JP6254064B2 - Powdered radioactive material adsorbent - Google Patents

Powdered radioactive material adsorbent Download PDF

Info

Publication number
JP6254064B2
JP6254064B2 JP2014211106A JP2014211106A JP6254064B2 JP 6254064 B2 JP6254064 B2 JP 6254064B2 JP 2014211106 A JP2014211106 A JP 2014211106A JP 2014211106 A JP2014211106 A JP 2014211106A JP 6254064 B2 JP6254064 B2 JP 6254064B2
Authority
JP
Japan
Prior art keywords
water
radioactive
zeolite
contaminated
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014211106A
Other languages
Japanese (ja)
Other versions
JP2016080486A (en
Inventor
三次 神垣
三次 神垣
雄 粟生
雄 粟生
美勝 亀山
美勝 亀山
誠司 野口
誠司 野口
Original Assignee
株式会社神垣組
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社神垣組 filed Critical 株式会社神垣組
Priority to JP2014211106A priority Critical patent/JP6254064B2/en
Publication of JP2016080486A publication Critical patent/JP2016080486A/en
Application granted granted Critical
Publication of JP6254064B2 publication Critical patent/JP6254064B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、放射性物質(セシウム,ストロンチウム等)に汚染された液体から放射性物質を吸着して、汚染液の浄化を行う技術及び汚染液から放射性物質を吸着・捕捉する技術に関し、特に吸着力の高い粒状のゼオライトを吸着・捕捉し易い形状に固形化して吸着・捕捉し易い使用形態及び設置・交換・運搬・廃棄し易い形態にできる技術に関する。   The present invention relates to a technique for adsorbing a radioactive substance from a liquid contaminated with a radioactive substance (cesium, strontium, etc.) and purifying the contaminated liquid, and a technique for adsorbing and capturing the radioactive substance from the contaminated liquid. The present invention relates to a technique for solidifying highly granular zeolite into a shape that can be easily adsorbed and captured, and a form that can be easily adsorbed and captured and a form that is easy to install, exchange, transport, and discard.

原子炉事故で山野・畑・建物に放出された放射性物質が種々の物質に付着・堆積し、これを除染するのに水洗されている。水洗の水の他に雨水で洗い出され、河川・水路・排水路の水には放射性物質を含んでいる。又、地下水も炉に接触して放射性物質を含んだ状態となっている。更に、原子炉の冷却水も放射性物質で汚染され、その汚染水を貯水タンクで一時保管している。   Radioactive materials released to the mountains, fields, and buildings in the nuclear reactor are attached to and deposited on various materials and washed with water to decontaminate them. In addition to flush water, it is washed out with rainwater, and the water in rivers, waterways and drainage channels contains radioactive substances. In addition, groundwater is in contact with the furnace and contains radioactive material. Furthermore, the reactor cooling water is also contaminated with radioactive materials, and the contaminated water is temporarily stored in a water storage tank.

これら放射性物質に汚染された水は、放射性物質を吸着・付着・除去する装置で捕捉され、浄化された汚染度が低い処理水は海等に放出されている。この装置で使用されている放射性物質の吸着材としては、粒状ゼオライトが広く使用されている。しかし、ゼオライトは粒状として通水路中の水で流下しないように拘束された領域又は通水容器・器具内に拘束されて液に露されるように配置される。
そして、放射性物質を充分に吸着されたら粒状ゼオライトを取り出して、新しい粒状ゼオライトを拘束領域に又拘束された状態の容器・器具に充填した形で使用される。この技術は特許文献1,2で公知技術である。
Water contaminated with these radioactive substances is captured by a device that adsorbs, adheres to and removes the radioactive substances, and purified treated water with a low degree of pollution is released to the sea or the like. As a radioactive material adsorbent used in this apparatus, granular zeolite is widely used. However, the zeolite is arranged in a granular form so that it is confined so as not to flow down with water in the water passage or in a water passage container / equipment and is exposed to the liquid.
When the radioactive substance is sufficiently adsorbed, the granular zeolite is taken out and used in a form in which a new granular zeolite is filled in a constrained region or in a constrained container / equipment. This technique is known in Patent Documents 1 and 2.

しかし、放射性物質を吸着したゼオライトの取り出しは、放射能が高い状態のゼオライトであり、しかも流動性ある粒状であるので、取り出し処理作業が危険となり、慎重な作業を要するものとなっている。又、ゼオライトを収める容器・器具も放射性物質に汚染されるので、容器・器具の廃棄処理又は除染作業が残る。更には、回収された放射性物質を多量に吸着したゼオライト自体の廃棄処理の後処理が必要となる。この廃棄処理にセメント・ガラス等で固化した後2次処分場で埋設処理される。   However, the removal of the zeolite adsorbed with the radioactive substance is a zeolite having a high radioactivity and is in the form of fluid particles, so that the removal treatment work becomes dangerous and requires careful work. In addition, since the container / equipment that contains the zeolite is also contaminated by the radioactive material, the disposal / decontamination work of the container / equipment remains. Furthermore, a post-treatment of the disposal of the zeolite itself that adsorbs a large amount of the recovered radioactive substance is required. This waste treatment is solidified with cement, glass, etc. and then buried in the secondary disposal site.

このように、粒状ゼオライトでの放射性物質の後処理が難しかったり、手間どる固化作業が残されていた。   As described above, post-treatment of radioactive material with granular zeolite is difficult or troublesome solidification work remains.

又、粒状のゼオライトをフィルターとして使うため及び出入できるための構造として、容器・器具等の通水性拘束器具が必要で、設置が複雑であった。   In addition, the structure for using granular zeolite as a filter and allowing it to enter and exit requires a water-permeable restraining device such as a container / equipment, and the installation is complicated.

