JP6215025B2 - Heat transfer brazing method - Google Patents

Heat transfer brazing method Download PDF

Info

Publication number
JP6215025B2
JP6215025B2 JP2013249202A JP2013249202A JP6215025B2 JP 6215025 B2 JP6215025 B2 JP 6215025B2 JP 2013249202 A JP2013249202 A JP 2013249202A JP 2013249202 A JP2013249202 A JP 2013249202A JP 6215025 B2 JP6215025 B2 JP 6215025B2
Authority
JP
Japan
Prior art keywords
heat transfer
mold
brazing
heating
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013249202A
Other languages
Japanese (ja)
Other versions
JP2015104752A (en
Inventor
長野 喜隆
喜隆 長野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko KK
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2013249202A priority Critical patent/JP6215025B2/en
Publication of JP2015104752A publication Critical patent/JP2015104752A/en
Application granted granted Critical
Publication of JP6215025B2 publication Critical patent/JP6215025B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、接合界面にろう材を介在させた被接合部材に加熱した金型を接触させて接合部を加熱する伝熱ろう付方法およびその関連技術に関する。   The present invention relates to a heat transfer brazing method and a related technique in which a heated mold is brought into contact with a member to be joined having a brazing material interposed at a bonding interface to heat a bonded portion.

アルミニウムのろう付方法はフラックスの使用の有無、加熱方法、加熱雰囲気等によって種々分類される(非特許文献1参照)。   Various methods of brazing aluminum are classified according to the presence / absence of use of a flux, a heating method, a heating atmosphere, and the like (see Non-Patent Document 1).

また、重ね継ぎ手のろう付方法としては、被接合部材間にろう材を介在させ、加圧しながら加熱した金型を接触させて接合部を加熱する伝熱ろう付法が知られている。伝熱ろう付法は接触による熱伝導を利用した加熱方法であるから接合部が急速に加熱されて短時間でろう付できるというメリットがあり、抵抗スポット溶接法、トーチろう付法、高周波ろう付法に代わるろう付法として注目されている(特許文献1参照)。   Further, as a method for brazing a lap joint, a heat transfer brazing method is known in which a brazing material is interposed between members to be joined, and a heated mold is brought into contact with the brazed material to heat the joint. The heat transfer brazing method is a heating method that uses heat conduction by contact, so it has the advantage that the joint is heated rapidly and can be brazed in a short time, such as resistance spot welding, torch brazing, high frequency brazing. It attracts attention as a brazing method that replaces the law (see Patent Document 1).

伝熱ろう付には被接合部材の形状やろう付面積に応じた加熱用金型が用いられる。例えば、特許文献1の図面に記載されている加熱用金型はスポット溶接に代わる部分接合用であり、被接合部材への授熱面の面積は小さい。また、インナーフィンを有する熱交換器のろう付は、冷媒室の外殻となるアルミニウム板と波形のフィンとの接合であるから、アルミニウム板の面積相当の授熱面を有する加熱用金型を用いる。   For heat transfer brazing, a heating die corresponding to the shape of the member to be joined and the brazing area is used. For example, the heating die described in the drawing of Patent Document 1 is for partial joining instead of spot welding, and the area of the heat transfer surface to the member to be joined is small. Also, the brazing of the heat exchanger having the inner fins is the joining of the aluminum plate that becomes the outer shell of the refrigerant chamber and the corrugated fins, so that a heating mold having a heat transfer surface equivalent to the area of the aluminum plate is used. Use.

特開平7−9124号公報Japanese Patent Laid-Open No. 7-9124

川瀬寛、アルミニウムのろう付、軽金属、1986年8月号、514〜524頁Hiroshi Kawase, brazing of aluminum, light metal, August 1986, pages 514-524

伝熱ろう付において、良好なろう付を達成するための条件の一つに接合部の均一加熱があり、加熱用金型の授熱面の温度が均一であることが求められる。   In heat transfer brazing, one of the conditions for achieving good brazing is uniform heating of the joint, and the temperature of the heat transfer surface of the heating mold is required to be uniform.

しかし、図3の等温線図に示すように、加熱用金型(50)は周端部から放熱されるために、授熱面(51)の温度は中央部で高く端部に行くほど低くなる。このため、図4に参照されるように、仮組体(1)の接合部を均一に加熱するには、接合部の寸法(W×L)よりもの大きい金型(50)を使用し、授熱面(51)の周縁部の温度低下領域が接合部から外れるように組み付ける必要がある。特に、前記熱交換器のろう付に使用する授熱面の面積の大きい金型においては、授熱面の中心部と周縁部とで温度差が大きくなる傾向がある。また、不活性ガス雰囲気のろう付炉内で伝熱ろう付を行う場合は、加熱用金型の寸法拡大に伴ってろう付炉の寸法を拡大しなければならず、設備コストが高くなる。   However, as shown in the isotherm diagram of FIG. 3, since the heating mold (50) is radiated from the peripheral end, the temperature of the heat transfer surface (51) is higher in the center and lower as it goes to the end. Become. Therefore, as shown in FIG. 4, in order to uniformly heat the joint portion of the temporary assembly (1), a mold (50) larger than the size (W × L) of the joint portion is used, It is necessary to assemble so that the temperature drop region at the peripheral edge of the heat transfer surface (51) is removed from the joint. In particular, in a mold having a large area of the heat transfer surface used for brazing the heat exchanger, the temperature difference tends to be large between the central portion and the peripheral portion of the heat transfer surface. In addition, when performing heat transfer brazing in a brazing furnace in an inert gas atmosphere, the dimensions of the brazing furnace must be increased with the expansion of the dimensions of the heating mold, resulting in an increase in equipment cost.

本発明は上述した技術背景に鑑み、伝熱ろう付において、放熱によって低下する授熱面周縁部に接触する仮組体の部分を加熱し、実質的に授熱面の好適温度領域を拡大する方法およびその関連技術を提供するものである。   In view of the technical background described above, the present invention heats a portion of the temporary assembly that comes into contact with the peripheral portion of the heat transfer surface, which is reduced by heat dissipation in heat transfer brazing, and substantially expands the preferred temperature range of the heat transfer surface. A method and related techniques are provided.

即ち、本発明は下記[1]〜[5]に記載の構成を有する。   That is, this invention has the structure as described in following [1]-[5].

[1]被接合部材の接合界面にろう材を介在させて組み立てた仮組体に、加熱用金型の授熱面を接触させるとともに、前記加熱用金型の周端近傍において、該加熱用金型内に導入した加熱用ガスを金型側面に開口するガス流通路に流通させ、ろう材を溶融して被接合部材をろう付すること特徴とする伝熱ろう付方法。   [1] A heating assembly of a heating mold is brought into contact with a temporary assembly assembled by interposing a brazing material at a joining interface of a member to be joined, and the heating mold is disposed in the vicinity of the peripheral end of the heating mold. A heat transfer brazing method characterized in that a heating gas introduced into a mold is circulated through a gas flow passage that opens on a side surface of the mold, and a brazing material is melted to braze the member to be joined.

[2]前記加熱用ガスはろう付温度よりも高温のガスである前項1に記載の伝熱ろう付方法。   [2] The heat transfer brazing method according to item 1, wherein the heating gas is a gas having a temperature higher than the brazing temperature.

[3]前記加熱用金型は平面視角形であり、該加熱用金型の隅部近傍に導入した加熱用ガスを、隅部に至るガス流通路に流通させる前項1または2に記載の伝熱ろう付方法。   [3] The transmission according to the above item 1 or 2, wherein the heating mold has a square shape in plan view, and the heating gas introduced in the vicinity of the corner of the heating mold is circulated through the gas flow passage leading to the corner. Thermal brazing method.

[4]前記仮組体が、対向配置した2つの部材の間にフィンを挟んでろう付する熱交換器である前項1〜3のうちのいずれか1項に記載の伝熱ろう付方法。   [4] The heat transfer brazing method according to any one of the preceding items 1 to 3, wherein the temporary assembly is a heat exchanger that brazes fins between two members arranged to face each other.

[5]被接合部材の接合界面にろう材を介在させて組み立てた仮組体に接触させる加熱用金型であって、該加熱用金型の周端近傍において側面に排出口を有するガス流通路が設けられていることを特徴とする伝熱ろう付の加熱用金型。   [5] A heating mold to be brought into contact with a temporary assembly assembled by interposing a brazing material at the joining interface of the members to be joined, the gas flow having a discharge port on the side surface in the vicinity of the peripheral end of the heating mold A heat transfer brazing heating mold characterized in that a path is provided.

[1]に記載の伝熱ろう付方法によれば、ガス流通路を流通する加熱用ガスが金型を加熱する。前記ガス流通路は金型の周端近傍において金型側面に開口して設けられており、ガス流通路の位置は放熱によって授熱面温度が低下する周縁の領域に該当する。従って、授熱面の温度低下領域が加熱用ガスで加熱され、仮組体の接合部は授熱面の中央部に接触する部分と周縁部に接触する部分との温度差が小さくなり、授熱面における伝熱ろう付の好適温度領域が実質的に拡大される。そして、授熱面の好適温度領域が拡大されることで金型を小型化することができる。また、金型の小型化によってろう付炉も小型化できる。   According to the heat transfer brazing method described in [1], the heating gas flowing through the gas flow passage heats the mold. The gas flow passage is provided in the vicinity of the peripheral edge of the mold so as to open to the side surface of the mold, and the position of the gas flow passage corresponds to a peripheral region where the heat transfer surface temperature is lowered by heat radiation. Therefore, the temperature decreasing region of the heat transfer surface is heated with the heating gas, and the temperature difference between the portion contacting the central portion of the heat transfer surface and the portion contacting the peripheral portion of the temporary assembly is reduced. The preferred temperature range for heat transfer brazing on the hot surface is substantially enlarged. And a metal mold | die can be reduced in size because the suitable temperature range of a heat-transfer surface is expanded. Also, the brazing furnace can be downsized by downsizing the mold.

[2]に記載の伝熱ろう付方法によれば、加熱用ガスの温度がろう付温度よりも高温であるから仮組体の実体温度を確実に昇温できる。   According to the heat transfer brazing method described in [2], since the temperature of the heating gas is higher than the brazing temperature, the substantial temperature of the temporary assembly can be reliably increased.

[3]に記載の伝熱ろう付方法によれば、平面視四角形の金型において特に温度が低下し易い隅部近傍に加熱用ガスを流通させて好適温度領域を拡大することができる。   According to the heat transfer brazing method described in [3], it is possible to expand the preferable temperature region by circulating the heating gas in the vicinity of the corner where the temperature tends to decrease particularly in the rectangular mold in plan view.

[4]に記載の伝熱ろう付方法によれば、フィンをろう付する熱交換器のろう付において上記効果を奏することができる。   According to the heat transfer brazing method described in [4], the above effect can be achieved in brazing of a heat exchanger for brazing fins.

[5]に記載の伝熱ろう付用金型によれば、ガス流通路に加熱用ガスを流通させることによって金型を加熱することができる。前記ガス流通路は金型の周端近傍において金型側面に排出口が設けられており、ガス流通路の位置は放熱によって授熱面温度が低下する周縁の領域に該当するので、授熱面の温度低下領域を加熱することができる。従って、仮組体の接合部は授熱面の中央部に接触する部分と周縁部に接触する部分との温度差が小さくなり、授熱面における伝熱ろう付の好適温度領域を実質的に拡大することができる。そして、授熱面の好適温度領域が拡大されることで金型を小型化することができる。また、金型の小型化によってろう付炉も小型化できる。   According to the heat transfer brazing mold described in [5], the mold can be heated by circulating the heating gas through the gas flow passage. The gas flow passage is provided with a discharge port on the side surface of the mold in the vicinity of the peripheral edge of the mold, and the position of the gas flow passage corresponds to the peripheral region where the heat transfer surface temperature is reduced by heat radiation. The temperature-lowering region can be heated. Therefore, the temperature difference between the portion that contacts the central portion of the heat transfer surface and the portion that contacts the peripheral portion of the joint portion of the temporary assembly is reduced, and a suitable temperature range for heat transfer brazing on the heat transfer surface is substantially reduced. Can be enlarged. And a metal mold | die can be reduced in size because the suitable temperature range of a heat-transfer surface is expanded. Also, the brazing furnace can be downsized by downsizing the mold.

本発明の伝熱ろう付方法の一例を示す断面図である。It is sectional drawing which shows an example of the heat-transfer brazing method of this invention. 本発明で使用する加熱用金型の平面図である。It is a top view of the metal mold | die for a heating used by this invention. 図2Aの2B−2B線断面図である。It is the 2B-2B sectional view taken on the line of FIG. 2A. 従来の加熱用金型の授熱面における等温線図である。It is an isotherm figure in the heat transfer surface of the conventional heating metal mold | die. 従来の加熱用金型を用いた伝熱ろう付方法を示す断面図である。It is sectional drawing which shows the heat-transfer brazing method using the conventional metal mold | die for a heating.

図1は本発明の伝熱ろう付方法を模式的に示す断面図である。   FIG. 1 is a cross-sectional view schematically showing the heat transfer brazing method of the present invention.

図1に示す熱交換器の仮組体(1)は、底板となる角形の下板(11)と、中央に膨出部(13)を有する上板(12)とを対向させて波形のフィン(15)を挟むことにより、下板(11)と上板(12)との間に形成される冷媒室(14)の内部にフィン(15)を装填したものである。前記仮組体は(1)は、下板(11)と上板(13)の周縁部(16)をろう付するとともに、フィン(15)の上端部および下端部を冷媒室(14)の内面にろう付することにより作製される。前記仮組体(1)において、ろう材の供給方法は限定されない。例えば、下板(11)および上板(13)を心材にろう材をクラッドしたブレージングシートで構成することによって接合部に供給することができる。また、さらにフィン(15)を両面にブレージングシートで構成してもよい。   The temporary assembly (1) of the heat exchanger shown in FIG. 1 has a corrugated lower plate (11) serving as a bottom plate and an upper plate (12) having a bulging portion (13) in the center. The fin (15) is loaded inside the refrigerant chamber (14) formed between the lower plate (11) and the upper plate (12) by sandwiching the fin (15). The temporary assembly (1) brazes the peripheral portion (16) of the lower plate (11) and the upper plate (13), and the upper end and lower end of the fin (15) are connected to the refrigerant chamber (14). It is produced by brazing to the inner surface. In the temporary assembly (1), the method for supplying the brazing material is not limited. For example, the lower plate (11) and the upper plate (13) can be supplied to the joint portion by forming a brazing sheet in which a brazing material is clad in a core material. Further, the fin (15) may be composed of a brazing sheet on both sides.

なお、本発明はろう材の供給方法をブレージングシートに限定するものではない。他のろう材供給方法として、ろう材箔や粉末ろう材のスプレーを例示できる。   In addition, this invention does not limit the supply method of a brazing material to a brazing sheet. Other brazing material supply methods include spraying brazing material foil and powder brazing material.

前記冷媒室(14)におけるフィン(15)の接合部はライン状であるが、フィン(15)は波形であり多数の上端部および下端部を有しているので、下板(11)および上板(13)のフィン側の面の全域に所定間隔で複数の接合部が存在している。このような仮組体(1)を伝熱ろう付においては、前記下板(11)および上板(13)の全面を加熱する。   The joints of the fins (15) in the refrigerant chamber (14) are linear, but the fins (15) are corrugated and have a number of upper and lower ends, so that the lower plate (11) and the upper A plurality of joints exist at predetermined intervals over the entire surface of the fin side of the plate (13). In the heat transfer brazing of such a temporary assembly (1), the entire surfaces of the lower plate (11) and the upper plate (13) are heated.

図1〜2Bに示すように、加熱用金型(2)は平面視長方形の厚板からなる同形の下金型(20)および上金型(30)で構成されて、それぞれのヒータ(図示省略)と熱的に結合されることによって加熱される。   As shown in FIGS. 1 to 2B, the heating mold (2) is composed of a lower mold (20) and an upper mold (30) having the same shape made of a thick plate having a rectangular shape in plan view. It is heated by being thermally coupled to (omitted).

図2Aおよび2Bに示すように、前記下金型(20)および上金型(30)は、四隅の近傍において、授熱面(21)(31)の対向面(26)(36)に開口する有底の円形孔(22)(32)と、これらの円形孔(22)(32)の底部で連通して金型側面に開口するガス流通路(24)(34)とを有している。前記ガス流通路(24)(34)は授熱面(21)(31)と略平行に延び、平面視長方形の金型の隅部に開口することによってガス排出口(25)(35)を形成している。また、前記円形孔(22)(32)の開口部はガス流通路(24)(34)への導入口(23)(33)を形成している。さらに、前記円形孔(22)(32)の導入口(23)(33)はパイプを介して図外のガス供給部に接続され、該ガス供給部においてガスの供給および停止の切り換え、ガスの流速調節が行われる。   As shown in FIGS. 2A and 2B, the lower mold (20) and the upper mold (30) have openings in the opposing surfaces (26) and (36) of the heat transfer surfaces (21) and (31) in the vicinity of the four corners. Bottomed circular holes (22), (32), and gas flow passages (24), (34) communicating with the bottoms of these circular holes (22), (32) and opening to the side of the mold Yes. The gas flow passages (24) and (34) extend substantially parallel to the heat transfer surfaces (21) and (31), and open at the corners of a rectangular mold in plan view, thereby providing gas discharge ports (25) and (35). Forming. The openings of the circular holes (22) and (32) form inlets (23) and (33) to the gas flow passages (24) and (34). Furthermore, the inlets (23) and (33) of the circular holes (22) and (32) are connected to a gas supply unit (not shown) via pipes, and the gas supply unit switches between gas supply and stop, Flow rate adjustment is performed.

前記仮組体(1)の伝熱ろう付は、前記下金型(20)の授熱面(21)を下板(11)に接触させるとともに、上金型(30)の授熱面(31)を上板(12)の膨出部(13)に接触させ、仮組体(1)を上下方向に金型で挟み付けるように組み立てて行う。   In the heat transfer brazing of the temporary assembly (1), the heat transfer surface (21) of the lower mold (20) is brought into contact with the lower plate (11) and the heat transfer surface of the upper mold (30) ( 31) is brought into contact with the bulging portion (13) of the upper plate (12), and the temporary assembly (1) is assembled so as to be sandwiched between the upper and lower molds.

伝熱ろう付用金型は加熱されているが、周縁部から放熱するので授熱面の温度は均一ではなく周縁部は中央部よりも温度が低い。図3は四角形の金型(50)の中央部にヒータを接続したときの授熱面(51)における等温線図の例であり、中心は温度が高く端部に行くほど温度が低いことを示している。図示例の授熱面(51)は四角形であるから、特に隅部(52)の温度が低くなっている。このような温度分布をもつ金型を用いて良好なろう付を達成するには、授熱面温度が所定温度(55)を下回る周縁部の温度低下領域(53)を避けて中央部の好適温度領域(54)だけが仮組体(1)の接合部に接触するようにしなければならない。このため、授熱面(51)の温度低下領域(53)を見込んだ寸法の大きい金型を使用することになる。例えば、図4は図1の仮組体(1)の上下を前記金型(50)で挟んで伝熱ろう付する場合、接合部の寸法がW×Lの下板(11)に対して授熱面(51)の寸法が1.2W×1.2L程度の大きい金型(50)が必要となる。また、金型(50)が大きくなることでろう付炉も大型化する。   Although the heat transfer brazing mold is heated, since the heat is radiated from the peripheral portion, the temperature of the heat transfer surface is not uniform and the peripheral portion has a lower temperature than the central portion. FIG. 3 is an example of an isotherm diagram on the heat transfer surface (51) when a heater is connected to the center of the square mold (50). The temperature is higher at the center and lower at the end. Show. Since the heat transfer surface (51) in the illustrated example is rectangular, the temperature of the corner (52) is particularly low. In order to achieve good brazing using a mold having such a temperature distribution, avoid the temperature drop region (53) at the peripheral edge where the heat transfer surface temperature is lower than the predetermined temperature (55). Only the temperature zone (54) must be in contact with the joint of the temporary assembly (1). For this reason, a metal mold having a large size is used in anticipation of the temperature reduction region (53) of the heat transfer surface (51). For example, FIG. 4 shows the case where the upper and lower parts of the temporary assembly (1) in FIG. A large mold (50) having dimensions of the heat transfer surface (51) of about 1.2 W × 1.2 L is required. In addition, the larger the mold (50), the larger the brazing furnace.

本発明は、放熱による授熱面(21)(31)の温度低下領域に該当する部分において、金型(20)(30)内に加熱用ガス(G)を流通させることにより金型を加熱し、授熱面温度を均一化する。   The present invention heats the mold by circulating the heating gas (G) in the mold (20) (30) in the portion corresponding to the temperature drop region of the heat transfer surface (21) (31) due to heat radiation. And uniformize the heat transfer surface temperature.

図1に示すように、下金型(20)において、導入口(23)から加熱用ガス(G)を供給すると、加熱用ガス(G)は円形孔(22)を通じてガス流通路(24)に入り、ガス排出口(25)から排出される。加熱用ガス(G)がガス流通路(24)を通る間に授熱面(21)の周縁部の温度低下領域を加熱し、低下した授熱面温度を回復させる。前記作用によって、仮組体(1)の下板(11)側の接合部は授熱面(21)の中央部に接触する部分と周縁部に接触する部分との温度差が小さくなり、授熱面(21)の温度差による不均一加熱が解消されて均等に加熱される。即ち、授熱面(21)における伝熱ろう付の好適温度領域が実質的に広がることになる。そして、授熱面(21)の好適温度領域が拡大されることで金型を小型化することができる。例えば、仮組体(1)の下板(11)において均熱が必要な領域(接合部)がW×Lの四角形である場合、加熱用ガス(G)を流通させなければ1.2W×1.2Lの授熱面(21)が必要であるが、4つの隅部に加熱用ガスを流通させることによって授熱面(21)を1.1W×1.1Lに小型化することができる。また、金型が小型化されればろう付炉も小型化できる。   As shown in FIG. 1, in the lower mold (20), when the heating gas (G) is supplied from the introduction port (23), the heating gas (G) flows through the circular hole (22) into the gas flow path (24). And is discharged from the gas outlet (25). While the heating gas (G) passes through the gas flow passage (24), the temperature decreasing region at the peripheral edge of the heat transfer surface (21) is heated to recover the lowered heat transfer surface temperature. Due to the above action, the temperature difference between the portion of the temporary assembly (1) on the lower plate (11) side that contacts the central portion of the heat transfer surface (21) and the portion that contacts the peripheral portion is reduced. The uneven heating due to the temperature difference of the hot surface (21) is eliminated and the heating is evenly performed. That is, the preferred temperature range for heat transfer brazing on the heat transfer surface (21) is substantially expanded. And a metal mold | die can be reduced in size because the suitable temperature range of a heat-transfer surface (21) is expanded. For example, if the region (joining part) that requires soaking in the lower plate (11) of the temporary assembly (1) is a square of W × L, 1.2 W × unless the heating gas (G) is circulated. Although a 1.2 L heat transfer surface (21) is required, the heat transfer surface (21) can be reduced to 1.1 W × 1.1 L by circulating a heating gas in the four corners. . Further, if the mold is downsized, the brazing furnace can be downsized.

なお、上金型(30)についても、下金型(20)と同じく加熱用ガス(G)を導入できるが、上板(12)側の接合部は下板(11)側よりも小さく接合部がガス流通路(34)の内側に収まるので、本例では加熱用ガス(G)は導入していない。図示例の仮組体(1)の伝熱ろう付においては、上板(12)側の接合部寸法に合わせて上金型(30)を小型化することができ、小型化によって狭くなった好適温度領域は、下金型(20)と同じく、ガス流通路を設けて加熱用ガス(G)の導入によって拡大することができる。   As for the upper mold (30), the heating gas (G) can be introduced in the same manner as the lower mold (20), but the upper plate (12) side joint is smaller than the lower plate (11) side. In this example, the heating gas (G) is not introduced because the portion is accommodated inside the gas flow passage (34). In the heat transfer brazing of the temporary assembly (1) in the example shown in the figure, the upper mold (30) can be reduced in size according to the dimensions of the joint on the upper plate (12) side, and narrowed due to the reduction in size. Like the lower mold (20), the preferred temperature range can be expanded by introducing a gas for heating (G) by providing a gas flow passage.

本発明において、ガス流通路の形成位置は隅部に限定されるものではない。加熱用金型の平面形状、即ち授熱面の形状や寸法に応じて温度が低下しやすい位置に任意の数のガス流通路を設けて授熱面の好適温度領域を拡大することができる。角形、特に四角形の授熱面は隅部の温度が低下しやすいので、隅部にガス流通路を設けて加熱用ガスを流通させることによって好適温度領域を拡大することができる。   In the present invention, the formation position of the gas flow passage is not limited to the corner. An arbitrary number of gas flow passages can be provided at a position where the temperature is likely to be lowered according to the planar shape of the heating mold, that is, the shape and dimensions of the heat transfer surface, so that the preferable temperature region of the heat transfer surface can be expanded. Since the temperature at the corner of the rectangular, particularly quadrangular heat transfer surface is likely to decrease, the preferred temperature region can be expanded by providing a gas flow passage at the corner to allow the heating gas to flow.

また、前記ガス流通路に加熱用ガスを供給するための導入口の位置は限定されないが、図示例のように授熱面の対向面に開口する孔を穿設すればガス流通路への連通が容易であり、このような態様が望ましい。また、ガス流通路は授熱面に平行であることにも限定されず、金型の側面と授熱面の対向面とに開口する斜孔であってもよい。   Further, the position of the inlet for supplying the heating gas to the gas flow passage is not limited. However, if a hole is formed in the opposite surface of the heat transfer surface as shown in the drawing, the communication to the gas flow passage is possible. Such an embodiment is desirable. Further, the gas flow path is not limited to being parallel to the heat transfer surface, and may be a slant hole that opens to the side surface of the mold and the surface opposite to the heat transfer surface.

加熱用ガス(G)の温度は仮組体(1)の実体温度を昇温できる限り限定されない。ただし、確実に仮組体の(1)実体温度をろう付温度にまで昇温するには、ろう付温度よりも高温であることが好ましい。具体的には、ろう付温度よりも5〜30℃高いガスを流通させることが好ましい。前記加熱用ガス(G)を得る方法として、金型(20)(30)との接触時間が長くなるようなガス供給路を設定したり、ヒータの近傍を通るガス供給路を設定する方法を例示できる。また、予め加熱したガスを供給しても良い。予め加熱したガスを用いれば、金型の形状やヒータの位置や種類等に左右されることなくガス温度を制御できる。   The temperature of the heating gas (G) is not limited as long as the substantial temperature of the temporary assembly (1) can be raised. However, in order to reliably raise the (1) solid temperature of the temporary assembly to the brazing temperature, the temperature is preferably higher than the brazing temperature. Specifically, it is preferable to distribute a gas that is 5 to 30 ° C. higher than the brazing temperature. As a method of obtaining the heating gas (G), a method of setting a gas supply path that makes the contact time with the molds (20) and (30) longer, or a method of setting a gas supply path that passes near the heater is used. It can be illustrated. Further, a preheated gas may be supplied. If a preheated gas is used, the gas temperature can be controlled without being influenced by the shape of the mold, the position and type of the heater, and the like.

前記ガス(G)の種類は限定されないが、接合部の酸化を抑制して良好なろう付を達成するために、窒素ガスやアルゴンガス等の不活性ガスを使用することが好ましい。また仮組体(1)および加熱用金型(20)を不活性ガス雰囲気中に配置して伝熱ろう付を不活性ガス雰囲気中で行うことも好ましい。   The type of the gas (G) is not limited, but it is preferable to use an inert gas such as nitrogen gas or argon gas in order to suppress the oxidation of the joint and achieve good brazing. It is also preferable to place the temporary assembly (1) and the heating mold (20) in an inert gas atmosphere and perform heat transfer brazing in the inert gas atmosphere.

本発明の伝熱ろう付方法は仮組体の対向する2面に加熱用金型を接触させる場合に限定されない。加熱用金型の個数や接触位置は接合部の位置や形状に対応して任意に設定することができる。また、複数個の加熱用金型を用いる伝熱ろう付において、少なくとも1個の金型の周端近傍において側面の排出口に通じるガス流通路に加熱用ガスを流通させるろう付は本発明に含まれる。   The heat transfer brazing method of the present invention is not limited to the case where the heating mold is brought into contact with two opposing surfaces of the temporary assembly. The number and contact position of the heating mold can be arbitrarily set according to the position and shape of the joint. Further, in the heat transfer brazing using a plurality of heating dies, brazing that causes the heating gas to flow through the gas flow passage leading to the discharge port on the side surface in the vicinity of the peripheral end of at least one die is included in the present invention. included.

本発明の伝熱ろう付方法は、接合面積の大きいろう付品や複数の接合部が広い領域に分散しているろう付品のように、授熱面積の大きい加熱用金型を用いるろう付に適している。授熱面積の大きい加熱用金型は中心部と周縁部とで温度差が生じやすいので、本発明の方法を適用する意義が大きい。   The heat transfer brazing method of the present invention uses a heating die having a large heat transfer area, such as a brazed product having a large joint area or a brazed product in which a plurality of joints are dispersed in a wide area. Suitable for A heating mold having a large heat transfer area is likely to cause a temperature difference between the central portion and the peripheral portion, so that it is significant to apply the method of the present invention.

本発明は、接合面積が大きく、授熱面の面積の大きい加熱用金型を用いる伝熱ろう付品の製造に適し、特に熱交換器のろう付に好適に利用できる。   INDUSTRIAL APPLICABILITY The present invention is suitable for manufacturing a heat transfer brazing product using a heating mold having a large bonding area and a large heat transfer surface area, and can be suitably used particularly for brazing of a heat exchanger.

1…仮組体
2…加熱用金型
11…下板(被接合部材)
12…上板(被接合部材)
15…フィン(被接合部材)
20…下金型
30…上金型
21、31…授熱面
22、32…円形孔
23、33…ガス導入口
24、34…ガス流通路
25、35…ガス排出口
26、36…対向面
G…加熱用ガス
1 ... Temporary assembly
2 ... heating mold
11 ... Lower plate (joined member)
12 ... Upper plate (members to be joined)
15 ... Fin (member to be joined)
20 ... Lower mold
30 ... Upper mold
21, 31 ... Heat transfer surface
22, 32 ... Circular holes
23, 33 ... Gas inlet
24, 34 ... Gas flow passage
25, 35 ... Gas outlet
26, 36 ... Opposing surface G ... Gas for heating

Claims (5)

被接合部材の接合界面にろう材を介在させて組み立てた仮組体に、ヒータと熱的に結合されることによって加熱された加熱用金型の授熱面を接触させるとともに、前記加熱用金型の周端近傍において、該加熱用金型内に導入した加熱用ガスを金型側面に開口するガス流通路に流通させ、ろう材を溶融して被接合部材をろう付すること特徴とする伝熱ろう付方法。 A heating assembly of a heating mold heated by being thermally coupled to a heater is brought into contact with a temporary assembly assembled by interposing a brazing filler metal at a bonding interface of the members to be bonded, and the heating mold In the vicinity of the peripheral edge of the mold, the heating gas introduced into the heating mold is circulated through a gas flow passage that opens on the side of the mold, and the brazing material is melted to braze the members to be joined. Heat transfer brazing method. 前記加熱用ガスはろう付温度よりも高温のガスである請求項1に記載の伝熱ろう付方法。   The heat transfer brazing method according to claim 1, wherein the heating gas is a gas having a temperature higher than a brazing temperature. 前記加熱用金型は平面視角形であり、該加熱用金型の隅部近傍に導入した加熱用ガスを、隅部に至るガス流通路に流通させる請求項1または2に記載の伝熱ろう付方法。   The heat transfer brazing according to claim 1 or 2, wherein the heating mold has a square shape in plan view, and the heating gas introduced in the vicinity of the corner of the heating mold is circulated through the gas flow passage leading to the corner. How to attach. 前記仮組体が、対向配置した2つの部材の間にフィンを挟んでろう付する熱交換器である請求項1〜3のうちのいずれか1項に記載の伝熱ろう付方法。   The heat transfer brazing method according to any one of claims 1 to 3, wherein the temporary assembly is a heat exchanger that brazes fins between two members arranged to face each other. ヒータと熱的に結合されることによって加熱され、被接合部材の接合界面にろう材を介在させて組み立てた仮組体に接触させる加熱用金型であって、該加熱用金型の周端近傍において側面に排出口を有するガス流通路が設けられていることを特徴とする伝熱ろう付の加熱用金型。 A heating mold that is heated by being thermally coupled to a heater and is brought into contact with a temporary assembly that is assembled with a brazing material interposed at a bonding interface of the members to be bonded, the peripheral end of the heating mold A heating mold for heat transfer brazing, characterized in that a gas flow passage having a discharge port on a side surface is provided in the vicinity.
JP2013249202A 2013-12-02 2013-12-02 Heat transfer brazing method Expired - Fee Related JP6215025B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013249202A JP6215025B2 (en) 2013-12-02 2013-12-02 Heat transfer brazing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013249202A JP6215025B2 (en) 2013-12-02 2013-12-02 Heat transfer brazing method

Publications (2)

Publication Number Publication Date
JP2015104752A JP2015104752A (en) 2015-06-08
JP6215025B2 true JP6215025B2 (en) 2017-10-18

Family

ID=53435202

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013249202A Expired - Fee Related JP6215025B2 (en) 2013-12-02 2013-12-02 Heat transfer brazing method

Country Status (1)

Country Link
JP (1) JP6215025B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITUA20162821A1 (en) * 2016-04-22 2017-10-22 Advanced Techne S R L HEATER FOR ELECTRONICS OF POWER, RELATED PRODUCTION PROCEDURE, AND MACHINE TO IMPLEMENT THIS PROCEDURE.

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58137568U (en) * 1982-03-15 1983-09-16 株式会社タムラ製作所 Preheating device for soldering
JP2001319999A (en) * 2000-05-12 2001-11-16 Tokyo Daiichi Shoko:Kk Manufacturing method of radiator
JP2008027954A (en) * 2006-07-18 2008-02-07 Furukawa Electric Co Ltd:The Process for producing electronic component mounting substrate
JPWO2012070264A1 (en) * 2010-11-23 2014-05-19 三菱電機株式会社 Reflow soldering apparatus and reflow soldering method
JP5343988B2 (en) * 2011-01-31 2013-11-13 株式会社デンソー Brazing equipment

Also Published As

Publication number Publication date
JP2015104752A (en) 2015-06-08

Similar Documents

Publication Publication Date Title
JP2007529707A (en) Micro heat exchanger for fuel cell and manufacturing method
US6675852B2 (en) Platen for use in laminating press
CN105723176B (en) Method for producing the plate heat exchanger with multiple heat exchanger blocks connected by solder coating supporter
KR101644812B1 (en) Plate type heat exchanger with cutted plate
TWM486246U (en) Isothermal plate with heat sink
JP2008166423A (en) Cooling tube and manufacturing method therefor
JP2008283067A (en) Al-aln composite material, manufacturing method thereof and heat exchanger
CN107924891A (en) Cooling body and its manufacture method for electronic unit
CN107350593A (en) A kind of clip brazing device for carrying the type of cooling
JP2020070938A (en) Plate type heat exchanger and hot water device including the same
JP4826849B2 (en) Al-AlN composite material, method for producing Al-AlN composite material, and heat exchanger
JP6215025B2 (en) Heat transfer brazing method
KR101321344B1 (en) The method for making a heat exchanger which is used in heater
CN105953622A (en) Integrally-brazed plate type heat exchanger
JP6239997B2 (en) Cooler
JP6062211B2 (en) Brazing method and brazing apparatus
KR101992482B1 (en) The heat exchangers using a 3D printer
CN107598404A (en) The manufacture method and its structure of the cavity of temperature equalization system
JP6255193B2 (en) Heat transfer brazing method
US11440080B2 (en) Method for producing a heat exchanger
KR102139943B1 (en) A plate heat exchanger of welding type
JP6207924B2 (en) Resin member welding equipment
JP6118637B2 (en) Heat transfer brazing method
CN211961711U (en) Composite bottom pot
JP2015200445A (en) Heat exchanger and method of manufacturing heat exchanger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170616

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170704

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170818

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170920

R150 Certificate of patent or registration of utility model

Ref document number: 6215025

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D02

LAPS Cancellation because of no payment of annual fees