JP6247959B2 - Process for producing 4-methyl-3,4-dihydro-2H-pyran - Google Patents
Process for producing 4-methyl-3,4-dihydro-2H-pyran Download PDFInfo
- Publication number
- JP6247959B2 JP6247959B2 JP2014037749A JP2014037749A JP6247959B2 JP 6247959 B2 JP6247959 B2 JP 6247959B2 JP 2014037749 A JP2014037749 A JP 2014037749A JP 2014037749 A JP2014037749 A JP 2014037749A JP 6247959 B2 JP6247959 B2 JP 6247959B2
- Authority
- JP
- Japan
- Prior art keywords
- acid
- methyl
- dihydro
- pyran
- αmdhp
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Landscapes
- Pyrane Compounds (AREA)
Description
本発明は4−メチル−3,4−ジヒドロ−2H−ピランの製造方法に関する。詳細には、本発明は、高い品質が求められる医農薬化合物の合成原料や電子材料の用途にも使用可能な、高純度の4−メチル−3,4−ジヒドロ−2H−ピランの製造方法に関する。 The present invention relates to a process for producing 4-methyl-3,4-dihydro-2H-pyran. Specifically, the present invention relates to a method for producing high-purity 4-methyl-3,4-dihydro-2H-pyran, which can be used as a raw material for synthesizing pharmaceutical and agrochemical compounds and electronic materials that require high quality. .
4−メチル−3,4−ジヒドロ−2H−ピランを含む3,4−ジヒドロ−2H−ピラン類は、有機合成反応における保護基(例えば水酸基の保護基)として有用であることが知られているほか、各種医農薬化合物の合成原料として有用である。また、近年、リチウムイオン電池やコンデンサの電解液、レジスト材料などの電子部品としての応用が期待されている。
4−メチル−3,4−ジヒドロ−2H−ピランの製造法としては、4−メチル−5,6−ジヒドロ−2H−ピランをルテニウム触媒および水素ガス存在下に異性化させる方法(特許文献1参照);VIII族、VIB族の金属触媒の存在下、3−メチル−3−ブテン−1−オールを一酸化炭素および水素と反応させる方法(特許文献2参照);3−メチルプロパン−1,5−ジオールを脱水および脱水素させる方法(特許文献3参照)などが挙げられる。
3,4-Dihydro-2H-pyrans including 4-methyl-3,4-dihydro-2H-pyran are known to be useful as protecting groups (for example, protecting groups for hydroxyl groups) in organic synthesis reactions. In addition, it is useful as a raw material for the synthesis of various medical and agrochemical compounds. In recent years, applications as electronic components such as lithium ion batteries, electrolytic solutions for capacitors, and resist materials are expected.
As a method for producing 4-methyl-3,4-dihydro-2H-pyran, 4-methyl-5,6-dihydro-2H-pyran is isomerized in the presence of a ruthenium catalyst and hydrogen gas (see Patent Document 1). ); A method of reacting 3-methyl-3-buten-1-ol with carbon monoxide and hydrogen in the presence of a group VIII or VIB metal catalyst (see Patent Document 2); 3-methylpropane-1,5 -The method of dehydrating and dehydrogenating diol (refer patent document 3) etc. are mentioned.
特許文献1の方法は、キシレンを溶媒として使用した場合、収率は92%と高いものの、生成物中の4−メチル−3,4−ジヒドロ−2H−ピランの純度は不明であり、精製に関する記述も一切ない。また原料である4−メチル−5,6−ジヒドロ−2H−ピランを工業的に安価に入手することが困難である。
特許文献2の方法では、3−メチル−3−ブテン−1−オールの転化率が73.5%のとき、4−メチル−3,4−ジヒドロ−2H−ピランの選択率は54%と不十分であり、反応選択率に改善の余地がある。特許文献3の方法では、反応の選択性に依然として改善の余地がある。
しかして、本発明の目的は、4−メチル−3,4−ジヒドロ−2H−ピランを工業的に有利に、安価に、かつ高純度で製造し得る方法を提供することにある。
In the method of Patent Document 1, when xylene is used as a solvent, the yield is as high as 92%, but the purity of 4-methyl-3,4-dihydro-2H-pyran in the product is unknown, and it relates to purification. There is no description at all. In addition, it is difficult to obtain 4-methyl-5,6-dihydro-2H-pyran as a raw material industrially at low cost.
In the method of Patent Document 2, when the conversion rate of 3-methyl-3-buten-1-ol is 73.5%, the selectivity of 4-methyl-3,4-dihydro-2H-pyran is 54%, which is not good. This is sufficient, and there is room for improvement in reaction selectivity. In the method of Patent Document 3, there is still room for improvement in reaction selectivity.
Therefore, an object of the present invention is to provide a method capable of producing 4-methyl-3,4-dihydro-2H-pyran industrially advantageously, inexpensively and with high purity.
本発明によれば、上記の目的は、
[1]2−ヒドロキシ−4−メチルテトラヒドロピランを酸および/または酸塩の存在下で脱水させる工程(1)を有することを特徴とする、4−メチル−3,4−ジヒドロ−2H−ピランの製造方法;
[2]酸および/または酸塩が、リン酸、硫酸、塩酸、硝酸、過塩素酸からなる群から選択される少なくとも1種の無機酸または前記無機酸の塩である、[1]の4−メチル−3,4−ジヒドロ−2H−ピランの製造方法;
[3]工程(1)で得られる4−メチル−3,4−ジヒドロ−2H−ピランを含む反応生成物にアミン化合物を添加した後に、蒸留して4−メチル−3,4−ジヒドロ−2H−ピランを取得する工程(2)をさらに有する、[1]の4−メチル−3,4−ジヒドロ−2H−ピランの製造方法;
[4]アミン化合物の添加量が、工程(1)で得られる4−メチル−3,4−ジヒドロ−2H−ピランを含む反応生成物の質量に対して0.5〜50質量%の範囲である、[3]の4−メチル−3,4−ジヒドロ−2H−ピランの製造方法;および
[5]アミン化合物が、大気圧下で130℃以上の沸点を有する1級または2級アミンである、[3]または[4]の4−メチル−3,4−ジヒドロ−2H−ピランの製造方法;
を提供することにより達成される。
According to the present invention, the above object is
[1] 4-methyl-3,4-dihydro-2H-pyran comprising the step (1) of dehydrating 2-hydroxy-4-methyltetrahydropyran in the presence of an acid and / or acid salt Manufacturing method of
[2] 4 of [1], wherein the acid and / or acid salt is at least one inorganic acid selected from the group consisting of phosphoric acid, sulfuric acid, hydrochloric acid, nitric acid, and perchloric acid, or a salt of the inorganic acid. -Method for producing methyl-3,4-dihydro-2H-pyran;
[3] An amine compound is added to the reaction product containing 4-methyl-3,4-dihydro-2H-pyran obtained in step (1), and then distilled to 4-methyl-3,4-dihydro-2H. -The method for producing 4-methyl-3,4-dihydro-2H-pyran according to [1], further comprising a step (2) of obtaining pyran;
[4] The addition amount of the amine compound is in the range of 0.5 to 50% by mass with respect to the mass of the reaction product containing 4-methyl-3,4-dihydro-2H-pyran obtained in step (1). [3] A process for producing 4-methyl-3,4-dihydro-2H-pyran according to [3]; and [5] the amine compound is a primary or secondary amine having a boiling point of 130 ° C. or higher under atmospheric pressure. , [3] or [4] of 4-methyl-3,4-dihydro-2H-pyran;
Is achieved by providing
本発明によれば、医農薬化合物の合成原料、リチウムイオン電池やコンデンサの電解液、レジスト材料などの電子部品などの電子材料の用途にも使用可能な、高純度の4−メチル−3,4−ジヒドロ−2H−ピランを工業的に有利に、安価にかつ高純度で製造できる。 According to the present invention, high-purity 4-methyl-3,4, which can be used for electronic materials such as synthetic raw materials for medical and agricultural chemical compounds, electrolytes for lithium ion batteries and capacitors, and electronic parts such as resist materials. -Dihydro-2H-pyran can be produced industrially advantageously, inexpensively and with high purity.
本発明の4−メチル−3,4−ジヒドロ−2H−ピラン(以下、αMDHPと略称する)の製造方法は、2−ヒドロキシ−4−メチルテトラヒドロピラン(以下、MHPと略称する)を酸および/または酸塩の存在下で脱水させる工程(1)を有する。
好適には、本発明のαMDHPの製造方法は、上記工程(1)で得られるαMDHPを含む反応生成物にアミン化合物を添加した後に、蒸留してαMDHPを取得する工程(2)をさらに有する。以下、各工程について説明する。
The method for producing 4-methyl-3,4-dihydro-2H-pyran (hereinafter abbreviated as αMDHP) of the present invention comprises converting 2-hydroxy-4-methyltetrahydropyran (hereinafter abbreviated as MHP) to an acid and / or Or it has the process (1) dehydrated in presence of an acid salt.
Suitably, the manufacturing method of (alpha) MDHP of this invention further has the process (2) which, after adding an amine compound to the reaction product containing (alpha) MDHP obtained at the said process (1), distills and acquires (alpha) MDHP. Hereinafter, each step will be described.
本発明の方法で出発原料として用いるMHPは、例えば特許4890107号に記載されているとおり、3−メチル−3−ブテン−1−オールをロジウム化合物の存在下に一酸化炭素および水素と反応させる方法によって工業的に得ることができる。 MHP used as a starting material in the method of the present invention is a method in which 3-methyl-3-buten-1-ol is reacted with carbon monoxide and hydrogen in the presence of a rhodium compound, as described in, for example, Japanese Patent No. 4890107. Can be obtained industrially.
本発明の方法の工程(1)で用いる酸および/または酸塩の種類に特に制限はなく、有機酸、無機酸、有機酸の塩、無機酸の塩、固体酸、酸性イオン交換樹脂などのいずれをも用いることができる。
有機酸としては、例えばp−トルエンスルホン酸、ベンゼンスルホン酸、メタンスルホン酸、トリフルオロメタンスルホン酸、カンファースルホン酸、フルオロスルホン酸などのスルホン酸;メチルホスホン酸、エチルホスホン酸、プロピルホスホン酸、イソプロピルホスホン酸、n−ブチルホスホン酸、tert−ブチルホスホン酸、n−ヘキシルホスホン酸、n−オクチルホスホン酸、n−デシルホスホン酸、フェニルホスホン酸などのホスホン酸;ギ酸、酢酸、プロピオン酸、ブタン酸、ペンタン酸、ヘキサン酸、ヘプタン酸、オクタン酸などのカルボン酸が挙げられる。
有機酸の塩としては、前記したスルホン酸、ホスホン酸、カルボン酸などのアルカリ金属塩、アルカリ土類金属塩、遷移金属塩などが挙げられる。
無機酸としては、例えばリン酸、硫酸、塩酸、硝酸、過塩素酸、ポリリン酸などが挙げられる。
無機酸の塩としては、前記した無機酸のアルカリ金属塩、アルカリ土類金属塩、遷移金属塩などが挙げられ、例えばリン酸水素カリウム、リン酸水素ナトリウム、硫酸水素カリウム、硫酸水素ナトリウムなどが挙げられる。
固体酸としては、例えばγアルミナ、ゼオライト、およびこれらに金属などの他元素をドープした固体酸などが挙げられる。
酸性イオン交換樹脂としては、例えばアンバーリスト15、アンバーリスト16〔いずれも商品名、ローム&ハース(株)社製〕、ダウエックス マラソンC〔商品名、ダウケミカル社製〕、ダイアイオン SK−1Bの酸型〔商品名、三菱化学(株)社製〕などが挙げられる。
入手の容易さ、取扱いの容易さ、反応の選択性および反応を円滑に進行させる観点などを考慮すると、上記した中でも無機酸または無機酸の塩が好ましく、リン酸、硫酸、塩酸、硝酸、過塩素酸からなる群から選択される少なくとも1種の無機酸または前記無機酸の塩であるのがより好ましく、リン酸、硫酸水素カリウム、硫酸水素ナトリウムがさらに好ましく、リン酸または硫酸水素カリウムが特に好ましい。
There are no particular limitations on the type of acid and / or acid salt used in step (1) of the method of the present invention, and examples include organic acids, inorganic acids, organic acid salts, inorganic acid salts, solid acids, acidic ion exchange resins, and the like. Either can be used.