更に、空気中に放射性物質を拡散させた汚染された空気雰囲気の建物の空気浄化の為に、建物の内壁・天井・床等への吸着層の形成も、粒状ゼオライトでは難しいものであった。
又、出願人はアルミナセメントと活性シリカを使用して、炭を封入して炭入り間知ブロックを作製して水質浄化、緑化ブロックを開発した。しかし、この引用文献3では放射性物質の吸着及びゼオライト使用・目的については何ら開示及び暗示の記載もなかった(引用文献3参照)。
Furthermore, the formation of an adsorbing layer on the inner wall, ceiling, floor, etc. of a building has been difficult with granular zeolite in order to purify the air in a contaminated air atmosphere where radioactive materials are diffused in the air.
In addition, the applicant has developed a water purification and greening block by using alumina cement and activated silica to enclose charcoal and producing a coherent block. However, in this cited document 3, there was no disclosure or suggestion about the adsorption of radioactive substances and the use / purpose of zeolite (see cited document 3).

尚、ポルトランドセメントのセメント成分中に粒状ゼオライトを混入させて水を加えて板状、又は柱状、壁状に固化することも考えられるが、通常のポルトランドセメントではゼオライトを内部で連結させるためにセメント成分を多量に必要とし、その結果コンクリートとなった場合の透水性が低く、ゼオライトがコンクリート内に埋入し、外側の水・液との接触がなくなって、放射性物質の吸着力が大巾に低下する。   In addition, it is conceivable that granular zeolite is mixed in the cement component of Portland cement and water is added to solidify it into a plate shape, a columnar shape, or a wall shape. When a large amount of components are required and the result is concrete, the water permeability is low, the zeolite is embedded in the concrete, there is no contact with the outside water and liquid, and the adsorptive power of radioactive materials is greatly increased. descend.

特許第5314213号公報Japanese Patent No. 5314213 特開2013−120097号公報JP 2013-120097 A 特許第3748870号公報Japanese Patent No. 3748870

本発明が解決しようとする課題は、従来のこれらの問題点を解消し、多量のゼオライトを特殊なセメント系固化材で混合して水を加えて混練することで、少ない固化材で多量のゼオライトを連結でき、しかも所要の形状・寸法に固形化できるとともに固化体は透水性が高く、内部に封入されたゼオライトの放射性吸着力は充分に発揮できる。更に、しかも固形化することでパイプ状・板状・容器状にでき、吸着し易い形態・使用し易い形態に容易にでき、出入の装着と取り出しが容易にできるようにすることにある。又、地下水に対しては地中壁を形成して使用できるようにすることにある。   The problem to be solved by the present invention is to solve these conventional problems, and by mixing a large amount of zeolite with a special cement-based solidifying material and adding water to knead, a large amount of zeolite with a small amount of solidifying material In addition, the solidified body can be solidified to a required shape and size, and the solidified body has high water permeability, so that the radioactive adsorptive power of the zeolite enclosed therein can be sufficiently exhibited. Furthermore, by solidifying it, it is possible to make it into a pipe shape, a plate shape, or a container shape, and easily form it into a form that is easily adsorbed or easy to use, so that loading and unloading can be easily performed. Moreover, it is to make it possible to use underground walls by forming underground walls.

更に、放射性物質の吸着材として使用して高い放射性物質を付着した後この吸着材を容易に取り出せて、安全な場所での保管・移動及び地中深くへの埋設も容易且つ迅速にすることにある。   Furthermore, the adsorbent can be easily removed after adhering a high radioactive substance by using it as an adsorbent for radioactive substances, and it can be easily and quickly stored / moved in a safe place and buried deep in the ground. is there.

かかる課題を解決した本発明の構成は、
1) 粉粒状セメント系固化材として、アルミナセメント100重量部に対し活性シリカを2〜5重量部及び粉粒状ジルコニアを1〜3重量部混合したセメント系固化材を使用し、同粉粒状セメント系固化材に対し、粉粒状のゼオライトを重量比で1:2〜4の割合で混合した粉粒状放射性物質吸着
ある。
The configuration of the present invention that solves this problem is as follows.
1) As a powdered cementitious solidified material, a cemented solidified material in which 2 to 5 parts by weight of active silica and 1 to 3 parts by weight of powdered zirconia are mixed with 100 parts by weight of alumina cement is used. Powdered radioactive material adsorbent obtained by mixing powdered zeolite in a weight ratio of 1: 2 to 4 with respect to the solidified material
It is in.

本発明のセメント系固化材は、アルミナセメントを主成分として活性シリカを混合することで、水で混練するとポゾラン反応速度が大きく、早い材令から充分な強度を発現し、強度が弱いゼオライトをよく連結し、多量のゼオライトを含有しても所要の強度を発現させることができる。しかも、固化体は高い透水性を得て内部のゼオライトを外側の液・水とよく接触可能として、ゼオライトの放射性物質吸着力を阻害することなく発現させる。
しかも、これにジルコニアを混合させて固化させるとジルコニアは、酸化物イオン伝導性があってゼオライトの機能を有効にし、更に相変態あるいは微小亀裂機構による高じん性を有する。
よって、本発明の固化体は高い透水性と放射性物質吸着力を有すとともに、所要の強度とじん性を得ることができる。
又、固化できることでパイプ状・板状・容器状等に使い易い形状にして使用し易い形状にでき、又その出入れ及び保管・移動・処分も迅速且つ容易となる。
The cement-based solidified material of the present invention is a mixture of activated silica containing alumina cement as a main component. When kneaded with water, the pozzolanic reaction rate is large. Even if they are connected and contain a large amount of zeolite, the required strength can be exhibited. In addition, the solidified body has high water permeability and allows the inner zeolite to be in good contact with the outer liquid / water, and is expressed without inhibiting the radioactive substance adsorption power of the zeolite.
Moreover, when zirconia is mixed and solidified, zirconia has oxide ion conductivity and makes the function of zeolite effective, and further has high toughness due to phase transformation or microcracking mechanism.
Therefore, the solidified body of the present invention has high water permeability and radioactive substance adsorption power, and can obtain the required strength and toughness.
Moreover, by being solidified, it can be made into a shape that is easy to use, such as a pipe shape, a plate shape, a container shape, and the like, and its entry / exit and storage / transfer / disposal are also quick and easy.

特に、放射性物質の吸着力が高いとされた粒状ゼオライトを、アルミナセメント100重量部に活性シリカを2〜5重量部、ジルコニアを1〜3重量部を混入した粉粒状のセメント系固化材に対し、粉粒状のゼオライトを重量比で1:2〜4の割合で混合させた粉粒状放射性物質吸着材にして、これに水を所要量加えて混練させることで板状・パイプ状・容器状の種々の形状・寸法の固形物に固化でき、よって汚染された液体に接触するように配置すること、及び交換することが容易で迅速にでき、又固形物であるのでそのまま運搬して保管又は地中埋設でき易くできる。   In particular, the granular zeolite, which is said to have a high adsorptive power for radioactive substances, is used for a granular cementitious solidified material in which 2 to 5 parts by weight of active silica and 1 to 3 parts by weight of zirconia are mixed in 100 parts by weight of alumina cement. A powdery radioactive material adsorbent in which powdery zeolite is mixed at a weight ratio of 1: 2 to 4, and a required amount of water is added to the mixture to knead to form a plate, pipe, or container. It can be solidified into solids of various shapes and sizes, so that it can be easily and quickly placed in contact with contaminated liquids, and can be easily and quickly replaced. Can be embedded easily.

しかも、上記セメント系固化材による固化は、ポルトランドセメント固化材に比べ高い透水性を得て、固化されたゼオライトの放射性物質吸着力を充分に活かすことができた。   Moreover, the solidification by the cement-based solidified material can obtain a higher water permeability than the Portland cement solidified material, and can fully utilize the radioactive substance adsorbing power of the solidified zeolite.

しかも、固化された形状が円筒状、パイプ状、板状、貯水容器状・壁状・層状にでき、使い易い固体形状にでき、又その水路・水槽への設置も容易である。
加えて、使用後の放射性物質を多く吸着された固化物の搬出・輸送・保管及び地中埋設も固形物であるので容易であり、袋詰めの必要性及びセメント・ガラスに固化して廃棄処理する必要もなく、ゼオライトの放射性物質吸着後の後処理が容易且つ迅速にできるものとした。
In addition, the solidified shape can be cylindrical, pipe-shaped, plate-shaped, water storage container-shaped, wall-shaped, or layered, easy-to-use solid shape, and easy to install in waterways and water tanks.
In addition, it is easy to carry out, transport, store and embed the solidified material that absorbs a lot of radioactive material after use because it is a solid material. Therefore, post-treatment after adsorption of the radioactive material on the zeolite can be performed easily and quickly.

図1は実施例1の汚染液用貯水タンクでの浄化の為の有底筒体状の放射性物質吸着体をフィルター筒体としての使用例を示す縦断面図である。FIG. 1 is a longitudinal sectional view showing an example of using a bottomed cylindrical radioactive substance adsorbent as a filter cylinder for purification in a contaminated water storage tank of Example 1. FIG. 図2は同実施例1の横断面図である。FIG. 2 is a cross-sectional view of the first embodiment. 図3は実施例1のフィルター筒体の透水性の実験を示す説明図である。FIG. 3 is an explanatory diagram showing an experiment of water permeability of the filter cylinder of Example 1. 図4は本発明の種々の実施例を示す説明図である。FIG. 4 is an explanatory view showing various embodiments of the present invention. 図5は建物の地中壁での実施例の説明図である。FIG. 5 is an explanatory diagram of an embodiment of the underground wall of the building. 図6は配合例1,2の各試料1,2のSr吸着の試験のICP−MS分析結果のSrの経時変化を示す説明図である。FIG. 6 is an explanatory diagram showing the time-dependent change of Sr in the ICP-MS analysis result of the Sr adsorption test of each sample 1 and 2 of Formulation Examples 1 and 2. 図7は配合例1,2の各試料1,2のCs吸着の試験のICP−MS分析結果のCsの経時変化を示す説明図である。FIG. 7 is an explanatory diagram showing the change over time of Cs in the results of ICP-MS analysis of the Cs adsorption test of each sample 1 and 2 of Formulation Examples 1 and 2.

ここで、本発明において用いる活性シリカとは、100,000〜300,000cm/g程度の比表面積、0.1〜0.2μm程度の平均粒径を有する球形の超微粒子から成る非晶質二酸化ケイ素を主材とし(一般に90重量%以上)、微量の酸化物(酸化ナトリウム、酸化アルミニウム、酸化カリウム、酸化カルシウム、二酸化チタン、二酸化鉄、酸化ストロンチウム、酸化ジルコニウム、酸化ニオブ、酸化イットリウム等)を含有し、ポゾランとして機能し得るものである。このような活性シリカは、例えばエルケム・ジャパン工業株式会社よりマイクロシリカシリーズとして市販されている。 Here, the active silica used in the present invention is an amorphous material composed of spherical ultrafine particles having a specific surface area of about 100,000 to 300,000 cm 2 / g and an average particle diameter of about 0.1 to 0.2 μm. Mainly silicon dioxide (generally 90% by weight or more), trace amounts of oxides (sodium oxide, aluminum oxide, potassium oxide, calcium oxide, titanium dioxide, iron dioxide, strontium oxide, zirconium oxide, niobium oxide, yttrium oxide, etc.) And can function as a pozzolana. Such activated silica is commercially available, for example, as a microsilica series from Elchem Japan Kogyo Co., Ltd.

本発明の粉粒状セメント系固化材において、アルミナセメント100重量部に対して活性シリカを2〜5重量部及びジルコニアを1〜3重量部の範囲を超えると透水性が悪く、又ゼオライト連結力が弱く、強度不足となる内部構造となり、又はゼオライトの外周を閉鎖構造となり、ゼオライトの本来の機能を低下させるものであった。
又、この粉粒状セメント系固化材を100重量部に対し、ゼオライトを200〜400の重量比で混入するのが良好であった。200重量部を切ればゼオライトの機能が弱くなり、又400重量部を超えると固形材としての強度が弱くなり、破損し易いものである。
In the granular cementitious solidified material of the present invention, the water permeability is poor when the active silica exceeds 2 to 5 parts by weight and the zirconia exceeds 1 to 3 parts by weight with respect to 100 parts by weight of the alumina cement. The inner structure was weak and lacked in strength, or the outer periphery of the zeolite was closed, which reduced the original function of the zeolite.
Moreover, it was good that zeolite was mixed at a weight ratio of 200 to 400 with respect to 100 parts by weight of the granular cementitious solidified material. If it is less than 200 parts by weight, the function of the zeolite is weakened, and if it exceeds 400 parts by weight, the strength as a solid material is weakened and easily broken.

図1,2は汚染液用貯水タンクにおける放射性物質の吸着構造の実施例1である。
本発明を図1〜5に示す種々の実施例について説明する。
図1,2の実施例1の図面中、1はセシウムとストロンチウムの放射性物質を含んだ汚染液の汚染液用貯水タンク、11はバルブ付きの汚染液注入管、12はバルブ付きの汚染液排出管、13はタンク蓋、2は有底円筒状に固形化された放射性物質吸着体であるフィルター筒体、21は同フィルター筒体の内周面に付設した微細孔を多数穿孔したステンレス製多孔内筒、22は吸引管、23は同吸引管に接続されたポンプ、24はフィルター筒体2の蓋である。
1 and 2 show a first embodiment of a radioactive substance adsorption structure in a contaminated liquid storage tank.
The present invention will be described with reference to various embodiments shown in FIGS.
1 and 2, the reference numeral 1 is a reservoir tank for contaminated liquid containing radioactive substances of cesium and strontium, 11 is a contaminated liquid injection pipe with a valve, and 12 is a discharged discharged liquid with a valve. A tube, 13 is a tank lid, 2 is a filter cylinder which is a radioactive substance adsorbent solidified into a bottomed cylinder, and 21 is a stainless steel perforated with a large number of fine holes attached to the inner peripheral surface of the filter cylinder The inner cylinder, 22 is a suction pipe, 23 is a pump connected to the suction pipe, and 24 is a lid of the filter cylinder 2.

図3は本発明の透水性の実験説明図である。
図3中、3は透水性実験用の防水性の水容器、31は表1のセメント系固化材を使用し、これにゼオライトと水を表3の配合例1の割合で混合して混練して作製された実施例のフィルター筒体、32は灰成分を含んだ液体、33はフィルター筒体内の透過水である。
FIG. 3 is an explanatory view of the water permeability experiment of the present invention.
In FIG. 3, 3 is a water-resistant water container for water permeability experiments, 31 is a cement-based solidified material shown in Table 1, and zeolite and water are mixed and kneaded in the ratio of Formulation Example 1 in Table 3. The filter cylinder of the example produced in this way, 32 is a liquid containing an ash component, and 33 is permeated water in the filter cylinder.

図4は放射性物質を含んだ汚染された地下水を遮断するコンクリート壁体の内側の地盤に放射性物質吸着地中壁を形成させた例である。
図4中、4は海に面するコンクリート壁体、41は表1,表3の配合例1で作製されたコンクリート壁体内面に付設された放射性物質吸着地中壁、42は放射性物質を含んだ汚染水、43は地盤の岩盤である。
FIG. 4 shows an example in which a radioactive substance adsorbing underground wall is formed on the ground inside the concrete wall that blocks contaminated groundwater containing radioactive substances.
In FIG. 4, 4 is a concrete wall facing the sea, 41 is a radioactive material adsorbing underground wall attached to the inner surface of the concrete wall prepared in Formulation Example 1 of Tables 1 and 3, and 42 contains a radioactive material. Contaminated water, 43 is the ground rock.

図5は本発明の応用例の放射性物質吸着構造の種々の実施例を示す説明図である。
図5(a)中、5は放射能対策建物、51は実施例の建物5の内壁全部に放射性物質吸着材を水で混練して吹付けして形成された放射性物質吸着層である。
図5(b)中、6は原子炉建物、61は原子炉建物の外周に設けたコンクリート地中壁、62は本実施例の放射性物質吸着地中壁で、コンクリート地中壁61の内壁として形成されている。
FIG. 5 is an explanatory view showing various embodiments of the radioactive substance adsorption structure of the application example of the present invention.
In FIG. 5 (a), 5 is a radioactivity building, 51 is a radioactive material adsorption layer formed by mixing and spraying a radioactive material adsorbent with water on the entire inner wall of the building 5 of the embodiment.
In FIG. 5B, 6 is a reactor building, 61 is a concrete underground wall provided on the outer periphery of the reactor building, 62 is a radioactive material adsorption underground wall of this embodiment, and is used as an inner wall of the concrete underground wall 61. Is formed.

図5(c)中、7は放射性物質汚染液の送液管、71は同送液管内に配置した実施例の放射性物質吸着体であるフィルターパイプである。
図5(d)中、8は放射性物質汚染液の送液管、81は同送液管の通路を区画する実施例の放射性物質吸着体、82は同放射性物質吸着体の一面に付着した微細孔を多数穿孔したステンレス製多孔板、83は汚染液通路、84は放射性物質吸着体を透過した浄化された水の浄化水通路である。
In FIG. 5C, reference numeral 7 denotes a radioactive substance contaminated liquid feed pipe, and reference numeral 71 denotes a filter pipe which is the radioactive substance adsorbent of the embodiment disposed in the liquid feed pipe.
In FIG. 5 (d), 8 is a radioactive substance contaminated liquid feeding pipe, 81 is a radioactive substance adsorbing body of an embodiment that partitions the passage of the liquid feeding pipe, and 82 is a fine adhering to one surface of the radioactive substance adsorbing body. A perforated plate made of stainless steel having a large number of holes, 83 is a contaminated liquid passage, and 84 is a purified water passage for purified water that has passed through the radioactive substance adsorbent.

図5(e)中、9は汚染液貯水タンク、90は同タンクを上下に区画する実施例の放射性物質吸着体、91は同吸着体の下面に付設したステンレス製多孔板、92は汚染液の導水管、93は汚染水排水管、94は浄化水排水管である。   In FIG. 5 (e), 9 is a contaminated liquid storage tank, 90 is a radioactive material adsorbent of an embodiment that divides the tank vertically, 91 is a stainless porous plate attached to the lower surface of the adsorbent, and 92 is a contaminated liquid , 93 is a contaminated water drain pipe, and 94 is a purified water drain pipe.

(実施例1)
以下、本発明の汚染液用貯水タンク中に有底円筒体状に固化したフィルター筒体を複数本配置した実施例1でもって説明する。
Example 1
Hereinafter, a description will be given of a first embodiment in which a plurality of filter cylinders solidified into a bottomed cylindrical body are disposed in the contaminated liquid storage tank of the present invention.

