JP6252890B2 - Lithium iron manganese composite oxide and lithium ion secondary battery using the same - Google Patents
Lithium iron manganese composite oxide and lithium ion secondary battery using the same Download PDFInfo
- Publication number
- JP6252890B2 JP6252890B2 JP2013173268A JP2013173268A JP6252890B2 JP 6252890 B2 JP6252890 B2 JP 6252890B2 JP 2013173268 A JP2013173268 A JP 2013173268A JP 2013173268 A JP2013173268 A JP 2013173268A JP 6252890 B2 JP6252890 B2 JP 6252890B2
- Authority
- JP
- Japan
- Prior art keywords
- lithium
- positive electrode
- secondary battery
- ion secondary
- lithium ion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002131 composite material Substances 0.000 title claims description 49
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims description 46
- 229910001416 lithium ion Inorganic materials 0.000 title claims description 46
- DOCYQLFVSIEPAG-UHFFFAOYSA-N [Mn].[Fe].[Li] Chemical compound [Mn].[Fe].[Li] DOCYQLFVSIEPAG-UHFFFAOYSA-N 0.000 title claims description 31
- AHKZTVQIVOEVFO-UHFFFAOYSA-N oxide(2-) Chemical class [O-2] AHKZTVQIVOEVFO-UHFFFAOYSA-N 0.000 title 1
- 239000007774 positive electrode material Substances 0.000 claims description 30
- XEEYBQQBJWHFJM-UHFFFAOYSA-N iron Substances [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 19
- 239000011572 manganese Substances 0.000 claims description 18
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical group [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 11
- 239000007773 negative electrode material Substances 0.000 claims description 11
- 229910052748 manganese Inorganic materials 0.000 claims description 5
- 229910052759 nickel Inorganic materials 0.000 claims description 5
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- 125000004430 oxygen atom Chemical group O* 0.000 claims description 3
- 125000001153 fluoro group Chemical group F* 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 description 17
- 239000000203 mixture Substances 0.000 description 17
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 16
- 239000002184 metal Substances 0.000 description 16
- 235000002639 sodium chloride Nutrition 0.000 description 11
- 239000002904 solvent Substances 0.000 description 11
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 10
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 10
- 229910052744 lithium Inorganic materials 0.000 description 10
- 239000001301 oxygen Substances 0.000 description 10
- 229910052760 oxygen Inorganic materials 0.000 description 10
- -1 polytetrafluoroethylene Polymers 0.000 description 10
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 9
- 150000003839 salts Chemical class 0.000 description 9
- 239000000470 constituent Substances 0.000 description 8
- 238000010304 firing Methods 0.000 description 8
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 7
- 239000002002 slurry Substances 0.000 description 7
- 239000012298 atmosphere Substances 0.000 description 6
- 150000002222 fluorine compounds Chemical class 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 238000000034 method Methods 0.000 description 6
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 5
- 235000011941 Tilia x europaea Nutrition 0.000 description 5
- 229910052782 aluminium Inorganic materials 0.000 description 5
- 239000007864 aqueous solution Substances 0.000 description 5
- 239000011230 binding agent Substances 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 239000008151 electrolyte solution Substances 0.000 description 5
- 239000004571 lime Substances 0.000 description 5
- 229910003002 lithium salt Inorganic materials 0.000 description 5
- 159000000002 lithium salts Chemical class 0.000 description 5
- 230000014759 maintenance of location Effects 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 230000004913 activation Effects 0.000 description 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 4
- 238000003795 desorption Methods 0.000 description 4
- 150000002642 lithium compounds Chemical class 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 3
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 3
- 239000002033 PVDF binder Substances 0.000 description 3
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 3
- 239000003575 carbonaceous material Substances 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 239000012153 distilled water Substances 0.000 description 3
- 238000001035 drying Methods 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 229920005575 poly(amic acid) Polymers 0.000 description 3
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 3
- 239000006104 solid solution Substances 0.000 description 3
- ZZXUZKXVROWEIF-UHFFFAOYSA-N 1,2-butylene carbonate Chemical compound CCC1COC(=O)O1 ZZXUZKXVROWEIF-UHFFFAOYSA-N 0.000 description 2
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 2
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 2
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- DDFHBQSCUXNBSA-UHFFFAOYSA-N 5-(5-carboxythiophen-2-yl)thiophene-2-carboxylic acid Chemical compound S1C(C(=O)O)=CC=C1C1=CC=C(C(O)=O)S1 DDFHBQSCUXNBSA-UHFFFAOYSA-N 0.000 description 2
- DLFVBJFMPXGRIB-UHFFFAOYSA-N Acetamide Chemical compound CC(N)=O DLFVBJFMPXGRIB-UHFFFAOYSA-N 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- 239000004925 Acrylic resin Substances 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- OTMSDBZUPAUEDD-UHFFFAOYSA-N Ethane Chemical compound CC OTMSDBZUPAUEDD-UHFFFAOYSA-N 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- 239000004743 Polypropylene Substances 0.000 description 2
- 238000002441 X-ray diffraction Methods 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 2
- 230000002528 anti-freeze Effects 0.000 description 2
- 150000005678 chain carbonates Chemical class 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- 150000005676 cyclic carbonates Chemical class 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- VUPKGFBOKBGHFZ-UHFFFAOYSA-N dipropyl carbonate Chemical compound CCCOC(=O)OCCC VUPKGFBOKBGHFZ-UHFFFAOYSA-N 0.000 description 2
- KLKFAASOGCDTDT-UHFFFAOYSA-N ethoxymethoxyethane Chemical compound CCOCOCC KLKFAASOGCDTDT-UHFFFAOYSA-N 0.000 description 2
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 2
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 2
- 239000010408 film Substances 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011888 foil Substances 0.000 description 2
- 150000004677 hydrates Chemical class 0.000 description 2
- 150000003949 imides Chemical class 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 229910052742 iron Inorganic materials 0.000 description 2
- 239000003273 ketjen black Substances 0.000 description 2
- 239000005001 laminate film Substances 0.000 description 2
- AMXOYNBUYSYVKV-UHFFFAOYSA-M lithium bromide Chemical compound [Li+].[Br-] AMXOYNBUYSYVKV-UHFFFAOYSA-M 0.000 description 2
- XGZVUEUWXADBQD-UHFFFAOYSA-L lithium carbonate Chemical compound [Li+].[Li+].[O-]C([O-])=O XGZVUEUWXADBQD-UHFFFAOYSA-L 0.000 description 2
- 229910052808 lithium carbonate Inorganic materials 0.000 description 2
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 2
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 2
- IIPYXGDZVMZOAP-UHFFFAOYSA-N lithium nitrate Chemical compound [Li+].[O-][N+]([O-])=O IIPYXGDZVMZOAP-UHFFFAOYSA-N 0.000 description 2
- TZIHFWKZFHZASV-UHFFFAOYSA-N methyl formate Chemical compound COC=O TZIHFWKZFHZASV-UHFFFAOYSA-N 0.000 description 2
- KBJMLQFLOWQJNF-UHFFFAOYSA-N nickel(ii) nitrate Chemical compound [Ni+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O KBJMLQFLOWQJNF-UHFFFAOYSA-N 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229920001155 polypropylene Polymers 0.000 description 2
- 239000004810 polytetrafluoroethylene Substances 0.000 description 2
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 2
- NROKBHXJSPEDAR-UHFFFAOYSA-M potassium fluoride Chemical compound [F-].[K+] NROKBHXJSPEDAR-UHFFFAOYSA-M 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 2
- 229910052596 spinel Inorganic materials 0.000 description 2
- 239000011029 spinel Substances 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- PYOKUURKVVELLB-UHFFFAOYSA-N trimethyl orthoformate Chemical compound COC(OC)OC PYOKUURKVVELLB-UHFFFAOYSA-N 0.000 description 2
- VFRGATWKSPNXLT-UHFFFAOYSA-N 1,2-dimethoxybutane Chemical compound CCC(OC)COC VFRGATWKSPNXLT-UHFFFAOYSA-N 0.000 description 1
- CYSGHNMQYZDMIA-UHFFFAOYSA-N 1,3-Dimethyl-2-imidazolidinon Chemical compound CN1CCN(C)C1=O CYSGHNMQYZDMIA-UHFFFAOYSA-N 0.000 description 1
- FSSPGSAQUIYDCN-UHFFFAOYSA-N 1,3-Propane sultone Chemical compound O=S1(=O)CCCO1 FSSPGSAQUIYDCN-UHFFFAOYSA-N 0.000 description 1
- IZXIZTKNFFYFOF-UHFFFAOYSA-N 2-Oxazolidone Chemical compound O=C1NCCO1 IZXIZTKNFFYFOF-UHFFFAOYSA-N 0.000 description 1
- JWUJQDFVADABEY-UHFFFAOYSA-N 2-methyltetrahydrofuran Chemical compound CC1CCCO1 JWUJQDFVADABEY-UHFFFAOYSA-N 0.000 description 1
- PPDFQRAASCRJAH-UHFFFAOYSA-N 2-methylthiolane 1,1-dioxide Chemical compound CC1CCCS1(=O)=O PPDFQRAASCRJAH-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- 206010021143 Hypoxia Diseases 0.000 description 1
- 229910018068 Li 2 O Inorganic materials 0.000 description 1
- 229910010238 LiAlCl 4 Inorganic materials 0.000 description 1
- 229910015015 LiAsF 6 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910013372 LiC 4 Inorganic materials 0.000 description 1
- 229910013684 LiClO 4 Inorganic materials 0.000 description 1
- 229910012513 LiSbF 6 Inorganic materials 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 1
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 229910010413 TiO 2 Inorganic materials 0.000 description 1
- NXPZICSHDHGMGT-UHFFFAOYSA-N [Co].[Mn].[Li] Chemical compound [Co].[Mn].[Li] NXPZICSHDHGMGT-UHFFFAOYSA-N 0.000 description 1
- BEKPOUATRPPTLV-UHFFFAOYSA-N [Li].BCl Chemical compound [Li].BCl BEKPOUATRPPTLV-UHFFFAOYSA-N 0.000 description 1
- ZYXUQEDFWHDILZ-UHFFFAOYSA-N [Ni].[Mn].[Li] Chemical compound [Ni].[Mn].[Li] ZYXUQEDFWHDILZ-UHFFFAOYSA-N 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 150000007933 aliphatic carboxylic acids Chemical class 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- LDDQLRUQCUTJBB-UHFFFAOYSA-O azanium;hydrofluoride Chemical compound [NH4+].F LDDQLRUQCUTJBB-UHFFFAOYSA-O 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 150000001733 carboxylic acid esters Chemical class 0.000 description 1
- 238000000975 co-precipitation Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000011889 copper foil Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 150000004292 cyclic ethers Chemical class 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 150000004862 dioxolanes Chemical class 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 125000000457 gamma-lactone group Chemical group 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 229910021385 hard carbon Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000010335 hydrothermal treatment Methods 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 238000001095 inductively coupled plasma mass spectrometry Methods 0.000 description 1
- DALUDRGQOYMVLD-UHFFFAOYSA-N iron manganese Chemical compound [Mn].[Fe] DALUDRGQOYMVLD-UHFFFAOYSA-N 0.000 description 1
- MVFCKEFYUDZOCX-UHFFFAOYSA-N iron(2+);dinitrate Chemical compound [Fe+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O MVFCKEFYUDZOCX-UHFFFAOYSA-N 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- XIXADJRWDQXREU-UHFFFAOYSA-M lithium acetate Chemical compound [Li+].CC([O-])=O XIXADJRWDQXREU-UHFFFAOYSA-M 0.000 description 1
- ACFSQHQYDZIPRL-UHFFFAOYSA-N lithium;bis(1,1,2,2,2-pentafluoroethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)C(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)C(F)(F)F ACFSQHQYDZIPRL-UHFFFAOYSA-N 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000011565 manganese chloride Substances 0.000 description 1
- 235000002867 manganese chloride Nutrition 0.000 description 1
- 229940099607 manganese chloride Drugs 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 1
- 239000011259 mixed solution Substances 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- LYGJENNIWJXYER-UHFFFAOYSA-N nitromethane Chemical compound C[N+]([O-])=O LYGJENNIWJXYER-UHFFFAOYSA-N 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N phosphoric acid Substances OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 239000005518 polymer electrolyte Substances 0.000 description 1
- 239000011698 potassium fluoride Substances 0.000 description 1
- 235000003270 potassium fluoride Nutrition 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- FVSKHRXBFJPNKK-UHFFFAOYSA-N propionitrile Chemical compound CCC#N FVSKHRXBFJPNKK-UHFFFAOYSA-N 0.000 description 1
- 238000010298 pulverizing process Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Inorganic materials [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 239000011775 sodium fluoride Substances 0.000 description 1
- 235000013024 sodium fluoride Nutrition 0.000 description 1
- 229910021384 soft carbon Inorganic materials 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000009279 wet oxidation reaction Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Inorganic Compounds Of Heavy Metals (AREA)
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Description
本実施形態はリチウム鉄マンガン系複合酸化物およびそれを用いたリチウムイオン二次電池に関する。 The present embodiment relates to a lithium iron manganese based composite oxide and a lithium ion secondary battery using the same.
リチウム鉄マンガン系複合酸化物を正極活物質として含む正極と、リチウムイオンを吸蔵放出可能な材料を負極活物質として含む負極とを備えるリチウムイオン二次電池は、高エネルギー密度の二次電池として期待されている。例えば、特許文献1には、リチウム鉄マンガン系複合酸化物を正極活物質に用いたリチウムイオン二次電池が開示されている。一方、特許文献2から8には、複合酸化物の元素の一部をフッ素原子で置換する技術が開示されている。
A lithium ion secondary battery comprising a positive electrode including a lithium iron manganese-based composite oxide as a positive electrode active material and a negative electrode including a material capable of occluding and releasing lithium ions as a negative electrode active material is expected as a high energy density secondary battery. Has been. For example,
しかしながら、前記特許文献に開示されたリチウムイオン二次電池は、充放電サイクルに伴い二次電池の容量が低下する課題がある。 However, the lithium ion secondary battery disclosed in the patent document has a problem in that the capacity of the secondary battery decreases with a charge / discharge cycle.
本実施形態は、充放電サイクルにおける容量維持率の高いリチウムイオン二次電池を提供できるリチウム鉄マンガン系複合酸化物を提供することを目的とする。 An object of the present embodiment is to provide a lithium iron manganese based composite oxide that can provide a lithium ion secondary battery having a high capacity retention rate in a charge / discharge cycle.
本実施形態に係るリチウム鉄マンガン系複合酸化物は、層状岩塩型構造を有し、下記式(1)
LixM1 (y−p)MnpM2 (z−q)FeqO(2−δ−r)Fr (1)
(前記式(1)において、1.05≦x≦1.32、0.33≦y≦0.63、0.06≦z≦0.50、0<p≦0.63、0.06≦q≦0.50、0.01≦r<2−δ、0.06≦δ≦0.80、y≧p、z≧qであり、M1はTiおよびZrの少なくとも一方の元素であり、M2はCo、NiおよびMnからなる群から選択される少なくとも一種の元素である)で示される。
The lithium iron manganese-based composite oxide according to the present embodiment has a layered rock salt structure, and has the following formula (1):
Li x M 1 (yp) Mn p M 2 (zq) Fe q O (2-δ-r) F r (1)
(In the above formula (1), 1.05 ≦ x ≦ 1.32, 0.33 ≦ y ≦ 0.63, 0.06 ≦ z ≦ 0.50, 0 <p ≦ 0.63, 0.06 ≦ q ≦ 0.50, 0.01 ≦ r <2-δ, 0.06 ≦ δ ≦ 0.80, y ≧ p, z ≧ q, M 1 is at least one element of Ti and Zr, M 2 is at least one element selected from the group consisting of Co, Ni and Mn).
本実施形態に係るリチウムイオン二次電池用正極活物質は、前記リチウム鉄マンガン系複合酸化物を含む。 The positive electrode active material for a lithium ion secondary battery according to this embodiment includes the lithium iron manganese composite oxide.
本実施形態に係るリチウムイオン二次電池用正極は、前記リチウムイオン二次電池用正極活物質を含む。 The positive electrode for a lithium ion secondary battery according to this embodiment includes the positive electrode active material for a lithium ion secondary battery.
本実施形態に係るリチウムイオン二次電池は、前記リチウムイオン二次電池用正極と、負極とを備える。 The lithium ion secondary battery according to this embodiment includes the positive electrode for a lithium ion secondary battery and a negative electrode.
本実施形態によれば、充放電サイクルにおける容量維持率の高いリチウムイオン二次電池を提供できるリチウム鉄マンガン系複合酸化物を提供することができる。 According to the present embodiment, it is possible to provide a lithium iron manganese based composite oxide that can provide a lithium ion secondary battery having a high capacity retention rate in a charge / discharge cycle.
[リチウム鉄マンガン系複合酸化物]
本実施形態に係るリチウム鉄マンガン系複合酸化物は、層状岩塩型構造を有し、下記式(1)
LixM1 (y-p)MnpM2 (z-q)FeqO(2-δ-r)Fr (1)
(前記式(1)において、1.05≦x≦1.32、0.33≦y≦0.63、0.06≦z≦0.50、0<p≦0.63、0.06≦q≦0.50、0.01≦r<2−δ、0≦δ≦0.80、y≧p、z≧qであり、M1はTiおよびZrの少なくとも一方の元素であり、M2はCo、NiおよびMnからなる群から選択される少なくとも一種の元素である)で示される。
[Lithium iron manganese complex oxide]
The lithium iron manganese-based composite oxide according to the present embodiment has a layered rock salt structure, and has the following formula (1):
Li x M 1 (yp) Mn p M 2 (zq) Fe q O (2-δ-r) F r (1)
(In the above formula (1), 1.05 ≦ x ≦ 1.32, 0.33 ≦ y ≦ 0.63, 0.06 ≦ z ≦ 0.50, 0 <p ≦ 0.63, 0.06 ≦ q ≦ 0.50, 0.01 ≦ r <2-δ, 0 ≦ δ ≦ 0.80, y ≧ p, z ≧ q, M 1 is at least one element of Ti and Zr, and M 2 Is at least one element selected from the group consisting of Co, Ni and Mn).
