plate (11) and the upper plate (12) constituting the temporary assembly (1) are made of JIS 3003 and are aluminum flat plates of 3000 mm × 100 mm × thickness 5 mm. The fin (13) is a brazing sheet formed into a waveform of 300 mm × 100 mm × height 30 mm. The brazing sheet is a double-sided brazing sheet having a thickness of 0.5 mm and a clad rate of 5% on each side, in which both sides of a core material made of JIS 3003 are clad with a brazing material made of JIS 4045. A temporary flux (1) is obtained by adhering a fluoride flux of 10 g / m 2 on both sides of the fin (13) and sandwiching the fin (13) between the lower plate (11) and the upper plate (12). Assembled.

加熱用金型(20)は、下金型(21)と上金型(22)が同形であり、300mm×100mm×厚さ50mmの厚板である。これらの下金型(21)および上金型(22)は、金型の厚み方向に貫通して授熱面(23)(24)に開口する直径2mmの5つの円形孔(25a)(25b)が穿設されている。前記5つの円形孔の位置は、1つ(25a)が授熱面(23)(24)の中心であり、4つ(25b)は対角線(D)上にあり、各コーナーからの距離(d)が25mmである。前記円形孔(25a)(25b)は授熱面(23)(24)とは反対側の面でガス供給用のパイプと接続され、必要に応じて図外のガス供給部から供給される窒素ガスが授熱面(23)(24)から噴出するものとなされている。前記パイプは下金型(21)および上金型(22)によって加熱された雰囲気を通って配管されているため、授熱面(23)(24)からは加熱されたガス(G)が噴出する。   In the heating mold (20), the lower mold (21) and the upper mold (22) have the same shape, and are thick plates of 300 mm × 100 mm × thickness 50 mm. These lower mold (21) and upper mold (22) have five circular holes (25a) (25b) having a diameter of 2 mm that penetrate through the mold in the thickness direction and open to the heat transfer surfaces (23) and (24). ) Is drilled. Regarding the positions of the five circular holes, one (25a) is the center of the heat transfer surface (23) (24), and four (25b) are on the diagonal line (D), and the distance (d ) Is 25 mm. The circular holes (25a) and (25b) are connected to a gas supply pipe on the surface opposite to the heat transfer surfaces (23) and (24), and are supplied from a gas supply unit (not shown) as needed. Gas is ejected from the heat transfer surface (23) (24). Since the pipe is routed through the atmosphere heated by the lower mold (21) and the upper mold (22), the heated gas (G) is ejected from the heat transfer surfaces (23) and (24). To do.

参考例と、比較例および実施例とは授熱面(23)(24)の平滑性の異なる加熱用金型(20)を用い、同等の表面状態を有する仮組体(1)をろう付した。参考例で用いた加熱用金型(20)の授熱面(23)(24)は十分に研磨した平滑性の高いものである。一方、比較例および実施例で用いた加熱用金型は繰り返し使用して授熱面(23)(24)の平滑性が低下したものである。   The reference example, comparative example, and example use a heating mold (20) with different smoothness of the heat transfer surface (23) (24), and braze the temporary assembly (1) having the same surface condition. did. The heat transfer surfaces (23) and (24) of the heating mold (20) used in the reference example are sufficiently polished and highly smooth. On the other hand, the heating molds used in the comparative examples and the examples were repeatedly used, and the smoothness of the heat transfer surfaces (23) and (24) was lowered.

上記の仮組体(1)を各例の下型(21)と上金型(22)で挟み、さらに10kgの重しで加圧したところ、各例における仮組体(1)の表面と授熱面(23)(24)との間に生じた隙間(30)の高さ(h)は表1に示すとおりであった。なお、参考例の隙間(h)の0.1mmは、仮組体(1)と加熱用金型(20)との組み付けによって不可避的に生じる隙間である。   When the temporary assembly (1) is sandwiched between the lower mold (21) and the upper mold (22) of each example and further pressurized with a weight of 10 kg, the surface of the temporary assembly (1) in each example The height (h) of the gap (30) generated between the heat transfer surfaces (23) and (24) was as shown in Table 1. In addition, 0.1 mm of the clearance (h) of the reference example is a clearance inevitably generated by the assembly of the temporary assembly (1) and the heating mold (20).

Figure 0006255193
Figure 0006255193

伝熱ろう付は各例とも仮組体(1)の実体温度が600℃となるように下金型(21)および上金型(22)を610℃に保持し、酸素濃度:5ppm、露点−65℃の窒素ガス中で行った。このろう付において、参考例および比較例は窒素ガス(G)を噴出させることなくろう付し、実施例は1m/sの流速で窒素ガス(G)を噴出させた。そして、定温に加熱した加熱用金型(20)を仮組体(1)に接触させるろう付開始から良好なろう付が達成されるまでに要した時間は表1に示すとおりであった。   In each case, the lower mold (21) and the upper mold (22) are held at 610 ° C. so that the actual temperature of the temporary assembly (1) is 600 ° C. in each example, oxygen concentration: 5 ppm, dew point The reaction was performed in nitrogen gas at −65 ° C. In this brazing, the reference example and the comparative example were brazed without jetting nitrogen gas (G), and in the example, nitrogen gas (G) was jetted at a flow rate of 1 m / s. Table 1 shows the time required from the start of brazing for bringing the heating mold (20) heated to a constant temperature into contact with the temporary assembly (1) until satisfactory brazing was achieved.

表1に示すように、実施例の平滑性が低下した金型であっても窒素ガスを噴出させることによって、参考例の平滑性の良い金型と同等の時間で良好なろう付を達成できた。また、実施例と同等の隙間が形成された比較例が実施例よりもろう付に長い時間を要していることから、ガス噴出による伝熱効率の向上効果を確認することができた。   As shown in Table 1, even with the mold having a reduced smoothness of the example, by blowing nitrogen gas, good brazing can be achieved in the same time as the mold with a smoothness of the reference example. It was. Moreover, since the comparative example in which the clearance gap equivalent to the Example formed the brazing time longer than the Example, the improvement effect of the heat transfer efficiency by gas ejection was able to be confirmed.

本発明は、接合面積が大きく、授熱面の面積の大きい加熱用金型を用いる伝熱ろう付品の製造に適し、特に熱交換器のろう付に好適に利用できる。   INDUSTRIAL APPLICABILITY The present invention is suitable for manufacturing a heat transfer brazing product using a heating mold having a large bonding area and a large heat transfer surface area, and can be suitably used particularly for brazing of a heat exchanger.

1…仮組体
11…下板(被接合部材)
12…上板(被接合部材)
13…フィン(被接合部材)
20…加熱用金型
21…下金型
22…上金型
23、24…授熱面
25a、25b…円形孔(開口部)
30…隙間
1 ... Temporary assembly
11 ... Lower plate (joined member)
12 ... Upper plate (members to be joined)
13 ... Fin (member to be joined)
20 ... heating mold
21 ... Lower mold
22… Upper mold
23, 24 ... Heating surface
25a, 25b ... Circular holes (openings)
30 ... Gap

Claims (8)

被接合部材の接合界面にろう材を介在させて組み立てた仮組体に、ヒータと熱的に結合されることによって加熱された加熱用金型の授熱面を接触させるとともに、前記授熱面の仮組体に接触する位置に設けられた開口部から、仮組体の表面との間に生じる隙間にガスを噴出させることにより、ろう材を溶融して被接合部材をろう付すること特徴とする伝熱ろう付方法。 The heat transfer surface of the heating mold heated by being thermally coupled to the heater is brought into contact with the temporary assembly assembled by interposing the brazing material at the bonding interface of the members to be bonded, and the heat transfer surface The brazing material is melted to braze the member to be joined by jetting gas from the opening provided at a position in contact with the temporary assembly to the gap formed between the surface and the surface of the temporary assembly. Heat transfer brazing method. 前記開口部は授熱面の周縁近傍に設けられている請求項1に記載の伝熱ろう付方法。   The heat transfer brazing method according to claim 1, wherein the opening is provided near the periphery of the heat transfer surface. 前記ガスは不活性ガスである請求項1または2に記載の伝熱ろう付方法。   The heat transfer brazing method according to claim 1, wherein the gas is an inert gas. 前記ガスは加熱されたガスである請求項1〜3のうちのいずれか1項に記載の伝熱ろう付方法。   The heat transfer brazing method according to claim 1, wherein the gas is a heated gas. 前記ガスの流速は5m/sec以下である請求項1〜4のうちのいずれか1項に記載の伝熱ろう付方法。   The heat transfer brazing method according to claim 1, wherein a flow rate of the gas is 5 m / sec or less. 前記仮組体が、対向配置した2つの部材の間にフィンを挟んでろう付する熱交換器である請求項1〜5のうちのいずれか1項に記載の伝熱ろう付方法。   The heat transfer brazing method according to claim 1, wherein the temporary assembly is a heat exchanger that brazes fins between two members arranged to face each other. 前記仮組体が、平板と波形フィンをろう付する熱交換器である請求項1〜5のうちのいずれか1項に記載の伝熱ろう付方法。   The heat transfer brazing method according to any one of claims 1 to 5, wherein the temporary assembly is a heat exchanger that brazes a flat plate and a corrugated fin. ヒータと熱的に結合されることによって加熱される加熱用金型であり、被接合部材の接合界面にろう材を介在させて組み立てた仮組体に接触させる授熱面の仮組体に接触する位置に、仮組体の表面との間に生じる隙間にガスを噴出させる開口部が設けられていることを特徴とする伝熱ろう付の加熱用金型。 This is a heating mold that is heated by being thermally coupled to the heater, and is in contact with the temporary assembly of the heat transfer surface that is brought into contact with the temporary assembly assembled by interposing the brazing material at the joining interface of the members to be joined. A heating mold for heat transfer brazing, wherein an opening for ejecting gas is provided in a gap formed between the surface and the surface of the temporary assembly .
JP2013186084A 2013-09-09 2013-09-09 Heat transfer brazing method Expired - Fee Related JP6255193B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013186084A JP6255193B2 (en) 2013-09-09 2013-09-09 Heat transfer brazing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013186084A JP6255193B2 (en) 2013-09-09 2013-09-09 Heat transfer brazing method

Publications (2)

Publication Number Publication Date
JP2015051449A JP2015051449A (en) 2015-03-19
JP6255193B2 true JP6255193B2 (en) 2017-12-27

Family

ID=52700885

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013186084A Expired - Fee Related JP6255193B2 (en) 2013-09-09 2013-09-09 Heat transfer brazing method

Country Status (1)

Country Link
JP (1) JP6255193B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5528786B2 (en) * 1974-06-19 1980-07-30
JP4294165B2 (en) * 1999-05-25 2009-07-08 パナソニック株式会社 Electronic component mounting device
JP2001044626A (en) * 1999-07-29 2001-02-16 Ueda Japan Radio Co Ltd Thermo compression bonding method to electrode substrate, thermo compression bonding nozzle and device therefor
JP2004017132A (en) * 2002-06-20 2004-01-22 Hitachi Ltd Soldering device
JP2010258000A (en) * 2009-04-21 2010-11-11 Mitsuo Ebisawa Electronic apparatus manufacturing method by soldering of through-hole and soldering iron for the same

Also Published As

Publication number Publication date
JP2015051449A (en) 2015-03-19

Similar Documents

Publication Publication Date Title
KR102268451B1 (en) Plate-type heat exchanger and method for producing same
CN100453233C (en) Furnace braze welding process of 6063 aluminum alloy micro-channel cooling plate
CN102751201A (en) Method of manufacturing power module substrate and power module substrate
CN205271219U (en) Be used for panel welded spot welding device of polishing
CN107350593A (en) A kind of clip brazing device for carrying the type of cooling
JP6143402B1 (en) Welding method between thin copper plates
JP6255193B2 (en) Heat transfer brazing method
WO2019151315A1 (en) Brazing method
US20050252951A1 (en) Method for assembling and brazing CPU heat sink modules
JPH06238432A (en) Production of core of laminated heat exchanger
JP6062211B2 (en) Brazing method and brazing apparatus
US4541480A (en) Heat exchanger and method for joining plates thereof
JP2016515694A (en) Heat exchanger with dual function assembly to connect dispensing head
JP2006320931A (en) Method of soldering, and soldered product
JP6215025B2 (en) Heat transfer brazing method
JP5980110B2 (en) Diffusion bonding jig and diffusion bonding method
SE1550046A1 (en) A heat exchanger comprising microchannels and manufacturing thereof
JP5675186B2 (en) Method of manufacturing joined product and method of manufacturing combustor
JP2006297450A (en) Composite material, plate type heat exchanger, and brazing method for composite material
JP2005246472A (en) Brazing apparatus and brazing method
JP6118637B2 (en) Heat transfer brazing method
JP2016112599A (en) Joint device, joint method, manufacturing method of panel type heat exchanger, and cooling device
TWI640741B (en) Titanium plate heat exchanger and the method of producing the same
JP6764777B2 (en) Air cooling module
KR20210009378A (en) Bonding method and bonding structure of plated steel plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170314

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170711

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170908

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171114

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171204

R150 Certificate of patent or registration of utility model

Ref document number: 6255193

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

LAPS Cancellation because of no payment of annual fees