この実施例1は、放射性物質に汚染された液体を一時貯える汚染液用貯水タンク1中に有底の円筒状に固形化された本発明の請求項2の記載の放射性物質吸着体(以下フィルター筒体2という)を垂直に設け、同フィルター筒体2内の浄化された液をポンプ23で排出させる貯水タンク1の構造例である。フィルター筒体2の内面には微細孔を多数有するステンレス製多孔内筒21を付設している。この多孔内筒21は放射性物質吸着体のフィルター筒体2の崩れを防ぐこともしている保護筒でもある。   Example 1 is a radioactive substance adsorbent (hereinafter referred to as a filter) according to claim 2 of the present invention, which is solidified into a bottomed cylindrical shape in a contaminated liquid storage tank 1 for temporarily storing a liquid contaminated with a radioactive substance. This is an example of the structure of the water storage tank 1 in which the cylinder 2 is provided vertically and the purified liquid in the filter cylinder 2 is discharged by the pump 23. A stainless steel porous inner cylinder 21 having a large number of fine holes is attached to the inner surface of the filter cylinder 2. This porous inner cylinder 21 is also a protective cylinder which prevents the collapse of the filter cylinder 2 of the radioactive substance adsorbent.

実施例1の円筒状の放射性物質吸着体のフィルター筒体2に使用した粉粒状セメント系固化材の成分配合比率は、下記表1の通りである。   The component blending ratios of the granular cement-based solidified material used in the filter barrel 2 of the cylindrical radioactive substance adsorbent in Example 1 are as shown in Table 1 below.

Figure 0006254064
Figure 0006254064

上記の粉粒状セメント系固化材だけで所要量の水を加えて固形化した固形板の特性は、下記表2であった。高い圧縮強度を有している。   Table 2 below shows the characteristics of the solid plate solidified by adding the required amount of water only with the above-mentioned powdered cementitious solidifying material. High compressive strength.

Figure 0006254064
Figure 0006254064

実施例は、上記表1の配合比率の粉粒状セメント系固化材に対して、下記表3の通りゼオライトを重量比1:3で混入して粉粒状放射性物質吸着材を作製した。尚、ゼオライトは比重1.0で粒径は0.25〜1.00mmのものを使用した。   In the examples, a granular radioactive material adsorbent was prepared by mixing zeolite in a weight ratio of 1: 3 as shown in Table 3 below with respect to the granular cement-based solidified material having the blending ratio shown in Table 1 above. Zeolite having a specific gravity of 1.0 and a particle size of 0.25 to 1.00 mm was used.

Figure 0006254064
Figure 0006254064

上記成分比率表1,表3で作製した有底の円筒状の放射性物質吸着体のフィルター筒体2の透水性の実験の為に、上記表3の有底円筒状の供試体を作成して、透水性の実験を行った。
表3の配合例1の供試体として、小型の外形100mm,内径75mm,高さ120mm,底厚み20mmの寸法の有底円筒状のフィルター筒体31を作製して、透水性の実験を行った。
For the experiment of water permeability of the filter cylinder 2 of the bottomed cylindrical radioactive material adsorbent prepared in the above-mentioned component ratios Tables 1 and 3, the bottomed cylindrical specimens shown in Table 3 above were prepared. A water permeability experiment was conducted.
As a specimen of Formulation Example 1 in Table 3, a bottomed cylindrical filter cylinder 31 having dimensions of a small outer diameter of 100 mm, an inner diameter of 75 mm, a height of 120 mm, and a bottom thickness of 20 mm was produced, and a water permeability experiment was performed. .

(透水性実験例)
上記フィルター筒体31を水を貯えた水容器3に灰成分(セメント成分)を含んだ濁った水中に垂直に置いた(図3(a)状態)。そのときの水容器3の水位は100mmあった。そして、水容器3の水は徐々にフィルター筒体31内へ透水してフィルター筒体31内の水位は上昇していった。そして、8日後に実施例のフィルター筒体31内の水位は水容器3の水位と同じとなり、80mmとなった。これは、ポルトランドセメントのコンクリート製の有底円筒体に比べ、本発明の配合例1のフィルター筒体31はかなり大きい透水性を示すものである。このように、実施例のフィルター筒体31の透水性はかなり高いことが判明した。又、フィルター筒体31内の水には灰成分が少なく透明であった。
(Example of permeability test)
The filter cylinder 31 was placed vertically in cloudy water containing an ash component (cement component) in a water container 3 in which water was stored (state of FIG. 3A). The water level of the water container 3 at that time was 100 mm. The water in the water container 3 gradually permeated into the filter cylinder 31 and the water level in the filter cylinder 31 increased. Then, after 8 days, the water level in the filter cylinder 31 of the example became the same as the water level of the water container 3 and became 80 mm. This indicates that the filter cylinder 31 of the blending example 1 of the present invention has a considerably large water permeability as compared with a bottomed cylindrical body made of Portland cement concrete. Thus, it was found that the water permeability of the filter cylinder 31 of the example was considerably high. The water in the filter cylinder 31 was transparent with few ash components.

(放射性物質吸着力の試験)
次に、本発明の表3の配合例1の放射性物質吸着力の試験を行った。そのため、表3中のゼオライト含有の配合例1の大小2つのフィルター試料(試料1と称す)と、表3のゼオライト含有させない配合例2の大小のフィルター試料(単に試料2と称す)とを作製し、これら試料1,2でのCs(セシウム)及びSr(ストロンチウム)のICP−MS試験分析を行った。その結果を下記表4,5に示す。又、それを図6,7にグラフとして示している。本試験に使用した標準液として、Srの標準液は10.003ppm濃度のものを、及びCsの標準液として9.992ppm濃度の液を使用した。
(Radioactive substance adsorption test)
Next, the radioactive substance adsorptive power test of Formulation Example 1 in Table 3 of the present invention was performed. Therefore, the two large and small filter samples (referred to as sample 1) of the formulation example 1 containing zeolite in Table 3 and the large and small filter sample (referred to simply as sample 2) of the blend example 2 not containing zeolite shown in Table 3 are prepared. These samples 1 and 2 were subjected to ICP-MS test analysis of Cs (cesium) and Sr (strontium). The results are shown in Tables 4 and 5 below. Moreover, it is shown as a graph in FIGS. As the standard solution used in this test, a standard solution of Sr was used at a concentration of 10.003 ppm, and a standard solution of 9992 ppm was used as a standard solution for Cs.