Li2Me1O3(Me1はMnを少なくとも含む)とLiMe2O2(Me2はFeを少なくとも含む)とが固溶した、層状岩塩型構造を有するリチウム鉄マンガン系複合酸化物は、前記Me2がFeの代わりにNiやCoを少なくとも含むリチウムニッケルマンガン系複合酸化物およびリチウムコバルトマンガン系複合酸化物と比較して、リチウムイオン二次電池用正極活物質(以下、正極活物質と示す)として用いた場合に、高エネルギー密度のリチウムイオン二次電池(以下、二次電池と示す)が得られる点において優れる。しかしながら、該リチウム鉄マンガン系複合酸化物は、活性化後の充放電サイクルにおいて酸素が脱離しやすい。 Li 2 Me 1 O 3 (Me 1 contains at least Mn) and LiMe 2 O 2 (Me 2 contains at least Fe), a lithium iron manganese-based composite oxide having a layered rock salt structure, Compared to lithium nickel manganese composite oxide and lithium cobalt manganese composite oxide in which Me 2 contains at least Ni or Co instead of Fe, a positive electrode active material for lithium ion secondary battery (hereinafter referred to as positive electrode active material) When used as a battery, it is excellent in that a high energy density lithium ion secondary battery (hereinafter referred to as a secondary battery) is obtained. However, in the lithium iron manganese based composite oxide, oxygen is easily released in the charge / discharge cycle after activation.
充放電サイクルにおいて酸素が脱離すると、正極活物質の構造が層状岩塩型構造からスピネル型構造に変化するため、二次電池の容量が低下する。また、脱離した酸素により負極上にLi2Oが生成されるため、二次電池の容量が低下する。さらに、酸素の脱離により二次電池が膨れ、抵抗が上昇するため、二次電池の容量が低下する。 When oxygen is desorbed in the charge / discharge cycle, the structure of the positive electrode active material changes from a layered rock salt structure to a spinel structure, and thus the capacity of the secondary battery decreases. Further, since Li 2 O is generated on the negative electrode by the desorbed oxygen, the capacity of the secondary battery is reduced. Furthermore, since the secondary battery swells due to the desorption of oxygen and the resistance increases, the capacity of the secondary battery decreases.
本実施形態に係るリチウム鉄マンガン系複合酸化物(以下、複合酸化物と示す)は、前記式(1)で示される特定の組成を有する複合酸化物であって、酸素原子の一部がフッ素原子により置換されている。O2-のサイトがF-により置換されることにより、酸素と金属との結合が強まるため、O2-の拡散を防ぐことができ、酸素の脱離を抑制することができる。これにより、本実施形態に係る複合酸化物を用いた場合、充放電サイクルにおいても二次電池の容量が維持され、高い容量維持率が得られる。以下、本実施形態の詳細について説明する。 The lithium iron manganese composite oxide (hereinafter referred to as composite oxide) according to the present embodiment is a composite oxide having a specific composition represented by the above formula (1), wherein some of the oxygen atoms are fluorine. Substituted by an atom. When the O 2− site is substituted by F 2 − , the bond between oxygen and metal is strengthened, so that diffusion of O 2− can be prevented and desorption of oxygen can be suppressed. Thereby, when the complex oxide according to the present embodiment is used, the capacity of the secondary battery is maintained even in the charge / discharge cycle, and a high capacity maintenance rate is obtained. Details of this embodiment will be described below.
前記式(1)で示される複合酸化物は、少なくともMnを含む。Mnの組成pは0<p≦0.63である。0<pであることにより、リチウムを余剰に含むことができる。また、p≦0.63であることにより、Li2Me1O3(Me1はMnを少なくとも含む)とLiMe2O2(Me2はFeを少なくとも含む)とが固溶した状態を取ることができる。pは0.10≦p≦0.60であることが好ましく、0.20≦p≦0.55であることがより好ましく、0.30≦p≦0.50であることがさらに好ましい。 The composite oxide represented by the formula (1) contains at least Mn. The composition p of Mn is 0 <p ≦ 0.63. When 0 <p, lithium can be included excessively. Further, by satisfying p ≦ 0.63, Li 2 Me 1 O 3 (Me 1 contains at least Mn) and LiMe 2 O 2 (Me 2 contains at least Fe) take a solid solution state. Can do. p is preferably 0.10 ≦ p ≦ 0.60, more preferably 0.20 ≦ p ≦ 0.55, and still more preferably 0.30 ≦ p ≦ 0.50.
前記式(1)において、M1はTiおよびZrの少なくとも一種の元素である。M1の組成y−pのyは0.33≦y≦0.63である。0.33≦yであることにより、リチウムを余剰に含むことができる。また、y≦0.63であることにより、Li2Me1O3(Me1はMnを少なくとも含む)とLiMe2O2(Me2はFeを少なくとも含む)とが固溶した状態を取ることができる。yは0.35≦y≦0.60であることが好ましく、0.40≦y≦0.55であることがより好ましく、0.45≦y≦0.50であることがさらに好ましい。なお、前記式(1)はy≧pを満たす。また、M1の組成y−pは0であってもよい。すなわち、前記式(1)で示される複合酸化物はM1を含まなくてもよい。前記式(1)におけるMnおよびM1は、前記Li2Me1O3のMe1に相当する。 In the formula (1), M 1 is at least one element of Ti and Zr. The y of the composition yp of M 1 is 0.33 ≦ y ≦ 0.63. When 0.33 ≦ y, excess lithium can be contained. Further, by satisfying y ≦ 0.63, Li 2 Me 1 O 3 (Me 1 contains at least Mn) and LiMe 2 O 2 (Me 2 contains at least Fe) take a solid solution state. Can do. y is preferably 0.35 ≦ y ≦ 0.60, more preferably 0.40 ≦ y ≦ 0.55, and still more preferably 0.45 ≦ y ≦ 0.50. The formula (1) satisfies y ≧ p. Further, the composition yp of M 1 may be zero. That is, the complex oxide represented by the formula (1) may not contain M 1 . Mn and M 1 in the formula (1) correspond to Me 1 of the Li 2 Me 1 O 3 .
前記式(1)で示される複合酸化物は、少なくともFeを含む。Feの組成qは0.06≦q≦0.50である。0.06≦qであることにより、リチウム鉄マンガン系複合酸化物を活性化させることができる。また、q≦0.50であることにより、容量を大きく保つことができる。qは0.10≦q≦0.45であることが好ましく、0.13≦q≦0.40であることがより好ましく、0.16≦q≦0.30であることがさらに好ましい。 The composite oxide represented by the formula (1) contains at least Fe. The composition q of Fe is 0.06 ≦ q ≦ 0.50. By being 0.06 <= q, a lithium iron manganese system complex oxide can be activated. Further, since q ≦ 0.50, the capacity can be kept large. q is preferably 0.10 ≦ q ≦ 0.45, more preferably 0.13 ≦ q ≦ 0.40, and still more preferably 0.16 ≦ q ≦ 0.30.
前記式(1)において、M2はCo、NiおよびMnからなる群から選択される少なくとも一種の元素である。M2の組成z−qのzは0.06≦z≦0.50である。0.06≦zであることにより、リチウム鉄マンガン系複合酸化物を活性化させることができる。また、z≦0.50であることにより、リチウムを余剰に含むことができる。zは0.08≦z≦0.45であることが好ましく、0.10≦z≦0.40であることがより好ましく、0.12≦z≦0.30であることがさらに好ましい。なお、前記式(1)はz≧qを満たす。また、M2の組成z−qは0であってもよい。すなわち、前記式(1)で示される複合酸化物はM2を含まなくてもよい。前記式(1)におけるFeおよびM2は、前記LiMe2O2のMe2に相当する。 In the formula (1), M 2 is at least one element selected from the group consisting of Co, Ni and Mn. The z of the composition zq of M 2 is 0.06 ≦ z ≦ 0.50. By being 0.06 <= z, a lithium iron manganese system complex oxide can be activated. Further, when z ≦ 0.50, excessive lithium can be contained. z is preferably 0.08 ≦ z ≦ 0.45, more preferably 0.10 ≦ z ≦ 0.40, and further preferably 0.12 ≦ z ≦ 0.30. The formula (1) satisfies z ≧ q. The composition zq of M 2 may be zero. That is, the complex oxide represented by the formula (1) may not contain M 2 . Fe and M 2 in the formula (1) correspond to Me 2 of the LiMe 2 O 2 .
前記式(1)において、Liの組成xは、1.05≦x≦1.32である。1.05≦xであることにより、容量を大きくすることができる。また、x≦1.32であることにより、Li2Me1O3(Me1はMnを少なくとも含む)とLiMe2O2(Me2はFeを少なくとも含む)とが固溶した状態を取ることができる。xは1.10≦x≦1.30であることが好ましく、1.16≦x≦1.28であることがより好ましく、1.20≦x≦1.26であることがさらに好ましい。 In the formula (1), the composition x of Li is 1.05 ≦ x ≦ 1.32. By satisfying 1.05 ≦ x, the capacity can be increased. Further, by satisfying x ≦ 1.32, Li 2 Me 1 O 3 (Me 1 contains at least Mn) and LiMe 2 O 2 (Me 2 contains at least Fe) are in a solid solution state. Can do. x is preferably 1.10 ≦ x ≦ 1.30, more preferably 1.16 ≦ x ≦ 1.28, and still more preferably 1.20 ≦ x ≦ 1.26.
前記式(1)において、酸素原子の組成2−δ−rにおけるδは酸素欠損を示すパラメータであり、0≦δ≦0.80である。0≦δであることにより、容量を大きくすることができる。また、δ≦0.80であることにより、結晶構造を安定化することができる。δは0.02≦δ≦0.50であることが好ましく、0.04≦δ≦0.30であることがより好ましく、0.06≦δ≦0.20であることがさらに好ましい。なお、δは該複合酸化物の合成方法によって変動する。 In the formula (1), δ in the oxygen atom composition 2-δ-r is a parameter indicating oxygen deficiency, and 0 ≦ δ ≦ 0.80. By satisfying 0 ≦ δ, the capacity can be increased. Further, when δ ≦ 0.80, the crystal structure can be stabilized. δ is preferably 0.02 ≦ δ ≦ 0.50, more preferably 0.04 ≦ δ ≦ 0.30, and further preferably 0.06 ≦ δ ≦ 0.20. Note that δ varies depending on the method for synthesizing the composite oxide.
前記式(1)において、Fの組成rは、0.01≦r<2−δである。0.01≦rであることにより、酸素と金属との結合が十分に強まるため、O2-の拡散を防ぐことができ、酸素の脱離を抑制することができる。rは0.02≦r≦0.40であることが好ましく、0.10<r≦0.30であることがより好ましく、0.11≦r≦0.20であることがさらに好ましい。 In the formula (1), the composition r of F is 0.01 ≦ r <2-δ. When 0.01 ≦ r, the bond between oxygen and metal is sufficiently strengthened, so that diffusion of O 2− can be prevented and desorption of oxygen can be suppressed. r is preferably 0.02 ≦ r ≦ 0.40, more preferably 0.10 <r ≦ 0.30, and still more preferably 0.11 ≦ r ≦ 0.20.
なお、前記式(1)における各元素の組成は、Liについては誘導結合プラズマ発光分光分析により、それ以外の元素については誘導結合プラズマ質量分析により測定した値である。 In addition, the composition of each element in the formula (1) is a value measured by inductively coupled plasma emission spectrometry for Li, and by inductively coupled plasma mass spectrometry for the other elements.
前記式(1)で示される複合酸化物は、層状岩塩型構造を有する。該複合酸化物が層状岩塩型構造を有することにより、安定に充放電を繰り返すことができる。なお、層状岩塩型構造を有するか否かはX線回折分析により判断することができる。また、該複合酸化物の全体が層状岩塩型構造を有している必要はなく、該複合酸化物の少なくとも一部が層状岩塩型構造を有していればよい。 The composite oxide represented by the formula (1) has a layered rock salt structure. Since the composite oxide has a layered rock salt structure, charge and discharge can be stably repeated. Whether or not it has a layered rock salt structure can be determined by X-ray diffraction analysis. Further, it is not necessary that the entire complex oxide has a layered rock salt type structure, and it is sufficient that at least a part of the complex oxide has a layered rock salt type structure.
[リチウム鉄マンガン系複合酸化物の製造方法]
リチウム鉄マンガン系複合酸化物の製造方法は特に限定されず、少なくともリチウム、マンガン、鉄およびフッ素化合物等を含む金属原料に対して焼成や水熱処理などの加熱処理を行うことで製造することができる。一方、より電気化学的特性に優れたリチウム鉄マンガン系複合酸化物を得るためには、リチウム以外の構成金属元素をより均一に混合することが好ましい。この観点から、例えば共沈法などにより液相から鉄、マンガン等の複合水酸化物を得て、それをリチウムおよびフッ素化合物とともに焼成する方法が好ましい。この方法では、リチウム以外の構成金属を含む複合水酸化物を製造する複合水酸化物製造工程と、リチウムおよびフッ素化合物共存下で焼成する焼成工程とに大きく分けられる。
[Method for producing lithium iron manganese composite oxide]
The method for producing the lithium iron manganese based composite oxide is not particularly limited, and can be produced by performing a heat treatment such as firing or hydrothermal treatment on a metal raw material containing at least lithium, manganese, iron and a fluorine compound. . On the other hand, in order to obtain a lithium iron manganese-based composite oxide having more excellent electrochemical characteristics, it is preferable to mix constituent metal elements other than lithium more uniformly. From this point of view, it is preferable to obtain a composite hydroxide such as iron or manganese from the liquid phase by, for example, a coprecipitation method, and calcine it with lithium and a fluorine compound. This method can be broadly divided into a composite hydroxide production process for producing a composite hydroxide containing a constituent metal other than lithium and a firing process for firing in the presence of lithium and a fluorine compound.
<複合水酸化物製造工程>
複合水酸化物は、構成金属の水溶性塩をアルカリ水溶液中に滴下することにより析出させ、必要に応じて空気酸化を行い、水酸化物を熟成することによって作製することができる。構成金属の水溶性塩としては、特に限定されず、構成金属の硝酸塩、硫酸塩、塩化物、酢酸塩などの無水塩や水和物等が挙げられる。アルカリ源も特に限定されず、水酸化リチウムおよびその水和物、水酸化ナトリウム、水酸化カリウム、アンモニア水等が挙げられる。これらは一種を用いてもよく、二種以上を併用してもよい。複合水酸化物は、アルカリ水溶液に対して、構成金属の水溶性塩を数時間程度かけて徐々に滴下することで得られる。構成金属の水溶性塩を滴下する温度は、スピネルフェライトなどの不純物生成を抑制する観点から、60℃以下で行うことが好ましい。また0℃以下で構成金属の水溶性塩の滴下を行う場合には、アルカリ水溶液に不凍液としてエタノール等を加えて溶液の固化を防ぐことが好ましい。滴下後得られる水酸化物に対して、室温で数時間以上空気を吹き込むことにより水酸化物を湿式酸化して熟成することが好ましい。得られた熟成物を水洗、濾過することにより、目的の複合水酸化物が得られる。
<Composite hydroxide production process>
The composite hydroxide can be prepared by dropping a water-soluble salt of a constituent metal into an alkaline aqueous solution, performing air oxidation as necessary, and aging the hydroxide. The water-soluble salt of the constituent metal is not particularly limited, and examples thereof include anhydrous salts and hydrates such as nitrate, sulfate, chloride, and acetate of the constituent metal. The alkali source is not particularly limited, and examples thereof include lithium hydroxide and hydrates thereof, sodium hydroxide, potassium hydroxide, and aqueous ammonia. These may use 1 type and may use 2 or more types together. The composite hydroxide can be obtained by gradually dropping a water-soluble salt of a constituent metal into an alkaline aqueous solution over several hours. The temperature at which the water-soluble salt of the constituent metal is dropped is preferably 60 ° C. or less from the viewpoint of suppressing the generation of impurities such as spinel ferrite. In addition, when the water-soluble salt of the constituent metal is dropped at 0 ° C. or lower, it is preferable to prevent the solution from solidifying by adding ethanol or the like as an antifreeze to the alkaline aqueous solution. It is preferable to ripen the hydroxide by wet-oxidizing the hydroxide obtained after the dropwise addition by blowing air at room temperature for several hours or more. The resulting mature product is washed with water and filtered to obtain the desired composite hydroxide.
<焼成工程>
前記複合水酸化物に対して、組成式に従い所定のリチウム化合物およびフッ素化合物を加えて混合した後、所定の雰囲気下で焼成を行う。その後、必要に応じて余剰のリチウム化合物を除去するために水洗処理、濾過、乾燥を行うことにより、目的の組成式を有するリチウム鉄マンガン系複合酸化物が得られる。リチウム化合物は特に限定されず、炭酸リチウム、水酸化リチウム、硝酸リチウム、酢酸リチウム等の無水物または水和物を用いることができる。フッ素化合物も特に限定されず、フッ化アンモニウム、フッ化水素アンモニウム、フッ化ナトリウム、フッ化カリウム、フッ化リチウム、フッ素ガスなどを用いることができる。これらは一種を用いてもよく、二種以上を併用してもよい。焼成温度はLiの揮発を防ぐ観点から1000℃以下が好ましい。焼成雰囲気としては、空気雰囲気、不活性ガス雰囲気、窒素雰囲気、酸素雰囲気などを用いることができる。また、必要に応じて、焼成前の複合水酸化物とリチウム化合物およびフッ素化合物との混合時や焼成後に、粒径調整のために粉砕処理を行ってもよい。
<Baking process>
A predetermined lithium compound and a fluorine compound are added to and mixed with the composite hydroxide according to the composition formula, and then fired in a predetermined atmosphere. Then, in order to remove an excess lithium compound as needed, a lithium iron manganese system complex oxide which has the target composition formula is obtained by performing washing processing, filtration, and drying. The lithium compound is not particularly limited, and an anhydride or hydrate such as lithium carbonate, lithium hydroxide, lithium nitrate, or lithium acetate can be used. The fluorine compound is not particularly limited, and ammonium fluoride, ammonium hydrogen fluoride, sodium fluoride, potassium fluoride, lithium fluoride, fluorine gas, and the like can be used. These may use 1 type and may use 2 or more types together. The firing temperature is preferably 1000 ° C. or less from the viewpoint of preventing Li volatilization. As the firing atmosphere, an air atmosphere, an inert gas atmosphere, a nitrogen atmosphere, an oxygen atmosphere, or the like can be used. If necessary, a pulverization treatment may be performed to adjust the particle size at the time of mixing the composite hydroxide before firing with the lithium compound and the fluorine compound or after firing.
[リチウムイオン二次電池用正極活物質]
本実施形態に係るリチウムイオン二次電池用正極活物質は、本実施形態に係るリチウム鉄マンガン系複合酸化物を含む。正極活物質が本実施形態に係るリチウム鉄マンガン系複合酸化物を含むことにより、充放電サイクルにおいても酸素の脱離が抑制され、二次電池の容量が維持される。
[Positive electrode active material for lithium ion secondary battery]
The positive electrode active material for a lithium ion secondary battery according to the present embodiment includes the lithium iron manganese based composite oxide according to the present embodiment. When the positive electrode active material includes the lithium iron manganese composite oxide according to the present embodiment, desorption of oxygen is suppressed even in the charge / discharge cycle, and the capacity of the secondary battery is maintained.
本実施形態に係るリチウムイオン二次電池用正極活物質に含まれる本実施形態に係るリチウム鉄マンガン系複合酸化物の割合は、80質量%以上であることが好ましく、90質量%以上であることがより好ましく、95質量%以上であることがさらに好ましい。なお、該割合は100質量%であってもよい。 The proportion of the lithium iron manganese based composite oxide according to this embodiment contained in the positive electrode active material for a lithium ion secondary battery according to this embodiment is preferably 80% by mass or more, and 90% by mass or more. Is more preferably 95% by mass or more. The ratio may be 100% by mass.
[リチウムイオン二次電池用正極]
本実施形態に係るリチウムイオン二次電池用正極(以下、正極と示す)は、本実施形態に係るリチウムイオン二次電池用正極活物質を含む。
[Positive electrode for lithium ion secondary battery]
The positive electrode for lithium ion secondary batteries according to the present embodiment (hereinafter referred to as positive electrode) includes the positive electrode active material for lithium ion secondary batteries according to the present embodiment.
前記正極は、本実施形態に係る正極活物質を正極集電体上に付与することで作製することができる。例えば、本実施形態に係る正極活物質と、導電性付与剤と、結着剤と、溶媒とを混合し、混合物を正極集電体上に塗布し、乾燥することで作製することができる。該導電性付与剤としては、ケッチェンブラック等の炭素材料、Al等の金属材料、導電性酸化物等を用いることができる。該結着剤としては、ポリフッ化ビニリデン、アクリル系樹脂、ポリテトラフロロエチレン樹脂等を用いることができる。溶媒としては、N−メチルピロリドン等を用いることができる。正極集電体としては、アルミニウム等を主に含む金属薄膜を用いることができる。正極集電体の厚みは特に限定されないが、例えば5〜50μmであることができ、10〜40μmであることが好ましい。 The positive electrode can be produced by applying the positive electrode active material according to the present embodiment on a positive electrode current collector. For example, it can be produced by mixing the positive electrode active material according to this embodiment, a conductivity imparting agent, a binder, and a solvent, applying the mixture onto the positive electrode current collector, and drying. As the conductivity imparting agent, a carbon material such as ketjen black, a metal material such as Al, a conductive oxide, or the like can be used. As the binder, polyvinylidene fluoride, acrylic resin, polytetrafluoroethylene resin, or the like can be used. As the solvent, N-methylpyrrolidone or the like can be used. As the positive electrode current collector, a metal thin film mainly containing aluminum or the like can be used. Although the thickness of a positive electrode electrical power collector is not specifically limited, For example, it can be 5-50 micrometers, and it is preferable that it is 10-40 micrometers.
前記導電性付与剤の添加量は1〜10質量%であることができ、2〜7質量%であることが好ましい。該添加量が1質量%以上であることにより、十分な導電性を保つことができる。また、該添加量が10質量%以下であることにより、正極活物質質量の割合を大きくすることができるため、質量あたりの容量を大きくすることができる。前記結着剤の添加量は1〜10質量%であることができ、2〜7質量%であることが好ましい。該添加量が1質量%以上であることにより、正極剥離の発生を防ぐことができる。また、該添加量が10質量%以下であることにより、正極活物質質量の割合を大きくすることができるため、質量あたりの容量を大きくすることができる。 The addition amount of the conductivity imparting agent can be 1 to 10% by mass, and preferably 2 to 7% by mass. When the addition amount is 1% by mass or more, sufficient conductivity can be maintained. Moreover, since the ratio of positive electrode active material mass can be enlarged because this addition amount is 10 mass% or less, the capacity | capacitance per mass can be enlarged. The addition amount of the binder may be 1 to 10% by mass, and preferably 2 to 7% by mass. When the addition amount is 1% by mass or more, generation of positive electrode peeling can be prevented. Moreover, since the ratio of positive electrode active material mass can be enlarged because this addition amount is 10 mass% or less, the capacity | capacitance per mass can be enlarged.
正極の厚みは特に限定されないが、例えば50〜500μmであることができ、100〜400μmであることが好ましい。 Although the thickness of a positive electrode is not specifically limited, For example, it can be 50-500 micrometers, and it is preferable that it is 100-400 micrometers.
[リチウムイオン二次電池]
本実施形態に係るリチウムイオン二次電池は、本実施形態に係るリチウムイオン二次電池用正極と、負極とを備える。
[Lithium ion secondary battery]
The lithium ion secondary battery according to the present embodiment includes the positive electrode for a lithium ion secondary battery according to the present embodiment and a negative electrode.
本実施形態に係る二次電池の一例を図1に示す。図1に示される二次電池では、正極集電体1A上に本実施形態に係る正極活物質を含む正極活物質層1が形成されることにより、正極が構成されている。また、負極集電体2A上に負極活物質層2が形成されることにより、負極が構成されている。これらの正極と負極とは、電解液に浸漬された状態でセパレータ3を介して対向配置され、積層されている。また、正極は正極タブ1Bと、負極は負極タブ2Bとそれぞれ接続されている。この発電要素は外装体4内に収容されており、正極タブ1Bおよび負極タブ2Bは外部に露出している。
An example of the secondary battery according to the present embodiment is shown in FIG. In the secondary battery shown in FIG. 1, a positive electrode is configured by forming a positive electrode
正極と負極とに電圧を印加することにより、正極活物質からリチウムイオンが脱離し、負極活物質にリチウムイオンが吸蔵されるため、充電が生じる。また、正極と負極との電気的接触を二次電池外部で起こすことにより、充電時とは逆に負極活物質からリチウムイオンが放出され、正極活物質にリチウムイオンが吸蔵されるため、放電が起こる。 By applying a voltage to the positive electrode and the negative electrode, lithium ions are desorbed from the positive electrode active material, and lithium ions are occluded in the negative electrode active material, so that charging occurs. In addition, by causing electrical contact between the positive electrode and the negative electrode outside the secondary battery, lithium ions are released from the negative electrode active material contrary to the time of charging, and lithium ions are occluded in the positive electrode active material. Occur.