Examples of the organic acid include sulfonic acids such as p-toluenesulfonic acid, benzenesulfonic acid, methanesulfonic acid, trifluoromethanesulfonic acid, camphorsulfonic acid, and fluorosulfonic acid; methylphosphonic acid, ethylphosphonic acid, propylphosphonic acid, isopropylphosphonic acid Phosphonic acids such as acids, n-butylphosphonic acid, tert-butylphosphonic acid, n-hexylphosphonic acid, n-octylphosphonic acid, n-decylphosphonic acid, phenylphosphonic acid; formic acid, acetic acid, propionic acid, butanoic acid, Examples thereof include carboxylic acids such as pentanoic acid, hexanoic acid, heptanoic acid, and octanoic acid.
Examples of the organic acid salt include alkali metal salts such as sulfonic acid, phosphonic acid, and carboxylic acid, alkaline earth metal salts, and transition metal salts.
Examples of inorganic acids include phosphoric acid, sulfuric acid, hydrochloric acid, nitric acid, perchloric acid, and polyphosphoric acid.
Examples of the inorganic acid salt include alkali metal salts, alkaline earth metal salts, transition metal salts of the inorganic acids described above, and examples thereof include potassium hydrogen phosphate, sodium hydrogen phosphate, potassium hydrogen sulfate, and sodium hydrogen sulfate. Can be mentioned.
Examples of solid acids include γ-alumina, zeolite, and solid acids doped with other elements such as metals.
Examples of the acidic ion exchange resin include Amberlist 15, Amberlist 16 [both trade names, manufactured by Rohm & Haas Co., Ltd.], Dowex Marathon C [trade names, manufactured by Dow Chemical Co.], Diaion SK-1B. Acid type [trade name, manufactured by Mitsubishi Chemical Corporation] and the like.
In view of ease of acquisition, ease of handling, selectivity of the reaction, and viewpoint of smoothly proceeding the reaction, inorganic acids or salts of inorganic acids are preferred among the above, and phosphoric acid, sulfuric acid, hydrochloric acid, nitric acid, excess More preferably, it is at least one inorganic acid selected from the group consisting of chloric acid or a salt of said inorganic acid, more preferably phosphoric acid, potassium hydrogen sulfate, sodium hydrogen sulfate, and particularly phosphoric acid or potassium hydrogen sulfate. preferable.
酸および/または酸塩の使用量に厳密な意味での制限はないが、有機酸、有機酸の塩、無機酸、無機酸の塩を用いる場合には、MHPの分解やαMDHPの重合などの副反応を抑制する観点から、通常、最初に反応器に仕込むMHPに対しての仕込み量比として0.005mol%〜15mol%の範囲が好ましく、0.05mol%〜10mol%の範囲がより好ましい。
一方、固体酸または酸性イオン交換樹脂を用いる場合には、反応開始時に反応系内に存在する反応液の容積量に対して、通常0.5〜20質量%の範囲が好ましい。
なお、本発明の製造方法の工程(1)は、後述するとおり、酸および/または酸塩が存在する反応系にMHPを連続的または間欠的に添加して、反応の進行に伴って生成するαMDHPを反応系外へ除去しながら反応を行うことが好ましい。係る場合には、反応系内に存在させる酸および/または酸塩の量は、通常、最初に反応器へ仕込むMHPに対しての質量比として0.05mol%〜10mol%の範囲が好ましい。
There is no strict limitation on the amount of acid and / or acid salt used. However, when using an organic acid, a salt of an organic acid, an inorganic acid, or a salt of an inorganic acid, such as decomposition of MHP or polymerization of αMDHP. From the viewpoint of suppressing side reactions, usually, the charge amount ratio with respect to MHP initially charged in the reactor is preferably in the range of 0.005 mol% to 15 mol%, more preferably in the range of 0.05 mol% to 10 mol%.
On the other hand, when a solid acid or acidic ion exchange resin is used, the range of 0.5 to 20% by mass is usually preferable with respect to the volume of the reaction solution present in the reaction system at the start of the reaction.
In addition, as described later, step (1) of the production method of the present invention is produced as MHP is continuously or intermittently added to a reaction system in which an acid and / or an acid salt are present, and the reaction proceeds. It is preferable to carry out the reaction while removing αMDHP out of the reaction system. In such a case, the amount of acid and / or acid salt present in the reaction system is usually preferably in the range of 0.05 mol% to 10 mol% as the mass ratio with respect to MHP initially charged into the reactor.
本発明の製造方法の工程(1)は、溶媒の存在下または不存在下で行うことができる。溶媒の存在下で行う場合、溶媒の種類はMHPを酸および/または酸塩の存在下で脱水させる反応に影響を及ぼさず、および反応の目的生成物であるαMDHPに対して不活性であれば特に制限はなく、例えばヘキサン、ヘプタン、オクタン、ノナン、デカン、ドデカン、ペンタデカン、流動パラフィンなどの飽和脂肪族炭化水素;ベンゼン、トルエン、エチルベンゼン、キシレン、クメン、メシチレン、ジイソプロピルベンゼン、ナフタレンなどの芳香族炭化水素;ジイソプロピルエーテル、ジブチルエーテル、ジイソアミルエーテル、ジオクチルエーテル、テトラヒドロフラン、テトラヒドロピラン、ジオキサン、2−メチルテトラヒドロフラン、4−メチルテトラヒドロピラン、シクロペンチルメチルエーテルなどの鎖状または環状の飽和エーテル;1,3−ジメチル−2−オキサゾリジノン、ジメチルスルホキシド、スルホラン、ヘキサメチルホスホリックトリアミド、アセトニトリル、N,N−ジメチルホルムアミド、N−メチルピロリドン、α−メチル−γ−ブチロラクトンなどの非プロトン性極性溶媒;などが挙げられる。溶媒を用いる場合、その使用量に特に制限はない。本発明の方法で溶媒を用いる場合には、生成物であるαMDHPとの分離容易性の観点から、大気圧において、αMDHPの沸点よりも高い沸点を有することが極めて好ましく、具体的には、大気圧において、αMDHPの沸点よりも15℃以上高い沸点を有することが好ましく、30℃以上高い沸点であることがより好ましく、50℃以上高い沸点であることがさらに好ましい。 Step (1) of the production method of the present invention can be performed in the presence or absence of a solvent. When carried out in the presence of a solvent, the type of solvent should not affect the reaction of dehydrating MHP in the presence of an acid and / or acid salt and is inert to αMDHP, the target product of the reaction. There is no particular limitation, for example, saturated aliphatic hydrocarbons such as hexane, heptane, octane, nonane, decane, dodecane, pentadecane, and liquid paraffin; aromatics such as benzene, toluene, ethylbenzene, xylene, cumene, mesitylene, diisopropylbenzene, and naphthalene Hydrocarbons: linear or cyclic such as diisopropyl ether, dibutyl ether, diisoamyl ether, dioctyl ether, tetrahydrofuran, tetrahydropyran, dioxane, 2-methyltetrahydrofuran, 4-methyltetrahydropyran, cyclopentylmethyl ether Japanese ether; aprotic such as 1,3-dimethyl-2-oxazolidinone, dimethyl sulfoxide, sulfolane, hexamethylphosphoric triamide, acetonitrile, N, N-dimethylformamide, N-methylpyrrolidone, α-methyl-γ-butyrolactone Polar solvent; and the like. When using a solvent, there is no restriction | limiting in particular in the usage-amount. When using a solvent in the method of the present invention, from the viewpoint of ease of separation from the product αMDHP, it is extremely preferable to have a boiling point higher than that of αMDHP at atmospheric pressure. In atmospheric pressure, the boiling point is preferably 15 ° C. or higher than that of αMDHP, more preferably 30 ° C. or higher, and even more preferably 50 ° C. or higher.
本発明の製造方法の工程(1)は、反応が進行する限りにおいて反応温度、反応時間、反応圧力、反応の雰囲気などに特に制限はない。反応温度は通常、好ましくは50℃〜250℃の範囲であり、反応を円滑に進行させる観点から80℃〜200℃の範囲がより好ましく、100℃〜200℃の範囲がさらに好ましい。反応時間は反応の実施の形態や進行の程度によっても異なりうるが、通常、1分〜48時間であるのが好ましい。反応は、大気圧下でも減圧下でも加圧下でもいずれの圧力条件でも実施することができる。反応は窒素、ヘリウム、アルゴンなどの不活性ガス雰囲気下で行うのが好ましいが、反応の進行を阻害しない限りにおいて空気雰囲気下であってもよい。 In step (1) of the production method of the present invention, the reaction temperature, reaction time, reaction pressure, reaction atmosphere and the like are not particularly limited as long as the reaction proceeds. The reaction temperature is usually preferably in the range of 50 ° C to 250 ° C, more preferably in the range of 80 ° C to 200 ° C, and still more preferably in the range of 100 ° C to 200 ° C from the viewpoint of allowing the reaction to proceed smoothly. Although the reaction time may vary depending on the embodiment of the reaction and the degree of progress, it is usually preferably 1 minute to 48 hours. The reaction can be carried out under atmospheric pressure, reduced pressure, or increased pressure. The reaction is preferably performed in an inert gas atmosphere such as nitrogen, helium, or argon, but may be in an air atmosphere as long as the progress of the reaction is not hindered.
本発明の製造方法の工程(1)の反応形式に特に制限はなく、回分式反応でも連続式反応でも他の反応形式のいずれでもよい。本発明の製造方法の工程(1)では、酸および/または酸塩、ならびに必要に応じて溶媒の混合物の存在する反応系内に、MHPを間欠的または連続的に添加し、αMDHPを含む反応生成物を連続的に反応系外に留出させながら反応を行うことが好ましい。なお、必要に応じて、MHPを間欠的または連続的に添加する際に、酸および/または酸塩を反応系に追加してもよい。 There is no restriction | limiting in particular in the reaction form of the process (1) of the manufacturing method of this invention, Any of a batch type reaction, a continuous type reaction, or another reaction form may be sufficient. In step (1) of the production method of the present invention, MHP is intermittently or continuously added to a reaction system in which a mixture of an acid and / or an acid salt and, if necessary, a solvent is present, and a reaction containing αMDHP. It is preferable to carry out the reaction while continuously distilling the product out of the reaction system. In addition, when adding MHP intermittently or continuously as needed, an acid and / or an acid salt may be added to the reaction system.
工程(1)で得られるαMDHPを含む反応生成物中には、主な副生成物として例えば次式のようなアルデヒド化合物類が含まれている。これらのアルデヒド化合物類はαMDHPとの沸点差が小さいため[沸点(大気圧):MHP 188℃、αMDHP 117℃、アルデヒド化合物(1−a)116℃、アルデヒド化合物(1−b)126℃、アルデヒド化合物(1−c)123℃]単に工程(1)で得られるαMDHPを含む反応生成物を蒸留するのみでは、純度の高いαMDHPを収率良く得ることは困難である。
本発明の方法では、工程(1)で得られるαMDHPを含む反応生成物にアミン化合物を添加した後に、蒸留してαMDHPを取得する工程(2)をさらに有することで純度の高いαMDHPを収率よく得ることができる。
In the reaction product containing αMDHP obtained in the step (1), for example, aldehyde compounds represented by the following formula are included as main by-products. Since these aldehyde compounds have a small difference in boiling point from αMDHP [boiling point (atmospheric pressure): MHP 188 ° C., αMDHP 117 ° C., aldehyde compound (1-a) 116 ° C., aldehyde compound (1-b) 126 ° C., aldehyde Compound (1-c) 123 ° C.] By simply distilling the reaction product containing αMDHP obtained in step (1), it is difficult to obtain αMDHP with high purity in a high yield.
In the method of the present invention, after adding an amine compound to the reaction product containing αMDHP obtained in the step (1), the method further includes a step (2) of obtaining αMDHP by distillation to obtain a highly pure αMDHP. Can get well.
本発明の方法の工程(2)で用いるアミン化合物としては、大気圧下での沸点が130℃以上の1級または2級アミン化合物が好ましい。かかる1級アミン化合物としては、例えばヘキシルアミン、ヘプチルアミン、オクチルアミン、2−エチルヘキシルアミン、ノニルアミン、デシルアミン、ウンデシルアミン、ドデシルアミン、ベンジルアミン、4−フェニルブチルアミン、2−フェニルブチルアミンなどが挙げられ、2級アミン化合物としては、例えばジ(2−エチルヘキシル)アミン、ジイソブチルアミン、ジオクチルアミン、ジベンジルアミン、ジフェニルアミンなどが挙げられる。これらのアミン化合物は1種を単独で使用しても良いし、2種類以上を併用してもよい。アミン化合物の沸点は、工程(2)での蒸留操作におけるαMDHPとの分離容易性の観点から、大気圧において、αMDHPの沸点よりも高い沸点を有することが極めて好ましく、具体的には、大気圧においてαMDHPの沸点よりも15℃以上高い沸点を有することが好ましく、30℃以上高い沸点であることがより好ましく、50℃以上高い沸点であることがさらに好ましい。 The amine compound used in step (2) of the method of the present invention is preferably a primary or secondary amine compound having a boiling point of 130 ° C. or higher under atmospheric pressure. Examples of such primary amine compounds include hexylamine, heptylamine, octylamine, 2-ethylhexylamine, nonylamine, decylamine, undecylamine, dodecylamine, benzylamine, 4-phenylbutylamine, 2-phenylbutylamine and the like. Examples of the secondary amine compound include di (2-ethylhexyl) amine, diisobutylamine, dioctylamine, dibenzylamine, diphenylamine and the like. These amine compounds may be used individually by 1 type, and may use 2 or more types together. From the viewpoint of ease of separation from αMDHP in the distillation operation in the step (2), the amine compound has a boiling point that is higher than the boiling point of αMDHP at atmospheric pressure. It is preferable that it has a boiling point 15 ° C. or higher than that of αMDHP, more preferably 30 ° C. or higher, and even more preferably 50 ° C. or higher.
工程(2)において、アミン化合物の添加量には厳密な意味での制限はないが、工程(2)の操作性などの観点から、通常、好ましくは工程(1)で得られるαMDHPを含む反応生成物の質量に対して0.01〜50質量%の範囲であり、より好ましくは0.1〜20質量%の範囲である。また、好ましくは工程(1)で得られるαMDHPを含む反応生成物中のαMDHPの質量に対して0.01〜50質量%の範囲であり、より好ましくは0.1〜20質量%の範囲である。なお、かかるアミン化合物の添加量は、工程(1)で得られるαMDHPを含む反応生成物中に含まれる上述したアルデヒド化合物類に対して等モル以上であることを満たしているのが好ましく、等モル〜10モル倍の範囲が好ましく、2〜5モル倍の範囲がより好ましい。
なお、工程(1)で得られるαMDHPを含む反応生成物中のαMDHPの量、およびアルデヒド化合物類の量は、該反応生成物の1H−NMR分析または内部標準法を用いたガスクロマトグラフィー分析によって算出することができる。
In step (2), the addition amount of the amine compound is not strictly limited, but from the viewpoint of the operability of step (2) and the like, the reaction containing αMDHP usually obtained in step (1) is preferable. It is the range of 0.01-50 mass% with respect to the mass of a product, More preferably, it is the range of 0.1-20 mass%. Moreover, Preferably it is the range of 0.01-50 mass% with respect to the mass of (alpha) MDHP in the reaction product containing (alpha) MDHP obtained at a process (1), More preferably, it is the range of 0.1-20 mass%. is there. In addition, it is preferable that the addition amount of this amine compound is satisfy | filling that it is equimolar or more with respect to the aldehyde compounds mentioned above contained in the reaction product containing (alpha) MDHP obtained at a process (1), etc. The range of mol-10 mol times is preferable and the range of 2-5 mol times is more preferable.
The amount of αMDHP in the reaction product containing αMDHP obtained in step (1) and the amount of aldehyde compounds are determined by 1 H-NMR analysis of the reaction product or gas chromatography analysis using an internal standard method. Can be calculated.
工程(2)において、アミン化合物の添加の形態には特に制限はない。そのまま添加しても良いし、溶媒、好ましくはαMDHPと共沸せず十分な沸点差を有する溶媒に該アミン化合物を溶解させた溶液の形態で添加してもよい。かかる溶媒としては、例えば工程(1)で必要に応じて使用できる溶媒と同種の溶媒が挙げられる。
また、アミン化合物の添加方法にも特に制限はなく、工程(1)で得られるαMDHPを含む反応生成物にアミン化合物またはアミン化合物の溶液を一括または連続的に添加することも、アミン化合物またはアミン化合物の溶液に工程(1)で得られるαMDHPを含む反応生成物を一括または連続的に添加しても良い。工業的には、例えば工程(1)で得られるαMDHPを含む反応生成物およびアミン化合物をラインミキサーに供給して混合するか別途槽内で混合した後に蒸留する方法などが、好適な実施形態として挙げられる。
In the step (2), there is no particular limitation on the form of addition of the amine compound. The amine compound may be added as it is, or in the form of a solution in which the amine compound is dissolved in a solvent, preferably a solvent that does not azeotrope with αMDHP and has a sufficient boiling point difference. As such a solvent, for example, the same type of solvent as that which can be used as necessary in the step (1) can be mentioned.
There is no particular limitation on the method of adding the amine compound, and the amine compound or a solution of the amine compound may be added all at once or continuously to the reaction product containing αMDHP obtained in step (1). The reaction product containing αMDHP obtained in step (1) may be added to the compound solution all at once or continuously. Industrially, for example, a method in which the reaction product containing αMDHP obtained in step (1) and an amine compound are fed to a line mixer for mixing or separately mixed in a tank and then distilled as a preferred embodiment. Can be mentioned.
工程(2)において、アミン化合物を添加した後の蒸留の条件や形式はMHPおよびアミン化合物が目的生成物のαMDHPと分離できれば特に制限はなく、大気圧下でも減圧下でも、回分方式でも連続方式であってもよい。好ましくは、蒸留操作時におけるαMDHPの熱安定性の観点から、蒸留を15kPa〜80kPaの減圧下で行うことが好ましく、40kPa〜70kPaがより好ましい。かかる圧力範囲に設定した減圧条件で蒸留を行えば、蒸留釜中の液の温度を50℃〜110℃、好ましくは70℃〜100℃の範囲に設定してαMDHPを蒸留により取得できるので、αMDHPの熱安定性の観点からも有利となる。 In the step (2), there are no particular restrictions on the distillation conditions and form after adding the amine compound, as long as the MHP and the amine compound can be separated from the target product αMDHP. At atmospheric pressure, reduced pressure, batch system or continuous system It may be. Preferably, from the viewpoint of thermal stability of αMDHP during the distillation operation, the distillation is preferably performed under a reduced pressure of 15 kPa to 80 kPa, and more preferably 40 kPa to 70 kPa. If distillation is performed under a reduced pressure condition set in such a pressure range, αMDHP can be obtained by distillation by setting the temperature of the liquid in the distillation kettle to 50 ° C to 110 ° C, preferably in the range of 70 ° C to 100 ° C. This is also advantageous from the viewpoint of thermal stability.
工程(2)の蒸留操作においては、エーテル化合物であるαMDHPからの過酸化物の生成および濃縮を抑制し、蒸留収率向上および安全性を確保する観点から、トリフェニルホスフィン、ジエチルフェニルホスフィン、フェニルジブチルホスフィン、フェニルジイソプロピルホスフィン、1,1−ビス(ジフェニルホスフィノ)メタン、1,1−ビス(ジフェニルホスフィノ)エタンなどのホスフィン化合物;フェニルメチルスルフィドなどのスルフィド化合物;脂肪族アミンなどのアミン化合物をアルミナやシリカゲルなどに担持させた処理剤(特開平6−248250号参照);などを、αMDHPを含む反応生成液に対して1〜20質量%の範囲で共存させておくことが好ましい。 In the distillation operation of step (2), triphenylphosphine, diethylphenylphosphine, phenyl are used from the viewpoint of suppressing the generation and concentration of peroxide from αMDHP, which is an ether compound, and improving the distillation yield and ensuring safety. Phosphine compounds such as dibutylphosphine, phenyldiisopropylphosphine, 1,1-bis (diphenylphosphino) methane, 1,1-bis (diphenylphosphino) ethane; sulfide compounds such as phenylmethyl sulfide; amine compounds such as aliphatic amines It is preferable that a processing agent (see Japanese Patent Application Laid-Open No. 6-248250) on which alumina is supported on alumina, silica gel or the like coexist in a range of 1 to 20% by mass with respect to the reaction product liquid containing αMDHP.
なお、本発明の方法の工程(1)で得られるαMDHPを含む反応生成物中にアルデヒド化合物類が含まれる理由としては、例えば原料のMHPが工程(1)の反応条件においてその少なくとも一部が開環し、次いで脱水が起こることにより生成すると考えられる(下式を参照)。 The reason why the aldehyde compounds are contained in the reaction product containing αMDHP obtained in step (1) of the method of the present invention is, for example, that at least a part of the raw material MHP is the reaction condition in step (1). It is thought to be formed by ring opening and subsequent dehydration (see formula below).
工程(2)において、蒸留を行う前にアルデヒド化合物類が消失していることをガスクロマトグラフィー分析やNMR分析などの手段で確認しておくことが好ましい。 In the step (2), it is preferable to confirm that aldehyde compounds have disappeared by means such as gas chromatography analysis or NMR analysis before distillation.
以下、実施例により本発明を具体的に説明するが、本発明はこれらの実施例により何ら限定されない。なお、ガスクロマトグラフィーでの測定は下記の条件で行なった。
分析機器:GC−14A(株式会社島津製作所製)
検出機器:FID(水素炎イオン化型検出器)(株式会社島津製作所製)
使用カラム:CBP−1(長さ50m、内径0.22mm、膜厚0.25μm)
(一般財団法人 化学物質評価研究機構製)
分析条件:Injection Temp. 250℃、
Detection Temp. 250℃
昇温温度条件:50℃(5分)→10℃/分で昇温→250℃
EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited at all by these Examples. The measurement by gas chromatography was performed under the following conditions.
Analytical instrument: GC-14A (manufactured by Shimadzu Corporation)
Detection equipment: FID (hydrogen flame ionization detector) (manufactured by Shimadzu Corporation)
Column used: CBP-1 (length 50 m, inner diameter 0.22 mm, film thickness 0.25 μm)
(Manufactured by Chemical Substance Evaluation Research Organization)
Analysis conditions: Injection Temp. 250 ° C,
Detection Temp. 250 ° C
Temperature rising temperature condition: 50 ° C. (5 minutes) → Temperature rising at 10 ° C./min → 250 °
実施例1
[工程(1)]
温度計、滴下漏斗、メカニカルスターラー、冷却管および受器を備えた内容量100mlの三口フラスコに、窒素雰囲気下、窒素雰囲気下でMHP60gおよびリン酸0.12g(MHPに対して0.2mol%)を入れた。ついで液温が180℃となるまで昇温させ、滴下漏斗からMHP1200gをゆっくりと滴下しながら、αMDHPを含む反応生成物を蒸留により受器へ連続的に抜き出し、13時間反応を行った。反応終了後、受器内の反応生成物から有機層を分離し、ガスクロマトグラフィ−で分析したところ、MHPの転化率は95%、αMDHPの選択率は97%であった。有機層の回収量は1040gであり、各成分の含有量(GC面積%)はαMDHP96.0%、MHP1.5%、アルデヒド化合物類2.1%、その他0.4%であった。
[工程(2)]
温度計、電磁攪拌装置、ガス吹き込み口およびサンプリング口を備えた内容量1000mlの三口フラスコに、上記工程(1)で得られたαMDHP、MHP、アルデヒド化合物類およびその他の成分を含む反応生成物(有機層の部分)730gおよびn−オクチルアミン36g(反応生成物中のαMDHPの含有量に対して概ね5質量%に相当)を入れ、バス温度を80℃に設定して3時間撹拌後(内温は77.9〜81.0℃であった)にガスクロマトグラフィーで内容物を分析したところ、各成分の含有量(GC面積%)はαMDHP96.0%、MHP1.5%、その他の成分2.5%であり、アルデヒド化合物類は消失していた。トリフェニルホスフィン36g(反応生成物に対して5質量%)を添加し、理論段数10段の蒸留塔を用いて熱媒温度110℃、還流比3、減圧度46kPaの条件で蒸留精製を行うことで、純度99.9%以上のαMDHPを蒸留収率90%で得た。
Example 1
[Step (1)]
In a three-necked flask with an internal volume of 100 ml equipped with a thermometer, dropping funnel, mechanical stirrer, condenser and receiver, in a nitrogen atmosphere, under a nitrogen atmosphere, MHP 60 g and phosphoric acid 0.12 g (0.2 mol% with respect to MHP) Put. Next, the temperature was raised until the liquid temperature reached 180 ° C., and 1200 g of MHP was slowly dropped from the dropping funnel, and the reaction product containing αMDHP was continuously extracted into the receiver by distillation and reacted for 13 hours. After completion of the reaction, the organic layer was separated from the reaction product in the receiver and analyzed by gas chromatography. The conversion rate of MHP was 95% and the selectivity for αMDHP was 97%. The recovered amount of the organic layer was 1040 g, and the content (GC area%) of each component was αMDHP 96.0%, MHP 1.5%, aldehyde compounds 2.1%, and other 0.4%.
[Step (2)]
Reaction product containing αMDHP, MHP, aldehyde compounds and other components obtained in the above step (1) in a three-necked flask having an internal volume of 1000 ml equipped with a thermometer, an electromagnetic stirring device, a gas blowing port and a sampling port ( 730 g of organic layer) and 36 g of n-octylamine (equivalent to about 5% by mass with respect to the content of αMDHP in the reaction product) were added, and the bath temperature was set to 80 ° C. and stirred for 3 hours (inside When the contents were analyzed by gas chromatography at a temperature of 77.9-81.0 ° C., the content of each component (GC area%) was αMDHP 96.0%, MHP 1.5%, other components The aldehyde compounds were disappeared at 2.5%. Add 36 g of triphenylphosphine (5% by mass with respect to the reaction product) and perform distillation purification using a distillation column with 10 theoretical plates under conditions of a heating medium temperature of 110 ° C., a reflux ratio of 3 and a degree of vacuum of 46 kPa. Thus, αMDHP having a purity of 99.9% or more was obtained with a distillation yield of 90%.
実施例2
実施例1の工程(1)において、温度計、滴下漏斗、メカニカルスターラー、冷却管および受器を備えた内容量100mlの三口フラスコに、窒素雰囲気下でMHP140gおよび硫酸水素カリウム1.6g(MHPに対して0.9mol%)、溶媒として流動パラフィンを40g加えた。ついで液温が200℃となるまで昇温させ、滴下漏斗からMHPgをゆっくりと滴下しながら、生成するαMDHPを含む反応生成物を蒸留により受器へ連続的に抜き出し、13時間反応を行った。その結果、MHPの転化率は98%、αMDHPへの選択率は96%であった。次いで、実施例1の工程(2)と同様の蒸留精製条件によって蒸留を行うことで、純度99.9%以上のαMDHPを蒸留収率90%で得た。
Example 2
In step (1) of Example 1, in a 100 ml three-necked flask equipped with a thermometer, a dropping funnel, a mechanical stirrer, a condenser tube and a receiver, 140 g of MHP and 1.6 g of potassium hydrogen sulfate (into MHP) were added in a nitrogen atmosphere. 40 mol of liquid paraffin was added as a solvent. Next, the temperature was raised until the liquid temperature reached 200 ° C., while slowly adding MHPg from the dropping funnel, the reaction product containing αMDHP to be produced was continuously extracted into the receiver by distillation and reacted for 13 hours. As a result, the conversion rate of MHP was 98%, and the selectivity to αMDHP was 96%. Subsequently, by performing distillation under the same distillation purification conditions as in step (2) of Example 1, αMDHP having a purity of 99.9% or more was obtained with a distillation yield of 90%.
実施例3
実施例1の工程(2)においてオクチルアミン36gの代わりにジ(2−エチルヘキシル)アミン70g(反応混合液中のαMDHPの含有量に対して概ね10質量%に相当)を使用したこと以外は、実施例1と同様の操作を行った。その結果、純度99.9%以上のαMDHPを蒸留収率88%で得た。
Example 3
Except for using 70 g of di (2-ethylhexyl) amine (equivalent to approximately 10% by mass with respect to the content of αMDHP in the reaction mixture) instead of 36 g of octylamine in the step (2) of Example 1, The same operation as in Example 1 was performed. As a result, αMDHP having a purity of 99.9% or more was obtained with a distillation yield of 88%.
実施例4
実施例1の工程(1)において、温度計、滴下漏斗、メカニカルスターラー、冷却管および受器を備えた内容量1000mlの三口フラスコに、窒素雰囲気下、窒素雰囲気下でMHP60gおよびリン酸0.12g(MHPに対して0.2mol%)を入れた。ついで液温が180℃となるまで昇温させ、滴下漏斗からMHP745gをゆっくりと滴下しながら、9時間反応を行った。反応終了後、反応混合液からαMDHPを含む有機層を分離したのち、ガスクロマトグラフィーで内容物を分析した結果、MHPの転化率は90%、αMDHPへの選択率は96%であった。次いで単蒸留装置によって未反応のMHPを除去したのち、実施例1の工程(2)と同様の蒸留精製条件によって蒸留を行うことで、純度99.9%以上のαMDHPを蒸留収率84%で得た。
Example 4
In step (1) of Example 1, in a three-necked flask having an internal volume of 1000 ml equipped with a thermometer, a dropping funnel, a mechanical stirrer, a condenser tube and a receiver, 60 g of MHP and 0.12 g of phosphoric acid were added under a nitrogen atmosphere under a nitrogen atmosphere. (0.2 mol% with respect to MHP) was added. Next, the temperature was raised until the liquid temperature reached 180 ° C., and the reaction was performed for 9 hours while slowly dropping MHP745g from the dropping funnel. After completion of the reaction, the organic layer containing αMDHP was separated from the reaction mixture, and the contents were analyzed by gas chromatography. As a result, the conversion rate of MHP was 90% and the selectivity to αMDHP was 96%. Next, after removing unreacted MHP by a simple distillation apparatus, distillation is performed under the same distillation purification conditions as in step (2) of Example 1, thereby obtaining αMDHP having a purity of 99.9% or more in a distillation yield of 84%. Obtained.
比較例1
実施例1の工程(1)においてリン酸を添加せずに同様の反応操作を行ったところ、反応生成物の受器への留出はまったく見られず、ガスクロマトグラフィーによって反応釜内の内容物を分析したが、αMDHPは全く生成していなかった。
Comparative Example 1
When the same reaction operation was carried out without adding phosphoric acid in the step (1) of Example 1, no distillation of the reaction product into the receiver was observed, and the contents in the reaction kettle were analyzed by gas chromatography. The product was analyzed, but αMDHP was not produced at all.
比較例2
実施例1の工程(2)においてn−オクチルアミンを添加せずに、工程(1)で得られた反応混合液について同様の蒸留操作を行ったところ、得られたαMDHPの純度は98%であり、アルデヒド化合物類が1.9%、その他不純物が0.1%含まれていた。
Comparative Example 2
When the same distillation operation was performed on the reaction mixture obtained in step (1) without adding n-octylamine in step (2) of Example 1, the purity of αMDHP obtained was 98%. Yes, it contained 1.9% of aldehyde compounds and 0.1% of other impurities.
本発明の製造方法によれば、高純度の4−メチル−3,4−ジヒドロ−2H−ピランを工業的に、安価に収率良く提供することができ、高い品質が求められる医農薬化合物の合成原料や電子材料の用途に使用可能である。 According to the production method of the present invention, high-purity 4-methyl-3,4-dihydro-2H-pyran can be provided industrially at a low cost and in a high yield, and a pharmaceutical and agrochemical compound for which high quality is required. It can be used for synthetic raw materials and electronic materials.
Claims (5)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014037749A JP6247959B2 (en) | 2014-02-28 | 2014-02-28 | Process for producing 4-methyl-3,4-dihydro-2H-pyran |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2014037749A JP6247959B2 (en) | 2014-02-28 | 2014-02-28 | Process for producing 4-methyl-3,4-dihydro-2H-pyran |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2015160835A JP2015160835A (en) | 2015-09-07 |
JP6247959B2 true JP6247959B2 (en) | 2017-12-13 |
Family
ID=54184178
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2014037749A Active JP6247959B2 (en) | 2014-02-28 | 2014-02-28 | Process for producing 4-methyl-3,4-dihydro-2H-pyran |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP6247959B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115504952B (en) * | 2022-07-07 | 2024-05-14 | 洛阳师范学院 | Preparation method of 6-methyldihydro-2H-pyran-3 (4H) -one |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2886934B2 (en) * | 1990-03-10 | 1999-04-26 | 株式会社クラレ | Method for producing dihydrofuran compound |
-
2014
- 2014-02-28 JP JP2014037749A patent/JP6247959B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
JP2015160835A (en) | 2015-09-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR102106763B1 (en) | Novel Initiator for Preparing Alkanesulfonic Acids from Alkane and Oleum | |
US11198657B2 (en) | Method for producing conjugated diene | |
KR20120023796A (en) | Method for producing fluorine-containing ether with high purity | |
JP6247959B2 (en) | Process for producing 4-methyl-3,4-dihydro-2H-pyran | |
JP2008081451A (en) | High-purity trialkylgallium and its preparation method | |
EP4039677A1 (en) | Method for producing perfluoro(2,4-dimethyl-2-fluoroformyl-1,3-dioxolane) | |
EP3878845B1 (en) | Perfluoro(2-methylene-4-methyl-1,3-dioxolane) production method | |
EP3848359B1 (en) | Method for producing trifluoropyruvate fluoride dimer, and method for producing perfluoro(2,4-dimethyl-2-fluoroformyl-1,3-dioxolane) | |
EP3196183B1 (en) | Method for producing 2'-trifluoromethyl group-substituted aromatic ketone | |
JP2002356451A (en) | Method for manufacturing acetylene diol compound | |
ES2208497T3 (en) | PROCEDURE FOR THE PREPARATION OF 1,3,6-HEXANOTRICARBONITRILE. | |
CN112638891A (en) | Aldehyde adduct of hexafluoropropylene oxide, method for producing trifluoroacetylacyl fluoride dimer, and method for producing perfluoro (2, 4-dimethyl-2-fluoroformyl-1, 3-dioxolane) | |
CN108238875B (en) | Synthesis method of bromoisobutenyl methyl ether and application of bromoisobutenyl methyl ether in preparation of C14 aldehyde | |
WO2008075672A1 (en) | Method for producing tris(perfluoroalkanesulfonyl)methide acid salt | |
US11014865B2 (en) | Production method for cyclopentenone derivative | |
KR20140039306A (en) | Method for producing alkyldiol monoglycidyl ether | |
JP6330064B1 (en) | Method for producing hydroiodic acid and method for producing aqueous metal iodide solution | |
JP6807695B2 (en) | Method for producing 2-methoxyethyl vinyl ether | |
JP2015017073A (en) | Method for producing alkyl grignard reagent using 4-methyltetrahydropyran as solvent | |
JP6368717B2 (en) | Trifluoropyruvate derivative mixture and process for producing the same | |
JP2006312605A (en) | Method for producing high-purity 1,3-dimethyl-2-imidazolidinone | |
TWI552984B (en) | 1,1,1,3,3,3-hexafluoro-tertiary butanol | |
KR101990384B1 (en) | A Method for Producing highly pure Allyl Alcohol and Process system for Producing highly pure Allyl Alcohol | |
JP2016069299A (en) | Method for producing 2-trifluoromethyl benzoic acid ester | |
JP2011190216A (en) | Method for producing (trifluoromethyl) alkyl ketone |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20161130 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20170907 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20170912 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20171030 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20171114 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20171120 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 6247959 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |