JP6248701B2 - Support roll - Google Patents

Support roll Download PDF

Info

Publication number
JP6248701B2
JP6248701B2 JP2014038815A JP2014038815A JP6248701B2 JP 6248701 B2 JP6248701 B2 JP 6248701B2 JP 2014038815 A JP2014038815 A JP 2014038815A JP 2014038815 A JP2014038815 A JP 2014038815A JP 6248701 B2 JP6248701 B2 JP 6248701B2
Authority
JP
Japan
Prior art keywords
roll
slit
support roll
slab
shape
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014038815A
Other languages
Japanese (ja)
Other versions
JP2015160246A (en
Inventor
豊 千代盛
豊 千代盛
将士 谷口
将士 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2014038815A priority Critical patent/JP6248701B2/en
Publication of JP2015160246A publication Critical patent/JP2015160246A/en
Application granted granted Critical
Publication of JP6248701B2 publication Critical patent/JP6248701B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、金属材料から熱負荷を加えられながら当該金属材料を支持及び搬送する支持ロールに関する。   The present invention relates to a support roll that supports and conveys a metal material while being subjected to a heat load from the metal material.

連続鋳造工程では、鋳型の下端から引き抜かれた鋳片が、複数対の支持ロールによって支持及び搬送されながら冷却される。鋳片は鋳型に注がれた溶融金属(例えば溶鋼)の外周面が冷却され凝固したものであり、支持ロールの鋳片との接触面には多大な熱負荷が加えられる。熱負荷が加えられることにより、支持ロールの表面には熱膨張による熱応力が発生し、熱亀裂が生じる可能性がある。熱亀裂が発生した支持ロールは交換する必要があるため、支持ロールの使用寿命が短い場合には短期間で支持ロールの交換が行われることとなり、設備保全のコストの増加につながる恐れがある。   In the continuous casting process, the slab drawn from the lower end of the mold is cooled while being supported and conveyed by a plurality of pairs of support rolls. The slab is one in which the outer peripheral surface of molten metal (for example, molten steel) poured into a mold is cooled and solidified, and a great heat load is applied to the contact surface of the support roll with the slab. When a thermal load is applied, a thermal stress due to thermal expansion is generated on the surface of the support roll, and there is a possibility that a thermal crack occurs. Since it is necessary to replace the support roll in which the thermal crack has occurred, if the service life of the support roll is short, the support roll is replaced in a short period of time, which may increase the cost of equipment maintenance.

そこで、支持ロールの表面における熱応力を緩和することにより、支持ロールの使用寿命を長くする技術が提案されている。例えば、特許文献1には、連続鋳造用ロール(CCロール)において、ロール胴部の外周面に、アスペクト比が比較的高く、先端部(底部)に曲面状の空洞部を有するスリットを多数形成する技術が開示されている。特許文献1に記載の技術によれば、鋳片との接触により支持ロールの表面に発生する熱膨張が当該スリットにより吸収され、熱応力が緩和されるため、熱亀裂の発生を抑制することができ、ロールの使用寿命を伸ばすことが可能となる。   Therefore, a technique for extending the service life of the support roll by relaxing the thermal stress on the surface of the support roll has been proposed. For example, in Patent Document 1, in a continuous casting roll (CC roll), a large number of slits having a relatively high aspect ratio and a curved cavity at the tip (bottom) are formed on the outer peripheral surface of the roll body. Techniques to do this are disclosed. According to the technique described in Patent Document 1, thermal expansion that occurs on the surface of the support roll due to contact with the slab is absorbed by the slit and thermal stress is relieved, so that the occurrence of thermal cracks can be suppressed. It is possible to extend the service life of the roll.

特開2004−195517号公報JP 2004-195517 A

ここで、特許文献1に記載の技術では、支持ロールにスリットを形成するために電解加工が用いられている。電解加工では、支持ロールと加工電極との間に電解液を供給しながら、両者の間に互いに逆符号の電圧を負荷することにより、支持ロールの表面のうち加工電極に接近している領域が溶解される。そして、支持ロールの溶解に合わせて加工電極を支持ロールの径方向に差し込んでいくことによりスリットが形成される。このような電解加工では、形成可能なスリット幅の最小値に制約があり、熱膨張を吸収するための最適なスリット幅を実現できない可能性があった。   Here, in the technique described in Patent Document 1, electrolytic processing is used to form a slit in the support roll. In electrolytic processing, while supplying an electrolytic solution between a support roll and a processing electrode, by applying voltages of opposite signs to each other, an area close to the processing electrode on the surface of the support roll can be obtained. Dissolved. And a slit is formed by inserting a process electrode to the radial direction of a support roll according to melt | dissolution of a support roll. In such electrolytic processing, there is a limitation on the minimum value of the slit width that can be formed, and there is a possibility that an optimum slit width for absorbing thermal expansion cannot be realized.

例えば、スリット幅が大きい場合には、支持ロールの表面のうちスリットが形成されない領域の面積、すなわち鋳片と接触する領域の面積が相対的に小さくなってしまうため、鋳片との接触面圧が増加する。従って、支持ロールの表面の摩耗速度が速まり、支持ロールの使用寿命が短くなってしまう可能性がある。このように、特許文献1に記載の技術では、支持ロールの表面にスリットが形成されることにより熱亀裂の発生は抑制される反面、当該スリットの幅を適切に制御できないことにより支持ロールの表面の摩耗が促進されてしまう可能性があり、ロールの使用寿命を延ばすことができない恐れがあった。   For example, when the slit width is large, the area of the surface of the support roll where the slit is not formed, that is, the area of the area in contact with the slab becomes relatively small. Will increase. Therefore, the wear rate of the surface of the support roll is increased, and the service life of the support roll may be shortened. Thus, in the technique described in Patent Document 1, the formation of a slit on the surface of the support roll suppresses the generation of thermal cracks, but the surface of the support roll cannot be controlled appropriately. There is a possibility that the wear of the roll is accelerated, and there is a possibility that the service life of the roll cannot be extended.

そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、金属材料を支持及び運搬する支持ロールに対して当該金属材料から熱負荷が加えられる工程において、支持ロールの使用寿命をより長大化することが可能な、新規かつ改良された支持ロールを提供することにある。   Then, this invention is made | formed in view of the said problem, The place made into the objective of this invention is in the process in which a thermal load is applied from the said metal material with respect to the support roll which supports and conveys a metal material, It is an object of the present invention to provide a new and improved support roll capable of extending the service life of the support roll.

上記課題を解決するために、本発明のある観点によれば、金属材料を支持及び運搬する支持ロールであって、前記支持ロールの回転軸方向に延伸する軸部材と、前記軸部材に嵌合される円環形状を有し、前記回転軸方向に配列される複数のロール部材と、を備え、前記ロール部材の、外縁部を含む径方向に所定の長さを有する領域には、前記回転軸方向の厚さが他の領域よりも薄い薄肉部が形成され、回転軸方向に隣り合う前記ロール部材の対向面間の薄肉部に対応する領域に、スリット部を有し、ロール部材の外周部におけるスリット部の幅に対するスリット部の径方向の深さの比が、10以上であることを特徴とする、支持ロールが提供される。 In order to solve the above-described problems, according to an aspect of the present invention, a support roll for supporting and transporting a metal material, the shaft member extending in the rotation axis direction of the support roll, and fitted to the shaft member A plurality of roll members arranged in the direction of the rotation axis, and a region having a predetermined length in a radial direction including an outer edge portion of the roll member A thin-walled portion having a thinner axial thickness than other regions is formed, and a slit portion is provided in a region corresponding to the thin-walled portion between the opposing surfaces of the roll member adjacent in the rotation axis direction, and the outer periphery of the roll member A support roll is provided in which the ratio of the depth in the radial direction of the slit portion to the width of the slit portion in the portion is 10 or more .

また、当該支持ロールにおいては、前記支持ロールの径方向での断面における前記スリット部の形状は、前記径方向において内側に向かうにつれて前記スリット部の幅が一様に小さくなるくさび型であってもよい。   Moreover, in the said support roll, even if the shape of the said slit part in the cross section in the radial direction of the said support roll is a wedge shape in which the width | variety of the said slit part becomes small uniformly as it goes inside in the said radial direction Good.

以上説明したように本発明によれば、金属材料を支持及び運搬する支持ロールに対して当該金属材料から熱負荷が加えられる工程において、支持ロールの使用寿命をより長大化することが可能となる。   As described above, according to the present invention, it is possible to further extend the service life of the support roll in a process in which a thermal load is applied from the metal material to the support roll that supports and transports the metal material. .

本発明の一実施形態に係る支持ロールが適用される連続鋳造機の概略構成を示す側断面図である。It is a sectional side view showing the schematic structure of the continuous casting machine to which the support roll concerning one embodiment of the present invention is applied. 本発明の一実施形態に係る支持ロールの構成を示す正面図である。It is a front view which shows the structure of the support roll which concerns on one Embodiment of this invention. 図2に示す支持ロールのA−A断面での断面図である。It is sectional drawing in the AA cross section of the support roll shown in FIG. 図3に示すロール部を構成するロール部材の形状を示す外観図及び断面図である。It is the external view and sectional drawing which show the shape of the roll member which comprises the roll part shown in FIG. 従来の支持ロールの一構成例を示す断面図である。It is sectional drawing which shows one structural example of the conventional support roll. 連続鋳造工程において従来の支持ロールによって鋳片が支持される様子を模式的に示す概略図であるIt is the schematic which shows typically a mode that a slab is supported by the conventional support roll in a continuous casting process. スリット部の形状がくさび型である変形例に係る支持ロールの構成を示す断面図である。It is sectional drawing which shows the structure of the support roll which concerns on the modification whose shape of a slit part is a wedge shape. スリット部の形状が矩形型である変形例に係る支持ロールの構成を示す断面図である。It is sectional drawing which shows the structure of the support roll which concerns on the modification whose shape of a slit part is a rectangular shape. スリット部の形状が放物線型である変形例に係る支持ロールの構成を示す断面図である。It is sectional drawing which shows the structure of the support roll which concerns on the modification whose shape of a slit part is a parabolic type. 本実施形態に係る支持ロールのスリット部の形状について説明するための説明図である。It is explanatory drawing for demonstrating the shape of the slit part of the support roll which concerns on this embodiment. 比較例、実施例1及び実施例2における、使用後の支持ロールの径方向の摩耗量を示すグラフ図である。It is a graph which shows the abrasion amount of the radial direction of the support roll after use in a comparative example, Example 1, and Example 2. FIG.

以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。   Exemplary embodiments of the present invention will be described below in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, the duplicate description is abbreviate | omitted by attaching | subjecting the same code | symbol.

また、以下の説明では、本発明の一実施形態として、本発明に係る支持ロールが連続鋳造工程に適用される場合を例に挙げて説明を行う。連続鋳造工程では、鋳造速度が約0〜4(mpm:meter per minute)であり、金属材料の通板速度が比較的遅いため、当該金属材料から支持ロールに対して加えられる熱負荷が他の工程に比べて大きい。本発明に係る支持ロールは、例えば連続鋳造工程のような、支持ロールに対して多大な熱負荷が加えられ得る工程に対して好適に適用される。ただし、本発明はかかる例に限定されず、本発明に係る支持ロールは、当該支持ロールによって金属材料が支持及び運搬される工程であって、当該金属材料から当該支持ロールに対して熱負荷が加えられる工程であれば、他の工程に対しても適用可能である。本発明に係る支持ロールがこのような他の工程に適用された場合であっても、後述する効果と同様の効果を得ることができる。   In the following description, as an embodiment of the present invention, a case where the support roll according to the present invention is applied to a continuous casting process will be described as an example. In the continuous casting process, the casting speed is about 0 to 4 (mpm: meter per minute), and the plate speed of the metal material is relatively slow. Larger than the process. The support roll according to the present invention is suitably applied to a process in which a large heat load can be applied to the support roll, such as a continuous casting process. However, the present invention is not limited to such examples, and the support roll according to the present invention is a process in which a metal material is supported and transported by the support roll, and a thermal load is applied to the support roll from the metal material. Any process that can be added can be applied to other processes. Even when the support roll according to the present invention is applied to such other processes, the same effects as those described below can be obtained.

<1.連続鋳造機の全体構成>
まず、図1を参照して、本発明の一実施形態に係る支持ロールが適用される連続鋳造機の概略構成について説明する。図1は、本発明の一実施形態に係る支持ロールが適用される連続鋳造機の概略構成を示す側断面図である。なお、図1を含む以下に示す図面では、説明のため、本発明の主要部分である一部の構成部材の大きさを誇張して表現している場合があり、各図面において図示される各構成部材の相対的な大きさは、必ずしも実際の構成部材間における大小関係を正確に表現するものではない。
<1. Overall configuration of continuous casting machine>
First, a schematic configuration of a continuous casting machine to which a support roll according to an embodiment of the present invention is applied will be described with reference to FIG. FIG. 1 is a side sectional view showing a schematic configuration of a continuous casting machine to which a support roll according to an embodiment of the present invention is applied. In addition, in the drawings shown below including FIG. 1, for the sake of explanation, the size of some constituent members that are the main part of the present invention may be exaggerated. The relative sizes of the constituent members do not necessarily accurately represent the magnitude relationship between the actual constituent members.

図1に示すように、連続鋳造機20は、連続鋳造用の鋳型1を用いて溶融金属2(例えば溶鋼)を連続鋳造し、スラブ等の鋳片3を製造するための装置である。連続鋳造機20は、鋳型1と、取鍋4と、タンディッシュ5と、浸漬ノズル6と、二次冷却装置7と、鋳片切断機8とを備える。   As shown in FIG. 1, a continuous casting machine 20 is an apparatus for continuously casting a molten metal 2 (for example, molten steel) using a casting mold 1 to produce a slab 3 such as a slab. The continuous casting machine 20 includes a mold 1, a ladle 4, a tundish 5, an immersion nozzle 6, a secondary cooling device 7, and a slab cutting machine 8.

取鍋4は、溶融金属2を外部からタンディッシュ5まで搬送するための可動式の容器である。取鍋4は、タンディッシュ5の上方に配置され、取鍋4内の溶融金属2がタンディッシュ5に供給される。タンディッシュ5は、鋳型1の上方に配置され、溶融金属2を貯留して、当該溶融金属2中の介在物を除去する。浸漬ノズル6は、タンディッシュ5の下端から鋳型1に向けて下方に延び、その先端は鋳型1内の溶融金属2に浸漬されている。当該浸漬ノズル6は、タンディッシュ5にて介在物が除去された溶融金属2を鋳型1内に連続供給する。   The ladle 4 is a movable container for conveying the molten metal 2 from the outside to the tundish 5. The ladle 4 is disposed above the tundish 5, and the molten metal 2 in the ladle 4 is supplied to the tundish 5. The tundish 5 is disposed above the mold 1, stores the molten metal 2, and removes inclusions in the molten metal 2. The immersion nozzle 6 extends downward from the lower end of the tundish 5 toward the mold 1, and the tip thereof is immersed in the molten metal 2 in the mold 1. The immersion nozzle 6 continuously supplies the molten metal 2 from which inclusions have been removed in the tundish 5 into the mold 1.

鋳型1は、鋳片3の幅及び厚さに応じた四角筒状であり、例えば、一対の長辺鋳型板で一対の短辺鋳型板を幅方向両側から挟むように組み立てられる。これら鋳型板は、例えば水冷銅板で構成されている。鋳型1は、かかる鋳型板と接触する溶融金属2を冷却して、外殻の凝固シェル3aの内部に未凝固部3bを含む鋳片3を製造する。凝固シェル3aが鋳型1下方に向かって移動するにつれて、内部の未凝固部3bの凝固が進行し、外殻の凝固シェル3aの厚さは、徐々に厚くなる。かかる凝固シェル3aと未凝固部3bを含む鋳片3は、鋳型1の下端から引き抜かれる。   The mold 1 has a rectangular tube shape corresponding to the width and thickness of the slab 3, and is assembled, for example, such that a pair of short-side mold plates are sandwiched from both sides in the width direction by a pair of long-side mold plates. These mold plates are made of, for example, a water-cooled copper plate. The mold 1 cools the molten metal 2 coming into contact with the mold plate, and manufactures a slab 3 including an unsolidified portion 3b inside the solidified shell 3a of the outer shell. As the solidified shell 3a moves downward in the mold 1, solidification of the inner unsolidified portion 3b proceeds, and the thickness of the outer solidified shell 3a gradually increases. The slab 3 including the solidified shell 3 a and the unsolidified portion 3 b is pulled out from the lower end of the mold 1.

二次冷却装置7は、鋳型1の下方の二次冷却帯9に設けられ、鋳型1下端から引き抜かれた鋳片3を支持及び搬送しながら冷却する。この二次冷却装置7は、鋳片3の厚さ方向両側に配置される複数対の支持ロール(例えば、サポートロール11、ピンチロール12及びセグメントロール13)と、鋳片3に対して冷却水を噴射する複数のスプレーノズル(図示せず。)とを有する。当該支持ロールとして本発明に係る支持ロールが適用され得る。   The secondary cooling device 7 is provided in the secondary cooling zone 9 below the mold 1 and cools the slab 3 drawn out from the lower end of the mold 1 while supporting and transporting it. The secondary cooling device 7 includes a plurality of pairs of support rolls (for example, a support roll 11, a pinch roll 12 and a segment roll 13) disposed on both sides in the thickness direction of the slab 3, and cooling water for the slab 3. A plurality of spray nozzles (not shown). The support roll according to the present invention can be applied as the support roll.

二次冷却装置7に設けられる支持ロールは、鋳片3の厚さ方向両側に対となって配置され、鋳片3を支持しながら搬送する支持搬送手段として機能する。当該支持ロールにより鋳片3を厚さ方向両側から支持することで、二次冷却帯9において凝固途中の鋳片3のブレークアウトやバルジングを防止できる。   The support rolls provided in the secondary cooling device 7 are arranged in pairs on both sides in the thickness direction of the slab 3 and function as a support and transport means for transporting the slab 3 while supporting it. By supporting the slab 3 from both sides in the thickness direction with the support roll, breakout and bulging of the slab 3 during solidification in the secondary cooling zone 9 can be prevented.

当該支持ロールは、例えば、図1に示すサポートロール11、ピンチロール12及びセグメントロール13を含む。これらサポートロール11、ピンチロール12及びセグメントロール13は、二次冷却帯9における鋳片3の搬送経路(パスライン)を形成する。このパスラインは、図1に示すように、鋳型1の直下では垂直であり、次いで曲線状に湾曲して、最終的には水平になる。二次冷却帯9において、当該パスラインが垂直である部分を垂直部9A、湾曲している部分を湾曲部9B、水平である部分を水平部9Cと称する。このようなパスラインを有する連続鋳造機20は、垂直曲げ型の連続鋳造機20と呼称される。なお、本発明に係る支持ロールは、図1に示すような垂直曲げ型の連続鋳造機20に限定されず、湾曲型又は垂直型など他の各種の連続鋳造機に適用可能である。   The said support roll contains the support roll 11, the pinch roll 12, and the segment roll 13 which are shown in FIG. The support roll 11, the pinch roll 12 and the segment roll 13 form a transport path (pass line) for the cast piece 3 in the secondary cooling zone 9. As shown in FIG. 1, this pass line is vertical immediately below the mold 1, then curves in a curved shape, and finally becomes horizontal. In the secondary cooling zone 9, a portion where the pass line is vertical is called a vertical portion 9A, a curved portion is called a curved portion 9B, and a horizontal portion is called a horizontal portion 9C. The continuous casting machine 20 having such a pass line is referred to as a vertical bending type continuous casting machine 20. The support roll according to the present invention is not limited to the vertical bending type continuous casting machine 20 as shown in FIG. 1, and can be applied to other various continuous casting machines such as a curved type or a vertical type.

ここで、上記サポートロール11、ピンチロール12、及びセグメントロール13について説明する。サポートロール11は、鋳型1の直下の垂直部9Aに設けられる無駆動式ロールであり、鋳型1から引き抜かれた直後の鋳片3を支持する。鋳型1から引き抜かれた直後の鋳片3は、凝固シェル3aが薄い状態であるため、ブレークアウトやバルジングを防止するために比較的短い間隔(ロールピッチ)で支持する必要がある。そのため、サポートロール11としては、ロールピッチを短縮することが可能な小径のロールが用いられることが望ましい。図1に示す例では、垂直部9Aにおける鋳片3の両側に、小径のロールからなる3対のサポートロール11が、比較的狭いロールピッチで設けられている。   Here, the support roll 11, the pinch roll 12, and the segment roll 13 will be described. The support roll 11 is a non-driven roll provided in the vertical portion 9 </ b> A immediately below the mold 1, and supports the slab 3 immediately after being pulled out of the mold 1. The slab 3 immediately after being drawn out from the mold 1 has a thin solidified shell 3a, and therefore needs to be supported at a relatively short interval (roll pitch) in order to prevent breakout and bulging. Therefore, as the support roll 11, it is desirable to use a roll with a small diameter that can shorten the roll pitch. In the example shown in FIG. 1, three pairs of support rolls 11 made of small-diameter rolls are provided at a relatively narrow roll pitch on both sides of the slab 3 in the vertical portion 9A.

ピンチロール12は、モータ等の駆動手段により回転する駆動式ロールであり、鋳片3を鋳型1から引き抜く機能を有する。ピンチロール12は、垂直部9A、湾曲部9B及び水平部9Cにおいて適切な位置にそれぞれ配置される。鋳片3は、ピンチロール12から伝達される力によって鋳型1から引き抜かれ、上記パスラインに沿って搬送される。なお、ピンチロール12の配置は図1に示す例に限定されず、その配置位置は任意に設定されてよい。   The pinch roll 12 is a drive roll that is rotated by a driving means such as a motor, and has a function of pulling the slab 3 out of the mold 1. The pinch rolls 12 are respectively arranged at appropriate positions in the vertical portion 9A, the curved portion 9B, and the horizontal portion 9C. The slab 3 is pulled out of the mold 1 by the force transmitted from the pinch roll 12 and is conveyed along the pass line. In addition, arrangement | positioning of the pinch roll 12 is not limited to the example shown in FIG. 1, The arrangement position may be set arbitrarily.

セグメントロール13(ガイドロールとも称する。)は、湾曲部9B及び水平部9Cに設けられる無駆動式ロールであり、上記パスラインに沿って鋳片3を支持及び案内する。セグメントロール13は、パスライン上の位置によって、及び、鋳片3のF面(Fixed面、図1では左下側の面)とL面(Loose面、図1では右上側の面)とで、それぞれ異なるロール径やロールピッチで配置されてよい。   The segment roll 13 (also referred to as a guide roll) is a non-driving roll provided in the bending portion 9B and the horizontal portion 9C, and supports and guides the slab 3 along the pass line. The segment roll 13 depends on the position on the pass line, and on the F surface (Fixed surface, lower left surface in FIG. 1) and L surface (Loose surface, upper right surface in FIG. 1) of the slab 3, They may be arranged with different roll diameters and roll pitches.

鋳片切断機8は、上記パスラインの水平部9Cの終端に配置され、当該パスラインに沿って搬送された鋳片3を所定の長さに切断する。切断された厚板状の鋳片14は、テーブルロール15により次工程の設備に搬送される。   The slab cutting machine 8 is disposed at the end of the horizontal portion 9C of the pass line, and cuts the slab 3 conveyed along the pass line to a predetermined length. The cut thick plate-shaped slab 14 is transported to the next process equipment by the table roll 15.

以上、図1を参照して、本発明に係る支持ロールが適用される連続鋳造機20の全体構成について説明した。なお、連続鋳造機20によって製造される鋳片3の種類及びサイズは、特に限定されない。例えば、鋳片3は、厚さが250〜300(mm)程度のスラブ、500(mm)を超えるブルーム若しくはビレットであってもよいし、或いは、厚さが100(mm)程度の薄スラブ、50(mm)以下の薄帯連続鋳造鋳片等であってもよい。また、鋳片3の素材は連続鋳造が可能な金属であればよく、例えば、鉄鋼、特殊鋼の他、アルミニウム、アルミニウム合金、チタン等、各種の金属であってよい。   The overall configuration of the continuous casting machine 20 to which the support roll according to the present invention is applied has been described above with reference to FIG. In addition, the kind and size of the slab 3 manufactured by the continuous casting machine 20 are not specifically limited. For example, the slab 3 may be a slab having a thickness of about 250 to 300 (mm), a bloom or billet exceeding 500 (mm), or a thin slab having a thickness of about 100 (mm), It may be a continuous strip cast strip of 50 mm or less. Moreover, the raw material of the slab 3 should just be a metal which can be continuously cast, for example, various metals, such as aluminum, aluminum alloy, titanium other than steel and special steel, may be sufficient.

<2.支持ロールの構成>
[2−1.本実施形態に係る支持ロールの構成]
次に、図2を参照して、本発明の一実施形態に係る支持ロールの構成について説明する。図2は、本発明の一実施形態に係る支持ロールの構成を示す正面図である。図2を参照すると、本実施形態に係る支持ロール10は、軸部材110と、ロール部120と、を備える。なお、以下の説明では、支持ロール10の回転軸方向をz軸方向と定義する。また、z軸方向と垂直な平面内において互いに直交する2方向を、それぞれx軸方向、y軸方向と定義する。
<2. Configuration of Support Roll>
[2-1. Configuration of Support Roll According to this Embodiment]
Next, with reference to FIG. 2, the structure of the support roll which concerns on one Embodiment of this invention is demonstrated. FIG. 2 is a front view showing a configuration of a support roll according to an embodiment of the present invention. Referring to FIG. 2, the support roll 10 according to the present embodiment includes a shaft member 110 and a roll unit 120. In the following description, the rotation axis direction of the support roll 10 is defined as the z-axis direction. Two directions orthogonal to each other in a plane perpendicular to the z-axis direction are defined as an x-axis direction and a y-axis direction, respectively.

ここで、支持ロール10は、図1に示すサポートロール11、ピンチロール12及びセグメントロール13等の総称である。このように、本実施形態に係る支持ロール10は、連続鋳造機20に用いられるいずれのロールに対して適用されてもよい。支持ロール10は、鋳片3の厚さ方向両側に対となって配置され、当該両側から鋳片3を支持する機能を有する。また、支持ロール10は、鋳片3の移動に伴ってz軸方向(図1では紙面垂直方向)を回転軸方向として回転し、上述した所定のパスラインに沿って鋳片3を案内及び搬送する機能も有する。かかる支持ロール10をパスラインの両側に複数対設けることで、鋳片3の幅方向中央部が膨らむバルジング変形や、凝固シェル3aの破断によるブレークアウトを防止することができる。   Here, the support roll 10 is a general term for the support roll 11, the pinch roll 12, the segment roll 13 and the like shown in FIG. Thus, the support roll 10 according to the present embodiment may be applied to any roll used in the continuous casting machine 20. The support rolls 10 are arranged in pairs on both sides in the thickness direction of the slab 3 and have a function of supporting the slab 3 from both sides. Further, the support roll 10 rotates with the movement of the slab 3 as a rotation axis direction in the z-axis direction (the direction perpendicular to the paper surface in FIG. 1), and guides and conveys the slab 3 along the predetermined pass line described above. It also has a function to By providing a plurality of pairs of such support rolls 10 on both sides of the pass line, it is possible to prevent bulging deformation in which the center portion in the width direction of the slab 3 swells and breakout due to breakage of the solidified shell 3a.

軸部材110は、支持ロール10の回転軸方向(すなわちz軸方向)に延伸する棒状の部材である。また、ロール部120は略円筒形状を有し、当該円筒形状の軸方向が軸部材110の延伸方向と一致するように軸部材110の外周部に嵌合される。鋳片3が支持及び搬送される際には、ロール部120の外周面が鋳片3と当接する。軸部材110の両端は連続鋳造機20に設けられる軸受け部(図1には図示せず。)によって軸支されており、軸部材110及びロール部120はz軸方向を回転軸方向として一体的に回転するように構成される。このように、本実施形態に係る支持ロール10は、軸部材110の外周部にロール部120が嵌合されたスリーブロールであると言える。   The shaft member 110 is a rod-shaped member that extends in the rotation axis direction (that is, the z-axis direction) of the support roll 10. The roll portion 120 has a substantially cylindrical shape, and is fitted to the outer peripheral portion of the shaft member 110 such that the axial direction of the cylindrical shape matches the extending direction of the shaft member 110. When the slab 3 is supported and conveyed, the outer peripheral surface of the roll unit 120 comes into contact with the slab 3. Both ends of the shaft member 110 are supported by bearing portions (not shown in FIG. 1) provided in the continuous casting machine 20, and the shaft member 110 and the roll portion 120 are integrated with the z-axis direction as the rotation axis direction. Is configured to rotate. Thus, it can be said that the support roll 10 according to the present embodiment is a sleeve roll in which the roll portion 120 is fitted to the outer peripheral portion of the shaft member 110.

なお、支持ロール10の直径は、例えば100(mm)〜450(mm)程度である。例えば、支持ロール10の直径が約400(mm)である場合、軸部材110の外径は約350(mm)であり得る。また、例えば、支持ロール10回転軸方向の長さは、300(mm)〜3000(mm)程度である。支持ロール10の具体的な形状は、連続鋳造工程において製造される鋳片3の種類及びサイズに応じて適宜選択される。   The diameter of the support roll 10 is, for example, about 100 (mm) to 450 (mm). For example, when the diameter of the support roll 10 is about 400 (mm), the outer diameter of the shaft member 110 may be about 350 (mm). Further, for example, the length of the support roll 10 in the rotation axis direction is about 300 (mm) to 3000 (mm). The specific shape of the support roll 10 is appropriately selected according to the type and size of the slab 3 manufactured in the continuous casting process.

ここで、図3を参照して、軸部材110及びロール部120の構成についてより詳細に説明する。図3は、図2に示す支持ロール10のA−A断面での断面図である。ただし、図3では、簡単のため、A−A断面のうち、支持ロール10の両端近傍については図示を省略している。   Here, with reference to FIG. 3, the structure of the shaft member 110 and the roll part 120 is demonstrated in detail. 3 is a cross-sectional view taken along the line AA of the support roll 10 shown in FIG. However, in FIG. 3, for the sake of simplicity, the illustration of the vicinity of both ends of the support roll 10 in the AA cross section is omitted.