本実施形態に係る二次電池に用いられる電解液としては、溶媒に支持塩としてのリチウム塩を溶解させた溶液を用いることができる。該溶媒としては、エチレンカーボネート(EC)、プロピレンカーボネート(PC)、ブチレンカーボネート(BC)、ビニレンカーボネート(VC)等の環状カーボネート類、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)、ジエチルカーボネート(DEC)、ジプロピルカーボネート(DPC)等の鎖状カーボネート類、ギ酸メチル、酢酸メチル、プロピオン酸エチル等の脂肪族カルボン酸エステル類、γ−ブチロラクトン等のγ−ラクトン類、1,2−ジエトキシエタン(DEE)、エトキシメトキシエタン(EME)等の鎖状エーテル類、テトラヒドロフラン、2−メチルテトラヒドロフラン等の環状エーテル類、ジメチルスルホキシド、1,3−ジオキソラン、ホルムアミド、アセトアミド、ジメチルホルムアミド、ジオキソラン、アセトニトリル、プロピルニトリル、ニトロメタン、エチルモノグライム、リン酸トリエステル、トリメトキシメタン、ジオキソラン誘導体、スルホラン、メチルスルホラン、1,3−ジメチル−2−イミダゾリジノン、3−メチル−2−オキサゾリジノン、プロピレンカーボネート誘導体、テトラヒドロフラン誘導体、エチルエーテル、1,3−プロパンスルトン、アニソール、N−メチルピロリドン、フッ素化カルボン酸エステル等の非プロトン性有機溶媒等を用いることができる。これらは一種を用いてもよく、二種以上を併用してもよい。これらの中でも、高電圧での安定性や、溶媒の粘度の観点から、溶媒としては環状カーボネート類と鎖状カーボネート類との混合溶液を使用することが好ましい。 As an electrolytic solution used in the secondary battery according to the present embodiment, a solution in which a lithium salt as a supporting salt is dissolved in a solvent can be used. Examples of the solvent include cyclic carbonates such as ethylene carbonate (EC), propylene carbonate (PC), butylene carbonate (BC), and vinylene carbonate (VC), dimethyl carbonate (DMC), ethyl methyl carbonate (EMC), diethyl carbonate ( DEC), chain carbonates such as dipropyl carbonate (DPC), aliphatic carboxylic acid esters such as methyl formate, methyl acetate and ethyl propionate, γ-lactones such as γ-butyrolactone, 1,2-diethoxy Chain ethers such as ethane (DEE) and ethoxymethoxyethane (EME), cyclic ethers such as tetrahydrofuran and 2-methyltetrahydrofuran, dimethyl sulfoxide, 1,3-dioxolane, formamide, acetamide, dimethylform Muamide, dioxolane, acetonitrile, propyl nitrile, nitromethane, ethyl monoglyme, phosphoric acid triester, trimethoxymethane, dioxolane derivative, sulfolane, methylsulfolane, 1,3-dimethyl-2-imidazolidinone, 3-methyl-2- Aprotic organic solvents such as oxazolidinone, propylene carbonate derivatives, tetrahydrofuran derivatives, ethyl ether, 1,3-propane sultone, anisole, N-methylpyrrolidone, and fluorinated carboxylic acid esters can be used. These may use 1 type and may use 2 or more types together. Among these, it is preferable to use a mixed solution of a cyclic carbonate and a chain carbonate as the solvent from the viewpoint of stability at a high voltage and the viscosity of the solvent.
リチウム塩としては、例えばLiPF6、LiAsF6、LiAlCl4、LiClO4、LiBF4、LiSbF6、LiCF3SO3、LiC4F9SO3、LiC(CF3SO2)3、LiN(CF3SO2)2、LiN(C2F5SO2)2、LiB10Cl10、低級脂肪族カルボン酸リチウム、クロロボランリチウム、四フェニルホウ酸リチウム、LiBr、LiI、LiSCN、LiCl、イミド類等が挙げられる。これらは一種を用いてもよく、二種以上を併用してもよい。 Examples of the lithium salt include LiPF 6 , LiAsF 6 , LiAlCl 4 , LiClO 4 , LiBF 4 , LiSbF 6 , LiCF 3 SO 3 , LiC 4 F 9 SO 3 , LiC (CF 3 SO 2 ) 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiB 10 Cl 10 , lower aliphatic lithium lithium carboxylate, lithium chloroborane, lithium tetraphenylborate, LiBr, LiI, LiSCN, LiCl, imides, etc. . These may use 1 type and may use 2 or more types together.
支持塩であるリチウム塩の濃度は、例えば0.5〜1.5mol/Lであることができ、0.7〜1.3mol/Lであることが好ましい。リチウム塩の濃度が0.5mol/L以上であることにより、十分な電気伝導率を得ることができる。また、リチウム塩の濃度が1.5mol/L以下であることにより、密度と粘度の増加を抑制することができる。 The density | concentration of the lithium salt which is a support salt can be 0.5-1.5 mol / L, for example, and it is preferable that it is 0.7-1.3 mol / L. Sufficient electric conductivity can be obtained when the concentration of the lithium salt is 0.5 mol / L or more. Moreover, when the density | concentration of lithium salt is 1.5 mol / L or less, the increase in a density and a viscosity can be suppressed.
なお、電解液の溶媒にポリマー等を添加して電解液をゲル状に固化したポリマー電解質を用いてもよい。 A polymer electrolyte obtained by adding a polymer or the like to the solvent of the electrolytic solution and solidifying the electrolytic solution in a gel form may be used.
負極活物質としては、リチウムを吸蔵放出可能な材料を用いることができる。負極活物質としては、例えば、黒鉛、ハードカーボン、ソフトカーボン、非晶質炭素等の炭素材料、Li金属、Si、Sn、Al、SiO等のSi酸化物、Sn酸化物、Li4Ti5O12、TiO2等のTi酸化物、V含有酸化物、Sb含有酸化物、Fe含有酸化物、Co含有酸化物等を用いることができる。これらの負極活物質は一種を用いてもよく、二種以上を併用してもよい。特に、本実施形態に係る二次電池においては、本実施形態に係る正極活物質との関係で不可逆容量が相殺される観点から、負極活物質としてはSiOを用いることが好ましい。 As the negative electrode active material, a material capable of inserting and extracting lithium can be used. Examples of the negative electrode active material include carbon materials such as graphite, hard carbon, soft carbon, and amorphous carbon, Li metal, Si oxide such as Si, Sn, Al, and SiO, Sn oxide, and Li 4 Ti 5 O. 12 , Ti oxide such as TiO 2 , V-containing oxide, Sb-containing oxide, Fe-containing oxide, Co-containing oxide and the like can be used. These negative electrode active materials may be used alone or in combination of two or more. In particular, in the secondary battery according to the present embodiment, it is preferable to use SiO as the negative electrode active material from the viewpoint that the irreversible capacity is offset by the relationship with the positive electrode active material according to the present embodiment.
負極は、例えば前記負極活物質と、導電性付与剤と、結着剤と、溶媒とを混合し、混合物を負極集電体上に塗布し、乾燥することで作製することができる。導電性付与剤としては、例えば炭素材料、導電性酸化物等を用いることができる。結着剤としてはポリフッ化ビニリデン、アクリル系樹脂、スチレンブタジエンゴム、イミド系樹脂、イミドアミド系樹脂、ポリテトラフロロエチレン樹脂、ポリアミック酸等を用いることができる。溶媒としては、N−メチルピロリドン等を用いることができる。負極集電体としてはアルミニウム、銅等を主に含む金属薄膜を用いることができる。負極集電体の厚みは特に限定されないが、例えば5〜50μmであることができ、10〜40μmであることが好ましい。また、負極の厚みは特に限定されないが、例えば10〜100μmであることができ、20〜70μmであることが好ましい。 The negative electrode can be produced, for example, by mixing the negative electrode active material, a conductivity imparting agent, a binder, and a solvent, applying the mixture onto a negative electrode current collector, and drying. As the conductivity imparting agent, for example, a carbon material, a conductive oxide, or the like can be used. As the binder, polyvinylidene fluoride, acrylic resin, styrene butadiene rubber, imide resin, imidoamide resin, polytetrafluoroethylene resin, polyamic acid, or the like can be used. As the solvent, N-methylpyrrolidone or the like can be used. As the negative electrode current collector, a metal thin film mainly containing aluminum, copper, or the like can be used. Although the thickness of a negative electrode collector is not specifically limited, For example, it can be 5-50 micrometers, and it is preferable that it is 10-40 micrometers. Moreover, although the thickness of a negative electrode is not specifically limited, For example, it is 10-100 micrometers, and it is preferable that it is 20-70 micrometers.
本実施形態に係る二次電池は、本実施形態に係る正極を用いて組み立てることで製造することができる。例えば、乾燥空気又は不活性ガス雰囲気下において、本実施形態に係る正極と負極とを、セパレータを介して電気的接触がない状態で対向配置させる。セパレータとしてはポリエチレン、ポリプロピレン(PP)、ポリイミド、ポリアミド等を含む多孔質のフィルムを用いることができる。 The secondary battery according to the present embodiment can be manufactured by assembling using the positive electrode according to the present embodiment. For example, in a dry air or inert gas atmosphere, the positive electrode and the negative electrode according to the present embodiment are arranged to face each other with no electrical contact through the separator. As the separator, a porous film containing polyethylene, polypropylene (PP), polyimide, polyamide, or the like can be used.
前記正極と負極とをセパレータを挟んで対向配置させたものを、円筒状又は積層状にして、外装体内に収納する。外装体としては、電池缶、合成樹脂と金属箔との積層体であるラミネートフィルム等を用いることができる。正極に正極タブを、負極に負極タブをそれぞれ接続し、これらの電極タブが外装体外部に露出するようにする。一部を残して外装体を封止し、その一部から電解液を注入し、外装体を密閉することで二次電池を作製することができる。 A material in which the positive electrode and the negative electrode are arranged opposite to each other with a separator interposed therebetween is formed into a cylindrical shape or a laminated shape, and is accommodated in the exterior body. As the exterior body, a battery can, a laminate film that is a laminate of a synthetic resin and a metal foil, or the like can be used. A positive electrode tab is connected to the positive electrode, and a negative electrode tab is connected to the negative electrode, so that these electrode tabs are exposed to the outside of the outer package. The secondary battery can be manufactured by sealing the exterior body while leaving a part, injecting an electrolyte from the part, and sealing the exterior body.
前記正極と負極とをセパレータを挟んで対向配置させたものの形状は特に制限されず、巻回型、積層型等であることができる。また、二次電池の形式はコイン型、ラミネート型等であることができる。二次電池の形状は、角型、円筒型等であることができる。 The shape of the positive electrode and the negative electrode arranged opposite to each other with a separator interposed therebetween is not particularly limited, and may be a wound type, a laminated type, or the like. Further, the secondary battery may be a coin type, a laminate type, or the like. The shape of the secondary battery can be a square shape, a cylindrical shape, or the like.
以下、本実施形態の実施例を示すが、本実施形態はこれらの実施例に限定されない。 Examples of the present embodiment will be described below, but the present embodiment is not limited to these examples.
[実施例1]
<リチウム鉄マンガン系複合酸化物の合成>
所定原子比となるように秤量した硝酸鉄(III)、塩化マンガン(II)、および硝酸ニッケル(II)を蒸留水に溶解させ、金属塩水溶液(全量0.25mol/バッチ)を作製した。これとは別に、1.25mol/Lの水酸化リチウム水溶液を調製し、エタノールを加えて不凍化した後、恒温槽にて−10℃に冷却した。このアルカリ溶液に前記金属塩水溶液を2時間以上かけて徐々に滴下することにより、複合水酸化物を作製した。滴下後の複合水酸化物を含むアルカリ溶液を恒温槽より取り出し、該溶液に空気を吹き込んで2日間湿式酸化を行った後、複合水酸化物を室温にて熟成させた。
[Example 1]
<Synthesis of lithium iron manganese complex oxide>
Iron nitrate (III), manganese chloride (II), and nickel nitrate (II) weighed so as to have a predetermined atomic ratio were dissolved in distilled water to prepare an aqueous metal salt solution (total amount 0.25 mol / batch). Separately from this, a 1.25 mol / L lithium hydroxide aqueous solution was prepared, added with ethanol to be antifreeze, and then cooled to −10 ° C. in a thermostatic bath. A composite hydroxide was prepared by gradually dropping the metal salt aqueous solution into the alkaline solution over 2 hours or more. The alkali solution containing the composite hydroxide after the dropping was taken out from the thermostatic bath, air was blown into the solution to perform wet oxidation for 2 days, and then the composite hydroxide was aged at room temperature.
熟成後の複合水酸化物を水洗および濾過した後、仕込みモル量と等モルの炭酸リチウムを加えて850℃にて5時間大気中で焼成した。焼成後、生成物を粉砕した。仕込みモル比に対して0.1倍モルのフッ化アンモニウムを蒸留水に溶解させた溶液に該生成物を入れてよく攪拌した後、混合物を乾燥させた。乾燥粉末を粉砕後、窒素中800℃で1時間焼成し、冷却した後、生成物を電気炉より取り出した。これを蒸留水で数回洗浄した後、濾過し、100℃で乾燥することにより、リチウム鉄マンガン系複合酸化物Li1.23Mn0.48Ni0.15Fe0.16O1.79F0.11を得た。X線回折測定の結果、この物質が層状岩塩型構造を有することが確認された。 The composite hydroxide after aging was washed with water and filtered, and then added with an equimolar amount of lithium carbonate as compared with the molar amount charged, and calcined at 850 ° C. for 5 hours in the air. After firing, the product was crushed. The product was put in a solution obtained by dissolving 0.1 times mol of ammonium fluoride in distilled water with respect to the charged molar ratio and stirred well, and then the mixture was dried. The dried powder was pulverized, calcined at 800 ° C. for 1 hour in nitrogen, cooled, and the product was taken out from the electric furnace. This was washed several times with distilled water, filtered, and dried at 100 ° C. to obtain lithium iron manganese composite oxide Li 1.23 Mn 0.48 Ni 0.15 Fe 0.16 O 1.79 F 0.11 . As a result of X-ray diffraction measurement, it was confirmed that this substance has a layered rock salt structure.
<正極の作製>
正極活物質であるリチウム鉄マンガン系複合酸化物Li1.23Mn0.48Ni0.15Fe0.16O1.79F0.11を92質量%、ケッチェンブラックを4質量%、ポリフッ化ビニリデンを4質量%含む混合物を、溶媒に混合してスラリーを調製した。該スラリーを厚み20μmのアルミニウム箔である正極集電体上に塗布し、該スラリーを乾燥させて、厚み175μmの正極を作製した。
<Preparation of positive electrode>
Lithium iron manganese composite oxide Li 1.23 Mn 0.48 Ni 0.15 Fe 0.16 O 1.79 F 0.11 as a positive electrode active material 92% by mass, ketjen black 4% by mass, and a mixture containing 4% by mass of polyvinylidene fluoride as a solvent A slurry was prepared by mixing. The slurry was applied onto a positive electrode current collector that was an aluminum foil having a thickness of 20 μm, and the slurry was dried to produce a positive electrode having a thickness of 175 μm.
<負極の作製>
平均粒子径が15μmのSiOを85質量%、ポリアミック酸を15質量%含む混合物を、溶媒に混合してスラリーを調製した。該スラリーを厚み10μmの銅箔である負極集電体上に塗布し、該スラリーを乾燥させて、厚み46μmの負極を作製した。作製した負極を窒素雰囲気下350℃で3時間アニールし、ポリアミック酸を硬化させた。
<Production of negative electrode>
A slurry containing 85% by mass of SiO having an average particle size of 15 μm and 15% by mass of polyamic acid was mixed with a solvent to prepare a slurry. The slurry was applied onto a negative electrode current collector which was a copper foil having a thickness of 10 μm, and the slurry was dried to prepare a negative electrode having a thickness of 46 μm. The produced negative electrode was annealed at 350 ° C. for 3 hours in a nitrogen atmosphere to cure the polyamic acid.
<リチウムイオン二次電池の作製>
前記正極および前記負極を成形した後、多孔質のフィルムセパレータを挟んで積層した。その後、該正極および該負極にそれぞれ正極タブおよび負極タブを溶接し、発電要素を作製した。該発電要素をアルミニウムラミネートフィルムである外装体で包み、該外装体の3辺を熱融着により封止した。その後、適度な真空度にて、該外装体内に1mol/LのLiPF6を含むEC/DEC電解液を注入した。その後、減圧下にて該外装体の残りの1辺を熱融着して封止し、活性化処理前のリチウムイオン二次電池を作製した。
<Production of lithium ion secondary battery>
After forming the positive electrode and the negative electrode, they were laminated with a porous film separator in between. Thereafter, a positive electrode tab and a negative electrode tab were welded to the positive electrode and the negative electrode, respectively, to produce a power generation element. The power generation element was wrapped in an outer package made of an aluminum laminate film, and three sides of the outer package were sealed by heat sealing. Thereafter, an EC / DEC electrolyte solution containing 1 mol / L LiPF 6 was injected into the outer package at an appropriate degree of vacuum. Thereafter, the remaining one side of the outer package was heat-sealed and sealed under reduced pressure to prepare a lithium ion secondary battery before activation treatment.
<活性化処理>
前記活性化処理前のリチウムイオン二次電池について、正極活物質あたり20mA/gの電流で4.5Vまで充電した後、正極活物質あたり20mA/gの電流で1.5Vまで放電するサイクルを2回繰り返した。その後、一旦外装体の封止部を破り、減圧することで二次電池内部のガスを抜き、再封止することによりリチウムイオン二次電池を作製した。
<Activation processing>
About the lithium ion secondary battery before the activation treatment, after charging to 4.5 V at a current of 20 mA / g per positive electrode active material, the cycle is discharged to 1.5 V at a current of 20 mA / g per positive electrode active material. Repeated times. Thereafter, the sealing portion of the outer package was once broken and the internal pressure of the secondary battery was removed by degassing and resealing to produce a lithium ion secondary battery.
<リチウムイオン二次電池の評価>
前記リチウムイオン二次電池を、45℃の恒温槽中で、正極活物質あたり40mA/gの定電流で4.5Vまで充電し、さらに5mA/gの電流になるまで4.8Vの定電圧で充電した。その後、該リチウムイオン二次電池を10mA/gの電流で1.5Vまで放電した。該リチウムイオン二次電池を、45℃の恒温槽中で、正極活物質あたり40mA/gの定電流で4.5Vまで充電し、さらに5mA/gの電流になるまで4.5Vの定電圧で充電した後、40mA/gの電流で1.5Vまで放電する充放電サイクルを100回繰り返した。1サイクル目に得られた放電容量と、100サイクル目に得られた放電容量との比から、100サイクル後の容量維持率を求めた。本実施例1における100サイクル後の容量維持率は82%であった。
<Evaluation of lithium ion secondary battery>
The lithium ion secondary battery is charged to 4.5 V at a constant current of 40 mA / g per positive electrode active material in a constant temperature bath at 45 ° C. Charged. Thereafter, the lithium ion secondary battery was discharged to 1.5 V at a current of 10 mA / g. The lithium ion secondary battery is charged to 4.5 V at a constant current of 40 mA / g per positive electrode active material in a constant temperature bath at 45 ° C., and further at a constant voltage of 4.5 V until the current reaches 5 mA / g After charging, a charge / discharge cycle of discharging to 1.5 V with a current of 40 mA / g was repeated 100 times. From the ratio of the discharge capacity obtained in the first cycle and the discharge capacity obtained in the 100th cycle, the capacity retention rate after 100 cycles was determined. In Example 1, the capacity retention rate after 100 cycles was 82%.
