JP6252371B2 - Forging mold and forging method - Google Patents

Forging mold and forging method Download PDF

Info

Publication number
JP6252371B2
JP6252371B2 JP2014126446A JP2014126446A JP6252371B2 JP 6252371 B2 JP6252371 B2 JP 6252371B2 JP 2014126446 A JP2014126446 A JP 2014126446A JP 2014126446 A JP2014126446 A JP 2014126446A JP 6252371 B2 JP6252371 B2 JP 6252371B2
Authority
JP
Japan
Prior art keywords
mold
forging
workpiece
shaped groove
molds
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014126446A
Other languages
Japanese (ja)
Other versions
JP2016002589A (en
Inventor
高大 牧山
高大 牧山
寺前 俊哉
俊哉 寺前
敏明 野々村
敏明 野々村
尚史 光永
尚史 光永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2014126446A priority Critical patent/JP6252371B2/en
Publication of JP2016002589A publication Critical patent/JP2016002589A/en
Application granted granted Critical
Publication of JP6252371B2 publication Critical patent/JP6252371B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Forging (AREA)

Description

本発明は、鍛造金型および鍛造方法に関する。   The present invention relates to a forging die and a forging method.

フランジを備えた丸棒、軸、または円錐のような円形部品を量産するために、2つのハンマに鍛造用金型を取り付けて(型鍛造)、互いに向き合って叩く両ハンマの間に被加工材を通過させて製造する鍛造機械がある。
型鍛造では、金属の素材を金型などで圧力を加えて塑性流動させて成形する。鍛流線(fiber flow)が連続するために組織が緻密になり、鋳造に比べて鋳巣ができにくいので、強度に優れた素形材をつくることができる。
For mass production of round parts such as round bars, shafts, or cones with flanges, forging dies are attached to two hammers (die forging), and the work material between both hammers facing each other is hit There is a forging machine that passes through and manufactures.
In die forging, a metal material is plastically flowed by applying pressure with a mold or the like to form. Since the fiber flow is continuous, the structure becomes dense, and the cast hole is less likely to be formed compared to casting, so that it is possible to make a shaped material with excellent strength.

逐次鍛造金型の背景技術として、特開昭48−25650号公報(特許文献1)がある。この公報には、「作業面が軸線の周りを回転する加工片の回転方向に延びている鈍角のV字状工具溝の側面からなり、この溝がプリズム状の仕上げ部分に向かって楔上に細くなっている入り口部分を持っているものにおいて、入り口部分(4)において、加工片回転に関して前方の作業面(7)が溝底と加工片面とを通る平面(E)となす角(α)が、この平面と後方の作業面(8)との間の角(β)より大きく、これに反して仕上げ部分(3)においては2つの角(α'、β')が同じ多い差であることを特徴とする、互いに向合って叩く唯2つのハンマを持つ鍛造機械に対する円形鍛造のための工具。」と記載されている。   As a background art of the sequential forging die, there is JP-A-48-25650 (Patent Document 1). According to this publication, “the work surface consists of a side surface of an obtuse V-shaped tool groove extending in the rotation direction of a work piece rotating around an axis, and this groove is formed on the wedge toward the prism-like finished portion. In the case of having a narrow entrance portion, in the entrance portion (4), the angle (α) formed by the front work surface (7) and the plane (E) passing through the groove bottom and the work piece surface with respect to the work piece rotation. Is larger than the angle (β) between this plane and the rear work surface (8), whereas the two corners (α ′, β ′) are the same difference in the finished part (3). "A tool for circular forging against a forging machine with only two hammers facing each other."

特開昭48−25650号公報Japanese Patent Laid-Open No. 48-25650

前記特許文献1には、円筒状素材を鍛造するための金型が記載されている。しかし、該特許文献1に記載された金型では、1パスあたりの圧下量が大きくなると、V字状金型溝面の角度α、βの角度差が大きくなり、下死点時でも2面での加圧となり、成形精度が悪化する課題があった。   Patent Document 1 describes a mold for forging a cylindrical material. However, in the mold described in Patent Document 1, when the amount of reduction per pass increases, the angle difference between the angles α and β of the V-shaped mold groove surface increases, and two surfaces even at the bottom dead center. There was a problem that the molding accuracy was deteriorated.

本発明の目的は、1パスあたりの圧下量が大きい場合でも、円筒状被加工材を高精度に鍛造できるようにした逐次鍛造方法および鍛造金型を提供することにある。   An object of the present invention is to provide a sequential forging method and a forging die capable of forging a cylindrical workpiece with high accuracy even when the amount of reduction per pass is large.

上記課題を解決するために本発明では、鍛造機械に互いに対向して取り付けられる2つの円形鍛造用の鍛造金型を、各金型に形成されたV字状の溝が、第一の加工面と第二の加工面を有し、両金型の間を、回転送りと長手方向送りを付与されて移動する被加工材の回転に際して、先に被加工材に接する第一の加工面が金型の加圧方向と成す角βと、後に被加工材に接する第二の加工面が金型の加圧方向と成す角αが、β>αの関係にあり、及び両金型のV字状の溝の底部が、両金型の間で回転移動する被加工材の中心軸まわりに、金型の加圧方向から、角度(β−α)/2だけ第二の加工面側に回転移動した配置に形成されるように構成した。   In order to solve the above-described problem, in the present invention, two forging dies for circular forging that are attached to a forging machine so as to face each other are provided with V-shaped grooves formed in the respective dies. And the second processed surface, and the first processed surface that comes into contact with the workpiece first is the metal when rotating the workpiece that is moved by applying rotational feed and longitudinal feed between the molds. The angle β formed with the pressing direction of the mold and the angle α formed with the second processing surface that comes into contact with the workpiece later with the pressing direction of the mold have a relationship of β> α, and the V shape of both molds The bottom of the groove is rotated around the center axis of the workpiece rotating between the two molds from the mold pressing direction by the angle (β-α) / 2 to the second machining surface. It was configured to be formed in a moved arrangement.

また、上記課題を解決するために本発明では、前記2つの円形鍛造用の鍛造金型が鍛造機械に互いに対向して取り付けられた際に、各金型に形成されたV字状の溝、第一の加工面、第二の加工面、およびV字状の溝の底部は、両金型の間で回転移動する被加工材の中心軸まわりに回転対称の関係にあるように構成した。   In order to solve the above problems, in the present invention, when the two forging dies for circular forging are attached to a forging machine so as to face each other, V-shaped grooves formed in the respective dies, The first processed surface, the second processed surface, and the bottom of the V-shaped groove were configured to have a rotationally symmetric relationship around the central axis of the workpiece that rotates between both molds.

また、上記課題を解決するために本発明では、前記両金型のV字状の溝の底部が、前記第一の加工面と第二の加工面を所定の曲率を持った円弧で連続して構成されるようにした。   In order to solve the above-mentioned problem, in the present invention, the bottoms of the V-shaped grooves of both dies are formed by connecting the first processing surface and the second processing surface with an arc having a predetermined curvature. To be configured.

また、上記課題を解決するために本発明では、鍛造機械に被加工材を挟んで対向するV字状の溝を有する1対の鍛造金型を取り付けて、前記被加工材を前記金型で押し込み形状を創生する鍛造方法において、前記鍛造金型は、各金型に形成されたV字状の溝が、第一の加工面と第二の加工面を有し、両金型の間を、回転送りと長手方向送りを付与されて移動する被加工材の回転に際して、先に被加工材に接する第一の加工面が金型の加圧方向と成す角βと、後に被加工材に接する第二の加工面が金型の加圧方向と成す角αが、β>αの関係にあり、及び両金型のV字状の溝の底部が、両金型の間で回転移動する被加工材の中心軸まわりに、金型の加圧方向から、角度(β−α)/2だけ第二の加工面側に回転移動した配置に形成されており、前記両金型間に、前記被加工材を配置し、前記被加工材を回転送り、長手方向送りを付与しながら前記両金型で押し込むようにした。   In order to solve the above-mentioned problem, in the present invention, a forging machine is attached with a pair of forging dies having V-shaped grooves facing each other with the workpiece sandwiched therebetween, and the workpiece is made of the die. In the forging method for creating an indentation shape, the forging die has a V-shaped groove formed in each die having a first processing surface and a second processing surface, and between the two dies. , The angle β formed by the first working surface in contact with the workpiece first and the pressurizing direction of the mold when rotating the workpiece to which the rotational feed and the longitudinal feed are applied, and the workpiece later The angle α between the second processing surface in contact with the mold and the pressing direction of the mold is in a relationship of β> α, and the bottoms of the V-shaped grooves of both molds rotate and move between the molds. Around the central axis of the workpiece to be processed, and arranged so as to be rotated and moved to the second processing surface side by an angle (β−α) / 2 from the pressing direction of the mold. The work material was disposed between them, and the work material was pushed in with the two dies while being rotated and fed in the longitudinal direction.

本発明によれば、円筒状被加工材を高精度に鍛造できるようにした逐次鍛造方法および鍛造金型を提供することができる。
上記した以外の課題、構成および効果は、以下の実施形態の説明により明らかにされる。
According to the present invention, it is possible to provide a sequential forging method and a forging die capable of forging a cylindrical workpiece with high accuracy.
Problems, configurations, and effects other than those described above will become apparent from the following description of embodiments.

円筒状の被加工材を縮小する逐次鍛造方法を説明する斜視図である。It is a perspective view explaining the sequential forging method which reduces a cylindrical workpiece. 円筒状の素材を縮小する逐次鍛造方法を説明する断面図である。It is sectional drawing explaining the sequential forging method which reduces a cylindrical raw material. 円筒状の素材を縮小する逐次鍛造方法における金型形状と素材形状の関係を示す断面図である。It is sectional drawing which shows the relationship between the metal mold | die shape and raw material shape in the sequential forging method which reduces a cylindrical raw material. 円筒状の素材を縮小する逐次鍛造方法における金型形状と素材形状の関係を示す断面図である。It is sectional drawing which shows the relationship between the metal mold | die shape and raw material shape in the sequential forging method which reduces a cylindrical raw material. 円筒状の素材を縮小する逐次鍛造方法における金型形状と素材形状の関係を示す断面図である。It is sectional drawing which shows the relationship between the metal mold | die shape and raw material shape in the sequential forging method which reduces a cylindrical raw material. 円筒状の素材を縮小する逐次鍛造方法における金型形状と素材形状の関係を示す断面図である。It is sectional drawing which shows the relationship between the metal mold | die shape and raw material shape in the sequential forging method which reduces a cylindrical raw material. 本発明の金型、鍛造方法の効果を説明する図である。It is a figure explaining the effect of the metallic mold and forging method of the present invention. 円筒状の素材を縮小する逐次鍛造方法における金型形状の斜視図である。It is a perspective view of the metal mold | die shape in the sequential forging method which reduces a cylindrical raw material. 対向して配置された1対の鍛造金型の断面図の1例である。It is an example of sectional drawing of a pair of forging metal mold | die arrange | positioned facing.

以下、実施例を図面を用いて説明する。
図1は、本実施例の鍛造機械において、図示してはいないマニピュレータにより円筒状の素材(被加工材)1を把持して、上下2つのハンマー(図示せず)に取り付けた金型11a,11bにより被加工材1を叩いて、その径を縮小する逐次鍛造方法を説明する斜視図である。
Hereinafter, examples will be described with reference to the drawings.
FIG. 1 shows a die 11a in a forging machine according to the present embodiment, in which a cylindrical material (workpiece) 1 is held by a manipulator (not shown) and attached to two upper and lower hammers (not shown). It is a perspective view explaining the sequential forging method which strikes the workpiece 1 by 11b and reduces the diameter.

被加工材1の長手方向をx軸方向とし、1対の金型11a,11bの加圧方向をz軸方向とし、x軸方向と、z軸方向に直交する方向をy軸方向とする。1対の金型11a,11bは被加工材1を挟んで対向した状態で配置する。金型11aと金型11bとが同時に被加工材1の中心方向に移動し12,13被加工材1を圧下する。その後、被加工材1をx軸方向に送るとともに、素材1をx軸まわりに送る。そして、また金型11aと金型11bが同時に被加工材1の中心方向に移動し12,13被加工材1を圧下するということを繰り返す。
被加工材1をx軸方向に送る工程と、被加工材1をx軸まわりに回転させる工程とは必ずしも同時でなくて良いが、加工時間短縮の観点からは、被加工材1をx軸方向に送る工程と、被加工材1をx軸まわりに回転させる工程とを同時に行うことが好ましい。
The longitudinal direction of the workpiece 1 is the x-axis direction, the pressing direction of the pair of molds 11a and 11b is the z-axis direction, and the x-axis direction and the direction orthogonal to the z-axis direction are the y-axis direction. The pair of molds 11a and 11b are arranged in a state of facing each other with the workpiece 1 interposed therebetween. The mold 11a and the mold 11b are simultaneously moved toward the center of the workpiece 1, and the 12,13 workpiece 1 is pressed down. Thereafter, the workpiece 1 is sent in the x-axis direction and the material 1 is sent around the x-axis. And it repeats that metal mold | die 11a and metal mold | die 11b move to the center direction of the workpiece 1 simultaneously, and press down the workpiece | work 12,13.
The step of feeding the workpiece 1 in the x-axis direction and the step of rotating the workpiece 1 around the x-axis are not necessarily simultaneous, but from the viewpoint of reducing the machining time, the workpiece 1 is moved along the x-axis. It is preferable to simultaneously perform the step of feeding in the direction and the step of rotating the workpiece 1 around the x axis.

図2は、V字状の溝21を有する1対の金型11を用いて円筒状の被加工材1を鍛造した場合における被加工材1の変形の例である。図2(A)は円筒状の被加工材1をV字状の溝21を有する金型11で加圧する直前の断面図であり、図2(B)は図2(A)で加圧した後、金型11を被加工材1から離れるようにz軸方向に移動させ、被加工材1をx軸まわりに紙面時計回りに回転させ、再び金型11を被加工材1に近づけるようにz軸方向に移動させ、被加工材1をV字状の溝21を有する金型11で加圧する直前の断面図である。
図2(A)の状態で加圧された被加工材1は、V字状の溝の底部22の近傍で加圧された被加工材角部2と、V字状の溝の平面23で加圧された被加工材平坦部3と、被加工材平坦部3と被加工材円弧部4とをつなぐ被加工材角部5とから成る。この加圧された被加工材1を図2(B)に示すようにx軸まわりに回転させると、被加工材1の断面形状がzy平面でV字状の溝と非対称となり、被加工材角部2と被加工材角部5が金型11に非対称な状態で加圧される。このため、鍛造される被加工材1の断面形状の成形精度が低下する。
FIG. 2 is an example of deformation of the workpiece 1 when the cylindrical workpiece 1 is forged using a pair of molds 11 having V-shaped grooves 21. 2A is a cross-sectional view immediately before pressurizing the cylindrical workpiece 1 with a mold 11 having a V-shaped groove 21, and FIG. 2B is pressed in FIG. 2A. Thereafter, the mold 11 is moved in the z-axis direction so as to be away from the workpiece 1, the workpiece 1 is rotated about the x-axis in the clockwise direction on the paper, and the mold 11 is brought closer to the workpiece 1 again. FIG. 3 is a cross-sectional view immediately before pressing the workpiece 1 with a mold 11 having a V-shaped groove 21 after moving in the z-axis direction.
The workpiece 1 pressed in the state of FIG. 2 (A) has a workpiece corner 2 pressed near the bottom 22 of the V-shaped groove and a flat surface 23 of the V-shaped groove. It consists of a pressed workpiece flat portion 3 and a workpiece corner portion 5 that connects the workpiece flat portion 3 and the workpiece arc 4. When the pressed workpiece 1 is rotated about the x axis as shown in FIG. 2B, the cross-sectional shape of the workpiece 1 becomes asymmetric with the V-shaped groove on the zy plane, and the workpiece The corner 2 and the workpiece corner 5 are pressed against the mold 11 in an asymmetric state. For this reason, the shaping | molding precision of the cross-sectional shape of the workpiece 1 forged falls.

図3は、円筒状の被加工材1を鍛造するV字状の溝の加工面の角度を変えた金型の例である。図3は、金型11のV字状の溝の加工面23aと金型11の加圧方向14(上下の金型11はz軸方向に同時に加圧しており、かつ上下の金型11のV字状の溝の底部22を結んだ線14が加圧方向14と一致している。)との成す角をαとし、金型11のV字状の溝の加工面23bと金型11の加圧方向との成す角をβとし、β>αとした上下金型11の配置の横断面図である。上下の金型11の加工面は、被加工材1の回転軸(x軸)まわりの回転対象の関係にある。
これらの金型11の形状では、V字状の溝の加工面23a,23bと金型11の加圧方向との成す角α、βの差が大きくなると、V字状の溝の加工面23a側のみが被加工材1と接触し、加圧によって加工面23a側の変形が起こったとしてもV字状の溝の加工面23b側は被加工材1と接触しないため、上下の金型11の加工面23aの2面での鍛造となり、成形精度が低下する。
FIG. 3 is an example of a mold in which the angle of the processed surface of the V-shaped groove for forging the cylindrical workpiece 1 is changed. FIG. 3 shows the processing surface 23a of the V-shaped groove of the mold 11 and the pressing direction 14 of the mold 11 (the upper and lower molds 11 are simultaneously pressed in the z-axis direction, and the upper and lower molds 11 The angle formed by the line 14 connecting the bottom 22 of the V-shaped groove and the pressing direction 14) is α, and the V-shaped groove processed surface 23b of the mold 11 and the mold 11 are formed. It is a cross-sectional view of the arrangement of the upper and lower molds 11 where β is the angle formed with the pressing direction of β and β> α. The processing surfaces of the upper and lower molds 11 are in a relationship of rotation targets around the rotation axis (x axis) of the workpiece 1.
In the shape of these molds 11, when the difference between the angles α and β formed between the processed surfaces 23 a and 23 b of the V-shaped groove and the pressing direction of the mold 11 increases, the processed surface 23 a of the V-shaped groove. Even if only the side is in contact with the workpiece 1 and the deformation on the processing surface 23a side is caused by pressurization, the processing surface 23b side of the V-shaped groove is not in contact with the processing material 1, so the upper and lower molds 11 The forging is performed on two of the processed surfaces 23a, and the forming accuracy is lowered.

図4は、図3の例に引き続いて円筒状の被加工材1を鍛造する金型の例である。図4は、図3に対し金型11のV字状の溝の加工面23aと金型11の加圧方向14とのなす角をαとし、金型11のV字状の溝の加工面23bと金型11の加圧方向14とのなす角をβとし、β>αとした上下の金型11の配置の横断面図であるが、V字状の溝の底部22が金型11の加圧方向14から(β−α)/2だけ、被加工材1の中心軸9まわりに回転された位置に配置されている横断面図である。これにより、V字状の溝の加工面23a,23bと金型11の加圧方向14のなす角α、βの差が大きくなっても、上下の金型11のV字状の溝の加工面23aと、V字状の溝の加工面23bとが、被加工材1と接触するため、V字状の溝の加工面4面での鍛造となり、成形精度が向上する。
なお、被加工材1の回転は紙面時計回りに与えることになり、被加工材1の回転に際して、先に被加工材1に接触する加工面は23bであり、後に接触する加工面は23aである。以降の他の図でも同様である。
FIG. 4 is an example of a mold for forging the cylindrical workpiece 1 following the example of FIG. 4, the angle formed by the processing surface 23a of the V-shaped groove of the mold 11 and the pressing direction 14 of the mold 11 is α, and the processing surface of the V-shaped groove of the mold 11 is compared with FIG. 23 is a cross-sectional view of the arrangement of the upper and lower molds 11 where β is the angle formed by the pressing direction 14 of the mold 11 and β> α, and the bottom 22 of the V-shaped groove is the mold 11. FIG. 6 is a transverse cross-sectional view arranged at a position rotated about the central axis 9 of the workpiece 1 from the pressing direction 14 by (β−α) / 2. As a result, even when the difference between the angles α and β formed by the processing surfaces 23a and 23b of the V-shaped groove and the pressing direction 14 of the mold 11 is increased, the V-shaped groove of the upper and lower molds 11 is processed. Since the surface 23a and the processed surface 23b of the V-shaped groove are in contact with the workpiece 1, forging is performed on the processed surface 4 of the V-shaped groove, and the forming accuracy is improved.
The rotation of the workpiece 1 is given in the clockwise direction on the paper surface. When the workpiece 1 is rotated, the machining surface that comes into contact with the workpiece 1 first is 23b, and the machining surface that comes into contact later is 23a. is there. The same applies to other figures thereafter.

図5は、図4の例に引き続いて円筒状の被加工材1を鍛造する金型の例である。図5は、図4と同様に、金型11のV字状の溝の加工面23aと金型11の加圧方向14との成す角をαとし、金型11のV字状の溝の加工面23bと金型11の加圧方向14との成す角をβとし、V字状の溝の底部22が金型11の加圧方向14から(β−α)/2だけ、被加工材1の中心軸9まわりに、後から接触する加工面23a側へ回転された位置に配置されており、さらに、上側の金型11の幅方向端部24aがもう一方の幅方向端部24bより被加工材1の中心軸9側に配置されている横断面図である。これにより、V字状の溝の加工面23a,23bと金型11の加圧方向14との成す角α、βの差が大きくなっても、V字状の溝の加工面23aと23bの幅25a,25bの差を低減することができ、大きな径の被加工材1でも高精度に鍛造することが可能となる。
なお、上下の金型11の加工面の形状は、被加工材1の回転軸(x軸)9まわりの回転対象の関係にある。
FIG. 5 is an example of a mold for forging the cylindrical workpiece 1 following the example of FIG. In FIG. 5, as in FIG. 4, the angle formed by the processed surface 23 a of the V-shaped groove of the mold 11 and the pressing direction 14 of the mold 11 is α, and the V-shaped groove of the mold 11 is The angle between the processing surface 23b and the pressing direction 14 of the mold 11 is β, and the bottom 22 of the V-shaped groove is (β−α) / 2 from the pressing direction 14 of the mold 11 to be processed. 1 is arranged at a position rotated around the center axis 9 toward the machining surface 23a side to be contacted later, and the width direction end 24a of the upper mold 11 is more than the other width direction end 24b. It is a cross-sectional view arranged on the side of the central axis 9 of the workpiece 1. As a result, even if the difference between the angles α and β formed by the processing surfaces 23a and 23b of the V-shaped groove and the pressing direction 14 of the mold 11 increases, the processing surfaces 23a and 23b of the V-shaped groove The difference between the widths 25a and 25b can be reduced, and the workpiece 1 having a large diameter can be forged with high accuracy.
In addition, the shape of the processing surface of the upper and lower molds 11 is related to the rotation target around the rotation axis (x axis) 9 of the workpiece 1.

図6は、図5の例に引き続いて円筒状の被加工材1を鍛造する金型の例である。図6は、図5と同様であるが、V字状の溝の底部22が円弧である断面図である。円弧状のV字状の溝の底部22を有する金型11で被加工材1を加圧することで、円弧形状が素材に転写され、成形精度が向上する。円弧状のV字状の溝の底部22の曲率は、鍛造する被加工材1の最終寸法とすることが望ましい。   FIG. 6 is an example of a mold for forging the cylindrical workpiece 1 following the example of FIG. FIG. 6 is a cross-sectional view similar to FIG. 5, but with the bottom 22 of the V-shaped groove being an arc. By pressing the workpiece 1 with the mold 11 having the bottom 22 of the arcuate V-shaped groove, the arc shape is transferred to the material and the molding accuracy is improved. The curvature of the bottom 22 of the arcuate V-shaped groove is preferably the final dimension of the workpiece 1 to be forged.

図7は、本発明の金型の効果を説明する図である。図7(A)は金型11のV字状の溝の加工面23aと金型11の加圧方向14との成す角をαとし、金型11のV字状の溝の加工面23bと金型11の加圧方向14との成す角をβとし、V字状の溝の底部(円弧状)22が金型11の加圧方向14から(β−α)/2だけ、後に接触する加工面23a側に、被加工材11の中心軸9まわりに回転された位置に配置し、V字状の溝の底部22が円弧である断面図である。この形状について、有限要素鍛造解析シミュレーションにより効果を比較した。条件は金型11を被加工材1の方向に押し込み、被加工材1の直径を220mmから200mmに縮径した。x軸まわりの回転送りを30°とし、金型11による加圧と、x軸まわりの回転送りを5回繰り返した。金型11のV字状の溝の加工面23aと金型11の加圧方向14との成す角をαとし、金型11のV字状の溝の加工面23bと金型11の加圧方向14とのなす角をβとし、(α、β)と表現した場合、条件1は(40°、80°)、条件2は(60°、60°)とし、条件1はV字状の溝の底部22が金型11の加圧方向14から(β−α)/2だけ、被加工材1の中心軸まわりに回転された位置に配置されている。   FIG. 7 is a diagram for explaining the effect of the mold of the present invention. In FIG. 7A, the angle formed by the processing surface 23a of the V-shaped groove of the mold 11 and the pressing direction 14 of the mold 11 is α, and the processing surface 23b of the V-shaped groove of the mold 11 The angle formed by the pressing direction 14 of the mold 11 is β, and the bottom portion (arc-shaped) 22 of the V-shaped groove comes into contact later by (β−α) / 2 from the pressing direction 14 of the mold 11. FIG. 3 is a cross-sectional view in which a bottom surface 22 of a V-shaped groove is an arc disposed at a position rotated around the central axis 9 of the workpiece 11 on the processing surface 23a side. About this shape, the effect was compared by the finite element forging analysis simulation. The condition was that the mold 11 was pushed in the direction of the workpiece 1 and the diameter of the workpiece 1 was reduced from 220 mm to 200 mm. The rotational feed around the x axis was set to 30 °, and pressurization by the mold 11 and rotational feed around the x axis were repeated five times. The angle formed by the machining surface 23a of the V-shaped groove of the mold 11 and the pressing direction 14 of the mold 11 is α, and the processing surface 23b of the V-shaped groove of the mold 11 and the pressing of the mold 11 are performed. When the angle formed by the direction 14 is β and expressed as (α, β), Condition 1 is (40 °, 80 °), Condition 2 is (60 °, 60 °), and Condition 1 is V-shaped. The bottom 22 of the groove is disposed at a position rotated about the central axis of the workpiece 1 from the pressing direction 14 of the mold 11 by (β−α) / 2.

図7(B)は横軸41に被加工材1の周方向の位置(相対的位置が分かる程度の位置座標)をとり、縦軸42に被加工材1の半径をとった、被加工材1の表面の輪郭を、被加工材1の周方向に展開したグラフである。なお、横軸41の単位は°、縦軸42の単位はmmである。条件1、条件2のいずれも周方向に2か所ピークをもつ形状となっているが、条件1の方がピークの絶対値が小さく、変形がなだらかであり、成形精度が良いことが確認できる。   In FIG. 7B, the horizontal axis 41 represents the position of the workpiece 1 in the circumferential direction (positional coordinates so that the relative position can be understood), and the vertical axis 42 represents the radius of the workpiece 1. 1 is a graph in which a contour of a surface of 1 is developed in a circumferential direction of a workpiece 1. The unit of the horizontal axis 41 is °, and the unit of the vertical axis 42 is mm. Both conditions 1 and 2 have a shape having two peaks in the circumferential direction. However, it can be confirmed that condition 1 has a smaller absolute value of the peak, and the deformation is gentler and the molding accuracy is better. .

図8は、本発明の金型11の1形態の例である。図8は、金型11のV字状の溝の加工面23aと金型11の加圧方向との成す角をαとし、金型11のV字状の溝の加工面23bと金型11の加圧方向とのなす角をβとし、V字状の溝の底部22が被加工材1の長手方向であるx軸方向に連続的に金型11の加圧方向から(β−α)/2だけ、被加工材1の中心軸まわりに回転された位置に配置されている。金型11による加圧毎に、被加工材1に回転送りと長手方向送りを付与する場合、金型11により加工される部分近傍において、被加工材1が加圧される部分が、被加工材1の長手方向に連続的に変化する。上述のような金型11の形状とすることで、被加工材1の断面形状の連続的な変化に対応し、高精度に成形することが可能となる。   FIG. 8 is an example of one form of the mold 11 of the present invention. In FIG. 8, the angle formed between the processing surface 23 a of the V-shaped groove of the mold 11 and the pressing direction of the mold 11 is α, and the processing surface 23 b of the V-shaped groove of the mold 11 and the mold 11. Β is the angle formed by the pressing direction, and the bottom 22 of the V-shaped groove continuously extends from the pressing direction of the mold 11 in the x-axis direction, which is the longitudinal direction of the workpiece 1 (β−α). It is arranged at a position rotated about the central axis of the workpiece 1 by / 2. When rotational feed and longitudinal feed are applied to the workpiece 1 for each pressurization by the mold 11, the portion where the workpiece 1 is pressed near the portion processed by the mold 11 is processed. It changes continuously in the longitudinal direction of the material 1. By adopting the shape of the mold 11 as described above, it is possible to perform molding with high accuracy in response to a continuous change in the cross-sectional shape of the workpiece 1.

図9は、図6に示す1対の金型11a,11bを、被加工材1の中心軸9と金型11の加圧方向14を通る平面で切断したA−A’断面の一例を示す。図8に示す形態とは別の形態を示す。
図9では、上下金型11a,11bの断面は、入口部31と、仕上げ部32と、出口部33に分けられる。仕上げ部32の断面形状は、これらの金型で仕上げる最終製品形状と同じにしておき、入口部31は、被加工材1を加圧して順次最終形状まで仕上げるために、断面形状を楔状に幅および深さを減少させるように形成している。また、出口部33は入口部31と対称的なテーパを備えて、被加工材1の送り方向8が逆となる戻り鍛造の場合に、入口部として使用される。
図9の断面図では、上金型11aには加工面23aが見えており、また、V字状の溝の底部22が金型11の加圧方向から(β−α)/2だけ、被加工材1の中心軸9まわりに回転された位置に配置されていることを示している。
FIG. 9 shows an example of the AA ′ cross section obtained by cutting the pair of molds 11 a and 11 b shown in FIG. 6 along a plane passing through the central axis 9 of the workpiece 1 and the pressing direction 14 of the mold 11. . A form different from the form shown in FIG. 8 is shown.
In FIG. 9, the cross sections of the upper and lower molds 11 a and 11 b are divided into an inlet part 31, a finishing part 32, and an outlet part 33. The cross-sectional shape of the finishing portion 32 is the same as the final product shape to be finished with these molds, and the inlet portion 31 has a cross-sectional width in a wedge shape in order to pressurize the workpiece 1 and finish to the final shape sequentially. And formed to reduce the depth. Further, the outlet 33 has a taper symmetrical to the inlet 31 and is used as an inlet in the case of return forging in which the feed direction 8 of the workpiece 1 is reversed.
In the cross-sectional view of FIG. 9, the processing surface 23 a is visible on the upper mold 11 a, and the bottom 22 of the V-shaped groove is covered by (β−α) / 2 from the pressing direction of the mold 11. It shows that the workpiece 1 is disposed at a position rotated around the central axis 9.

1 被加工材
2 被加工材角部
3 被加工材平坦部
4 被加工材円弧部
5 被加工材角部
7 被加工材の回転送り
8 被加工材の長手方向送り
9 被加工材の回転中心軸
11,11a,11b 金型
12,13 金型の加圧動作
14 金型の加圧方向
15 V字状の溝の底部を結んだ線
21 V字状の溝
22 V字状の溝の底部
23 V字状の溝の加工面
24 金型の幅方向端部
25 加工面の幅
31 入口部
32 仕上げ部
33 出口部
41 横軸
42 縦軸
DESCRIPTION OF SYMBOLS 1 Work material 2 Work material corner part 3 Work material flat part 4 Work material circular part 5 Work material corner part 7 Work material rotation feed 8 Work material longitudinal feed 9 Work material rotation center Shaft 11, 11a, 11b Mold 12, 13 Mold pressing operation 14 Mold pressing direction 15 Line 21 connecting bottom of V-shaped groove V-shaped groove 22 Bottom of V-shaped groove 23 Processing surface 24 of V-shaped groove 24 End portion 25 in mold width direction Processing surface width 31 Inlet portion 32 Finishing portion 33 Outlet portion 41 Horizontal axis 42 Vertical axis

Claims (8)

鍛造機械に互いに対向して取り付けられる2つの円形鍛造用の鍛造金型において、
各金型に形成されたV字状の溝が、第一の加工面と第二の加工面を有し、
両金型の間を、回転送りと長手方向送りを付与されて移動する被加工材の回転に際して、先に被加工材に接する第一の加工面が金型の加圧方向と成す角βと、後に被加工材に接する第二の加工面が金型の加圧方向と成す角αが、β>αの関係にあり、及び
両金型のV字状の溝の底部が、両金型の間で回転移動する被加工材の中心軸まわりに、金型の加圧方向から、角度(β−α)/2だけ第二の加工面側に回転移動した配置に形成されていることを特徴とする鍛造金型。
In two forging dies for circular forging that are mounted opposite to each other on a forging machine,
A V-shaped groove formed in each mold has a first processed surface and a second processed surface,
An angle β between the first mold surface and the pressurizing direction of the mold when the workpiece to be moved is moved by being given a rotational feed and a longitudinal feed between both molds. The angle α formed by the second processing surface that comes into contact with the workpiece later and the pressing direction of the mold has a relationship of β> α, and the bottoms of the V-shaped grooves of both molds are Around the central axis of the workpiece that rotates between the pressurizing direction of the mold and the angle (β-α) / 2 is formed to be arranged to rotate to the second processing surface side The forging die is a feature.
前記2つの円形鍛造用の鍛造金型が鍛造機械に互いに対向して取り付けられた際に、
各金型に形成されたV字状の溝、第一の加工面、第二の加工面、およびV字状の溝の底部は、両金型の間で回転移動する被加工材の中心軸まわりに回転対称の関係にあることを特徴とする請求項1に記載の鍛造金型。
When the two forging dies for circular forging are attached to the forging machine opposite to each other,
The V-shaped groove, the first processed surface, the second processed surface, and the bottom of the V-shaped groove formed in each mold are the central axis of the workpiece that rotates between the two molds. The forging die according to claim 1, wherein the forging die has a rotationally symmetric relationship around.
前記両金型のV字状の溝の底部が、前記第一の加工面と第二の加工面を所定の曲率を持った円弧で連続して構成されていることを特徴とする請求項1、または請求項2に記載の鍛造金型。   2. A bottom portion of the V-shaped groove of the both dies is configured such that the first machining surface and the second machining surface are continuously formed by an arc having a predetermined curvature. Or a forging die according to claim 2. 前記V字状の溝を有する金型の幅方向端部の一方の高さが、もう一方の幅方向端部の高さより高いことを特徴とする請求項1に記載の鍛造金型。   The forging die according to claim 1, wherein the height of one end in the width direction of the die having the V-shaped groove is higher than the height of the other end in the width direction. 前記第一の加工面と第二の加工面を連続する円弧の曲率は、最終製品形状の曲率に近づけて設定されていることを特徴とする請求項3に記載の鍛造金型。   The forging die according to claim 3, wherein the curvature of the arc that continues the first and second machining surfaces is set close to the curvature of the final product shape. 鍛造機械に被加工材を挟んで対向するV字状の溝を有する1対の鍛造金型を取り付けて、前記被加工材を前記金型で押し込み形状を創生する鍛造方法において、
前記鍛造金型は、各金型に形成されたV字状の溝が、第一の加工面と第二の加工面を有し、
両金型の間を、回転送りと長手方向送りを付与されて移動する被加工材の回転に際して、先に被加工材に接する第一の加工面が金型の加圧方向と成す角βと、後に被加工材に接する第二の加工面が金型の加圧方向と成す角αが、β>αの関係にあり、及び
両金型のV字状の溝の底部が、両金型の間で回転移動する被加工材の中心軸まわりに、金型の加圧方向から、角度(β−α)/2だけ第二の加工面側に回転移動した配置に形成されており、
前記両金型間に、前記被加工材を配置し、前記被加工材を回転送り、長手方向送りを付与しながら前記両金型で押し込むことを特徴とする鍛造方法。
In a forging method in which a pair of forging dies having V-shaped grooves facing each other with a work material sandwiched between forging machines is attached, and the work material is pushed in with the mold to create a shape.
In the forging die, the V-shaped groove formed in each die has a first processing surface and a second processing surface,
An angle β between the first mold surface and the pressurizing direction of the mold when the workpiece to be moved is moved by being given a rotational feed and a longitudinal feed between both molds. The angle α formed by the second processing surface that comes into contact with the workpiece later and the pressing direction of the mold has a relationship of β> α, and the bottoms of the V-shaped grooves of both molds are Around the central axis of the work piece that rotates between and from the pressurizing direction of the mold, it is formed in an arrangement that is rotated and moved to the second work surface side by an angle (β-α) / 2,
A forging method characterized in that the workpiece is disposed between the two dies, the workpiece is rotationally fed, and the two dies are pushed in while providing longitudinal feed.
前記両金型のV字状の溝の底部が、前記第一の加工面と第二の加工面を所定の曲率を持った円弧で連続して構成されていることを特徴とする請求項に記載の鍛造方法。 6. the bottom of the V-shaped groove of the molds, characterized in that the first processing surface and the second processing surface is configured continuously in a circular arc having a predetermined curvature The forging method described in 1. 前記第一の加工面と第二の加工面を連続する円弧の曲率は、最終製品形状の曲率に近づけて設定されていることを特徴とする請求項に記載の鍛造方法。 The forging method according to claim 7 , wherein a curvature of an arc continuing the first processed surface and the second processed surface is set close to a curvature of a final product shape.
JP2014126446A 2014-06-19 2014-06-19 Forging mold and forging method Active JP6252371B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014126446A JP6252371B2 (en) 2014-06-19 2014-06-19 Forging mold and forging method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014126446A JP6252371B2 (en) 2014-06-19 2014-06-19 Forging mold and forging method

Publications (2)

Publication Number Publication Date
JP2016002589A JP2016002589A (en) 2016-01-12
JP6252371B2 true JP6252371B2 (en) 2017-12-27

Family

ID=55222297

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014126446A Active JP6252371B2 (en) 2014-06-19 2014-06-19 Forging mold and forging method

Country Status (1)

Country Link
JP (1) JP6252371B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106825358A (en) * 2017-01-03 2017-06-13 清华大学 A kind of new V anvils and the forging method using the V anvils

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT307203B (en) * 1971-08-04 1973-05-10 Gfm Fertigungstechnik Round forging tool for forging machines with two hammers striking against each other
CH575787A5 (en) * 1972-04-12 1976-05-31 Bohner & Koehle
JP3208818B2 (en) * 1992-02-28 2001-09-17 石川島播磨重工業株式会社 Press mold and press method
JP4875588B2 (en) * 2007-10-18 2012-02-15 株式会社神戸製鋼所 Round bar material forging method

Also Published As

Publication number Publication date
JP2016002589A (en) 2016-01-12

Similar Documents

Publication Publication Date Title
CN106424137A (en) Zero-broadside magnesium alloy board rolling method and apparatus used in method
JP6252371B2 (en) Forging mold and forging method
CN106345812B (en) A kind of magnesium alloy plate milling method with lateral pressure and its device used
JP7408400B2 (en) How to use flat plates, pressure tools, and flat plates
JP5972957B2 (en) Crankshaft manufacturing method
US10525523B2 (en) Method and device for forging a workpiece in bar form
WO2018083748A1 (en) Step-bending die
JP6958721B2 (en) Forged crank shaft manufacturing method
JP2017087250A (en) Manufacturing method of ring-shaped member
KR101411755B1 (en) Die Assembly For Radial Forging Process And Radial Forging Process Using The Same
JP2009095875A (en) Method for forging round bar material
JP4881152B2 (en) gear
JP5651353B2 (en) Shaving mold
US9566641B2 (en) Forging apparatus
Dang et al. Multiple forming tools in incremental forming–Influence of the forming strategies on sheet contour
JP2019098351A (en) Forging mold, parts former and forging method
JP2001105086A (en) Die for forging and method for producing it
JP6519984B2 (en) Method of manufacturing simultaneously different types of processed pipe members
JP5017999B2 (en) Forging method and forging apparatus
JPWO2019039193A1 (en) Manufacturing method of forged crankshaft
CN106694700A (en) Machining die for arc-shaped workpiece and machining method thereof
JP7047741B2 (en) Forging manufacturing method
JP6935822B2 (en) Forged crankshaft manufacturing method
JP6532258B2 (en) Molding apparatus and molding method
TWI568526B (en) Titanium alloy made of iron plate screw screw method and its dental plate structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170829

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171016

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171031

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171113

R150 Certificate of patent or registration of utility model

Ref document number: 6252371

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350