図3を参照すると、軸部材110の内部にはz軸方向に貫通する空間111が設けられる。空間111には、例えば支持ロール10を冷却するための冷却水が流動される。鋳片3を支持及び運搬する支持ロール10には、鋳片3からの熱負荷が加えられるため、工程を通して支持ロール10は持続的に冷却される必要がある。軸部材110の内部の空間111に冷却水が流動されることにより、支持ロール10を内部から冷却することができる。また、図1を参照して上述したように、連続鋳造機20には、鋳片3に対して冷却水を噴射する複数のスプレーノズルが設けられる。当該スプレーノズルから噴射される冷却水は、鋳片3を冷却することを目的とするものであるが、鋳片3に噴射され流下した水によって支持ロール10も冷却され得る。このように、支持ロール10は、鋳片3を支持及び運搬する際に、軸部材110の内部の空間111に流動される冷却水と、スプレーノズルから噴射される冷却水とによって、内部及び外部から冷却され得る。   Referring to FIG. 3, a space 111 penetrating in the z-axis direction is provided inside the shaft member 110. For example, cooling water for cooling the support roll 10 flows in the space 111. Since the heat load from the slab 3 is applied to the support roll 10 that supports and transports the slab 3, the support roll 10 needs to be continuously cooled throughout the process. When the cooling water flows into the space 111 inside the shaft member 110, the support roll 10 can be cooled from the inside. As described above with reference to FIG. 1, the continuous casting machine 20 is provided with a plurality of spray nozzles that inject cooling water onto the slab 3. The cooling water sprayed from the spray nozzle is intended to cool the slab 3, but the support roll 10 can also be cooled by the water sprayed and flowed down to the slab 3. As described above, the support roll 10 is configured so that when the slab 3 is supported and transported, the cooling roll that flows into the space 111 inside the shaft member 110 and the cooling water that is sprayed from the spray nozzle cause the inside and outside of the support roll 10 to move. Can be cooled.

ロール部120は、複数のロール部材121から構成される。ロール部材121は、略円環形状を有し、軸部材110の外周部に嵌合される。複数のロール部材121は、開口部122を互いに対向させた状態でz軸方向に配列され、z軸方向に連なった複数の開口部122に軸部材110が挿通され嵌合される。このように、支持ロール10は、軸部材110に対して円環形状を有する複数のロール部材121がスリーブ状に嵌合されて構成される。z軸方向に配列され軸部材110の外周部に嵌合された複数のロール部材121によって、図2に示す円筒形状を有するロール部120が構成され得る。ロール部材121は、例えばマルテンサイト系ステンレス鋼、オーステナイト系ステンレス鋼又は超硬材等によって形成され得る。   The roll unit 120 includes a plurality of roll members 121. The roll member 121 has a substantially annular shape and is fitted to the outer periphery of the shaft member 110. The plurality of roll members 121 are arranged in the z-axis direction with the openings 122 facing each other, and the shaft member 110 is inserted and fitted into the plurality of openings 122 that are continuous in the z-axis direction. Thus, the support roll 10 is configured by fitting a plurality of roll members 121 having an annular shape to the shaft member 110 in a sleeve shape. A plurality of roll members 121 arranged in the z-axis direction and fitted to the outer peripheral portion of the shaft member 110 can form the roll portion 120 having a cylindrical shape shown in FIG. The roll member 121 can be formed of, for example, martensitic stainless steel, austenitic stainless steel, cemented carbide, or the like.

また、ロール部材121は、少なくとも外周部において互いに所定の間隔を有するようにz軸方向に配列され、軸部材110の外周部に嵌合される。鋳片3が支持及び搬送される際には、ロール部120の外周面、すなわちロール部材121の円環形状の外周部が鋳片3と当接する。従って、ロール部材121が、少なくとも外周部において互いに所定の間隔を有するように配列されることにより、当該間隔は、ロール部120の鋳片3と当接する表面においてスリット部として機能する。   Further, the roll members 121 are arranged in the z-axis direction so as to have a predetermined distance from each other at least at the outer peripheral portion, and are fitted to the outer peripheral portion of the shaft member 110. When the slab 3 is supported and conveyed, the outer peripheral surface of the roll part 120, that is, the annular outer peripheral part of the roll member 121 abuts on the slab 3. Therefore, when the roll members 121 are arranged so as to have a predetermined distance from each other at least at the outer peripheral part, the distance functions as a slit part on the surface of the roll part 120 in contact with the cast piece 3.

ロール部材121の、少なくとも外縁部を含む径方向に所定の長さを有する領域には、z軸方向の厚さが他の領域よりも薄い薄肉部が形成される。ここで、当該他の領域とは、例えば、ロール部材121が軸部材110に嵌合されて隙間なく配列される際に隣り合うロール部材121間が互いに当接する領域であり、図3に示す例では、開口部122の縁部から径方向に所定の長さを有する領域に対応している。ロール部材121に当該薄肉部が設けられることにより、ロール部材121が外周部において互いに所定の間隔を有するようにz軸方向に配列されることとなる。具体的には、隣り合うロール部材121間の当該薄肉部に対応する領域に、径方向に所定の深さを有するスリット部123が形成される。当該薄肉部が形成される領域の径方向の長さによってスリット部123の深さ(スリット深さ)が規定され、当該薄肉部と上記他の領域とのz軸方向の厚さの差によってスリット部123の回転軸方向の幅(スリット幅)が規定される。また、ロール部材121の当該薄肉部以外の他の領域のz軸方向の厚さによって、スリット部123の間隔(スリットピッチ)が規定される。   In a region of the roll member 121 having a predetermined length in the radial direction including at least the outer edge portion, a thin-walled portion whose thickness in the z-axis direction is thinner than other regions is formed. Here, the said other area | region is an area | region where the adjacent roll members 121 contact | abut mutually, for example, when the roll member 121 is fitted to the shaft member 110 and it arranges without a gap, and is an example shown in FIG. Then, it corresponds to a region having a predetermined length in the radial direction from the edge of the opening 122. By providing the roll member 121 with the thin-walled portion, the roll member 121 is arranged in the z-axis direction so as to have a predetermined distance from each other at the outer peripheral portion. Specifically, a slit portion 123 having a predetermined depth in the radial direction is formed in a region corresponding to the thin portion between adjacent roll members 121. The depth (slit depth) of the slit portion 123 is defined by the radial length of the region where the thin portion is formed, and the slit is determined by the difference in thickness in the z-axis direction between the thin portion and the other region. The width (slit width) of the portion 123 in the rotation axis direction is defined. Further, the interval (slit pitch) between the slit portions 123 is defined by the thickness in the z-axis direction of the region other than the thin portion of the roll member 121.

なお、図3に示す例では、ロール部材121の対向面のうち、薄肉部に対応する領域だけでなく、上記他の領域、例えば開口部122の縁部から径方向に所定の長さを有する領域においても、z軸方向に互いに所定の間隔が設けられているように図示されているが、本実施形態はかかる例に限定されない。本実施形態では、ロール部材121は、薄肉部に対応する領域以外はz軸方向に隙間なく配列されてもよい。   In addition, in the example shown in FIG. 3, it has not only the area | region corresponding to a thin part among the opposing surfaces of the roll member 121, but the predetermined length to radial direction from the said other area | region, for example, the edge part of the opening part 122. Although the regions are illustrated as being provided with a predetermined interval in the z-axis direction, the present embodiment is not limited to such an example. In the present embodiment, the roll members 121 may be arranged without a gap in the z-axis direction except for the region corresponding to the thin portion.

ここで、図4を参照して、ロール部材121の形状についてより詳細に説明する。図4は、図3に示すロール部120を構成するロール部材121の形状を示す外観図及び断面図である。図4では、1つのロール部材121について、z軸方向から見た外観図と、図中に示すB−B断面での断面図とを併せて図示している。   Here, the shape of the roll member 121 will be described in more detail with reference to FIG. 4A and 4B are an external view and a cross-sectional view showing the shape of the roll member 121 constituting the roll unit 120 shown in FIG. In FIG. 4, an external view of one roll member 121 viewed from the z-axis direction and a cross-sectional view taken along the line BB shown in the drawing are shown together.

図4を参照すると、薄肉部124は、ロール部材121の少なくとも外縁部から径方向(図4に示す断面図ではx軸方向)に向かって所定の長さdを有する領域に設けられる。ロール部材121の、薄肉部124よりも径方向に内側に位置する領域を他の領域127と呼称することとすると、上述したように、薄肉部124は、そのz軸方向の厚さが、他の領域127よりも薄く形成される。当該他の領域127は、例えばロール部材121が軸部材110に嵌合されて隙間なく配列される際に、隣り合うロール部材121間が互いに当接する領域であってよい。図4に示す例では、他の領域127は、開口部122の縁部から径方向に所定の長さを有する領域に対応している。   Referring to FIG. 4, the thin-walled portion 124 is provided in a region having a predetermined length d from at least the outer edge portion of the roll member 121 in the radial direction (x-axis direction in the cross-sectional view shown in FIG. 4). Assuming that the region located on the inner side in the radial direction from the thin portion 124 of the roll member 121 is referred to as another region 127, as described above, the thin portion 124 has a thickness in the z-axis direction that is other than that. It is formed thinner than the region 127. The other region 127 may be a region where the adjacent roll members 121 come into contact with each other when the roll members 121 are fitted to the shaft member 110 and arranged without gaps, for example. In the example illustrated in FIG. 4, the other region 127 corresponds to a region having a predetermined length in the radial direction from the edge of the opening 122.

図4を参照すると、例えば、薄肉部124は、第1の領域125と第2の領域126とを有する。第1の領域125は、ロール部材121の外縁部から径方向に長さdよりも短い所定の長さを有する領域である。図4に示す例では、第1の領域125には、z軸方向に一定の深さtを有する段差部が形成されている。また、第2の領域126は、第1の領域125と径方向に連続的に形成される領域であり、第2の領域126には、径方向の断面において所定の半径R(例えばR=3(mm))の円弧状の断面を有する凹部が形成される。第2の領域126は、図4の外観図に示すように、ロール部材121の、z軸方向と垂直な面であって隣り合う他のロール部材121と対向する面(以下、単に「対向面」と呼称する。)の表面に円周状に設けられる領域であり得る。第1の領域125の径方向の長さと第2の領域126の径方向の長さとの和が、薄肉部124が形成される領域の径方向の長さdとなる。このように、薄肉部124は、ロール部材121の対向面における少なくとも外縁部を含む径方向に所定の長さを有する領域に段差部又は凹部が形成されることにより実現され得る。   Referring to FIG. 4, for example, the thin portion 124 includes a first region 125 and a second region 126. The first region 125 is a region having a predetermined length shorter than the length d in the radial direction from the outer edge portion of the roll member 121. In the example illustrated in FIG. 4, a step portion having a constant depth t in the z-axis direction is formed in the first region 125. The second region 126 is a region that is continuously formed in the radial direction with the first region 125. The second region 126 has a predetermined radius R (for example, R = 3) in the radial cross section. (Mm)) having a circular arc-shaped cross section is formed. As shown in the external view of FIG. 4, the second region 126 is a surface of the roll member 121 that is a surface perpendicular to the z-axis direction and that faces another adjacent roll member 121 (hereinafter simply referred to as “opposing surface”). It may be a region provided in a circumferential shape on the surface of “. The sum of the radial length of the first region 125 and the radial length of the second region 126 is the radial length d of the region where the thin portion 124 is formed. As described above, the thin portion 124 can be realized by forming a stepped portion or a recessed portion in a region having a predetermined length in the radial direction including at least the outer edge portion on the facing surface of the roll member 121.

図4に示すように、ロール部材121は、その一部領域に薄肉部124が形成されることにより、外周部におけるz軸方向の厚さ(t)が、他の領域127におけるz軸方向の厚さ(t)よりも薄くなるように形成される。図3に示すように、支持ロール10においては、ロール部材121が対向面を互いに対向させた状態で配列されるため、ロール部材121がz軸方向に隙間なく配列される場合であれば、隣り合うロール部材121との間で、少なくとも外周部にt−t=2tの幅を有するスリット部123が形成されることとなる。このように、本実施形態では、支持ロール10の表面に形成されるスリット部123の幅が、ロール部材121の薄肉部124の厚さと他の領域127の厚さとの差分によって制御され得る。 As shown in FIG. 4, the roll member 121 has a thin portion 124 formed in a partial region thereof, so that the thickness (t 2 ) in the z-axis direction in the outer peripheral portion is the z-axis direction in the other region 127. It is formed to be thinner than the thickness (t 1 ). As shown in FIG. 3, in the support roll 10, the roll members 121 are arranged with their opposing surfaces facing each other. Therefore, if the roll members 121 are arranged without gaps in the z-axis direction, they are adjacent to each other. A slit portion 123 having a width of t 2 −t 1 = 2t is formed at least on the outer peripheral portion between the matching roll members 121. Thus, in this embodiment, the width of the slit portion 123 formed on the surface of the support roll 10 can be controlled by the difference between the thickness of the thin portion 124 of the roll member 121 and the thickness of the other region 127.

以上、図2−図4を参照して説明したように、本実施形態では、円環形状を有する複数のロール部材121がz軸方向に配列されることにより、支持ロール10のロール部120が構成される。また、ロール部120においては、ロール部材121が少なくとも外周部において互いに所定の間隔を有するように配列される。ロール部材121がロール部120として組み立てられた際に、当該間隔は、ロール部120の表面においてスリット部123として機能し得る。このように、本実施形態では、複数のロール部材121を、少なくとも外周部において互いに所定の間隔を有するように配列させることにより、ロール部材121とロール部材121との当該間隔によってロール部120表面にスリット部123が形成される。具体的には、例えばロール部材121の少なくとも外縁部を含む径方向に所定の長さを有する領域に薄肉部124を設けることにより、当該薄肉部124によって、配列されたロール部材121間の外周部に所定の間隔が形成され、ロール部材121がロール部120として組み立てられた際にスリット部123が形成され得る。   As described above with reference to FIGS. 2 to 4, in the present embodiment, the plurality of roll members 121 having an annular shape are arranged in the z-axis direction, whereby the roll portion 120 of the support roll 10 is formed. Composed. Moreover, in the roll part 120, the roll member 121 is arranged so that it may have a predetermined space | interval mutually at least in an outer peripheral part. When the roll member 121 is assembled as the roll part 120, the interval can function as the slit part 123 on the surface of the roll part 120. Thus, in this embodiment, by arranging the plurality of roll members 121 so as to have a predetermined interval from each other at least at the outer peripheral portion, the roll member 120 is arranged on the surface of the roll unit 120 according to the interval between the roll member 121 and the roll member 121. A slit portion 123 is formed. Specifically, for example, by providing the thin portion 124 in a region having a predetermined length in the radial direction including at least the outer edge portion of the roll member 121, the outer peripheral portion between the roll members 121 arranged by the thin portion 124. When the roll member 121 is assembled as the roll part 120, the slit part 123 can be formed.

[2−2.従来の支持ロールとの比較]
ここで、本実施形態に係る支持ロール10の効果についてより詳しく説明するために、図5を参照して、従来の支持ロールの構成について説明する。図5は、従来の支持ロールの一構成例を示す断面図である。なお、図5では、従来の支持ロールの一構成例として、上記特許文献1に記載の連続鋳造用ロールの概略構成を図示している。また、図5に示す断面図は、図3に示す断面図に対応する断面(すなわち、支持ロールの回転軸を含み径方向と平行な断面)において、支持ロールの外周部近傍のスリットが形成される領域のみを図示している。
[2-2. Comparison with conventional support rolls]
Here, in order to explain the effect of the support roll 10 according to the present embodiment in more detail, the configuration of the conventional support roll will be described with reference to FIG. FIG. 5 is a cross-sectional view showing a configuration example of a conventional support roll. In addition, in FIG. 5, schematic structure of the roll for continuous casting described in the said patent document 1 is illustrated as one structural example of the conventional support roll. Further, in the cross-sectional view shown in FIG. 5, a slit near the outer peripheral portion of the support roll is formed in a cross-section corresponding to the cross-sectional view shown in FIG. 3 (that is, a cross-section including the rotation axis of the support roll and parallel to the radial direction). Only the region to be displayed is shown.

図5を参照すると、従来の支持ロール50のロール胴部の外周面には、ロールの円周方向に沿ったスリット510が、所定の間隔(例えば約20(mm))を有して複数設けられる。スリット510は、アスペクト比(深さ/幅)が比較的高く(例えば10以上)形成される。また、スリット510の底部には、曲面状の空洞部が形成される。   Referring to FIG. 5, a plurality of slits 510 along the circumferential direction of the roll are provided on the outer peripheral surface of the roll body of the conventional support roll 50 with a predetermined interval (for example, about 20 (mm)). It is done. The slit 510 is formed with a relatively high aspect ratio (depth / width) (for example, 10 or more). Further, a curved cavity is formed at the bottom of the slit 510.

図5に示す支持ロール50は、例えば図1に示す連続鋳造機20のサポートロール11、ピンチロール12及びセグメントロール13として適用され得る。支持ロール50では、このようにロール胴部の外周面にスリット510を設けることにより、鋳片3との接触により発生する熱膨張が吸収され、熱応力が緩和されるため、熱亀裂の発生を抑制することができる。また、スリット510の底部に設けられる曲面状の空洞部は、例えばその曲率半径が2〜3(mm)程度の曲率半径を有するように形成されており、スリット510の底部における応力集中を緩和する機能を有する。   The support roll 50 shown in FIG. 5 can be applied as the support roll 11, the pinch roll 12 and the segment roll 13 of the continuous casting machine 20 shown in FIG. In the support roll 50, by providing the slit 510 on the outer peripheral surface of the roll body in this way, thermal expansion caused by contact with the slab 3 is absorbed and thermal stress is relieved, so that thermal cracks are generated. Can be suppressed. Further, the curved hollow portion provided at the bottom of the slit 510 is formed so as to have a radius of curvature of about 2 to 3 (mm), for example, to relieve stress concentration at the bottom of the slit 510. It has a function.

しかしながら、従来の支持ロール50では、1本の円筒形のロール部材の表面に加工を施すことによりスリット510が形成される。従って、スリット510の加工方法に応じて、スリット510の幅や間隔が制限されてしまい、最適なスリット形状を実現できない可能性がある。例えば、特許文献1に記載の技術では、支持ロール50にスリット510を形成するために電解加工が用いられる。電解加工では、支持ロール50と加工電極との間に電解液を供給しながら、両者の間に互いに逆符号の電圧を負荷することにより、支持ロール50の表面のうち加工電極に接近している領域が溶解される。そして、支持ロール50の溶解に合わせて加工電極を支持ロール50の径方向に差し込んでいくことによりスリット510が形成される。   However, in the conventional support roll 50, the slit 510 is formed by processing the surface of one cylindrical roll member. Therefore, depending on the processing method of the slit 510, the width and interval of the slit 510 are limited, and there is a possibility that an optimal slit shape cannot be realized. For example, in the technique described in Patent Document 1, electrolytic processing is used to form the slit 510 in the support roll 50. In the electrolytic processing, while supplying an electrolytic solution between the support roll 50 and the processing electrode, voltages having opposite signs are applied between the two, thereby approaching the processing electrode on the surface of the support roll 50. The area is dissolved. Then, the slit 510 is formed by inserting the processing electrode in the radial direction of the support roll 50 in accordance with the dissolution of the support roll 50.

上述したように、スリット510の底部には応力集中を緩和するための曲面状の空洞部が設けられ、当該空洞部は略2〜3(mm)の曲率半径を有するように形成される。電解加工によってこのような形状のスリット510を形成しようとすると、スリット510を形成するために差し込まれる加工電極に相応の太さが求められるため、形成可能なスリット幅の最小値が制限される。具体的には、発明者らの検討によれば、電解加工によって先端部に曲率半径2〜3(mm)程度の曲面状の空洞部を有するスリット510を形成しようとすると、スリット510の幅は略4〜6(mm)となってしまい、それよりもスリット幅を小さくすることは困難であった。   As described above, a curved cavity for relaxing stress concentration is provided at the bottom of the slit 510, and the cavity is formed to have a curvature radius of approximately 2 to 3 (mm). If an attempt is made to form the slit 510 having such a shape by electrolytic processing, a thickness corresponding to the processing electrode inserted to form the slit 510 is required, and thus the minimum value of the slit width that can be formed is limited. Specifically, according to the study by the inventors, when an attempt is made to form a slit 510 having a curved cavity with a curvature radius of about 2 to 3 (mm) at the tip by electrolytic processing, the width of the slit 510 is It became approximately 4 to 6 (mm), and it was difficult to make the slit width smaller than that.

ここで、連続鋳造工程においては、例えば鋳片3のバルジング変形を抑制するために、支持ロール50には鋳片3を支持する方向に所定の圧下力が負荷される。図6を参照して、従来の支持ロール50と鋳片3との間に働く各種の力について説明する。図6は、連続鋳造工程において従来の支持ロール50によって鋳片3が支持される様子を模式的に示す概略図である。図6では、例えば図1に示す連続鋳造機20における、鋳片3の搬送方向と垂直な断面での、鋳片3及び支持ロール50の断面図を図示している。なお、図6では、簡単のため、鋳片3の厚さ方向両側に配置される1対の支持ロール50のうち、一方(下側)のみを図示している。また、支持ロール50は模式的に長方形で図示し、スリット510については図示を省略している。   Here, in the continuous casting process, for example, in order to suppress bulging deformation of the slab 3, a predetermined rolling force is applied to the support roll 50 in a direction in which the slab 3 is supported. With reference to FIG. 6, the various force which acts between the conventional support roll 50 and the slab 3 is demonstrated. FIG. 6 is a schematic view schematically showing how the slab 3 is supported by the conventional support roll 50 in the continuous casting process. FIG. 6 illustrates a cross-sectional view of the slab 3 and the support roll 50 in a cross section perpendicular to the conveyance direction of the slab 3, for example, in the continuous casting machine 20 illustrated in FIG. In FIG. 6, for simplicity, only one (lower side) of the pair of support rolls 50 arranged on both sides in the thickness direction of the slab 3 is illustrated. The support roll 50 is schematically shown as a rectangle, and the slit 510 is not shown.

図6に示すように、支持ロール50には鋳片3を支持する方向に所定の圧下力が負荷される。また、鋳片3から支持ロール50に対しては、鋳片3のバルジング変形に伴う力(バルジング力)が作用される。このように、支持ロール50の鋳片3との接触面(すなわち、スリット510が形成される支持ロール50の外周面)には、圧下力やバルジング力に対応する各種の力が作用し、所定の圧力(接触面圧)が負荷されることとなる。図6では、圧下力を白抜き矢印で、接触面圧に対応する力を実線の矢印で、模式的に図示している。スリット510の幅が大きいと、支持ロール50の表面のうちスリット510が形成されない領域の面積、すなわち、鋳片3と接触する面積が相対的に小さくなるため、鋳片3との接触面圧が増加する。従って、支持ロール50の表面の摩耗速度が速まり、支持ロール50の使用寿命が短くなってしまう可能性がある。   As shown in FIG. 6, a predetermined rolling force is applied to the support roll 50 in the direction in which the slab 3 is supported. Further, a force (bulging force) accompanying the bulging deformation of the slab 3 is applied to the support roll 50 from the slab 3. As described above, various forces corresponding to the rolling force and the bulging force act on the contact surface of the support roll 50 with the slab 3 (that is, the outer peripheral surface of the support roll 50 where the slit 510 is formed). Pressure (contact surface pressure) is applied. In FIG. 6, the rolling force is schematically illustrated with a white arrow, and the force corresponding to the contact surface pressure is illustrated with a solid line arrow. If the width of the slit 510 is large, the area of the surface of the support roll 50 where the slit 510 is not formed, that is, the area in contact with the slab 3 is relatively small. To increase. Therefore, the wear rate of the surface of the support roll 50 is increased, and the service life of the support roll 50 may be shortened.

ここで、特に鋳片3の端部では鋳片3の幅方向における中央部に比べて早期にシェルが形成されるため、支持ロール50の表面のうち鋳片3の端部を支持する領域には、他の領域に比べてより大きな圧下力及び接触面圧が負荷され得る。従って、支持ロール50の表面のうち鋳片3の端部を支持する領域では、他の領域よりも当該表面の摩耗が著しく進行する可能性がある。また、このような鋳片3の端部を支持する領域における接触面圧の増加は、スリット510の変形を引き起こす可能性がある。図6では、支持ロール50の表面のうち鋳片3の端部を支持する領域において発生し得るスリット510の変形について、当該領域を拡大した様子を図示している。図6に示すように、鋳片3の端部を支持する領域においては、多大な接触面圧によりスリット510が潰れ、変形してしまう恐れがある。スリット510が潰れることにより、熱応力の緩和というスリット510本来の効果が得られなくなるとともに、支持ロール50の径方向における形状が変形してしまうため、支持ロール50を交換する必要が生じる。   Here, in particular, since the shell is formed earlier at the end portion of the slab 3 than the center portion in the width direction of the slab 3, the region of the surface of the support roll 50 that supports the end portion of the slab 3. Can be loaded with a greater rolling force and contact surface pressure than other areas. Therefore, in the region of the surface of the support roll 50 that supports the end portion of the slab 3, there is a possibility that the wear of the surface proceeds significantly more than the other regions. Further, an increase in the contact surface pressure in the region that supports the end portion of the slab 3 may cause the slit 510 to be deformed. FIG. 6 illustrates a state in which the area of the surface of the support roll 50 is enlarged with respect to the deformation of the slit 510 that may occur in the area that supports the end of the slab 3. As shown in FIG. 6, in the area | region which supports the edge part of the slab 3, there exists a possibility that the slit 510 may be crushed and deform | transformed by a great contact surface pressure. When the slit 510 is crushed, the original effect of reducing the thermal stress of the slit 510 cannot be obtained, and the shape of the support roll 50 in the radial direction is deformed, so that the support roll 50 needs to be replaced.

以上、図5及び図6を参照して説明したように、従来の支持ロール50では、その外周面にスリット510が設けられることにより、熱応力が緩和され、熱亀裂の発生が抑制されることについては一定の効果を得ることができる。しかしながら、従来の支持ロール50では、スリット510を形成する際に、その加工方法から、スリット510の幅を所定の値以下にすることが困難であり、支持ロール50の鋳片3との接触面圧が大きくなってしまう恐れがあった。接触面圧の増大化は、支持ロール50表面の摩耗速度の増加や、スリット510の変形を引き起こし、支持ロール50の使用寿命を短くする原因となっていた。   As described above with reference to FIGS. 5 and 6, in the conventional support roll 50, the slit 510 is provided on the outer peripheral surface, so that the thermal stress is relieved and the occurrence of thermal cracks is suppressed. A certain effect can be obtained. However, in the conventional support roll 50, when forming the slit 510, it is difficult to reduce the width of the slit 510 to a predetermined value or less due to the processing method, and the contact surface of the support roll 50 with the slab 3 There was a risk that the pressure would increase. The increase in the contact surface pressure causes an increase in the wear rate of the surface of the support roll 50 and the deformation of the slit 510, thereby shortening the service life of the support roll 50.

このように、連続鋳造工程における支持ロールの使用寿命を長大化させるためには、熱応力を緩和するために支持ロール表面にスリットを設けるとともに、当該スリットの幅をより狭く形成することにより鋳片3との接触面圧をより低下させる技術が求められていた。   Thus, in order to prolong the service life of the support roll in the continuous casting process, a slit is provided on the surface of the support roll to alleviate thermal stress, and the slab is formed by forming the slit narrower. Therefore, a technique for further reducing the contact surface pressure with 3 has been demanded.

ここで、図2−図4を参照して説明したように、本実施形態に係る支持ロール10では、円環形状を有する複数のロール部材121がz軸方向に配列されることによりロール部120が構成される。また、当該ロール部材121が、少なくとも外周部において互いに所定の間隔を有するように配列されることにより、当該間隔によってロール部120の表面にスリット部123が構成される。例えばロール部材121には、少なくとも外縁部を含む径方向に所定の長さを有する領域に、z軸方向の厚さが他の領域127よりも薄い薄肉部124が設けられる。当該他の領域127は、例えばロール部材121が軸部材110に嵌合されて隙間なく配列される際に、隣り合うロール部材121間が互いに当接する領域であってよい。よって、隣り合うロール部材121間の当該薄肉部124に対応する領域にスリット部123が形成される。円環形状のロール部材121の一部領域に所定の形状で薄肉部124を形成することは、既存の機械加工の技術によって高い精度で実現可能であるため、当該薄肉部124の形状によって規定されるスリット部123の形状(例えばスリット幅及びスリット深さ)も高い精度で制御され得る。また、ロール部材121の他の領域127におけるz軸方向の厚さも、既存の機械加工の技術によって高い精度で調整可能であるため、当該厚さによって規定されるスリット部123のスリットピッチも高い精度で制御され得る。   Here, as described with reference to FIGS. 2 to 4, in the support roll 10 according to the present embodiment, a plurality of roll members 121 having an annular shape are arranged in the z-axis direction, whereby the roll unit 120. Is configured. In addition, the roll members 121 are arranged so as to have a predetermined interval at least in the outer peripheral portion, whereby the slit portion 123 is configured on the surface of the roll portion 120 by the interval. For example, the roll member 121 is provided with a thin portion 124 whose thickness in the z-axis direction is thinner than other regions 127 in a region having a predetermined length in the radial direction including at least the outer edge portion. The other region 127 may be a region where the adjacent roll members 121 come into contact with each other when the roll members 121 are fitted to the shaft member 110 and arranged without gaps, for example. Therefore, the slit portion 123 is formed in a region corresponding to the thin portion 124 between the adjacent roll members 121. The formation of the thin portion 124 with a predetermined shape in a partial region of the annular roll member 121 can be realized with high accuracy by existing machining techniques, and thus is defined by the shape of the thin portion 124. The shape of the slit portion 123 (for example, the slit width and the slit depth) can be controlled with high accuracy. In addition, since the thickness in the z-axis direction in the other region 127 of the roll member 121 can be adjusted with high accuracy by an existing machining technique, the slit pitch of the slit portion 123 defined by the thickness is also highly accurate. Can be controlled.

従って、本実施形態に係る支持ロール10では、支持ロール10の表面におけるスリット部123のスリット幅及びスリットピッチを、熱膨張を吸収し熱応力を緩和しつつ、摩耗速度が低減されるような、最適な値に制御することが可能となる。本実施形態では、例えば、スリット部123のスリット幅が0.1(mm)〜1(mm)程度となるように薄肉部124が形成される。また、スリット部123のスリットピッチが、例えば約15(mm)となるようにロール部材121の他の領域127の厚さが調整される。また、スリット部123の深さは、支持ロール10の径方向における熱負荷の影響が十分低減され得る値に制御される。本実施形態では、例えば、スリット部123のスリット深さが約15(mm)となるように薄肉部124が形成される。なお、スリット部123のスリット幅、スリット深さ及びスリットピッチを設計する際の設計手法については、下記<4.スリット部の形状>で詳しく説明する。   Therefore, in the support roll 10 according to the present embodiment, the slit width and slit pitch of the slit portion 123 on the surface of the support roll 10 is such that the wear rate is reduced while absorbing thermal expansion and relaxing thermal stress. It becomes possible to control to an optimum value. In the present embodiment, for example, the thin portion 124 is formed so that the slit width of the slit portion 123 is about 0.1 (mm) to 1 (mm). Further, the thickness of the other region 127 of the roll member 121 is adjusted so that the slit pitch of the slit portion 123 is, for example, about 15 (mm). Further, the depth of the slit portion 123 is controlled to a value at which the influence of the thermal load in the radial direction of the support roll 10 can be sufficiently reduced. In the present embodiment, for example, the thin portion 124 is formed so that the slit depth of the slit portion 123 is about 15 (mm). In addition, about the design method at the time of designing the slit width of the slit part 123, a slit depth, and a slit pitch, following <4. The shape will be described in detail below.

このように、本実施形態では、ロール部材121に形成される薄肉部124によって、ロール部材121がロール部120として組み立てられた際にスリット部123が形成されるため、上述した従来の支持ロール50のスリット510に比べて、より小さいスリット幅を有するスリット部123を形成することが可能となる。従って、従来の支持ロール50と比べて鋳片3からの接触面圧を低下させることができ、摩耗速度を低減することが可能となる。このように、本実施形態に係る支持ロール10では、支持ロール10の表面におけるスリット部123の幅を、熱膨張を吸収し熱応力を緩和しつつ、摩耗速度が低減されるような、最適な値に制御することができるため、支持ロール10の使用寿命の長大化が実現される。   Thus, in this embodiment, since the slit part 123 is formed by the thin part 124 formed in the roll member 121 when the roll member 121 is assembled as the roll part 120, the conventional support roll 50 described above. It is possible to form the slit portion 123 having a smaller slit width than the slit 510. Therefore, the contact surface pressure from the slab 3 can be reduced as compared with the conventional support roll 50, and the wear rate can be reduced. Thus, in the support roll 10 according to the present embodiment, the width of the slit portion 123 on the surface of the support roll 10 is optimized so that the wear rate is reduced while absorbing thermal expansion and relaxing thermal stress. Since the value can be controlled, the service life of the support roll 10 can be extended.

なお、ロール部材121における開口部122及び薄肉部124の加工方法としては、例えば、切削、鍛造、鋳造、焼結等の既存の各種の加工方法を用いることができる。所定の加工方法によって所定の形状の開口部122及び薄肉部124が形成されたロール部材121を複数製作し、軸部材110を1列に配列された所定の数のロール部材121の開口部122に挿通することにより、支持ロール10が製作される。なお、支持ロール10を製作する際には、軸部材110に所定の数のロール部材121を嵌合させた後にロール部材121の外周面をまとめて研磨することにより、ロール部120としての外周面(すなわち1列に配列された複数のロール部材121の外周面)における平坦度を向上させる工程が行われてもよい。   In addition, as a processing method of the opening part 122 and the thin part 124 in the roll member 121, the existing various processing methods, such as cutting, forging, casting, and sintering, can be used, for example. A plurality of roll members 121 in which openings 122 and thin portions 124 having a predetermined shape are formed by a predetermined processing method, and shaft members 110 are arranged in openings 122 of a predetermined number of roll members 121 arranged in a row. The support roll 10 is manufactured by inserting. When the support roll 10 is manufactured, the outer peripheral surface of the roll member 120 is polished by collectively polishing the outer peripheral surface of the roll member 121 after fitting a predetermined number of roll members 121 to the shaft member 110. In other words, a step of improving the flatness of the outer peripheral surfaces of the plurality of roll members 121 arranged in one row may be performed.

また、ロール部材121は、例えばマルテンサイト系ステンレス鋼、オーステナイト系ステンレス鋼又は超硬材等によって形成され得る。ロール部材121として超硬材が用いられることにより、支持ロール10の表面の摩耗がより抑制され得る。ここで、超硬材によって一体的な部材を形成しようとする場合には、技術的な観点から、加工可能な部材の大きさが制限される場合がある。従って、図5に示すような、1本の円筒形のロール部材によって構成される従来の支持ロール50を超硬材によって形成することは、支持ロール50の大きさによっては、加工技術の観点から困難である可能性がある。しかしながら、本実施形態では、複数のロール部材121を組み合わせることにより支持ロール10のロール部120が構成されるため、比較的大型の支持ロール10であっても、その構成部材であるロール部材121は比較的小さいサイズで形成することができる。従って、ロール部材121を超硬材によって形成することができ、支持ロール10の表面の摩耗がより抑制され、支持ロール10の使用寿命をより長大化することが可能となる。   The roll member 121 can be formed of, for example, martensitic stainless steel, austenitic stainless steel, cemented carbide, or the like. By using a super hard material as the roll member 121, the wear of the surface of the support roll 10 can be further suppressed. Here, when an integral member is to be formed of cemented carbide, the size of the workable member may be limited from a technical viewpoint. Therefore, as shown in FIG. 5, the conventional support roll 50 constituted by one cylindrical roll member is formed of super hard material, depending on the size of the support roll 50, from the viewpoint of processing technology. It can be difficult. However, in this embodiment, since the roll part 120 of the support roll 10 is comprised by combining the some roll member 121, even if it is a comparatively large-sized support roll 10, the roll member 121 which is the structural member is It can be formed in a relatively small size. Therefore, the roll member 121 can be formed of a cemented carbide material, wear on the surface of the support roll 10 is further suppressed, and the service life of the support roll 10 can be further extended.

また、本実施形態に係る支持ロール10では、例えば連続鋳造時の使用条件に応じて、複数のロール部材121のうちの一部のロール部材121の材質が変更されてもよい。例えば、複数のロール部材121のうちの所定のロール部材121に大きな接触面圧が負荷されることが予め想定され得る場合には、当該所定のロール部材121の材質が他のロール部材121よりも高い硬度を有する材質に変更され得る。例えば、図6を参照して上述したように、連続鋳造機20においては、支持ロール10のうち鋳片3の端部を支持する領域には、他の領域に比べて大きな接触面圧が作用し得る。従って、支持ロール10のロール部120を構成するロール部材121のうち、鋳片3の端部を支持する領域に対応する部分のロール部材121には超硬材が用いられ、その他の領域に対応する部分のロール部材121にはステンレス鋼が用いられてよい。このように、支持ロール10の表面においてより大きな負荷が与えられるであろう箇所を予測し、当該箇所のみ選択的にロール部材121の材質をより高い硬度を有する材質に変更することにより、支持ロール10の表面の摩耗がより抑制され、支持ロール10の更なる使用寿命の長大化が実現され得る。なお、連続鋳造工程において製造される鋳片3のサイズに応じて、支持ロール10の表面内における鋳片3の端部を支持する領域の位置は変化し得るため、複数のロール部材121のうち材質が変更され得るロール部材121は、鋳片3のサイズに応じて適宜選択されてよい。   Moreover, in the support roll 10 which concerns on this embodiment, the material of the one part roll member 121 of the some roll members 121 may be changed according to the use conditions at the time of continuous casting, for example. For example, when it can be assumed in advance that a large contact surface pressure is applied to a predetermined roll member 121 among the plurality of roll members 121, the material of the predetermined roll member 121 is more than that of the other roll members 121. It can be changed to a material having a high hardness. For example, as described above with reference to FIG. 6, in the continuous casting machine 20, a large contact surface pressure acts on the region of the support roll 10 that supports the end portion of the slab 3 as compared with other regions. Can do. Accordingly, among the roll members 121 constituting the roll portion 120 of the support roll 10, a cemented carbide material is used for the portion of the roll member 121 corresponding to the region that supports the end portion of the slab 3, and the other regions are supported. Stainless steel may be used for the roll member 121 of the portion to be performed. In this way, by predicting a place where a greater load will be applied on the surface of the support roll 10, by selectively changing the material of the roll member 121 to a material having higher hardness only in the place, the support roll The wear of the surface of 10 can be further suppressed, and the service life of the support roll 10 can be further extended. In addition, since the position of the area | region which supports the edge part of the slab 3 in the surface of the support roll 10 can change according to the size of the slab 3 manufactured in a continuous casting process, among the some roll members 121 The roll member 121 whose material can be changed may be appropriately selected according to the size of the slab 3.

また、本実施形態では、支持ロール10のロール部120が複数のロール部材121によって構成されることにより、例えば一部のロール部材121が破損した場合であっても、支持ロール10を全て交換する必要がない。支持ロール10の補修のためには、破損したロール部材121だけを交換するだけでよく、設備の保全に要するコストを低減することが可能となる。ここで、従来の支持ロール50は、上述したように、1本の円筒形のロール部材によって構成されていたため、回転軸方向における所定の領域が破損しただけでも支持ロール50を全て交換する必要があった。また、支持ロール50の回転軸方向における所定の領域のみ、その材質を変更することも困難であった。しかしながら、本実施形態に係る支持ロール10は、ロール部120が、回転軸方向に配列された複数のロール部材121によって構成される。従って、上述したように、支持ロール10が破損した際の部分的な補修や、破損しやすい箇所を予め予測し回転軸方向における当該箇所のみ材質を変更する等の予防措置が可能となり、設備の保全に要するコストを低減することができる。   Moreover, in this embodiment, since the roll part 120 of the support roll 10 is comprised by the several roll member 121, even if it is a case where some roll members 121 are damaged, for example, all the support rolls 10 are replaced | exchanged. There is no need. In order to repair the support roll 10, it is only necessary to replace the damaged roll member 121, and it is possible to reduce the cost required for equipment maintenance. Here, since the conventional support roll 50 is composed of one cylindrical roll member as described above, it is necessary to replace all of the support rolls 50 even if a predetermined region in the rotation axis direction is damaged. there were. In addition, it is difficult to change the material only in a predetermined region in the rotation axis direction of the support roll 50. However, the support roll 10 according to the present embodiment includes the roll unit 120 including a plurality of roll members 121 arranged in the rotation axis direction. Therefore, as described above, it is possible to perform precautions such as partial repair when the support roll 10 is damaged, and predicting a location that is likely to be damaged in advance and changing the material only in the location in the rotation axis direction. Costs required for maintenance can be reduced.

また、上述したように、本実施形態に係る支持ロール10は、軸部材110に対して複数のロール部材121が嵌合されたスリーブ形状を有する。従って、例えば図3に示すように、z軸方向におけるロール部材121とロール部材121との間には、ロール部120の表面から軸部材110の外周面に至る亀裂が初めから存在しているとみなすことができる。よって、支持ロール10に熱負荷が加えられた場合であっても、ロール部材121自体に熱亀裂が生じる可能性は低いと考えられる。また、径方向に進展する熱亀裂が生じた場合であっても、軸部材110の外周面によって当該熱亀裂の進展が止められるため、例えば支持ロール10が径方向に破断されるような深刻な破損が防止され得る。   Further, as described above, the support roll 10 according to the present embodiment has a sleeve shape in which a plurality of roll members 121 are fitted to the shaft member 110. Therefore, for example, as shown in FIG. 3, if a crack from the surface of the roll part 120 to the outer peripheral surface of the shaft member 110 exists between the roll member 121 and the roll member 121 in the z-axis direction from the beginning. Can be considered. Therefore, even when a thermal load is applied to the support roll 10, it is considered that the possibility of thermal cracks occurring in the roll member 121 itself is low. Further, even when a thermal crack that progresses in the radial direction occurs, the progress of the thermal crack is stopped by the outer peripheral surface of the shaft member 110. Damage can be prevented.

また、図3及び図4に示す例では、薄肉部124は第1の領域125と第2の領域126とを有し、スリット部123の底部に当たる部分は、第2の領域126に対応している。このような薄肉部124を有する複数のロール部材121がz軸方向に配列されることにより、図3に示すように、隣り合うロール部材121間の薄肉部124によって、ロール部材121の外周部から径方向に所定の長さまでは幅が略一定で、底部に所定の半径Rの曲面状の空間(空洞部)を有するスリット部123が形成される。以下の説明では、図3に示すスリット部123の形状を涙目型の形状とも呼称する。スリット部123の底部には、スリット部123の空隙を伝達してきた鋳片3からの輻射熱や、鋳片3との接触面からロール部材121の内部を伝導してきた熱によって熱負荷が加えられ、熱応力が生じ得る。本実施形態のように、スリット部123として涙目型の形状を有するスリットを形成することにより、スリット部123の底部に所定の半径Rを有する曲面状の空間が設けられるため、スリット部123の底部の特定の箇所への応力集中を回避することができ、熱応力による熱亀裂の発生をより抑制することが可能となる。応力集中を効果的に抑制するために、スリット部123の底部の曲率Rは、例えば約3(mm)に設計される。また、涙目型の形状を有するスリット部123では、薄肉部124における第1の領域125及び第2の領域126の形状を適宜調整することにより、スリット部123の形状を適宜調整し、熱輻射によるスリット部123の底部への影響を低減することができる。例えば、第1の領域125におけるz軸方向の段差の深さ、すなわち、スリット部123の幅を狭くすることにより、鋳片3からスリット部123の底部に熱輻射によって伝達する熱量を低減することができるため、スリット部123の底部に対する熱輻射による熱負荷を抑制することができる。   In the example shown in FIGS. 3 and 4, the thin portion 124 has a first region 125 and a second region 126, and a portion corresponding to the bottom of the slit portion 123 corresponds to the second region 126. Yes. By arranging a plurality of roll members 121 having such thin-walled portions 124 in the z-axis direction, the thin-walled portions 124 between adjacent roll members 121 are separated from the outer peripheral portion of the roll member 121 as shown in FIG. A slit 123 having a curved space (hollow part) having a predetermined radius R at the bottom is formed with a substantially constant width at a predetermined length in the radial direction. In the following description, the shape of the slit portion 123 shown in FIG. 3 is also referred to as a teardrop shape. A heat load is applied to the bottom of the slit portion 123 by radiant heat from the slab 3 that has transmitted the gap of the slit portion 123 or heat that has been conducted through the inside of the roll member 121 from the contact surface with the slab 3, Thermal stress can occur. As in the present embodiment, by forming a slit having a teardrop shape as the slit portion 123, a curved space having a predetermined radius R is provided at the bottom of the slit portion 123. It is possible to avoid stress concentration at a specific portion of the bottom, and it is possible to further suppress the occurrence of thermal cracks due to thermal stress. In order to effectively suppress the stress concentration, the curvature R of the bottom portion of the slit portion 123 is designed to be about 3 (mm), for example. Further, in the slit portion 123 having a teardrop shape, the shape of the slit portion 123 is appropriately adjusted by adjusting the shapes of the first region 125 and the second region 126 in the thin-walled portion 124, so that heat radiation can be performed. The influence on the bottom part of the slit part 123 by can be reduced. For example, by reducing the depth of the step in the z-axis direction in the first region 125, that is, the width of the slit portion 123, the amount of heat transferred from the slab 3 to the bottom of the slit portion 123 by heat radiation is reduced. Therefore, it is possible to suppress a thermal load due to thermal radiation on the bottom of the slit portion 123.

なお、図3及び図4では、本実施形態に係る支持ロール10におけるスリット部123の一例として、スリット部123を形成する薄肉部124が、z軸方向に一定の深さtを有する段差部が形成される第1の領域125と径方向の断面において所定の半径Rの円弧状の断面形状を有する凹部が形成される第2の領域126とによって構成される場合について説明したが、本実施形態はかかる例に限定されない。本実施形態では、ロール部材121に形成される薄肉部124は、ロール部材121の少なくとも外縁部を含む径方向に所定の長さを有する領域に、例えば隣接するロール部材121と互いに当接する領域である他の領域127よりもz軸方向の厚さが薄く形成されればよく、その形状はあらゆる形状であってよい。従って、隣り合って配列されるロール部材121間において薄肉部124によって形成されるスリット部123の形状も図示した例に限定されず、あらゆる形状であり得る。支持ロール10の薄肉部124及びスリット部123の他の形状については、下記<3.変形例>で詳しく説明する。   3 and 4, as an example of the slit portion 123 in the support roll 10 according to the present embodiment, the thin portion 124 that forms the slit portion 123 has a step portion having a constant depth t in the z-axis direction. The case where the first region 125 to be formed and the second region 126 in which a concave portion having an arc-shaped cross-section with a predetermined radius R is formed in the radial cross section has been described. Is not limited to such an example. In the present embodiment, the thin portion 124 formed in the roll member 121 is a region that has a predetermined length in the radial direction including at least the outer edge portion of the roll member 121, for example, a region that abuts the adjacent roll member 121. It suffices if the thickness in the z-axis direction is made thinner than some other region 127, and the shape may be any shape. Therefore, the shape of the slit portion 123 formed by the thin portion 124 between the roll members 121 arranged adjacent to each other is not limited to the illustrated example, and may be any shape. Other shapes of the thin portion 124 and the slit portion 123 of the support roll 10 are described in <3. Modification> will be described in detail.

<3.変形例>
上述したように、従来の支持ロール50では、電解加工によってスリット510が形成されていた。電解加工では、支持ロール50を電気分解によって溶解することによりスリット510が形成されるため、その形状は、例えば図5に示す、底部に曲面状の空洞部を有するものに限定されており、他の形状を有するスリット510を形成することは困難であった。一方、本実施形態では、隣り合うロール部材121間の薄肉部124によってスリット部123が形成される。従って、薄肉部124の形状を変更することにより、多様な形状のスリット部123を形成することができる。
<3. Modification>
As described above, in the conventional support roll 50, the slit 510 is formed by electrolytic processing. In the electrolytic processing, since the slit 510 is formed by dissolving the support roll 50 by electrolysis, the shape thereof is limited to, for example, a shape having a curved cavity at the bottom as shown in FIG. It was difficult to form the slit 510 having the shape. On the other hand, in this embodiment, the slit part 123 is formed by the thin part 124 between the adjacent roll members 121. Therefore, by changing the shape of the thin portion 124, the slit portion 123 having various shapes can be formed.

図7−図9を参照して、本実施形態に係る支持ロール10において、スリット部123の形状が異なる変形例について説明する。なお、以下に説明する変形例では、スリット部123の形状が異なるだけで、その他の構成については、以上説明した支持ロール10と同様であってよい。従って、以下の変形例についての説明では、上述した実施形態との相違点について主に説明することとし、重複する事項については詳細な説明を省略する。なお、図7−図9では、図3に示す断面図に対応する断面(すなわち、支持ロールの回転軸を含み径方向と平行な断面)での断面図を図示している。   With reference to FIGS. 7-9, the modification from which the shape of the slit part 123 differs in the support roll 10 which concerns on this embodiment is demonstrated. In the modification described below, only the shape of the slit portion 123 is different, and other configurations may be the same as those of the support roll 10 described above. Therefore, in the following description of the modified example, differences from the above-described embodiment will be mainly described, and detailed description of overlapping items will be omitted. 7 to 9 are cross-sectional views corresponding to the cross-sectional view shown in FIG. 3 (that is, a cross-section including the rotation axis of the support roll and parallel to the radial direction).

[3−1.スリット部の形状がくさび型である変形例]
まず、図7を参照して、本実施形態に係る支持ロールにおいて、スリット部の形状がくさび型である変形例について説明する。図7は、スリット部の形状がくさび型である変形例に係る支持ロールの構成を示す断面図である。
[3-1. Modification in which slit shape is wedge-shaped]
First, with reference to FIG. 7, the modification in which the shape of a slit part is a wedge shape in the support roll which concerns on this embodiment is demonstrated. FIG. 7 is a cross-sectional view illustrating a configuration of a support roll according to a modification in which the slit portion has a wedge shape.

図7を参照すると、本変形例に係る支持ロール10aは、軸部材110と、ロール部120aと、を備える。軸部材110の構成は、図2及び図3に示す支持ロール10の軸部材110と同様であるため、詳細な説明は省略する。   Referring to FIG. 7, a support roll 10a according to this modification includes a shaft member 110 and a roll part 120a. Since the structure of the shaft member 110 is the same as that of the shaft member 110 of the support roll 10 shown in FIG.2 and FIG.3, detailed description is abbreviate | omitted.

ロール部120aは、複数のロール部材121aによって構成される。ロール部材121aは、略円環形状を有し、軸部材110の外周部に嵌合される。複数のロール部材121aは、開口部122aを互いに対向させた状態でz軸方向に配列され、z軸方向に連なった複数の開口部122aに軸部材110が挿通され嵌合される。   The roll part 120a is constituted by a plurality of roll members 121a. The roll member 121 a has a substantially annular shape and is fitted to the outer peripheral portion of the shaft member 110. The plurality of roll members 121a are arranged in the z-axis direction with the openings 122a facing each other, and the shaft member 110 is inserted and fitted into the plurality of openings 122a that are continuous in the z-axis direction.

ロール部材121aは、少なくとも外周部において互いに所定の間隔を有するようにz軸方向に配列される。図7に示す例では、ロール部材121aの、少なくとも外縁部を含む径方向に所定の長さを有する領域に、z軸方向の厚さが他の領域よりも薄い薄肉部が設けられる。ここで、当該他の領域とは、例えばロール部材121aが隙間なく配列される際に隣り合うロール部材121a間が互いに当接する領域であってよい。隣り合うロール部材121a間の当該薄肉部によって、径方向に所定の深さを有するスリット部123aが形成される。   The roll members 121a are arranged in the z-axis direction so as to have a predetermined distance from each other at least at the outer peripheral portion. In the example shown in FIG. 7, a thin-walled portion whose thickness in the z-axis direction is thinner than other regions is provided in a region having a predetermined length in the radial direction including at least the outer edge portion of the roll member 121a. Here, the said other area | region may be an area | region where adjacent roll members 121a mutually contact | abut, for example, when the roll members 121a are arranged without a gap. A slit portion 123a having a predetermined depth in the radial direction is formed by the thin portion between the adjacent roll members 121a.

図7に示すように、本変形例では、当該薄肉部は、外縁部においてz軸方向の厚さが最も薄く、径方向において内側に向かうほどz軸方向の厚さが徐々に大きくなるように形成される。具体的には、当該薄肉部は、径方向において内側に向かうほどz軸方向の厚さが一様に大きくなるように形成される。当該薄肉部がこのような形状を有することにより、隣り合うロール部材121a間の当該薄肉部によって形成されるスリット部123aの断面形状は、図7に示すようにくさび型となる。スリット部123aの形状がくさび型である場合には、図2−図4に示すスリット部123が涙目型の形状を有する場合と比べて、ロール部材121aの表面における段差部の加工を容易に行うことができる。   As shown in FIG. 7, in this modified example, the thin portion has the thinnest thickness in the z-axis direction at the outer edge portion, and the thickness in the z-axis direction gradually increases toward the inside in the radial direction. It is formed. Specifically, the thin portion is formed such that the thickness in the z-axis direction increases uniformly toward the inner side in the radial direction. Since the thin portion has such a shape, the cross-sectional shape of the slit portion 123a formed by the thin portion between the adjacent roll members 121a becomes a wedge shape as shown in FIG. When the shape of the slit portion 123a is a wedge shape, the stepped portion on the surface of the roll member 121a can be easily processed as compared to the case where the slit portion 123 shown in FIGS. It can be carried out.

また、下記<4.スリット部の形状>で後述するように、ロール部材121aに生じる熱応力は、高温物である鋳片3との接触領域(すなわち、ロール部材121aの外周面)においてより大きな値を有し、当該接触領域から離れるにつれて、すなわち、径方向において内側に向かうにつれてその値が減少する。従って、熱応力を緩和するためのスリット部123aの形状も、支持ロール10aの径方向において内側に向かうにつれて徐々にスリット幅が小さくなるように形成されてよい。本変形例に係るスリット部123aは、支持ロール10aの径方向において内側に向かうにつれて徐々にスリット幅が小さくなるくさび型の形状を有するため、くさび型の形状におけるスリット部123aの側壁の傾斜角度(すなわち、スリット幅が小さくなる度合い)を適宜調整することにより、ロール部材121a内部における熱応力の径方向への分布に応じた適切な形状が実現され得る。   The following <4. As will be described later with respect to the shape of the slit portion>, the thermal stress generated in the roll member 121a has a larger value in the contact region with the cast piece 3 that is a high-temperature object (that is, the outer peripheral surface of the roll member 121a). The value decreases as the distance from the contact area increases, that is, toward the inside in the radial direction. Therefore, the shape of the slit portion 123a for relieving the thermal stress may also be formed so that the slit width gradually decreases toward the inside in the radial direction of the support roll 10a. Since the slit portion 123a according to this modification has a wedge shape that gradually decreases in slit width toward the inner side in the radial direction of the support roll 10a, the inclination angle of the side wall of the slit portion 123a in the wedge shape ( That is, an appropriate shape according to the radial distribution of the thermal stress in the roll member 121a can be realized by appropriately adjusting the degree of reduction of the slit width.

[3−2.スリット部の形状が矩形型である変形例]
次に、図8を参照して、本実施形態に係る支持ロールにおいて、スリット部の形状が矩形型である変形例について説明する。図8は、スリット部の形状が矩形型である変形例に係る支持ロールの構成を示す断面図である。
[3-2. Modified example in which the shape of the slit portion is a rectangular shape]
Next, with reference to FIG. 8, the modification in which the shape of a slit part is a rectangular shape is demonstrated in the support roll which concerns on this embodiment. FIG. 8 is a cross-sectional view illustrating a configuration of a support roll according to a modification example in which the slit portion has a rectangular shape.

図8を参照すると、本変形例に係る支持ロール10bは、軸部材110と、ロール部120bと、を備える。軸部材110の構成は、図2−図4に示す支持ロール10の軸部材110と同様であるため、詳細な説明は省略する。   Referring to FIG. 8, a support roll 10b according to this modification includes a shaft member 110 and a roll part 120b. Since the structure of the shaft member 110 is the same as that of the shaft member 110 of the support roll 10 shown in FIGS. 2-4, detailed description is abbreviate | omitted.

ロール部120bは、複数のロール部材121bによって構成される。ロール部材121bは、略円環形状を有し、軸部材110の外周部に嵌合される。複数のロール部材121bは、開口部122bを互いに対向させた状態でz軸方向に配列され、z軸方向に連なった複数の開口部122bに軸部材110が挿通され嵌合される。   The roll part 120b is configured by a plurality of roll members 121b. The roll member 121b has a substantially annular shape and is fitted to the outer peripheral portion of the shaft member 110. The plurality of roll members 121b are arranged in the z-axis direction with the opening portions 122b facing each other, and the shaft member 110 is inserted and fitted into the plurality of opening portions 122b connected in the z-axis direction.

ロール部材121bは、少なくとも外周部において互いに所定の間隔を有するようにz軸方向に配列される。図8に示す例では、ロール部材121bの、少なくとも外縁部を含む径方向に所定の長さを有する領域に、z軸方向の厚さが他の領域よりも薄い薄肉部が設けられる。ここで、当該他の領域とは、例えばロール部材121bが隙間なく配列される際に隣り合うロール部材121b間が互いに当接する領域であってよい。隣り合うロール部材121b間の当該薄肉部によって、径方向に所定の深さを有するスリット部123bが形成される。   The roll members 121b are arranged in the z-axis direction so as to have a predetermined distance from each other at least at the outer peripheral portion. In the example shown in FIG. 8, a thin-walled portion whose thickness in the z-axis direction is thinner than other regions is provided in a region having a predetermined length in the radial direction including at least the outer edge portion of the roll member 121b. Here, the said other area | region may be an area | region where adjacent roll members 121b mutually contact | abut, for example, when the roll members 121b are arranged without a gap. A slit portion 123b having a predetermined depth in the radial direction is formed by the thin portion between the adjacent roll members 121b.

図8に示すように、本変形例では、当該薄肉部は、対向面において、z軸方向の深さが略一定の段差部として形成される。当該薄肉部がこのような形状を有することにより、隣り合うロール部材121b間の当該薄肉部によって形成されるスリット部123bの断面形状は、図8に示すように、スリット部123bの幅が略一定である矩形型となる。スリット部123bの形状が矩形型である場合には、図2−図4に示すスリット部123が涙目型の形状を有する場合と比べて、ロール部材121bにおける薄肉部の加工を容易に行うことができる。なお、図8に示す例では、スリット部123bの底部の角部は略直角に形成されているが、本変形例は図示される例に限定されず、当該角部は所定の半径を有する曲面状に適宜加工されてよい。スリット部123bの底部の角部が曲面形状を有することにより、当該角部における応力集中が緩和され、熱亀裂の発生がより抑制され得る。   As shown in FIG. 8, in the present modification, the thin portion is formed as a step portion having a substantially constant depth in the z-axis direction on the facing surface. Since the thin-walled portion has such a shape, the cross-sectional shape of the slit portion 123b formed by the thin-walled portion between the adjacent roll members 121b is substantially constant as shown in FIG. It becomes a rectangular type. When the shape of the slit portion 123b is rectangular, the thin portion of the roll member 121b can be easily processed as compared to the case where the slit portion 123 shown in FIGS. Can do. In the example shown in FIG. 8, the corner portion of the bottom portion of the slit portion 123 b is formed at a substantially right angle. However, this modification is not limited to the illustrated example, and the corner portion is a curved surface having a predetermined radius. It may be appropriately processed into a shape. Since the corner part of the bottom part of the slit part 123b has a curved surface shape, the stress concentration in the corner part is relieved and the generation of thermal cracks can be further suppressed.

[3−3.スリット部の形状が放物線型である変形例]
次に、図9を参照して、本実施形態に係る支持ロールにおいて、スリット部の形状が放物線型である変形例について説明する。図9は、スリット部の形状が放物線型である変形例に係る支持ロールの構成を示す断面図である。
[3-3. Modified example in which the shape of the slit part is a parabolic shape]
Next, with reference to FIG. 9, the modification in which the shape of a slit part is a parabolic type is demonstrated in the support roll which concerns on this embodiment. FIG. 9 is a cross-sectional view illustrating a configuration of a support roll according to a modification in which the shape of the slit portion is a parabolic shape.

図9を参照すると、本変形例に係る支持ロール10cは、軸部材110と、ロール部120cと、を備える。軸部材110の構成は、図2−図4に示す支持ロール10の軸部材110と同様であるため、詳細な説明は省略する。   Referring to FIG. 9, a support roll 10c according to this modification includes a shaft member 110 and a roll part 120c. Since the structure of the shaft member 110 is the same as that of the shaft member 110 of the support roll 10 shown in FIGS. 2-4, detailed description is abbreviate | omitted.

ロール部120cは、複数のロール部材121cによって構成される。ロール部材121cは、略円環形状を有し、軸部材110の外周部に嵌合される。複数のロール部材121cは、開口部122cを互いに対向させた状態でz軸方向に配列され、z軸方向に連なった複数の開口部122cに軸部材110が挿通され嵌合される。   The roll part 120c is configured by a plurality of roll members 121c. The roll member 121 c has a substantially annular shape and is fitted to the outer peripheral portion of the shaft member 110. The plurality of roll members 121c are arranged in the z-axis direction with the openings 122c facing each other, and the shaft member 110 is inserted and fitted into the plurality of openings 122c that are continuous in the z-axis direction.

ロール部材121cは、少なくとも外周部において互いに所定の間隔を有するようにz軸方向に配列される。図9に示す例では、ロール部材121cの、少なくとも外縁部を含む径方向に所定の長さを有する領域に、z軸方向の厚さが他の領域よりも薄い薄肉部が設けられる。ここで、当該他の領域とは、例えばロール部材121cが隙間なく配列される際に隣り合うロール部材121c間が互いに当接する領域であってよい。隣り合うロール部材121c間の当該薄肉部によって、径方向に所定の深さを有するスリット部123cが形成される。   The roll members 121c are arranged in the z-axis direction so as to have a predetermined distance from each other at least at the outer peripheral portion. In the example shown in FIG. 9, a thin-walled portion whose thickness in the z-axis direction is thinner than other regions is provided in a region having a predetermined length in the radial direction including at least the outer edge portion of the roll member 121c. Here, the said other area | region may be an area | region where adjacent roll members 121c mutually contact | abut, for example, when the roll members 121c are arranged without a gap. A slit portion 123c having a predetermined depth in the radial direction is formed by the thin portion between the adjacent roll members 121c.

図9に示すように、本変形例では、当該薄肉部は、外縁部においてz軸方向の厚さが最も薄く、径方向において内側に向かうほどz軸方向の厚さが徐々に大きくなるように形成される。具体的には、当該薄肉部は、径方向における断面において、径方向において内側に向かうほどz軸方向の厚さが曲線的に徐々に大きくなるように形成される。当該薄肉部がこのような形状を有することにより、隣り合うロール部材121c間の当該薄肉部によって形成されるスリット部123cの断面形状は、図9に示すように放物線型となる。スリット部123cの形状が放物線型である場合には、図2−図4に示すスリット部123が涙目型の形状を有する場合と比べて、ロール部材121cの表面における段差部の加工を容易に行うことができる。   As shown in FIG. 9, in this modification, the thin portion has the thinnest thickness in the z-axis direction at the outer edge portion, and the thickness in the z-axis direction gradually increases toward the inside in the radial direction. It is formed. Specifically, the thin-walled portion is formed such that in the radial cross section, the thickness in the z-axis direction gradually increases in a curve as it goes inward in the radial direction. Since the thin part has such a shape, the cross-sectional shape of the slit part 123c formed by the thin part between the adjacent roll members 121c becomes a parabolic shape as shown in FIG. When the shape of the slit portion 123c is a parabolic shape, it is easier to process the stepped portion on the surface of the roll member 121c than when the slit portion 123 shown in FIGS. It can be carried out.

以上、図7−図9を参照して、本実施形態に係る支持ロールにおいて、スリット部の形状が異なる変形例について説明した。なお、以上の説明では、本実施形態に係るスリット部の形状として、涙目型、くさび型、矩形型及び放物線型の各形状について説明したが、本実施形態はかかる例に限定されない。本実施形態では、ロール部材の表面に形成される薄肉部の形状を適宜設計することにより、あらゆる形状を有するスリット部が形成され得る。   In the above, with reference to FIGS. 7-9, the modification from which the shape of a slit part differs in the support roll which concerns on this embodiment was demonstrated. In the above description, the tear-drop shape, wedge shape, rectangular shape, and parabolic shape have been described as the shape of the slit portion according to the present embodiment, but the present embodiment is not limited to such an example. In this embodiment, the slit part which has all shapes can be formed by designing the shape of the thin part formed in the surface of a roll member suitably.

本実施形態に係るスリット部の形状は、例えば熱負荷が与えられる条件に応じて適宜設計されてよい。例えば、図1に示す連続鋳造機20において、前段側と後段側とでは、鋳片3の冷却度合いが異なるため、鋳片3から支持ロールに対して加えられる熱負荷は異なる。また、連続鋳造機20においては、鋳片3に冷却水を噴射するスプレーノズルが鋳片3のパスライン上の各所に配置されるため、当該スプレーノズルの近隣に配置され当該スプレーノズルからの冷却水によって冷却され得る支持ロールは、他の位置に配置される支持ロールに比べて熱負荷が小さいと言える。このように、連続鋳造機20における配置位置に応じて、支持ロールに加えられる熱負荷は異なるため、支持ロールに設けられるスリット部の形状は、その配置位置に応じた熱負荷量の違いを考慮して適宜設計されてよい。また、支持ロールのロール部を構成するロール部材の材質も、連続鋳造機20における配置位置に応じた熱負荷量の違いを考慮して適宜選択されてよい。   The shape of the slit part according to the present embodiment may be appropriately designed according to, for example, conditions under which a thermal load is applied. For example, in the continuous casting machine 20 shown in FIG. 1, since the cooling degree of the slab 3 is different between the front stage side and the rear stage side, the thermal load applied from the slab 3 to the support roll is different. Further, in the continuous casting machine 20, spray nozzles for injecting cooling water to the slab 3 are disposed at various locations on the pass line of the slab 3, so that they are disposed in the vicinity of the spray nozzle and cooled from the spray nozzle. It can be said that the support roll that can be cooled by water has a smaller thermal load than the support rolls arranged at other positions. Thus, since the thermal load applied to the support roll differs depending on the arrangement position in the continuous casting machine 20, the shape of the slit portion provided in the support roll considers the difference in the amount of heat load according to the arrangement position. And may be designed as appropriate. Moreover, the material of the roll member which comprises the roll part of a support roll may also be suitably selected in consideration of the difference in heat load amount according to the arrangement position in the continuous casting machine 20.

<4.スリット部の形状>
以上説明したように、本実施形態では、支持ロールの表面にスリット部を形成することにより熱膨張を吸収し熱応力を緩和する。また、当該スリット部の形状、特にスリット幅は、鋳片との接触面圧を考慮して、表面の摩耗やスリット部の変形が生じ難いように設計される。このように、本実施形態では、スリット部の幅や深さ、間隔は、熱亀裂を抑制するために熱応力を緩和するように設計されるとともに、表面の摩耗やスリット部の変形を抑制するために接触面圧がより低減されるように設計され得る。以下では、本実施形態に係る支持ロールのスリット部の一例として、図7に示すくさび型の形状を有するスリット部を例に挙げて、当該スリット部の形状を設計する際の設計手法について説明する。ただし、以下に説明するスリット部の形状の設計手法は、上述したような他の形状を有するスリット部に対しても同様に適用され得る。
<4. Shape of slit part>
As described above, in this embodiment, the slit portion is formed on the surface of the support roll to absorb thermal expansion and relieve thermal stress. In addition, the shape of the slit portion, particularly the slit width, is designed so that surface wear and deformation of the slit portion hardly occur in consideration of the contact surface pressure with the slab. As described above, in this embodiment, the width, depth, and interval of the slit portion are designed so as to relieve thermal stress in order to suppress thermal cracking, and also suppress wear on the surface and deformation of the slit portion. Therefore, the contact surface pressure can be designed to be further reduced. Hereinafter, as an example of the slit portion of the support roll according to the present embodiment, the slit portion having a wedge shape shown in FIG. 7 will be described as an example, and a design method for designing the shape of the slit portion will be described. . However, the design method of the shape of the slit portion described below can be similarly applied to slit portions having other shapes as described above.

図10を参照して、本実施形態に係る支持ロールのスリット部の形状を設計する際の設計手法について詳細に説明する。図10は、本実施形態に係る支持ロールのスリット部の形状について説明するための説明図である。図10では、図7に示す支持ロール10aのスリット部123aのうちの一部分を拡大して図示している。図10に示すように、スリット部123aの形状は、z軸方向のスリット幅a、径方向のスリット深さd及び隣り合うスリット部123aとのスリットピッチpによって決定され得る。   With reference to FIG. 10, the design method at the time of designing the shape of the slit part of the support roll which concerns on this embodiment is demonstrated in detail. FIG. 10 is an explanatory diagram for explaining the shape of the slit portion of the support roll according to the present embodiment. 10, a part of the slit portion 123a of the support roll 10a shown in FIG. 7 is enlarged and shown. As shown in FIG. 10, the shape of the slit portion 123a can be determined by the slit width a in the z-axis direction, the slit depth d in the radial direction, and the slit pitch p between the adjacent slit portions 123a.

まず、スリット幅aについて説明する。図10に示すように、スリット幅aはスリット部123aのz軸方向の幅である。図10に示す例では、スリット部123aの形状はくさび型であるため、スリット幅aは径方向(x軸方向)において一定ではない。従って、x軸の原点をロール部材121aの外周面(すなわち、鋳片3との接触面)に取ると、スリット幅aはxの関数(a=f(x))として表すことができる。なお、関数f(x)の具体的な形は、スリット部123aの形状に基づいて幾何学的に決定され得る。   First, the slit width a will be described. As shown in FIG. 10, the slit width a is the width of the slit portion 123a in the z-axis direction. In the example shown in FIG. 10, since the shape of the slit portion 123a is wedge-shaped, the slit width a is not constant in the radial direction (x-axis direction). Accordingly, when the origin of the x axis is taken on the outer peripheral surface of the roll member 121a (that is, the contact surface with the slab 3), the slit width a can be expressed as a function of x (a = f (x)). The specific shape of the function f (x) can be determined geometrically based on the shape of the slit portion 123a.

一方、鋳片3から与えられる熱によりロール部材121aの温度が温度Tだけ上昇したとすると、ロール部材121aにおけるz軸方向の熱膨張lは、温度Tの関数(l=g(T))として表すことができる。ここで、支持ロール10aは、鋳片3から熱を受けながら、スプレーノズルから噴射される冷却水や軸部材110の内部に流動される冷却水によって冷却されるため、温度Tは連続鋳造工程中に動的に変化し得る。スリット幅aが連続鋳造工程中における熱膨張lよりも常に小さくなるようにスリット幅aの値を設計することにより、熱膨張によるロール部材121aのz軸方向の変形量をスリット部123aによって吸収することができ、熱応力の発生を抑制することができる。従って、スリット幅aは、下記数式(1)を満たすように設計されることが好ましい。   On the other hand, if the temperature of the roll member 121a is increased by the temperature T due to the heat applied from the slab 3, the thermal expansion l in the z-axis direction of the roll member 121a is expressed as a function of the temperature T (l = g (T)). Can be represented. Here, since the support roll 10a is cooled by the cooling water sprayed from the spray nozzle or the cooling water flowing into the shaft member 110 while receiving heat from the slab 3, the temperature T is kept during the continuous casting process. It can change dynamically. By designing the value of the slit width a so that the slit width a is always smaller than the thermal expansion l during the continuous casting process, the deformation in the z-axis direction of the roll member 121a due to thermal expansion is absorbed by the slit portion 123a. And generation of thermal stress can be suppressed. Therefore, the slit width a is preferably designed so as to satisfy the following formula (1).

Figure 0006248701
Figure 0006248701

なお、関数g(T)の具体的な形は、ロール部材121aの材質に応じた熱膨張に関する物理量(例えば熱膨張係数等)や一般的な熱膨張における各種の理論式に基づいて決定され得る。また、温度Tは、例えば有限要素法(FEM:Finite Element Method)を用いた数値解析により、ロール部材121a内部の温度分布を計算することにより求められる。   The specific form of the function g (T) can be determined based on physical quantities relating to thermal expansion (for example, thermal expansion coefficient, etc.) corresponding to the material of the roll member 121a and various theoretical formulas in general thermal expansion. . Moreover, the temperature T is calculated | required by calculating the temperature distribution inside the roll member 121a by the numerical analysis using a finite element method (FEM: Finite Element Method), for example.

次に、スリット深さdについて説明する。図10に示すように、スリット深さdはスリット部123aの径方向(x軸方向)における深さである。ここで、ロール部材121aに生じる熱応力は、高温物である鋳片3との接触領域(すなわち、ロール部材121aの外周面)においてより大きな値を有し、当該接触領域から離れるにつれてその値が減少する。従って、x軸方向における熱応力の変化に注目すると、ロール部材121aに生じる熱応力σは、xの関数(σ=h(x))として表すことができる。   Next, the slit depth d will be described. As shown in FIG. 10, the slit depth d is a depth in the radial direction (x-axis direction) of the slit portion 123a. Here, the thermal stress generated in the roll member 121a has a larger value in the contact area with the cast slab 3 that is a high-temperature object (that is, the outer peripheral surface of the roll member 121a), and the value increases as the distance from the contact area increases. Decrease. Therefore, when attention is paid to the change of the thermal stress in the x-axis direction, the thermal stress σ generated in the roll member 121a can be expressed as a function of x (σ = h (x)).

ここで、ロール部材121aの径方向における所定の深さxの領域において、ロール部材121aの疲労限度σ又は許容応力σと同等の熱応力が生じるとする。スリット部123aの空隙によって熱膨張が吸収され熱応力が緩和されるのであるから、スリット深さdが深さxの領域にまで達するようにスリット深さdの値を設計することにより、ロール部材121aに生じる熱応力を疲労限度σ又は許容応力σよりも小さくすることができる。従って、スリット深さdは、下記数式(2)を満たすように設計されることが好ましい。ただし、下記数式(2)右辺の疲労限度σ又は許容応力σには、適切な安全率が乗じられてよい。なお、疲労限度σ又は許容応力σの具体的な値は、ロール部材121aの材質に応じて、実験値、文献値等に基づいて決定され得る。 Here, in the region of a predetermined depth x c in the radial direction of the roll member 121a, and fatigue limit sigma w or allowable stress sigma a comparable thermal stress of the roll member 121a occurs. Since the thermal expansion by a gap of the slit portion 123a is the thermal stress is absorbed is alleviated by designing the value of the slit depth d as slit depth d reaches the region of the depth x c, roll thermal stress generated in the member 121a can be made smaller than the fatigue limit sigma w or allowable stress sigma a. Therefore, it is preferable that the slit depth d is designed so as to satisfy the following formula (2). However, an appropriate safety factor may be multiplied to the fatigue limit σ w or the allowable stress σ a on the right side of the following formula (2). In addition, the specific value of fatigue limit (sigma) w or allowable stress (sigma) a can be determined based on an experimental value, literature value, etc. according to the material of the roll member 121a.

Figure 0006248701
Figure 0006248701

次に、スリットピッチpについて説明する。図10に示すように、スリットピッチpはz軸方向においてスリット部123aが形成される間隔である。スリットピッチpが小さい場合には、相対的にスリット部123aの数が多くなり、ロール部120の外周面における鋳片3との接触面積が小さくなる。従って、図6を参照して上述したように、ロール部120の外周面における鋳片3との接触面圧が大きくなり、スリット部123aが変形してしまう恐れがある。よって、スリットピッチpの値は、スリット部123aが変形しない範囲で設計されることが好ましい。具体的には、スリット部123aに変形が生じ得るときのスリットピッチをスリットピッチpとすれば、スリットピッチpは、下記数式(3)を満たすように設計され得る。なお、スリットピッチpの具体的な値は、例えばFEMを用いた数値解析により、スリット部123aの変形量が許容範囲に含まれるようなスリットピッチの値として決定され得る。 Next, the slit pitch p will be described. As shown in FIG. 10, the slit pitch p is an interval at which the slit portions 123a are formed in the z-axis direction. When the slit pitch p is small, the number of the slit parts 123a is relatively increased, and the contact area with the cast piece 3 on the outer peripheral surface of the roll part 120 is reduced. Therefore, as described above with reference to FIG. 6, the contact surface pressure with the slab 3 on the outer peripheral surface of the roll portion 120 may increase, and the slit portion 123 a may be deformed. Therefore, it is preferable that the value of the slit pitch p is designed in a range in which the slit portion 123a is not deformed. Specifically, if the slit pitch when deformed slit portions 123a can occur and the slit pitch p b, slit pitch p can be designed so as to satisfy the following equation (3). The specific values of the slit pitch p b, for example by numerical analysis using FEM, can be determined as the value of the slit pitch, such as the amount of deformation of the slit portion 123a is included in the allowable range.

Figure 0006248701
Figure 0006248701

以上、図10を参照して、本実施形態に係る支持ロールにおけるスリット部の形状の設計手法について説明した。本実施形態では、例えば上記数式(1)−(3)を満たすようにスリット部123aのスリット幅a、スリット深さd及びスリットピッチpが設計されることにより、熱応力や接触面圧による変形が抑制された、使用寿命のより長い支持ロールが実現され得る。   In the above, with reference to FIG. 10, the design method of the shape of the slit part in the support roll which concerns on this embodiment was demonstrated. In the present embodiment, for example, the slit width a, the slit depth d, and the slit pitch p of the slit portion 123a are designed so as to satisfy the above formulas (1) to (3), thereby deforming due to thermal stress or contact surface pressure. A support roll with a longer service life can be realized.

なお、スリット幅a、スリット深さd及びスリットピッチpは、例えばFEMを用いた数値解析によって算出され得る。具体的には、初期値として所定のスリット幅a、スリット深さd及びスリットピッチpを有するスリット部が形成された支持ロールを模した計算モデルを作成する。そして、当該計算モデルに対して、実際に連続鋳造工程において負荷され得る外力(例えば圧下力や接触面圧等)や熱源(鋳片3)を与えた状態で、FEMを用いて当該計算モデルにおける温度分布や応力分布(熱応力を含む)、変形量(熱膨張による変形量を含む)等を計算する。スリット幅a、スリット深さd及びスリットピッチpの値を適宜変更しながら当該計算を繰り返し行うことにより、上記数式(1)−(3)を満たすようなスリット幅a、スリット深さd及びスリットピッチpの値を決定することができる。   In addition, the slit width a, the slit depth d, and the slit pitch p can be calculated by numerical analysis using FEM, for example. Specifically, a calculation model simulating a support roll on which slit portions having a predetermined slit width a, slit depth d, and slit pitch p are formed as initial values is created. And in the state which gave external force (for example, rolling force, contact surface pressure, etc.) which can be actually loaded in a continuous casting process, and a heat source (slab 3) with respect to the calculation model, in FEM Temperature distribution, stress distribution (including thermal stress), deformation amount (including deformation due to thermal expansion), etc. are calculated. Slit width a, slit depth d and slit satisfying the above formulas (1) to (3) by repeating the calculation while appropriately changing the values of slit width a, slit depth d and slit pitch p. The value of the pitch p can be determined.

本発明に係る支持ロールを連続鋳造機に適用した実施例について説明する。実施例として、図7に示すくさび型のスリット部123aが形成された支持ロール10aを、図1に示す連続鋳造機20に適用し、以下の使用条件の下で連続鋳造を行った。   An embodiment in which the support roll according to the present invention is applied to a continuous casting machine will be described. As an example, the support roll 10a formed with the wedge-shaped slit portion 123a shown in FIG. 7 was applied to the continuous casting machine 20 shown in FIG. 1, and continuous casting was performed under the following use conditions.

鋳造速度:2.0(mpm)
使用期間:7(年)
冷却水量:45(l/min)
支持ロール軸長:2500(mm)
支持ロール径:400(mm)(軸部材のロール径:350(mm))
支持ロールスリットピッチ:15(mm)
鋳片温度:900(度)以上
Casting speed: 2.0 (mpm)
Period of use: 7 (years)
Cooling water volume: 45 (l / min)
Support roll axial length: 2500 (mm)
Support roll diameter: 400 (mm) (Roll diameter of shaft member: 350 (mm))
Support roll slit pitch: 15 (mm)
Slab temperature: 900 (degrees) or more

また、実施例としては、ロール部材121aの表面材質がステンレス鋼であるもの(実施例1)と、ロール部材121aの表面材質が超硬材であるもの(実施例2)と、2種類の支持ロール10aを用いて連続鋳造を行った。また、比較例として、特許文献1に記載の従来の支持ロールについても、上記と同様の使用条件の下で連続鋳造を行った。比較例、実施例1及び実施例2における支持ロールの構成について下記表1にまとめる。   In addition, as examples, the surface material of the roll member 121a is stainless steel (Example 1), the surface material of the roll member 121a is cemented carbide (Example 2), and two types of support. Continuous casting was performed using the roll 10a. As a comparative example, the conventional support roll described in Patent Document 1 was also continuously cast under the same use conditions as described above. The structure of the support rolls in Comparative Example, Example 1 and Example 2 are summarized in Table 1 below.

Figure 0006248701
Figure 0006248701

これらの比較例、実施例1及び実施例2について、上記使用条件の下で連続鋳造を行った後、支持ロール表面における熱亀裂の発生有無及び径方向の摩耗量について調査した。まず、熱亀裂の発生有無については、比較例、実施例1及び実施例2の全てにおいて、使用後の支持ロール表面における熱亀裂は確認されなかった。当該結果から、比較例である特許文献1に記載の支持ロールと同様、本実施形態に係る支持ロール10aによっても、熱亀裂の発生が抑制されていることが分かった。これは、支持ロール10aの表面に形成されるスリット部123aによって、支持ロール10aにおける熱膨張が吸収され、熱応力が緩和されるためであると考えられる。   About these comparative examples, Example 1, and Example 2, after performing continuous casting on the said use conditions, the presence or absence of the generation | occurrence | production of the thermal crack in the support roll surface and the amount of radial wear were investigated. First, regarding the presence or absence of occurrence of thermal cracks, thermal cracks on the surface of the support roll after use were not confirmed in all of Comparative Example, Example 1 and Example 2. From the results, it was found that the generation of thermal cracks was suppressed by the support roll 10a according to the present embodiment as well as the support roll described in Patent Document 1 as a comparative example. This is considered because the thermal expansion in the support roll 10a is absorbed by the slit portion 123a formed on the surface of the support roll 10a, and the thermal stress is relieved.

次に、図11を参照して、比較例、実施例1及び実施例2における、使用後の支持ロールの径方向の摩耗量について説明する。図11は、比較例、実施例1及び実施例2における、使用後の支持ロールの径方向の摩耗量を示すグラフ図である。図11に示すように、従来の支持ロールを用いた比較例においては、径方向の摩耗量が約1.2(mm)であった。一方、本実施形態に係る支持ロール10aを用いた実施例1においては、径方向の摩耗量は約0.8(mm)であり、従来に比べて摩耗量が低減していることが確認された。これは、実施例1では、比較例に比べてスリット幅が小さく形成されているため、支持ロール10aの表面における接触面圧を低減させることができ、摩耗量が低減されたと考えられる。   Next, the amount of wear in the radial direction of the support roll after use in the comparative example, example 1 and example 2 will be described with reference to FIG. FIG. 11 is a graph showing the amount of wear in the radial direction of the support roll after use in Comparative Example, Example 1 and Example 2. As shown in FIG. 11, in the comparative example using the conventional support roll, the amount of wear in the radial direction was about 1.2 (mm). On the other hand, in Example 1 using the support roll 10a according to the present embodiment, the amount of wear in the radial direction is about 0.8 (mm), and it has been confirmed that the amount of wear is reduced compared to the conventional case. It was. In Example 1, since the slit width is formed smaller than that in the comparative example, it is considered that the contact surface pressure on the surface of the support roll 10a can be reduced, and the amount of wear is reduced.

また、図11に示すように、本実施形態に係る支持ロール10aであって、ロール部材121aの材質として超硬材を用いた実施例2においては、径方向の摩耗量は約0.05(mm)であり、実施例1よりも更に摩耗量が低減されることが確認された。このように、ロール部材121aの材質として超硬材を使用することにより、支持ロール10a表面の摩耗が更に抑制され、支持ロール10aの使用寿命を更に延ばすことが可能となる。   Further, as shown in FIG. 11, in Example 2 in which the support roll 10a according to the present embodiment is made of super hard material as the material of the roll member 121a, the radial wear amount is about 0.05 ( mm), and it was confirmed that the wear amount was further reduced as compared with Example 1. Thus, by using a super hard material as the material of the roll member 121a, the wear on the surface of the support roll 10a is further suppressed, and the service life of the support roll 10a can be further extended.

以上、本発明に係る支持ロールを連続鋳造機に適用した実施例について説明した。以上説明したように、本発明に係る支持ロールを連続鋳造機に適用することにより、熱亀裂の発生を抑制しつつ、支持ロールの表面の摩耗量を低減できることが分かった。従って、本発明によれば、支持ロールの使用寿命をより長大化することが可能となる。このように、本発明に係る支持ロールは、例えば連続鋳造工程のような、支持ロールに対してより大きな熱負荷が加えられ得る工程に対して好適に適用可能である。   In the above, the Example which applied the support roll which concerns on this invention to the continuous casting machine was demonstrated. As described above, it has been found that by applying the support roll according to the present invention to a continuous casting machine, it is possible to reduce the amount of wear on the surface of the support roll while suppressing the occurrence of thermal cracks. Therefore, according to the present invention, the service life of the support roll can be further extended. As described above, the support roll according to the present invention can be suitably applied to a process in which a larger thermal load can be applied to the support roll, such as a continuous casting process.

<5.補足>
以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
<5. Supplement>
The preferred embodiments of the present invention have been described in detail above with reference to the accompanying drawings, but the present invention is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field to which the present invention pertains can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that these also belong to the technical scope of the present invention.

例えば、上記では、本発明に係る支持ロールが連続鋳造工程に適用される実施形態について説明したが、本発明はかかる例に限定されない。本発明に係る支持ロールは、当該支持ロールによって金属材料が支持及び運搬される工程であって、当該金属材料から当該支持ロールに対して熱負荷が加えられる工程であれば、他の工程に対しても適用可能である。本発明に係る支持ロールがこのような他の工程に適用された場合であっても、上述した効果と同様の効果を得ることができる。   For example, in the above, although the embodiment in which the support roll according to the present invention is applied to the continuous casting process has been described, the present invention is not limited to such an example. The support roll according to the present invention is a process in which a metal material is supported and transported by the support roll and is a process in which a thermal load is applied from the metal material to the support roll. Is applicable. Even when the support roll according to the present invention is applied to such other processes, the same effects as described above can be obtained.

10、10a、10b、10c 支持ロール
20 連続鋳造機
110 軸部材
120、120a、120b、120c ロール部
121、121a、121b、121c ロール部材
122、122a、122b、122c 開口部
123、123a、123b、123c スリット部
124 薄肉部


10, 10a, 10b, 10c Support roll 20 Continuous casting machine 110 Shaft member 120, 120a, 120b, 120c Roll part 121, 121a, 121b, 121c Roll member 122, 122a, 122b, 122c Opening part 123, 123a, 123b, 123c Slit part 124 Thin part


Claims (2)

金属材料を支持及び運搬する支持ロールであって、
前記支持ロールの回転軸方向に延伸する軸部材と、
前記軸部材に嵌合される円環形状を有し、前記回転軸方向に配列される複数のロール部材と、
を備え、
前記ロール部材の、外縁部を含む径方向に所定の長さを有する領域には、前記回転軸方向の厚さが他の領域よりも薄い薄肉部が形成され、
前記回転軸方向に隣り合う前記ロール部材の対向面間の前記薄肉部に対応する領域に、スリット部を有し、
前記ロール部材の外周部における前記スリット部の幅に対する前記スリット部の前記径方向の深さの比が、10以上である、ことを特徴とする、支持ロール。
A support roll for supporting and transporting a metal material,
A shaft member extending in the rotation axis direction of the support roll;
A plurality of roll members having an annular shape fitted to the shaft member and arranged in the rotation axis direction;
With
In the region having a predetermined length in the radial direction including the outer edge portion of the roll member, a thin portion having a thinner thickness in the rotation axis direction than the other region is formed,
In a region corresponding to the thin portion between the opposing surfaces of the roll members adjacent in the rotation axis direction , a slit portion is provided,
The ratio of the radial depth of the slit part to the width of the slit part in the outer peripheral part of the roll member is 10 or more .
前記支持ロールの径方向での断面における前記スリット部の形状は、前記径方向において内側に向かうにつれて前記スリット部の幅が一様に小さくなるくさび型である、
ことを特徴とする、請求項1に記載の支持ロール。
The shape of the slit portion in the cross section in the radial direction of the support roll is a wedge shape in which the width of the slit portion uniformly decreases toward the inside in the radial direction.
The support roll according to claim 1, wherein
JP2014038815A 2014-02-28 2014-02-28 Support roll Active JP6248701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014038815A JP6248701B2 (en) 2014-02-28 2014-02-28 Support roll

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014038815A JP6248701B2 (en) 2014-02-28 2014-02-28 Support roll

Publications (2)

Publication Number Publication Date
JP2015160246A JP2015160246A (en) 2015-09-07
JP6248701B2 true JP6248701B2 (en) 2017-12-20

Family

ID=54183709

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014038815A Active JP6248701B2 (en) 2014-02-28 2014-02-28 Support roll

Country Status (1)

Country Link
JP (1) JP6248701B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59148159U (en) * 1983-03-25 1984-10-03 川崎製鉄株式会社 Three roll for continuous casting machine
JPH10167444A (en) * 1996-12-05 1998-06-23 Ngk Insulators Ltd Carrying roller

Also Published As

Publication number Publication date
JP2015160246A (en) 2015-09-07

Similar Documents

Publication Publication Date Title
JP5598614B2 (en) Secondary cooling device and secondary cooling method for continuous casting machine
EP2839901B1 (en) Continuous casting mold and method for continuous casting of steel
EP2929956B1 (en) Continuous casting equipment
JP6003850B2 (en) Manufacturing method of continuous casting mold and continuous casting method of steel
JP5962733B2 (en) Steel continuous casting method
JP6947737B2 (en) Continuous steel casting method
JP6044614B2 (en) Steel continuous casting method
JP6248701B2 (en) Support roll
JP2015051443A (en) Continuous casting mold and continuous casting method for steel
JP2012240058A (en) Guide roll segment of continuous casting equipment
JP6787359B2 (en) Continuous steel casting method
EP3795274B1 (en) Continuous casting mold and method for continuous casting of steel
WO2018056322A1 (en) Continuous steel casting method
JP4992254B2 (en) Continuous casting mold and continuous casting method
JP6428721B2 (en) Continuous casting mold and steel continuous casting method
JP5712685B2 (en) Continuous casting method
JP2017030051A (en) Continuous casting method of steel
JP6394831B2 (en) Continuous casting mold and steel continuous casting method
JP2017100140A (en) Continuous casting method of steel
JP6295813B2 (en) Secondary cooling device and secondary cooling method for continuous casting machine
JP6520272B2 (en) Continuous casting mold and continuous casting method
JP6295814B2 (en) Light reduction device and continuous casting method for continuous casting apparatus
JP5148472B2 (en) Continuous casting mold
JP2022065814A (en) Mold for continuous casting and continuous casting method for steel
JP2016168610A (en) Steel continuous casting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161005

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170808

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20171005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171024

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171106

R151 Written notification of patent or utility model registration

Ref document number: 6248701

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350