[比較例1]
正極活物質として、リチウム鉄マンガン系複合酸化物Li1.19Mn0.47Ni0.16Fe0.17O1.99を合成し、これを用いた以外は、実施例1と同様にリチウムイオン二次電池を作製し、評価した。本比較例1における100サイクル後の容量維持率は56%であった。
[Comparative Example 1]
A lithium ion secondary battery was prepared and evaluated in the same manner as in Example 1 except that lithium iron manganese-based composite oxide Li 1.19 Mn 0.47 Ni 0.16 Fe 0.17 O 1.99 was synthesized as the positive electrode active material, and this was used. . The capacity retention rate after 100 cycles in this Comparative Example 1 was 56%.
本実施形態に係るリチウムイオン二次電池は、高いエネルギー密度を有し、さらにサイクル特性にも優れるため、電子機器、電気自動車、一般家庭や施設の電力貯蔵用蓄電池等として、広く利用することができる。 The lithium ion secondary battery according to the present embodiment has a high energy density and is excellent in cycle characteristics. Therefore, the lithium ion secondary battery can be widely used as an electronic device, an electric vehicle, a storage battery for power storage in general households and facilities, and the like. it can.
1 正極活物質層
1A 正極集電体
1B 正極タブ
2 負極活物質層
2A 負極集電体
2B 負極タブ
3 セパレータ
4 外装体
DESCRIPTION OF
Claims (9)
LixM1 (y−p)MnpM2 (z−q)FeqO(2−δ−r)Fr (1)
(前記式(1)において、1.05≦x≦1.32、0.33≦y≦0.63、0.06≦z≦0.50、0<p≦0.63、0.06≦q≦0.50、0.01≦r<2−δ、0.06≦δ≦0.80、y≧p、z≧qであり、M1はTiおよびZrの少なくとも一方の元素であり、M2はCo、NiおよびMnからなる群から選択される少なくとも一種の元素である)
で示されるリチウム鉄マンガン系複合酸化物。 It has a layered rock salt structure and has the following formula (1)
Li x M 1 (yp) Mn p M 2 (zq) Fe q O (2-δ-r) F r (1)
(In the above formula (1), 1.05 ≦ x ≦ 1.32, 0.33 ≦ y ≦ 0.63, 0.06 ≦ z ≦ 0.50, 0 <p ≦ 0.63, 0.06 ≦ q ≦ 0.50, 0.01 ≦ r <2-δ, 0.06 ≦ δ ≦ 0.80, y ≧ p, z ≧ q, M 1 is at least one element of Ti and Zr, M 2 is at least one element selected from the group consisting of Co, Ni and Mn)
Lithium iron manganese composite oxide represented by
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013173268A JP6252890B2 (en) | 2013-08-23 | 2013-08-23 | Lithium iron manganese composite oxide and lithium ion secondary battery using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2013173268A JP6252890B2 (en) | 2013-08-23 | 2013-08-23 | Lithium iron manganese composite oxide and lithium ion secondary battery using the same |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015040157A JP2015040157A (en) | 2015-03-02 |
JP6252890B2 true JP6252890B2 (en) | 2017-12-27 |
Family
ID=52694514
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2013173268A Active JP6252890B2 (en) | 2013-08-23 | 2013-08-23 | Lithium iron manganese composite oxide and lithium ion secondary battery using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6252890B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10280092B2 (en) * | 2016-07-28 | 2019-05-07 | Wildcat Discovery Technologies, Inc | Oxides for high energy cathode materials |
JP6825701B2 (en) | 2016-10-06 | 2021-02-03 | 日本電気株式会社 | Spacer-containing electrode structure and its application to high energy density and fast-chargeable lithium-ion batteries |
WO2018138865A1 (en) | 2017-01-27 | 2018-08-02 | Nec Corporation | Silicone ball containing electrode and lithium ion battery including the same |
CN110199418B (en) * | 2017-04-24 | 2024-03-08 | 松下知识产权经营株式会社 | Positive electrode active material and battery |
EP3633773A4 (en) | 2017-05-29 | 2020-05-27 | Panasonic Intellectual Property Management Co., Ltd. | Positive electrode active substance and battery |
JP7122542B2 (en) | 2017-09-27 | 2022-08-22 | パナソニックIpマネジメント株式会社 | Positive electrode active material and battery |
WO2020012739A1 (en) * | 2018-07-12 | 2020-01-16 | パナソニックIpマネジメント株式会社 | Positive electrode active material and cell comprising same |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH11273679A (en) * | 1998-01-21 | 1999-10-08 | Mitsubishi Chemical Corp | Lithium secondary battery |
JP3611188B2 (en) * | 2000-03-03 | 2005-01-19 | 日産自動車株式会社 | Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery |
JP2002050401A (en) * | 2000-08-01 | 2002-02-15 | Nissan Motor Co Ltd | Nonaqueous electrolyte lithium ion secondary cell |
JP4752992B2 (en) * | 2001-06-15 | 2011-08-17 | 信越化学工業株式会社 | Anode material for non-aqueous electrolyte secondary battery |
JP5099398B2 (en) * | 2005-06-07 | 2012-12-19 | ソニー株式会社 | Positive electrode active material for secondary battery, positive electrode for secondary battery and secondary battery |
KR101013938B1 (en) * | 2008-07-31 | 2011-02-14 | 한양대학교 산학협력단 | Positive active material for rechargeable lithium battery, method for preparing same, and rechargeable lithium battery using same |
CN101728529A (en) * | 2008-10-10 | 2010-06-09 | 深圳市天骄科技开发有限公司 | Lithium ion battery anode material and manufacturing method thereof |
JP5682172B2 (en) * | 2010-08-06 | 2015-03-11 | Tdk株式会社 | Active material, method for producing active material, and lithium ion secondary battery |
JP5639533B2 (en) * | 2010-09-24 | 2014-12-10 | 株式会社東芝 | Non-aqueous electrolyte secondary battery positive electrode active material, non-aqueous electrolyte secondary battery, battery pack and method for producing positive electrode active material for non-aqueous electrolyte secondary battery |
JP2012142156A (en) * | 2010-12-28 | 2012-07-26 | Sony Corp | Lithium ion secondary battery, positive electrode active material, positive electrode, power tool, electric vehicle, and power storage system |
US9865872B2 (en) * | 2012-02-06 | 2018-01-09 | Nec Corporation | Lithium-ion battery and method for producing same |
WO2013118659A1 (en) * | 2012-02-06 | 2013-08-15 | 日本電気株式会社 | Lithium-ion battery and method for producing same |
-
2013
- 2013-08-23 JP JP2013173268A patent/JP6252890B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015040157A (en) | 2015-03-02 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11251428B2 (en) | Positive electrode active material manufacturing method with control of washing slurry liquid electrical conductivity | |
JP6197029B2 (en) | Active material for nonaqueous electrolyte storage element | |
EP2600458B1 (en) | Lithium ion secondary battery | |
JP6117117B2 (en) | Non-aqueous electrolyte secondary battery positive electrode and non-aqueous electrolyte secondary battery | |
JP5100024B2 (en) | Cathode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same | |
JP6603966B2 (en) | Lithium iron manganese composite oxide and lithium ion secondary battery using the same | |
JP6252890B2 (en) | Lithium iron manganese composite oxide and lithium ion secondary battery using the same | |
JP6600944B2 (en) | Lithium secondary battery | |
JP7147478B2 (en) | Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery | |
JP5999090B2 (en) | Active material for secondary battery | |
JP6249270B2 (en) | Lithium iron manganese composite oxide and lithium ion secondary battery using the same | |
JP6020204B2 (en) | Nonaqueous electrolyte secondary battery | |
JP6481907B2 (en) | Lithium iron manganese based composite oxide, positive electrode active material for lithium ion secondary battery using the same, positive electrode for lithium ion secondary battery, and lithium ion secondary battery | |
JP2018041657A (en) | Positive electrode active material for lithium secondary battery, method for manufacturing the same, lithium secondary battery electrode, and lithium secondary battery | |
JPWO2016021684A1 (en) | Positive electrode and secondary battery using the same | |
CN107172888B (en) | Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery | |
WO2013018607A1 (en) | Nonaqueous electrolyte secondary battery | |
JP2015115244A (en) | Positive electrode for lithium secondary battery, lithium secondary battery, battery module, and automobile mounting battery module | |
JP6800417B2 (en) | Positive electrode material for lithium ion secondary batteries, positive electrode for lithium ion secondary batteries and lithium ion secondary batteries | |
JP6746983B2 (en) | Lithium-iron-manganese-based composite active material structure, lithium-ion secondary battery using the same, and manufacturing method | |
JP6249269B2 (en) | Lithium iron manganese composite oxide and lithium ion secondary battery using the same | |
JP2013206557A (en) | Active material and lithium ion secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20160810 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20160812 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170427 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170509 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170710 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170829 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20170925 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20171024 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20171116 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6252890 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |