JP6254475B2 - Epoxy resin curing agent, production method, composition, cured product and use thereof - Google Patents

Epoxy resin curing agent, production method, composition, cured product and use thereof Download PDF

Info

Publication number
JP6254475B2
JP6254475B2 JP2014072397A JP2014072397A JP6254475B2 JP 6254475 B2 JP6254475 B2 JP 6254475B2 JP 2014072397 A JP2014072397 A JP 2014072397A JP 2014072397 A JP2014072397 A JP 2014072397A JP 6254475 B2 JP6254475 B2 JP 6254475B2
Authority
JP
Japan
Prior art keywords
epoxy resin
general formula
curing agent
carbon atoms
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014072397A
Other languages
Japanese (ja)
Other versions
JP2015193738A (en
Inventor
真司 恩田
真司 恩田
航 高橋
航 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Air Water Inc
Original Assignee
Air Water Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Air Water Inc filed Critical Air Water Inc
Priority to JP2014072397A priority Critical patent/JP6254475B2/en
Publication of JP2015193738A publication Critical patent/JP2015193738A/en
Application granted granted Critical
Publication of JP6254475B2 publication Critical patent/JP6254475B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Epoxy Resins (AREA)

Description

本発明は、エポキシ樹脂の硬化剤、およびそれを用いた組成物、硬化物、その用途に関する。さらに詳しくは、アリーロキシシランオリゴマーを用いたエポキシ樹脂の硬化剤、およびそれを用いた組成物、硬化物、その用途に関する。   The present invention relates to an epoxy resin curing agent, a composition using the same, a cured product, and use thereof. More specifically, the present invention relates to an epoxy resin curing agent using an aryloxysilane oligomer, a composition using the same, a cured product, and use thereof.

近年の情報通信機器の高機能化、高密度化などの性能向上にしたがい、プリント配線板にも、それに適応した性能が求められている。プリント配線板を形成する絶縁材料には、銅張積層板、層間絶縁膜などの周辺材料が用いられるが、価格面や接着性などの観点からエポキシ系の材料が汎用されている。とりわけ近年は電子機器の薄型化、小型化、高性能化に合わせて配線板の多層化が進んでいる。   In accordance with recent performance improvements such as higher functionality and higher density of information communication equipment, printed wiring boards are also required to have performance adapted to them. Peripheral materials such as copper-clad laminates and interlayer insulation films are used as insulating materials for forming printed wiring boards, but epoxy materials are widely used from the viewpoints of price and adhesion. In particular, in recent years, multilayered wiring boards have been developed in accordance with the reduction in thickness, size, and performance of electronic devices.

近年進む薄型化に対しては低反りの観点で材料の高弾性率化が求められており、一方で回路の高集積化にともなうデバイスの発熱や高温環境下での使用などの観点から材料の高耐熱性の要求も高まっている。このような場合、材料のガラス転移温度を高める設計を行うことが一般的である。   In recent years, with the trend toward thinning, higher elastic modulus is required from the viewpoint of low warpage. On the other hand, from the viewpoint of heat generation of devices due to high integration of circuits and use in high temperature environments, The demand for high heat resistance is also increasing. In such a case, it is common to design to increase the glass transition temperature of the material.

また、近年は高速伝送の観点で低誘電損失を実現する材料への要求も高まっている。従来のフェノール類のような活性プロトンを持つ硬化剤を用いるとアルコール性水酸基を有する硬化物を与えるがこの水酸基が誘電損失をもたらすため、水酸基の低減化を図るアプローチが試みられている。たとえば、多価フェノール類をアシル基で保護した硬化剤を使用するアプローチが提案されている。(特許文献1〜5)   In recent years, there has been an increasing demand for materials that achieve low dielectric loss from the viewpoint of high-speed transmission. When a conventional curing agent having active protons such as phenols is used, a cured product having an alcoholic hydroxyl group is obtained. However, since this hydroxyl group causes dielectric loss, an approach for reducing the hydroxyl group has been attempted. For example, an approach using a curing agent obtained by protecting a polyphenol with an acyl group has been proposed. (Patent Documents 1 to 5)

特開平7−53675JP-A-7-53675 特開平8−208807JP-A-8-208807 特開平10−168283JP-A-10-168283 特開2005−145911JP-A-2005-145911 WO2013/081081WO2013 / 081081

シリル保護型オリゴマーは硬化が進みやすいが、ガラス転移温度を高める設計には制約が生じる。具体的には、2官能フェノール類と2官能シラン類とのオリゴマー状反応物を硬化剤とすることで低伝送損失は実現できるが、耐熱性付与のため3官能型の原料を併用すると反応物がゲル化しやすくなるため高い使用比で3官能型原料を併用することができず、耐熱性の向上には限度があった。   Although silyl-protected oligomers are easy to cure, there are limitations to the design that increases the glass transition temperature. Specifically, low transmission loss can be realized by using an oligomeric reaction product of a bifunctional phenol and a bifunctional silane as a curing agent, but if a trifunctional raw material is used in combination to provide heat resistance, the reaction product Since it becomes easy to gel, trifunctional raw materials cannot be used together at a high use ratio, and there is a limit to improvement in heat resistance.

本発明者らは、上記材料に求められるさらなる誘電特性と耐熱性の改善とその両立について精意研究を行った結果、特定の2官能フェノール類と2官能シラン類より誘導したアリーロキシシランオリゴマーでなる硬化剤が、従来の硬化剤を上回る特性を発揮する事を見出し本発明に到達したものである。具体的には、低誘電率、低誘電正接、高ガラス転移温度を示すものであり、これらの特性は、半導体封止材料をはじめとする層間絶縁材料としてきわめて有用なものである。   As a result of extensive research on further improvement of dielectric properties and heat resistance required for the above materials and their compatibility, the present inventors have found that aryloxysilane oligomers derived from specific bifunctional phenols and bifunctional silanes are used. It has been found that the curing agent to be used exhibits characteristics superior to those of conventional curing agents, and has reached the present invention. Specifically, it exhibits a low dielectric constant, a low dielectric loss tangent, and a high glass transition temperature, and these characteristics are extremely useful as an interlayer insulating material including a semiconductor sealing material.

本発明は、下記一般式(1)で示される、2官能フェノール化合物由来の構造を有し、水酸基およびアリーロキシシリル基を反応官能基とする当量が200〜400g/eqの範囲であって、該2官能フェノール化合物の分子量が250〜400の範囲であるアリーロキシシランオリゴマーからなるエポキシ樹脂硬化剤を提供する。 The present invention is represented by the following general formula (1), 2 has a structure derived from the bifunctional phenol compound, equivalent to a hydroxyl group and aryloxy silyl group and reactive functional groups in the range of 200 to 400 g / eq, the molecular weight of the difunctional phenol compound is in the range of 250 to 400, to provide an epoxy resin curing agent consisting of aryloxyalkyl oligomer.

(式中、Rはそれぞれ同一または異なる炭素数1〜12の炭化水素基であり、Arは2官能フェノール化合物残基、nは1〜20の整数である。 (In the formula, R 1 is the same or different hydrocarbon group having 1 to 12 carbon atoms, Ar is a bifunctional phenol compound residue, and n is an integer of 1 to 20.)

前記一般式(1)のArが、下記一般式(2)または下記一般式(3)であるエポキシ樹脂硬化剤は、本発明の好ましい態様である。   The epoxy resin curing agent in which Ar in the general formula (1) is the following general formula (2) or the following general formula (3) is a preferred embodiment of the present invention.

(式中、Arはそれぞれ同一または異なる炭素数1〜4のアルキル基、メトキシ基、フッ素が1〜4個結合してよいベンゼン環、Arはそれぞれ同一または異なる炭素数1〜4のアルキル基、メトキシ基、フッ素が1〜3個結合してよいベンゼン環、Xは直接結合または炭素数5〜15で置換基があってよい5〜7員環炭化水素を構成する2価の炭素原子、Xはそれぞれ同一または異なる直接結合、炭素数1〜15の炭化水素を構成する2価の炭素原子、または酸素原子である。) (In the formula, Ar 1 is the same or different alkyl group having 1 to 4 carbon atoms, methoxy group, benzene ring to which 1 to 4 fluorine atoms may be bonded, Ar 2 is the same or different alkyl group having 1 to 4 carbon atoms, respectively. Group, methoxy group, benzene ring to which 1 to 3 fluorine atoms may be bonded, X 1 is a divalent carbon constituting a direct bond or a 5- to 7-membered ring hydrocarbon having 5 to 15 carbon atoms and optionally having a substituent. Atoms and X 2 are the same or different direct bonds, divalent carbon atoms constituting an hydrocarbon having 1 to 15 carbon atoms, or oxygen atoms.)

前記一般式(1)で示される2官能フェノール化合物が、下記一般式(4)または一般式(5)、一般式(6)のいずれかでの構造であるエポキシ樹脂硬化剤は、本発明の好ましい態様である。   The epoxy resin curing agent in which the bifunctional phenol compound represented by the general formula (1) has a structure of any one of the following general formula (4), general formula (5), and general formula (6) This is a preferred embodiment.

(式中、R、R、R、Rはメチル基であり、R、Rは水素原子、炭素数1〜5のアルキル基、フェニル基、ナフチル基であり、a、b、c、dは0〜4であり、eは0〜10であり、f、gは0〜3である。) (In the formula, R 2 , R 3 , R 4 and R 5 are methyl groups, R 6 and R 7 are hydrogen atoms, alkyl groups having 1 to 5 carbon atoms, phenyl groups and naphthyl groups, and a, b , C and d are 0 to 4, e is 0 to 10, and f and g are 0 to 3.)

また本発明は、前記一般式(1)が、下記一般式(7)で示されるジアルコキシシラン化合物と一般式(8)で示される2官能フェノールを縮合させて合成するエポキシ樹脂硬化剤の製造方法を提供する。   The present invention also provides an epoxy resin curing agent in which the general formula (1) is synthesized by condensing a dialkoxysilane compound represented by the following general formula (7) and a bifunctional phenol represented by the general formula (8). Provide a method.

(式中、R、Arは式(1)と同じであり、Rはそれぞれ同一または異なる炭素数1〜4のアルキル基である。) (Wherein R 1 and Ar are the same as in formula (1), and R 9 is the same or different alkyl group having 1 to 4 carbon atoms.)

また本発明は、前記したエポキシ樹脂硬化剤とエポキシ樹脂とを含むエポキシ樹脂組成物を提供する。   Moreover, this invention provides the epoxy resin composition containing an above described epoxy resin hardening | curing agent and an epoxy resin.

前記エポキシ樹脂組成物が、さらに硬化促進剤を含むエポキシ樹脂組成物は本発明の好ましい態様である。   An epoxy resin composition in which the epoxy resin composition further contains a curing accelerator is a preferred embodiment of the present invention.

前記エポキシ樹脂組成物が、さらに無機充填材を含むエポキシ樹脂組成物は本発明の好ましい態様である。   An epoxy resin composition in which the epoxy resin composition further contains an inorganic filler is a preferred embodiment of the present invention.

また本発明は、前記エポキシ樹脂組成物を熱硬化してなるエポキシ樹脂硬化物を提供する。
さらに本発明は、前記エポキシ樹脂組成物で作成された層間絶縁材料を提供する。
Moreover, this invention provides the epoxy resin hardened | cured material formed by thermosetting the said epoxy resin composition.
Furthermore, this invention provides the interlayer insulation material created with the said epoxy resin composition.

本発明により、優れた誘電特性と耐熱性を併せ持つアリーロキシシランオリゴマーでなるエポキシ樹脂硬化剤、およびその製造方法が提供される。また本発明により、低誘電率、低誘電正接、および高ガラス転移温度を満たすエポキシ樹脂硬化剤、およびそれを用いた組成物、並びにその硬化物が提供される。   The present invention provides an epoxy resin curing agent comprising an aryloxysilane oligomer having both excellent dielectric properties and heat resistance, and a method for producing the same. The present invention also provides an epoxy resin curing agent that satisfies a low dielectric constant, a low dielectric loss tangent, and a high glass transition temperature, a composition using the same, and a cured product thereof.

実施例1で得られたフェノキシシランオリゴマーのNMRチャートである。2 is an NMR chart of the phenoxysilane oligomer obtained in Example 1. 実施例2で得られたフェノキシシランオリゴマーのNMRチャートである。3 is an NMR chart of the phenoxysilane oligomer obtained in Example 2. 実施例3で得られたフェノキシシランオリゴマーのNMRチャートである。3 is an NMR chart of the phenoxysilane oligomer obtained in Example 3.

本発明は、2官能フェノール化合物由来の構造を有し、反応官能基当量(水酸基およびアリーロキシシリル基が反応官能基)が200〜400g/eqの範囲であって、該2官能フェノール化合物の分子量が250〜400の範囲であるアリーロキシシランオリゴマーからなる、前記一般式(1)で示されるエポキシ樹脂硬化剤を提供する。 The present invention has a structure derived from bifunctional phenol compound, reactive functional group equivalent (hydroxyl group and aryloxy silyl group reactive functional group) is in the range of 200 to 400 g / eq, molecular weight of the difunctional phenol compound There is a range of 250 to 400, consisting of aryloxy silane oligomer, to provide an epoxy resin curing agent represented by the general formula (1).

本発明で使用されるエポキシ樹脂硬化剤は、前記一般式(1)の基本骨格を有するアリーロキシシランオリゴマーを50〜100wt%の割合で含むものであり、式中のRはそれぞれ同一または異なっていてもよく、炭素数1〜12の炭化水素基であり、例えば、メチル、エチル、イソプロピル、n−プロピル、イソブチル、n−ブチル、sec−ブチル、tert―ブチル、2−エチルヘキシル、シクロヘキシル、ベンジル、ビニルなどの置換または非置換のアルキル基、フェニル、2−、3−または4−メチルフェニル、2−、3−または4−メチルフェニル、2−、3−または4−エチルフェニル、2−、3−または4−イソプロピルフェニル、2−、3−または4−イソブチルフェニル、2−、3−または4−tert−ブチルフェニル、2−、3−または4−フェニルフェニル、α−またはβ−ナフチルなどの置換または非置換のアリール基を挙げることができる。Rの種類を変えることにより硬化速度や硬化物の誘電特性を調整することができるが、原料の入手容易性を考慮するとRはメチル基またはフェニル基であることが好ましい。 The epoxy resin curing agent used in the present invention contains an aryloxysilane oligomer having the basic skeleton of the general formula (1) in a proportion of 50 to 100 wt%, and R 1 in the formula is the same or different. And a hydrocarbon group having 1 to 12 carbon atoms such as methyl, ethyl, isopropyl, n-propyl, isobutyl, n-butyl, sec-butyl, tert-butyl, 2-ethylhexyl, cyclohexyl, benzyl Substituted or unsubstituted alkyl groups such as vinyl, phenyl, 2-, 3- or 4-methylphenyl, 2-, 3- or 4-methylphenyl, 2-, 3- or 4-ethylphenyl, 2-, 3- or 4-isopropylphenyl, 2-, 3- or 4-isobutylphenyl, 2-, 3- or 4-tert-butylphenyl Mention may be made of substituted or unsubstituted aryl groups such as phenyl, 2-, 3- or 4-phenylphenyl, α- or β-naphthyl. Although the curing rate and the dielectric properties of the cured product can be adjusted by changing the type of R 1 , it is preferable that R 1 is a methyl group or a phenyl group in view of the availability of raw materials.

アリーロキシシランオリゴマーの合成は、特開2005−145911号公報(特許文献4)に従い、2官能フェノール類とジアルコキシシラン類との反応により合成することが可能である。反応によりアルコール類が副生するが、合成上の観点から留去が容易なアルコールが副生するアルコキシシラン、具体的には、ジエトキシジメチルシラン、ジプロポキシジメチルシラン、ジブトキシジメチルシラン、ジメトキシメチルフェニルシラン、ジメトキシジフェニルシランなどが例示される。なお、ジアルコキシシラン類による多価フェノール類のシリル化において、多価フェノール類の水酸基1当量に対しジアルコキシシラン類のアルコキシシリル基が0.5〜1.5当量、特に0.7〜1.0当量となるような原料比でシリル化を行うのが特性上の観点から好ましい。   The aryloxysilane oligomer can be synthesized by a reaction between a bifunctional phenol and a dialkoxysilane according to Japanese Patent Application Laid-Open No. 2005-145911 (Patent Document 4). Alcohols are produced as a by-product in the reaction, but alkoxysilanes that produce alcohol as a by-product from the viewpoint of synthesis, such as diethoxydimethylsilane, dipropoxydimethylsilane, dibutoxydimethylsilane, dimethoxymethyl Examples include phenylsilane and dimethoxydiphenylsilane. In the silylation of polyhydric phenols with dialkoxysilanes, the alkoxysilyl group of dialkoxysilanes is 0.5 to 1.5 equivalents, particularly 0.7 to 1 with respect to 1 equivalent of hydroxyl groups of the polyhydric phenols. From the viewpoint of characteristics, it is preferable to perform silylation at a raw material ratio of 0.0 equivalent.

前記一般式(1)中、Arは、置換基を有していてよい分子量が250〜400の範囲である2官能フェノール化合物であり、下記一般式(2)または下記一般式(3)で表されるものである。   In the general formula (1), Ar is a bifunctional phenol compound having a molecular weight of 250 to 400 which may have a substituent, and is represented by the following general formula (2) or the following general formula (3). It is what is done.

前記式中、Arはそれぞれ同一または異なる炭素数1〜4のアルキル基、メトキシ基、フッ素が1〜4個結合してよいベンゼン環、Arはそれぞれ同一または異なる炭素数1〜4のアルキル基、メトキシ基、フッ素が1〜3個結合してよいベンゼン環、Xは直接結合または炭素数5〜15で置換基があってよい5〜7員環炭化水素を構成する2価の炭素原子、Xはそれぞれ同一または異なる直接結合、炭素数1〜15の炭化水素を構成する2価の炭素原子、または酸素原子である。より具体的には、ビスフェノールTMC、ビスフェノールZ、ビスフェノールフルオレン類、ジヒドロキシキサンテン類などを例示することができる。これらの中では、優れた耐熱性と誘電特性の両立の観点から、下記一般式(4)で示されるビスフェノールフルオレン類、下記一般式(5)で示される脂環構造を有するビスフェノール類、下記一般式(6)で示されるジヒドロキシキサンテン類を用いることがより好ましい。 In the above formula, Ar 1 is the same or different alkyl group having 1 to 4 carbon atoms, methoxy group, benzene ring to which 1 to 4 fluorine atoms may be bonded, Ar 2 is the same or different alkyl group having 1 to 4 carbon atoms. Group, methoxy group, benzene ring to which 1 to 3 fluorine atoms may be bonded, X 1 is a divalent carbon constituting a direct bond or a 5- to 7-membered ring hydrocarbon having 5 to 15 carbon atoms and optionally having a substituent. Atoms and X 2 are the same or different direct bonds, divalent carbon atoms constituting an hydrocarbon having 1 to 15 carbon atoms, or oxygen atoms. More specifically, bisphenol TMC, bisphenol Z, bisphenol fluorenes, dihydroxyxanthenes and the like can be exemplified. Among these, from the viewpoint of achieving both excellent heat resistance and dielectric properties, bisphenol fluorenes represented by the following general formula (4), bisphenols having an alicyclic structure represented by the following general formula (5), It is more preferable to use dihydroxyxanthenes represented by the formula (6).

(式中、R、R、R、Rはメチル基であり、R、Rは水素原子、炭素数1〜5のアルキル基、フェニル基、ナフチル基であり、a、b、c、dは0〜4であり、eは0〜10であり、f、gは0〜3である。) (In the formula, R 2 , R 3 , R 4 and R 5 are methyl groups, R 6 and R 7 are hydrogen atoms, alkyl groups having 1 to 5 carbon atoms, phenyl groups and naphthyl groups, and a, b , C and d are 0 to 4, e is 0 to 10, and f and g are 0 to 3.)

アリーロキシシランオリゴマーの一般式(1)において、nの値は一般式(1)をプロトンNMRにて測定を行い、フェノール性水酸基に対するシラン原料の保護率(反応率)を求める事により、算出することができる。nの値は1〜20の整数であって、一般にはその調製方法に基づきnの値がそれぞれ異なる混合物として得られる。このような混合物において、nの平均値が大きすぎるものは溶融粘度が高くなりすぎるためエポキシ樹脂組成物の加工性が損なわれ、逆に小さすぎるものは良好な誘電特性が得られにくい。従って、nの好適な平均値は、使用した原料の種類や他種硬化剤との混合比率にもよるが、1〜20の範囲であればよく、好ましくは3〜15、より好ましくは5〜10の範囲とすることが望ましい。   In the general formula (1) of the aryloxysilane oligomer, the value of n is calculated by measuring the general formula (1) by proton NMR and determining the protection rate (reaction rate) of the silane raw material against the phenolic hydroxyl group. be able to. The value of n is an integer of 1 to 20, and is generally obtained as a mixture having different values of n based on the preparation method. In such a mixture, if the average value of n is too large, the melt viscosity becomes too high, so that the processability of the epoxy resin composition is impaired, and conversely, if it is too small, good dielectric properties are difficult to obtain. Accordingly, a suitable average value of n depends on the type of raw material used and the mixing ratio with other kinds of curing agents, but may be in the range of 1-20, preferably 3-15, more preferably 5-5. A range of 10 is desirable.

ジアルコキシシラン化合物による2官能フェノール化合物のシリル化は、一般式(8)で示される2官能フェノール化合物の水酸基の少なくとも一部が、一般式(7)で示されるジアルコキシシラン化合物のジシロキシ基によって置換されればよいが、エポキシ樹脂硬化剤として優れた特性を充分に発揮させるためには、大半の水酸基がジシロキシ基で置換されていることが望ましい。したがってジアルコキシシラン化合物の使用量は、原料となる2官能フェノール類中の水酸基1当量に対し、0.2〜1.5当量、好ましくは0.6〜1.0当量の割合とするのがよい。2官能フェノール化合物の使用量を大過剰とし、未反応の2官能フェノール化合物が残存するような反応条件を採用した場合においても、反応混合物である未反応2官能アルコール含有のアリーロキシシランオリゴマーをそのままエポキシ樹脂硬化剤として使用することもできる。   Silylation of a bifunctional phenol compound with a dialkoxysilane compound is carried out by at least part of the hydroxyl group of the bifunctional phenol compound represented by the general formula (8) by the disiloxy group of the dialkoxysilane compound represented by the general formula (7). However, in order to sufficiently exhibit excellent properties as an epoxy resin curing agent, it is desirable that most hydroxyl groups are substituted with disiloxy groups. Therefore, the dialkoxysilane compound is used in an amount of 0.2 to 1.5 equivalents, preferably 0.6 to 1.0 equivalents, based on 1 equivalent of hydroxyl group in the bifunctional phenols used as a raw material. Good. Even when the reaction conditions are such that the amount of the bifunctional phenol compound used is excessive and the unreacted bifunctional phenol compound remains, the unreacted bifunctional alcohol-containing aryloxysilane oligomer as the reaction mixture remains as it is. It can also be used as an epoxy resin curing agent.

ジアルコキシシラン化合物と2官能フェノール化合物との反応は触媒の存在下で行われる。その触媒は、少量の添加で高活性なもの、あるいは高温または減圧下に反応生成物から容易に留去されるものが好ましい。具体的には、N,N‘‐ジメチルベンジルアミン、1,4−ジアザビシクロ[2.2.2]オクタン、1,8−ジアザビシクロ[5.4.0]ウンデセン−7などの第3アミン類、プロピオン酸、酪酸、イソ酪酸、吉草酸、イソ吉草酸、ピバリン酸、蓚酸などのカルボン酸類、オルトチタン酸テトラエチル、オルトチタン酸テトラプロピル、オルトチタン酸テトライソプロピル、オルトチタン酸テトラブチル、オルトチタン酸テトライソブチルなどの金属アルコキシドが用いられる。触媒の使用量は用いる触媒の種類によっても変わるが、たとえば原料となる2官能フェノール化合物1モルに対し0.0005〜1.0モル、好ましくは0.001〜0.5モルの範囲とするのがよい。   The reaction between the dialkoxysilane compound and the bifunctional phenol compound is carried out in the presence of a catalyst. The catalyst is preferably one that is highly active with a small amount of addition, or that is easily distilled off from the reaction product at high temperature or under reduced pressure. Specifically, tertiary amines such as N, N′-dimethylbenzylamine, 1,4-diazabicyclo [2.2.2] octane, 1,8-diazabicyclo [5.4.0] undecene-7, Carboxylic acids such as propionic acid, butyric acid, isobutyric acid, valeric acid, isovaleric acid, pivalic acid, and succinic acid, tetraethyl orthotitanate, tetrapropyl orthotitanate, tetraisopropyl orthotitanate, tetrabutyl orthotitanate, tetra orthotitanate A metal alkoxide such as isobutyl is used. The amount of the catalyst used varies depending on the type of catalyst used. For example, the amount is 0.0005 to 1.0 mol, preferably 0.001 to 0.5 mol, per mol of the bifunctional phenol compound used as a raw material. Is good.

上記反応は無溶媒で行なうことができるが、溶媒を使用しても問題ない。溶媒を使用する場合には、2官能フェノール化合物、ならびにジアルコキシシラン化合物との反応性が無く、反応終了後に容易に留去されるものが好ましい。そのため具体的には、オクタン、ノナン、デカン、デカリン、ドデカン、トルエン、キシレン、テトラリン、シクロヘキシルベンゼンなどの炭化水素系溶媒の使用が好ましい。これらは単独で使用してもよく、あるいは2種以上混合して使用することもできる。   The above reaction can be carried out without solvent, but there is no problem even if a solvent is used. In the case of using a solvent, it is preferable that the solvent does not have reactivity with the bifunctional phenol compound and the dialkoxysilane compound and is easily distilled off after completion of the reaction. Therefore, specifically, it is preferable to use a hydrocarbon solvent such as octane, nonane, decane, decalin, dodecane, toluene, xylene, tetralin, cyclohexylbenzene. These may be used alone or in combination of two or more.

反応時間は、用いる原料の種類にも依存するが、通常の場合は1〜100時間程度の時間を必要とする。上記反応においては、使用するジアルコキシシラン化合物や2官能フェノール化合物は高沸点であるため、反応温度の設定については、使用する触媒や溶媒が蒸散しない程度の反応温度とすればよい。したがって具体的には、120〜220℃程度の温度範囲が好適である。   The reaction time depends on the type of raw material used, but usually requires about 1 to 100 hours. In the above reaction, since the dialkoxysilane compound and the bifunctional phenol compound to be used have a high boiling point, the reaction temperature may be set to a reaction temperature at which the catalyst or solvent to be used does not evaporate. Therefore, specifically, a temperature range of about 120 to 220 ° C. is preferable.

反応終了後は、濃縮によって触媒を、溶媒を使用した場合には同時に溶媒も除去することによって目的とするアリーロキシシランオリゴマーを濃縮残として得ることができる。この操作により目的物が熱分解することも無く、簡便な操作で純度よくアリーロキシシランオリゴマーを得ることができる。   After completion of the reaction, the target aryloxysilane oligomer can be obtained as a concentration residue by removing the catalyst by concentration, and simultaneously removing the solvent when the solvent is used. By this operation, the target product is not thermally decomposed, and the aryloxysilane oligomer can be obtained with high purity by a simple operation.

このようにして得られるアリーロキシシランオリゴマーは、エポキシ樹脂硬化剤として有用であり、低誘電正接と高ガラス転移温度を両立するエポキシ樹脂硬化物を与える。すなわち、誘電損失が小さく耐熱性が求められる各種絶縁材料に適しており、たとえば多層プリント配線基板の層間絶縁材料である態様は本発明の好ましい態様である。   The aryloxysilane oligomer obtained in this manner is useful as an epoxy resin curing agent, and gives an epoxy resin cured product having both a low dielectric loss tangent and a high glass transition temperature. That is, it is suitable for various insulating materials that have low dielectric loss and require heat resistance. For example, an embodiment that is an interlayer insulating material of a multilayer printed wiring board is a preferred embodiment of the present invention.

用いられるエポキシ樹脂硬化剤は、アリーロキシシランオリゴマーを単独使用しても良いが、他種のエポキシ樹脂硬化剤と併用しても良い。具体的には、フェノールノボラック樹脂、クレゾールノボラック樹脂、フェノールアラルキル樹脂、ナフトールアラルキル樹脂、トリフェノールメタン型ノボラック樹脂、ジシクロペンタジエン変性フェノール樹脂などの2価以上の多価フェノール類、およびこれら多価フェノールの水酸基をアシル保護した活性エステル類など水酸基保護型のものも含むフェノール系硬化剤との併用が好ましく、これらを複合使用しても良い。中でも水酸基当量が200g/eq以上の多価フェノール類、または活性エステルなどの水酸基保護型のフェノール系硬化剤の使用が特に好ましい。これらも含むエポキシ樹脂硬化剤全体におけるアリーロキシシランオリゴマーの割合は、良好な誘電特性を得ることを考慮すると50〜100wt%とするのが良い。   As the epoxy resin curing agent to be used, an aryloxysilane oligomer may be used alone or in combination with another kind of epoxy resin curing agent. Specifically, dihydric or higher polyhydric phenols such as phenol novolac resin, cresol novolak resin, phenol aralkyl resin, naphthol aralkyl resin, triphenolmethane type novolak resin, dicyclopentadiene modified phenol resin, and these polyhydric phenols These are preferably used in combination with a phenolic curing agent including a hydroxyl group-protected type such as an active ester having a hydroxyl group protected with acyl, and these may be used in combination. Of these, the use of polyhydric phenols having a hydroxyl equivalent weight of 200 g / eq or more, or hydroxyl-protected phenolic curing agents such as active esters is particularly preferred. The ratio of the aryloxysilane oligomer in the entire epoxy resin curing agent including these is preferably 50 to 100 wt% in consideration of obtaining good dielectric properties.

本発明で使用されるエポキシ樹脂は公知のものを使用することができる。例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビフェニル型エポキシ樹脂、フェノールビフェニルアラルキル型エポキシ樹脂、フェノール、ナフトールなどのキシリレン結合によるアラルキル樹脂のエポキシ化物、ジシクロペンタジエン変性フェノール樹脂のエポキシ化物、ジヒドロキシナフタレン型エポキシ樹脂、トリフェノールメタン型エポキシ樹脂などのグリシジルエーテル型エポキシ樹脂、グリシジルエステル型エポキシ樹脂、グリシジルアミン型エポキシ樹脂などの2価以上のエポキシ基を有するエポキシ樹脂が挙げられる。これらエポキシ樹脂は単独使用でも2種類以上併用してもよい。とりわけ、良好な誘電特性を得ることを考慮すると、フェノ−ルビフェニルアラルキル型エポキシ樹脂、フェノール、ナフトールなどのキシリレン結合によるアラルキル樹脂のエポキシ化物、ジシクロペンタジエン変性フェノール樹脂のエポキシ化物のようなエポキシ当量が大きいものを使用するのが好ましい。   Known epoxy resins can be used in the present invention. For example, bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, cresol novolac type epoxy resin, biphenyl type epoxy resin, phenol biphenyl aralkyl type epoxy resin, aralkyl resin epoxy with xylylene bonds such as phenol and naphthol Epoxides of dicyclopentadiene-modified phenolic resins, dihydroxynaphthalene type epoxy resins, glycidyl ether type epoxy resins such as triphenolmethane type epoxy resins, glycidyl ester type epoxy resins, glycidylamine type epoxy resins and other bivalent or more epoxies An epoxy resin having a group is exemplified. These epoxy resins may be used alone or in combination of two or more. In particular, in view of obtaining good dielectric properties, epoxy equivalents such as phenol-biphenyl aralkyl type epoxy resins, epoxides of aralkyl resins with xylylene bonds such as phenol and naphthol, and epoxides of dicyclopentadiene-modified phenol resins It is preferable to use one having a large.

エポキシ樹脂の硬化に際しては、硬化促進剤を併用することが好ましい。かかる硬化促進剤としては、エポキシ樹脂をフェノール系硬化剤で硬化させるための公知の硬化促進剤を用いることができ、例えば、3級アミン化合物、4級アンモニウム塩、イミダゾール類、ホスフィン化合物、ホスホニウム塩などを挙げることができる。より具体的には、トリエチルアミン、トリエチレンジアミン、ベンジルジメチルアミン、2,4,6−トリス(ジメチルアミノメチル)フェノール、1,8−ジアザビシクロ(5,4,0)ウンデセン−7などの3級アミン化合物、2−メチルイミダゾール、2,4−ジメチルイミダゾール、2−エチル−4−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾールなどのイミダゾール類、トリフェニルホスフィン、トリブチルホスフィン、トリ(p−メチルフェニル)ホスフィン、トリ(ノニルフェニル)ホスフィンなどのホスフィン化合物、テトラフェニルホスホニウムテトラフェニルボレート、テトラフェニルホスホニウムテトラナフトエ酸ボレートなどのホスホニウム塩、トリフェニルホスホニオフェノラート、ベンゾキノンとトリフェニルホスフィンの反応物などのベタイン状有機リン化合物を挙げることができる。とりわけ重縮合型アリーロキシシラン化合物による硬化をスムーズに行う観点から、3級アミン化合物、イミダゾール類、ホスホニウム塩、ベタイン状有機リン化合物の使用が好ましい。   In curing the epoxy resin, it is preferable to use a curing accelerator in combination. As such a curing accelerator, a known curing accelerator for curing an epoxy resin with a phenolic curing agent can be used. For example, a tertiary amine compound, a quaternary ammonium salt, an imidazole, a phosphine compound, a phosphonium salt. And so on. More specifically, tertiary amine compounds such as triethylamine, triethylenediamine, benzyldimethylamine, 2,4,6-tris (dimethylaminomethyl) phenol, 1,8-diazabicyclo (5,4,0) undecene-7 , 2-methylimidazole, 2,4-dimethylimidazole, 2-ethyl-4-methylimidazole, 2-phenylimidazole, imidazoles such as 2-phenyl-4-methylimidazole, triphenylphosphine, tributylphosphine, tri (p -Phosphine compounds such as methylphenyl) phosphine and tri (nonylphenyl) phosphine, phosphonium salts such as tetraphenylphosphonium tetraphenylborate, tetraphenylphosphoniumtetranaphthoic acid borate, and triphenylphosphonio Enorato, it may be mentioned betaines like organic phosphorus compounds such as the reaction product of benzoquinone and triphenyl phosphine. In particular, the use of tertiary amine compounds, imidazoles, phosphonium salts, and betaine-like organic phosphorus compounds is preferable from the viewpoint of smoothly curing with a polycondensation type aryloxysilane compound.

本発明のエポキシ樹脂硬化剤とエポキシ樹脂の配合比は、エポキシ樹脂硬化剤の反応性官能基/エポキシ樹脂のエポキシ基の当量比が0.5〜1.5、特に0.8〜1.2の範囲にあることが好ましい。硬化促進剤は、エポキシ樹脂100重量部に対して0.1〜5重量部の範囲で使用するのが好ましい。   The compounding ratio of the epoxy resin curing agent and the epoxy resin of the present invention is such that the equivalent ratio of the reactive functional group of the epoxy resin curing agent / the epoxy group of the epoxy resin is 0.5 to 1.5, particularly 0.8 to 1.2. It is preferable that it exists in the range. It is preferable to use a hardening accelerator in the range of 0.1-5 weight part with respect to 100 weight part of epoxy resins.

本発明のエポキシ樹脂組成物は、その配合成分およびその組成比にも依存するが、公知のフェノール系硬化剤を用いた配合で行われる硬化温度、たとえば100〜250℃の温度範囲で硬化が進行するが、良好な誘電特性を得る目的で使用される公知の活性エステルを用いた配合では十分な硬化が困難な180℃以下で硬化物を作成することも可能である。   Although the epoxy resin composition of the present invention depends on the blending components and the composition ratio thereof, curing proceeds at a curing temperature performed by blending using a known phenol-based curing agent, for example, in a temperature range of 100 to 250 ° C. However, it is also possible to produce a cured product at 180 ° C. or lower, which is difficult to sufficiently cure by blending with a known active ester used for the purpose of obtaining good dielectric properties.

本発明のエポキシ樹脂組成物には、必要に応じて、溶剤、無機充填剤、着色剤、増粘剤、シランカップリング剤、難燃剤、低応力剤などを添加または予め反応して用いることができる。   In the epoxy resin composition of the present invention, a solvent, an inorganic filler, a colorant, a thickener, a silane coupling agent, a flame retardant, a low-stress agent, or the like may be added or reacted in advance as necessary. it can.

本発明のエポキシ樹脂組成物は、特に多層プリント配線基板の層間絶縁材料に適する。例えば、本発明のエポキシ樹脂組成物を溶剤に溶解させることにより、回路基板に塗布して絶縁層とするための層間絶縁用ワニスとすることができ、ワニス状のエポキシ樹脂組成物をガラス繊維に含浸させて加熱処理を行うことにより該用途のプリプレグとすることができ、ワニス状のエポキシ樹脂組成物を支持フィルム上で加熱処理してフィルム状とすれば該用途の接着シートとすることができる。これらはいずれの形態で使用しても多層プリント配線基板における層間絶縁層とすることができる。   The epoxy resin composition of the present invention is particularly suitable as an interlayer insulating material for multilayer printed wiring boards. For example, by dissolving the epoxy resin composition of the present invention in a solvent, it can be used as an insulating varnish for application to a circuit board to form an insulating layer, and the varnish-like epoxy resin composition is applied to glass fiber. A prepreg for the application can be obtained by impregnating and heat-treating, and an adhesive sheet for the application can be obtained by heat-treating the varnish-like epoxy resin composition on a support film to form a film. . Any of these forms can be used as an interlayer insulating layer in a multilayer printed wiring board.

本発明のエポキシ樹脂硬化剤を用いたエポキシ樹脂組成物及びエポキシ樹脂硬化物は、成形材、各種バインダー、コーティング材、積層材などに有用である。これらエポキシ樹脂組成物及びエポキシ樹脂硬化物は、誘電損失が小さく及び耐熱性に優れたものである。   The epoxy resin composition and epoxy resin cured product using the epoxy resin curing agent of the present invention are useful for molding materials, various binders, coating materials, laminated materials and the like. These epoxy resin compositions and cured epoxy resins have small dielectric loss and excellent heat resistance.

以下に実施例、比較例によって本発明をより具体的に説明するが、本発明はこれらの例によって何ら制限されるものではない。   The present invention will be described more specifically with reference to examples and comparative examples below, but the present invention is not limited to these examples.

[実施例1]
窒素ガス導入管、温度計、撹拌機を備えた四口の300mLフラスコにビスフェノールTMC155.2g、ジメトキシジフェニルシラン117.3gを仕込み、攪拌しながら150〜160℃の温度に昇温した。次いで、オルトチタン酸テトライソプロピルを0.82g仕込み、反応で生成するメタノールを系外へ除去して、76時間保持した後、冷却することで、理論官能基当量242g/eqのフェノキシシランオリゴマー(硬化剤1)を得た。
得られたフェノキシシランオリゴマーの式(1)の繰り返し数nは以下の方法で算出したが、NMR測定より算出した繰り返し数nは5.4であった。
得られたフェノキシシランオリゴマーのNMRチャートを図1に示した。
繰り返し数nの算出
フェノキシシランオリゴマーを下記の条件でNMR測定し、その結果から得られた反応した原料の比率と、原料仕込み比率を基に算出した。
NMR測定条件:
溶剤:重CCl
測定機器:JEOL製(日本電子株式会社)
周波数:400MHz
積算回数:16
内部標準物質:なし(テトラクロロエタンの化学シフトを基準とした)
[Example 1]
Bisphenol TMC155.2 g and dimethoxydiphenylsilane 117.3 g were charged into a four-necked 300 mL flask equipped with a nitrogen gas inlet tube, a thermometer, and a stirrer, and the temperature was raised to 150 to 160 ° C. while stirring. Next, 0.82 g of tetraisopropyl orthotitanate was charged, the methanol produced by the reaction was removed from the system, held for 76 hours, and then cooled to allow a phenoxysilane oligomer (cured) having a theoretical functional group equivalent of 242 g / eq. Agent 1) was obtained.
The number of repetitions n of formula (1) of the obtained phenoxysilane oligomer was calculated by the following method, but the number of repetitions n calculated from NMR measurement was 5.4.
The NMR chart of the obtained phenoxysilane oligomer is shown in FIG.
Calculation of the number of repetitions n The phenoxysilane oligomer was subjected to NMR measurement under the following conditions, and calculated based on the ratio of the reacted raw material and the raw material charging ratio obtained from the results.
NMR measurement conditions:
Solvent: Heavy C 2 H 2 Cl 4
Measuring instrument: JEOL (JEOL Ltd.)
Frequency: 400MHz
Integration count: 16
Internal standard: None (based on the chemical shift of tetrachloroethane)

[実施例2]
窒素ガス導入管、温度計、撹拌機を備えた四口の300mLフラスコにビスフェノールフルオレン150.7g、ジメトキシジフェニルシラン100.9gを仕込み、攪拌しながら150〜160℃の温度に昇温した。次いで、1,8−ジアザビシクロ(5,4,0)ウンデセン−7(DBU)を0.75g仕込み、反応で生成するメタノールを系外へ除去して、66時間保持した後、冷却することで、理論官能基当量262g/eqのフェノキシシランオリゴマー(硬化剤2)を得た。実施例1と同様にしてNMR測定より算出した繰り返し数nは8.0であった。
得られたフェノキシシランオリゴマーのNMRチャートを図2に示した。
[Example 2]
Bisphenolfluorene (150.7 g) and dimethoxydiphenylsilane (100.9 g) were charged into a four-necked 300 mL flask equipped with a nitrogen gas inlet tube, a thermometer, and a stirrer, and the temperature was raised to 150 to 160 ° C. while stirring. Next, 0.75 g of 1,8-diazabicyclo (5,4,0) undecene-7 (DBU) was charged, methanol generated by the reaction was removed out of the system, kept for 66 hours, and then cooled. A phenoxysilane oligomer (curing agent 2) having a theoretical functional group equivalent of 262 g / eq was obtained. The number of repetitions n calculated from NMR measurement in the same manner as in Example 1 was 8.0.
The NMR chart of the obtained phenoxysilane oligomer is shown in FIG.

[実施例3]
窒素ガス導入管、温度計、撹拌機を備えた四口の300mLフラスコにビスフェノールTMC68.3g、ビスフェノールフルオレン77.1g、ジメトキシジフェニルシラン103.2gを仕込み、攪拌しながら150〜160℃の温度に昇温した。次いで、N,N‘‐ジメチルベンジルアミンを9.73g仕込み、反応で生成するメタノールを系外へ除去して、90時間保持した後、冷却することで、理論官能基当量252g/eqのフェノキシシランオリゴマー(硬化剤3)を得た。実施例1と同様にしてNMR測定より算出した繰り返し数nは8.3であった。
得られたフェノキシシランオリゴマーのNMRチャートを図3に示した。
[Example 3]
Bisphenol TMC 68.3 g, bisphenol fluorene 77.1 g, and dimethoxydiphenylsilane 103.2 g were charged into a four-necked 300 mL flask equipped with a nitrogen gas inlet tube, a thermometer, and a stirrer, and the temperature was raised to 150 to 160 ° C. while stirring. Warm up. Next, 9.73 g of N, N′-dimethylbenzylamine was charged, methanol generated by the reaction was removed from the system, kept for 90 hours, and then cooled to obtain a phenoxysilane having a theoretical functional group equivalent of 252 g / eq. An oligomer (curing agent 3) was obtained. The number of repetitions n calculated from NMR measurement in the same manner as in Example 1 was 8.3.
The NMR chart of the obtained phenoxysilane oligomer is shown in FIG.

[比較例1]
窒素ガス導入管、温度計、撹拌機を備えた四口の300mLフラスコに、ビスフェノールF100.1g、ジメトキシジフェニルシラン117.3gを仕込み、攪拌しながら150〜160℃の温度に昇温した。次いで、N,N‘‐ジメチルベンジルアミンを6.08g仕込み、反応で生成するメタノールを系外へ除去して、64時間保持した後、冷却することで、理論官能基当量187g/eqのフェノキシシランオリゴマー(硬化剤4)を得た。
[Comparative Example 1]
Bisphenol F (100.1 g) and dimethoxydiphenylsilane (117.3 g) were charged into a four-necked 300 mL flask equipped with a nitrogen gas inlet tube, a thermometer, and a stirrer, and the temperature was raised to 150 to 160 ° C. while stirring. Next, 6.08 g of N, N′-dimethylbenzylamine was charged, methanol produced by the reaction was removed from the system, kept for 64 hours, and then cooled to obtain a phenoxysilane having a theoretical functional group equivalent of 187 g / eq. An oligomer (curing agent 4) was obtained.

[比較例2]
窒素ガス導入管、温度計、撹拌機を備えた四口の300mLフラスコに、ビフェノール93.1g、ジメトキシジフェニルシラン117.3gを仕込み、攪拌しながら150〜160℃の温度に昇温した。次いで、N,N‘‐ジメチルベンジルアミンを5.81g仕込み、反応で生成するメタノールを系外へ除去して、72時間保持した後、冷却することで、理論官能基当量180g/eqのフェノキシシランオリゴマー(硬化剤5)を得た。
[Comparative Example 2]
In a four-necked 300 mL flask equipped with a nitrogen gas inlet tube, a thermometer, and a stirrer, 93.1 g of biphenol and 117.3 g of dimethoxydiphenylsilane were charged and heated to a temperature of 150 to 160 ° C. while stirring. Next, 5.81 g of N, N′-dimethylbenzylamine was charged, methanol generated by the reaction was removed from the system, held for 72 hours, and then cooled, so that phenoxysilane having a theoretical functional group equivalent of 180 g / eq was obtained. An oligomer (curing agent 5) was obtained.

実施例1〜3で調製したフェノキシシランオリゴマーの物性を、比較例1〜2で調製したフェノキシシランオリゴマーと対比して、表1に示した。   The physical properties of the phenoxysilane oligomers prepared in Examples 1 to 3 are shown in Table 1 in comparison with the phenoxysilane oligomers prepared in Comparative Examples 1 and 2.

[実施例4]
下記一般式(9)で示されるエポキシ樹脂(日本化薬(株)製NC−3000H、フェノールビフェニルアラルキル型、エポキシ当量290g/eq)、実施例1で得られた硬化剤1、硬化促進剤として2−エチル−4−メチルイミダゾールを表2に示す割合でなる組成物について、180℃3時間で熱硬化させることで物性評価用のテストピースを作成した。得られたテストピースの物性を測定しその結果を表2に示した。
[Example 4]
Epoxy resin represented by the following general formula (9) (NC-3000H manufactured by Nippon Kayaku Co., Ltd., phenol biphenyl aralkyl type, epoxy equivalent 290 g / eq), curing agent 1 obtained in Example 1, curing accelerator About the composition which consists of 2-ethyl-4-methylimidazole in the ratio shown in Table 2, the test piece for physical-property evaluation was created by thermosetting at 180 degreeC for 3 hours. The physical properties of the obtained test pieces were measured and the results are shown in Table 2.

(式中、Gはグリシジル基、nは1〜10の数) (In the formula, G is a glycidyl group, n is a number of 1 to 10)

[実施例5]
実施例4に用いた硬化剤1の代わりに、実施例2で得られた硬化剤2を用い、表2に記載した配合割合にした以外は、実施例4と同様の操作を行った。評価結果を表2に示した。
[Example 5]
The same operation as in Example 4 was performed, except that the curing agent 2 obtained in Example 2 was used instead of the curing agent 1 used in Example 4 and the blending ratios described in Table 2 were used. The evaluation results are shown in Table 2.

[実施例6]
実施例4に用いた硬化剤1の代わりに、実施例3で得られた硬化剤3を用い、表2に記載した配合割合にした以外は、実施例4と同様の操作を行った。評価結果を表2に示した。
[Example 6]
The same operation as in Example 4 was performed except that the curing agent 3 obtained in Example 3 was used in place of the curing agent 1 used in Example 4 and the blending ratios described in Table 2 were used. The evaluation results are shown in Table 2.

[比較例3]
実施例4に用いた硬化剤1の代わりに、比較例1で得られた硬化剤4を用い、表2に記載した配合割合にした以外は、実施例4と同様の操作を行った。評価結果を表2に示した。
[Comparative Example 3]
The same operation as in Example 4 was performed except that the curing agent 4 obtained in Comparative Example 1 was used instead of the curing agent 1 used in Example 4 and the blending ratios described in Table 2 were used. The evaluation results are shown in Table 2.

[比較例4]
実施例4に用いた硬化剤1の代わりに、比較例2で得られた硬化剤5を用い、表2に記載した配合割合にした以外は、実施例4と同様の操作を行った。評価結果を表2に示した。
[Comparative Example 4]
The same operation as in Example 4 was performed except that the curing agent 5 obtained in Comparative Example 2 was used instead of the curing agent 1 used in Example 4 and the blending ratios described in Table 2 were used. The evaluation results are shown in Table 2.

本発明における物性の測定は、下記の方法によって行った。
(1)ガラス転移点
TMAにより、テストピースの線膨張係数を昇温速度10℃/分で測定し、線膨張係数の変曲点をガラス転移温度とした。
測定機器:日立ハイテクサイエンス社製 熱機械分析装置TMA/SS7100
サンプル寸法:5mm×5mm×2mm
雰囲気:窒素中
測定温度:25〜300℃
昇温速度:10℃/min.
測定モード:圧縮
(2)誘電特性
アジレントテクノロジー社製ネットワークアナライザーHP8510Cを用いて空洞共振法にて、下記の条件で誘電率および誘電正接を測定した。
サンプル寸法:2.5mm×2mm×40mm
前処理:室温22±1℃、湿度60±5%で90時間保管
測定環境:室温22℃、湿度60%
周波数:1GHz
The physical properties in the present invention were measured by the following methods.
(1) Glass transition point By TMA, the linear expansion coefficient of the test piece was measured at a heating rate of 10 ° C / min, and the inflection point of the linear expansion coefficient was taken as the glass transition temperature.
Measuring instrument: Thermomechanical analyzer TMA / SS7100 manufactured by Hitachi High-Tech Science Co., Ltd.
Sample size: 5mm x 5mm x 2mm
Atmosphere: Measurement temperature in nitrogen: 25-300 ° C
Temperature increase rate: 10 ° C./min.
Measurement mode: Compression (2) Dielectric characteristics The dielectric constant and dielectric loss tangent were measured under the following conditions by the cavity resonance method using a network analyzer HP8510C manufactured by Agilent Technologies.
Sample size: 2.5mm x 2mm x 40mm
Pretreatment: room temperature 22 ± 1 ° C, humidity 60 ± 5% for 90 hours storage Measurement environment: room temperature 22 ° C, humidity 60%
Frequency: 1GHz

表2の結果から、実施例1〜3の官能基当量200g/eq以上の硬化剤1〜3を用いた硬化物は、従来材料である比較例1〜2で得られた硬化剤4、5を用いた場合と比較して、ガラス転移点が10℃以上高く、誘電率および誘電正接が低く優れた性能を示すことがわかる。   From the results in Table 2, the cured products using the curing agents 1 to 3 having a functional group equivalent of 200 g / eq or more of Examples 1 to 3 are the curing agents 4 and 5 obtained in Comparative Examples 1 and 2 which are conventional materials. It can be seen that the glass transition point is 10 ° C. or higher, the dielectric constant and the dielectric loss tangent are low, and excellent performance is exhibited as compared with the case where is used.

本発明により、優れた誘電特性と耐熱性を併せ持つエポキシ樹脂組成物を用いた層間絶縁材料に好適な絶縁材料が提供される。
本発明の特定のエポキシ樹脂組成物を用いた絶縁材料により、優れた誘電特性と実用特性を併せ持つ多層プリント配線基板の絶縁材料の提供が可能になった。
本発明が提供するエポキシ樹脂組成物およびその硬化物は、低伝送損失が求められる高周波信号用の多層プリント配線基板の絶縁材料用途に有用である。
According to the present invention, an insulating material suitable for an interlayer insulating material using an epoxy resin composition having both excellent dielectric properties and heat resistance is provided.
The insulating material using the specific epoxy resin composition of the present invention has made it possible to provide an insulating material for a multilayer printed wiring board having both excellent dielectric properties and practical properties.
The epoxy resin composition and the cured product thereof provided by the present invention are useful for insulating material applications for multilayer printed wiring boards for high frequency signals that require low transmission loss.

本発明により、低誘電正接および高ガラス転移温度に優れたエポキシ樹脂硬化物を形成することができるエポキシ樹脂硬化剤およびそれを含むエポキシ樹脂組成物が提供され、成形材、各種バインダー、コーティング材、積層材に有用である。具体的には、ダイボンド材、デバイス封止シートをはじめとする各種絶縁材料に応用可能であるが、とりわけプリプレグ、層間絶縁フィルム、層間絶縁ワニスに代表される多層プリント配線基板の層間絶縁材料である態様は本発明の好ましい態様である。   According to the present invention, an epoxy resin curing agent capable of forming an epoxy resin cured product excellent in low dielectric loss tangent and high glass transition temperature and an epoxy resin composition containing the same are provided, and a molding material, various binders, a coating material, Useful for laminates. Specifically, it can be applied to various insulating materials such as die-bonding materials and device encapsulating sheets. In particular, it is an interlayer insulating material for multilayer printed wiring boards represented by prepregs, interlayer insulating films, and interlayer insulating varnishes. The embodiment is a preferred embodiment of the present invention.

Claims (9)

下記一般式(1)で示される、2官能フェノール化合物由来の構造を有し、水酸基およびアリーロキシシリル基を反応官能基とする当量が200〜400g/eqの範囲であって、該2官能フェノール化合物の分子量が250〜400の範囲である、アリーロキシシランオリゴマーからなるエポキシ樹脂硬化剤。
(式中、Rはそれぞれ同一または異なる炭素数1〜12の炭化水素基であり、Arは2官能フェノール化合物残基、nは1〜20の整数である。)
Represented by the following general formula (1), 2 has a structure derived from the bifunctional phenol compound, equivalent to a hydroxyl group and aryloxy silyl group and reactive functional groups in the range of 200 to 400 g / eq, the bifunctional phenol An epoxy resin curing agent comprising an aryloxysilane oligomer, wherein the molecular weight of the compound is in the range of 250 to 400 .
(Wherein R 1 is the same or different hydrocarbon group having 1 to 12 carbon atoms, Ar is a bifunctional phenol compound residue, and n is an integer of 1 to 20)
一般式(1)のArが下記一般式(2)または一般式(3)である請求項1に記載のエポキシ樹脂硬化剤。
(式中、Arはそれぞれ同一または異なる炭素数1〜4のアルキル基、メトキシ基、フッ素が1〜4個結合してよいベンゼン環、Arはそれぞれ同一または異なる炭素数1〜4のアルキル基、メトキシ基、フッ素が1〜3個結合してよいベンゼン環、Xは直接結合または炭素数5〜15で置換基があってよい5〜7員環炭化水素を構成する2価の炭素原子、Xはそれぞれ同一または異なる直接結合、炭素数1〜15の炭化水素を構成する2価の炭素原子、または酸素原子である。)
The epoxy resin curing agent according to claim 1, wherein Ar in the general formula (1) is the following general formula (2) or general formula (3).
(In the formula, Ar 1 is the same or different alkyl group having 1 to 4 carbon atoms, methoxy group, benzene ring to which 1 to 4 fluorine atoms may be bonded, Ar 2 is the same or different alkyl group having 1 to 4 carbon atoms, respectively. Group, methoxy group, benzene ring to which 1 to 3 fluorine atoms may be bonded, X 1 is a divalent carbon constituting a direct bond or a 5- to 7-membered ring hydrocarbon having 5 to 15 carbon atoms and optionally having a substituent. Atoms and X 2 are the same or different direct bonds, divalent carbon atoms constituting an hydrocarbon having 1 to 15 carbon atoms, or oxygen atoms.)
2官能フェノール化合物が、下記一般式(4)または一般式(5)、一般式(6)のいずれかである請求項1または請求項2のいずれかに記載のエポキシ樹脂硬化剤。
(式中、R、R、R、Rはメチル基であり、R、Rは水素原子、炭素数1〜5のアルキル基、フェニル基、ナフチル基であり、a、b、c、dは0〜4であり、eは0〜10であり、f、gは0〜3である。)
The epoxy resin curing agent according to claim 1, wherein the bifunctional phenol compound is any one of the following general formula (4), general formula (5), and general formula (6).
(In the formula, R 2 , R 3 , R 4 and R 5 are methyl groups, R 6 and R 7 are hydrogen atoms, alkyl groups having 1 to 5 carbon atoms, phenyl groups and naphthyl groups, and a, b , C and d are 0 to 4, e is 0 to 10, and f and g are 0 to 3.)
下記一般式(7)で示されるジアルコキシシラン化合物と一般式(8)で示される2官能フェノール化合物を縮合させて合成することを特徴とする請求項1〜3に記載のエポキシ樹脂硬化剤の製造方法。
(式中、R、Arは式(1)と同じであり、Rはそれぞれ同一または異なる炭素数1〜4のアルキル基である。)
The epoxy resin curing agent according to claim 1, which is synthesized by condensing a dialkoxysilane compound represented by the following general formula (7) and a bifunctional phenol compound represented by the general formula (8): Production method.
(Wherein R 1 and Ar are the same as in formula (1), and R 9 is the same or different alkyl group having 1 to 4 carbon atoms.)
請求項1〜3のいずれかに記載のエポキシ樹脂硬化剤とエポキシ樹脂とを含むエポキシ樹脂組成物。   The epoxy resin composition containing the epoxy resin hardening | curing agent and epoxy resin in any one of Claims 1-3. さらに硬化促進剤を含む請求項5に記載のエポキシ樹脂組成物。   Furthermore, the epoxy resin composition of Claim 5 containing a hardening accelerator. さらに無機充填材を含む請求項5または6に記載のエポキシ樹脂組成物。   Furthermore, the epoxy resin composition of Claim 5 or 6 containing an inorganic filler. 請求項5〜7のいずれかに記載のエポキシ樹脂組成物を熱硬化してなるエポキシ樹脂硬化物。   The epoxy resin hardened | cured material formed by thermosetting the epoxy resin composition in any one of Claims 5-7. 請求項5〜7のいずれかに記載のエポキシ樹脂組成物で作成された層間絶縁材料。   The interlayer insulation material created with the epoxy resin composition in any one of Claims 5-7.
JP2014072397A 2014-03-31 2014-03-31 Epoxy resin curing agent, production method, composition, cured product and use thereof Active JP6254475B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014072397A JP6254475B2 (en) 2014-03-31 2014-03-31 Epoxy resin curing agent, production method, composition, cured product and use thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014072397A JP6254475B2 (en) 2014-03-31 2014-03-31 Epoxy resin curing agent, production method, composition, cured product and use thereof

Publications (2)

Publication Number Publication Date
JP2015193738A JP2015193738A (en) 2015-11-05
JP6254475B2 true JP6254475B2 (en) 2017-12-27

Family

ID=54433078

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014072397A Active JP6254475B2 (en) 2014-03-31 2014-03-31 Epoxy resin curing agent, production method, composition, cured product and use thereof

Country Status (1)

Country Link
JP (1) JP6254475B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6841767B2 (en) * 2015-12-09 2021-03-10 東京応化工業株式会社 Organometallic compounds
JP6798811B2 (en) * 2016-07-22 2020-12-09 日本化薬株式会社 Epoxy carboxylate compound, polycarboxylic acid compound, energy ray-curable resin composition containing it, and cured product thereof
JP7277126B2 (en) * 2018-12-21 2023-05-18 日鉄ケミカル&マテリアル株式会社 A phenoxy resin, a resin composition thereof, a cured product thereof, and a method for producing the same.
CN113121796B (en) * 2021-05-10 2022-04-29 华中师范大学 Preparation method of low-dielectric silicon amine-epoxy resin copolymer

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005154911A (en) * 2003-11-21 2005-06-16 Unebi Kk Foot wearing article
JP2010108986A (en) * 2008-10-28 2010-05-13 Hitachi Chem Co Ltd Material forming gate insulating film layer, field effect transistor and process for fabricating field effect transistor
TWI484503B (en) * 2011-11-29 2015-05-11 Air Water Inc Insulating material using epoxy resin composition

Also Published As

Publication number Publication date
JP2015193738A (en) 2015-11-05

Similar Documents

Publication Publication Date Title
KR101229854B1 (en) Epoxy resin, hardenable resin composition containing the same and use thereof
JP6385884B2 (en) Allyloxysilane oligomer, epoxy resin curing agent, and use thereof
JP6025952B1 (en) Vinyl benzylated phenol compound, method for producing vinyl benzylated phenol compound, active ester resin, method for producing active ester resin, thermosetting resin composition, cured product of thermosetting resin composition, interlayer insulating material, Prepreg and method for producing prepreg
US9215803B2 (en) Epoxy resin composition and pre-preg, support-provided resin film, metallic foil clad laminate plate and multilayer printed circuit board utilizing said composition
KR101641485B1 (en) Soluble imide-skeleton resin, soluble imide-skeleton resin solution composition, curable resin composition, and cured product of same
JP4760010B2 (en) Polyether polyol resin, curable resin composition and cured product thereof
WO2001070844A1 (en) Flame-retardant epoxy resin composition, molded object thereof, and electronic part
JP6022230B2 (en) High molecular weight epoxy resin, resin composition and cured product using the same
EP2985300B1 (en) Phosphor-containing phenol formaldehyde resin compound and flame-retardant epoxy resin hardener made from thereof
JP6254475B2 (en) Epoxy resin curing agent, production method, composition, cured product and use thereof
KR20130118319A (en) High-molecular-weight epoxy resin and resin film, resin composition, and cured article using high-molecular-weight epoxy resin
TWI484503B (en) Insulating material using epoxy resin composition
KR101840839B1 (en) Modified epoxy resin and manufacturing method thereof, modified epoxy resin composition and manufacturing method thereof, laminate and manufacturing method thereof
JP4144732B2 (en) High molecular weight epoxy resin, resin composition for electric laminate and electric laminate
JP2015030733A (en) Hardening agent of epoxy resin, composition using the same and hardened product thereof
JP5441477B2 (en) Flame retardant phosphorus-containing epoxy resin composition and cured product thereof
JP2018070564A (en) Vinylbenzylated phenol compound, method for producing the vinylbenzylated phenol compound, active ester resin, method for producing the active ester resin, thermosetting resin composition, cured product of the thermosetting resin composition, interlayer insulation material, prepreg, and method for producing prepreg
JP5195107B2 (en) Imide skeleton resin, curable resin composition, and cured product thereof
JP2010235823A (en) Epoxy resin, epoxy resin composition and cured product of the same
EP4053214A1 (en) Composition, curable composition, and cured product
JP4725831B2 (en) Epoxy resin composition and cured product thereof
JP2012012588A (en) Epoxy resin composition, and prepreg, resin film with support, metal foil-clad laminate and multilayer printed wiring board using the same
JP2008231428A (en) High-molecular weight epoxy resin, resin composition for electrical laminate, and electrical laminate
WO2020080292A1 (en) Curable resin composition, cured product, and sheet-form molded article
EP2123712A1 (en) Epoxy resin composition and electronic part

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170926

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171018

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171130

R150 Certificate of patent or registration of utility model

Ref document number: 6254475

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250