Figure 0006254064
Figure 0006254064

Figure 0006254064
Figure 0006254064

上記の表4,図6から分るように、Srの吸着能に関しては、表面積の高い(大)の試料2(大)及び試料1(大)の方が試料2,1の(小)よりも高い吸着を示した。(大)の試料2と試料1とでは吸着能は、試料1(実施例)の方がやや吸着能が高い。(小)の方でも、試料2よりも試料1(実施例)の方が高い吸着能を示した。
Srの吸着は比較的短時間で発揮され、試料2,1の(大)に関しては2日目以降でほぼ検出下限以下となった。
As can be seen from Table 4 and FIG. 6 above, with regard to the adsorption capacity of Sr, the sample 2 (large) and the sample 1 (large) having a larger surface area are larger than the sample 2 (small). Also showed high adsorption. The adsorption capacity of Sample 2 and Sample 1 of (Large) is slightly higher than that of Sample 1 (Example). Even in the case of (small), Sample 1 (Example) showed higher adsorption ability than Sample 2.
Adsorption of Sr was exhibited in a relatively short time, and (large) of samples 2 and 1 was almost below the lower limit of detection after the second day.

又、上記の表5,図7から分るように、Csの吸着能に関しては、試料2ではCsの吸着をほとんど示さなかったのに対して、実施例の試料1ではCsの吸着が認められた。試料2の(大)と(小)では(大)方が若干高い吸着を持っていると考えられた。
試料1はCsについてもSrと同様に比較的短時間で吸着能を示し、(大)においては5日目で概ね飽和状態に達したと思われた。
Further, as can be seen from Table 5 and FIG. 7, with respect to the Cs adsorption capacity, the sample 2 showed almost no Cs adsorption, whereas the sample 1 of the example showed Cs adsorption. It was. In sample 2 (large) and (small), (large) was considered to have slightly higher adsorption.
Sample 1 also showed the ability to adsorb Cs in a relatively short time as with Sr. In (large), it seemed that almost reached saturation on the fifth day.

以上の様に、表1,3の配合例で作製されたフィルター筒体2,試料1及び以下の実施例1のフィルター筒体31及びその他の図5の他の例の放射性吸着体のSr,Csの吸着力は上記ICP−MS試験分析結果から大きいと判断された。   As described above, Sr of the filter cylinder 2, sample 1 prepared in the blending examples of Tables 1 and 3, the filter cylinder 31 of Example 1 below, and the other examples of the radioactive adsorbent of FIG. Cs adsorption force was judged to be large from the ICP-MS test analysis results.

次に、図1,2で示す汚染液用貯水タンク1の実施例1は、前記表1,3の配合例1の放射性物質吸着材を用いてフィルター筒体2を作製し、内面に多孔内筒21を付着させた構造の細長い寸法の上蓋付のフィルター筒体2を放射性物質の汚染液の貯水タンク1内に複数本垂直に配置し、各フィルター筒体2内にポンプ23と接続された吸引管22を配置している。吸引管22は外周から空気又は水を吸引できるものとなっている。   Next, in Example 1 of the contaminated water storage tank 1 shown in FIGS. 1 and 2, a filter cylinder 2 is produced using the radioactive substance adsorbent of Formulation Example 1 in Tables 1 and 3, and the inner surface is porous. A plurality of filter cylinders 2 with an upper lid having a structure with a cylinder 21 attached thereto are vertically arranged in a water storage tank 1 for radioactive liquid contamination, and are connected to a pump 23 in each filter cylinder 2. A suction tube 22 is arranged. The suction tube 22 can suck air or water from the outer periphery.

この貯水タンク1内に放射性物質を含有した汚れた水を所定水位まで導入する。そして、ポンプ23を作動し、フィルター筒体2内を負圧にすれば、貯水タンク1内の汚染液はその水頭差と空気負圧によってフィルター筒体2を透過していく。その透過の途中でフィルター筒体2内のゼオライトと接触して放射性物質は吸着されてフィルター筒体2内に捕捉されて残留する。そして、ゼオライトで放射性物質が吸着されて透過した水がフィルター筒体2内に貯えられ、フィルター筒体2内の水位が上昇すれば、その水は吸引管22内に吸引されて、外部へ送水される。この送水される水は放射性物質をあまり含まないので、浄水として2次浄化装置へ又は浄化度が高ければ海等へ放出できるようになる。又、ポンプ23で浄水が送水される分、貯水タンク1の汚染液の水位は低下するので、この貯水タンク1に汚染液を更に送り込むことができる。よって、必要な貯水タンク1の数を減らすことができる。   Dirty water containing a radioactive substance is introduced into the water storage tank 1 to a predetermined water level. And if the pump 23 is operated and the inside of the filter cylinder 2 is made into a negative pressure, the contaminated liquid in the water storage tank 1 will permeate | transmit the filter cylinder 2 with the water head difference and air negative pressure. In the middle of the permeation, the radioactive substance comes into contact with the zeolite in the filter cylinder 2 and is adsorbed and trapped in the filter cylinder 2 and remains. And the water which adsorb | sucked and permeate | transmitted the radioactive substance with zeolite is stored in the filter cylinder 2, If the water level in the filter cylinder 2 rises, the water will be attracted | sucked in the suction pipe 22 and water will be sent outside. Is done. Since the water to be sent does not contain much radioactive material, it can be discharged as purified water to the secondary purification device or to the sea or the like if the degree of purification is high. Further, since the level of the contaminated liquid in the water storage tank 1 is lowered by the amount of purified water sent by the pump 23, the contaminated liquid can be further fed into the water storage tank 1. Therefore, the number of necessary water storage tanks 1 can be reduced.

尚、実施例1の放射性物質を飽和まで吸着させたフィルター筒体2は、汚染液用貯水タンク1からクレーン等で吊り上げて特殊密閉容器内に封入して、搬送・保管又は地中埋設すればよいので、放射性物質吸着後の後処理は安全で迅速に行えるものである。   The filter cylinder 2 in which the radioactive substance of Example 1 is adsorbed until saturation is lifted from the contaminated liquid storage tank 1 with a crane or the like, sealed in a special sealed container, and transported / stored or buried underground. Because of this, post-treatment after radioactive material adsorption is safe and quick.

図4,5に示す実施例は、本発明の粉粒状放射性物質吸着材を固化した他の利用例・吸着構造例である
図4は、汚染水を貯えた建物内のコンクリート壁体4の内側に連続した地中孔を多数掘削し、これに表1,3の本発明の粉粒状放射性物質吸着材に水を加えて混練し、上記地中孔に流し込んでコンクリート壁4の内側の地盤内で固化させて、放射性物質吸着地中壁41を形成させた例である。この例で汚染水はコンクリート壁体4内側に隔離されて貯えられるが、コンクリート壁体4の亀裂・間隙から外部へ流出・漏出する場合に、その内側にある放射性物質吸着地中壁41が汚染水の中の放射性物質を吸着することでコンクリート壁体4から流出・漏出する液体は浄化されて海に流出するので海の汚染を少なくできる。
図5は(a)は、放射能対策建物5内の天井・床・内壁に本発明の粉粒状放射性物質吸着材に水を混練して壁面・天井・床に吹付けて放射性物質吸着層51を形成した例で室内の空気浄化のためのものである。建物内の汚染された空気中の放射性物質を吸着して空気を浄化させる例である。図5(b)は、原子炉建物6の地盤を取り囲むコンクリート地中壁61の内側に凹所を掘削して、この凹所に本発明の粉粒状放射性物質吸着材所要の水を加えて混練して流し込んで、放射性物質吸着地中壁62を形成するものである。建物下の汚染水を浄化した水だけ外部に放出できるようにした例である。図5(c)は、汚染水の送液管7中に本発明の実施例のフィルターパイプ71を配置し、液路中の汚染させている放射性物質を除去して浄化した水のみを液路から抜き取って、液路中の水を浄化したものを分離して処理できるようにするものである。図5(d)は、送液管8を本発明を使用した板状の放射性物質吸着体81で区画し、汚染液から浄化して水を別路で排出し、浄化した水は海等に放出できるようにする例である。図5(e)は汚染液貯水タンク9の内部に上下に区画する本発明を使用した板状の放射性物質吸着体90を設けた例で、タンク内の汚染液をその水頭圧で放射性物質吸着体90を透過させ、浄水化して浄化水を排水管94から排出できるようにした例である。
The embodiment shown in FIGS. 4 and 5 is another application example / adsorption structure example in which the particulate radioactive material adsorbent of the present invention is solidified .
FIG. 4 shows the excavation of many continuous underground holes inside the concrete wall 4 in the building where contaminated water is stored, and water is added to the particulate radioactive material adsorbents of the present invention shown in Tables 1 and 3. In this example, the radioactive material adsorbing underground wall 41 is formed by kneading, pouring into the underground hole and solidifying in the ground inside the concrete wall 4. In this example, the contaminated water is isolated and stored inside the concrete wall 4, but when the concrete wall 4 flows out or leaks from the crack / gap of the concrete wall 4, the radioactive material adsorption underground wall 41 inside the concrete wall 4 is contaminated. By adsorbing radioactive substances in the water, the liquid that flows out and leaks from the concrete wall 4 is purified and flows out into the sea, so that the pollution of the sea can be reduced.
FIG. 5A shows a radioactive substance adsorbing layer 51 obtained by kneading water into the granular radioactive substance adsorbent of the present invention on the ceiling, floor, and inner walls of the radioactivity-preventing building 5 and spraying them on the walls, ceiling, and floor. This is an example for forming indoor air. This is an example of purifying the air by adsorbing radioactive materials in the contaminated air in the building. FIG. 5B shows a case where a recess is excavated inside the concrete underground wall 61 surrounding the ground of the reactor building 6, and necessary water is added to the granular radioactive material adsorbent of the present invention in this recess. The radioactive material adsorption underground wall 62 is formed by mixing and pouring. In this example, only the purified water from the contaminated water under the building can be discharged to the outside. FIG. 5 (c) shows that the filter pipe 71 according to the embodiment of the present invention is disposed in the contaminated water supply pipe 7, and only the water purified by removing the contaminating radioactive substances in the liquid path is supplied to the liquid path. It is extracted from the water, and the purified water in the liquid passage is separated and processed. In FIG. 5 (d), the liquid supply pipe 8 is partitioned by a plate-shaped radioactive substance adsorbent 81 using the present invention , purified from the contaminated liquid and discharged through another path, and the purified water is discharged to the sea or the like. This is an example of enabling release. FIG. 5 (e) shows an example in which a plate-like radioactive substance adsorbing body 90 using the present invention is provided inside the polluted liquid storage tank 9 and is divided into upper and lower parts. This is an example in which the body 90 is permeated to purify the water so that the purified water can be discharged from the drain pipe 94.

本発明は、放射性物質の吸着フィルターの他の元素の吸着フィルターの材料・製品にも使用できる。   The present invention can also be used for materials and products of adsorption filters for other elements other than radioactive material adsorption filters.

1 貯水タンク
11 汚染液注入管
12 汚染液排出管
13 タンク蓋
2 フィルター筒体
21 ステンレス製多孔内筒
22 吸引管
23 ポンプ
24 蓋
3 水容器
31 フィルター筒体
32 液体
33 透過水
4 コンクリート壁体
41 放射性物質吸着地中壁
42 汚染水
43 岩盤
5 放射能対策建物
51 放射性物質吸着層
6 原子炉建物
61 コンクリート地中壁
62 放射性物質吸着地中壁
7 送液管
71 フィルターパイプ
8 送液管
81 放射性物質吸着体
82 多孔板
83 汚染液通路
84 浄化水通路
9 汚染液貯水タンク
90 放射性物質吸着体
91 多孔板
92 導水管
93 汚染水排出管
94 浄化水排水管
DESCRIPTION OF SYMBOLS 1 Water storage tank 11 Contaminated liquid injection pipe 12 Contaminated liquid discharge pipe 13 Tank lid 2 Filter cylinder 21 Stainless steel porous inner cylinder 22 Suction pipe 23 Pump 24 Lid 3 Water container 31 Filter cylinder 32 Liquid 33 Permeated water 4 Concrete wall body 41 Radioactive material adsorption underground wall 42 Contaminated water 43 Rock 5 Radioactivity building 51 Radioactive material adsorption layer 6 Reactor building 61 Concrete underground wall 62 Radioactive material adsorption underground wall 7 Liquid feed pipe 71 Filter pipe 8 Liquid feed pipe 81 Radioactive Substance adsorbent 82 Perforated plate 83 Contaminated liquid passage 84 Purified water passage 9 Contaminated liquid storage tank 90 Radioactive material adsorbent 91 Perforated plate 92 Conduit pipe 93 Contaminated water discharge pipe 94 Purified water drain pipe

Claims (1)

粉粒状セメント系固化材として、アルミナセメント100重量部に対し活性シリカを2〜5重量部及び粉粒状ジルコニアを1〜3重量部混合したセメント系固化材を使用し、同粉粒状セメント系固化材に対し、粉粒状のゼオライトを重量比で1:2〜4の割合で混合した粉粒状放射性物質吸着材 As the granular cement-based solidified material, a cement-based solidified material in which 2 to 5 parts by weight of active silica and 1 to 3 parts by weight of granular zirconia are mixed with 100 parts by weight of alumina cement is used. On the other hand, a granular radioactive substance adsorbent in which granular zeolite is mixed at a weight ratio of 1: 2-4 .
JP2014211106A 2014-10-15 2014-10-15 Powdered radioactive material adsorbent Active JP6254064B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014211106A JP6254064B2 (en) 2014-10-15 2014-10-15 Powdered radioactive material adsorbent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014211106A JP6254064B2 (en) 2014-10-15 2014-10-15 Powdered radioactive material adsorbent

Publications (2)

Publication Number Publication Date
JP2016080486A JP2016080486A (en) 2016-05-16
JP6254064B2 true JP6254064B2 (en) 2017-12-27

Family

ID=55958346

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014211106A Active JP6254064B2 (en) 2014-10-15 2014-10-15 Powdered radioactive material adsorbent

Country Status (1)

Country Link
JP (1) JP6254064B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6866994B2 (en) 2016-08-19 2021-04-28 国立研究開発法人日本原子力研究開発機構 New compounds, their synthesis methods, and elemental separation and recovery agents

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6425100A (en) * 1987-07-21 1989-01-27 Ohbayashi Corp Storage equipment of low level radioactive waste
NL9200430A (en) * 1992-03-09 1993-10-01 Pelt & Hooykaas FIXER FOR FIXING ORGANIC AND INORGANIC MATERIAL, METHOD FOR FIXING SUCH MATERIAL AND SYNTHETIC CLAY MATERIAL.
JPH06300893A (en) * 1993-04-14 1994-10-28 Toshiba Corp Solidifying material for radioactive waste
JP2004203640A (en) * 2002-12-24 2004-07-22 Kamigakigumi:Kk Concrete raw material
JP2005040685A (en) * 2003-07-25 2005-02-17 Sumitomo Osaka Cement Co Ltd Heavy metal adsorbent material and heavy metal treatment method
JP2005254077A (en) * 2004-03-09 2005-09-22 Sumitomo Osaka Cement Co Ltd Method for manufacturing heavy metal adsorbent and adsorbent obtained thereby

Also Published As

Publication number Publication date
JP2016080486A (en) 2016-05-16

Similar Documents

Publication Publication Date Title
CA2972799C (en) Method for processing liquid radioactive waste and for the recovery thereof
Chang et al. Assessment of trace estrogenic contaminants removal by coagulant addition, powdered activated carbon adsorption and powdered activated carbon/microfiltration processes
CN103962099B (en) The defluorinating agent that a kind of coal ash for manufacturing is standby and defluorination method thereof and application
JP6254064B2 (en) Powdered radioactive material adsorbent
JP3198799U (en) Contaminated soil treatment system
JP6082338B2 (en) Decontamination device and decontamination method for contaminated water area
JP6230243B2 (en) Method and apparatus for removing inorganic fine particles from contaminants containing inorganic fine particles
Tang et al. Membrane behavior of bentonite-amended compacted clay towards Zn (II) and Pb (II)
JP6403150B2 (en) Waste disposal site and waste treatment system
JP6218729B2 (en) Adsorbent, method for producing the adsorbent, contaminated water using the adsorbent, and purification method for solid contaminants
JP6218357B2 (en) Method and apparatus for separating and removing radioactive cesium contained in waste water
JP2009233630A (en) Separating method for polluted substance and facility therefor
CN103894390B (en) Process for governing and repairing polluted sediments of water area
JP2013234926A (en) Cesium adsorptive material and method for disposing of and storing cesium-containing materials using the same
JP5808945B2 (en) Equipment for removing radioactive pollutants
JP2004255314A (en) Ground water purification wall and purification method for ground water
JP5816526B2 (en) Radioactive substance immobilization method and immobilization equipment
JP2007268392A (en) Treatment method of polluted water
JP6825193B1 (en) Radioactive material adsorbent and its manufacturing method
JP2022171001A (en) Method for removing harmful substance, and method for producing adsorbent
JP2014077647A (en) Radioactive contaminated water removal device
RU149811U1 (en) CONSTRUCTION OF BUILDING BLOCKS AND / OR BUILDING PLATES, BUILDING BLOCK (OPTIONS) AND BUILDING PLATE
JP4905110B2 (en) Groundwater purification method
Imaizumi et al. Basic Study on Applicability to Artificial Barriers for Radioactive Waste Disposal Facility for Various Zeolites
JP2005334749A (en) Cleaning agent of water and cleaning method for polluted ground water using the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170322

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170328

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170523

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20171013

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171102

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171129

R150 Certificate of patent or registration of utility model

Ref document number: 6254064

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250