JP6247461B2 - Measuring method of deformation of member - Google Patents

Measuring method of deformation of member Download PDF

Info

Publication number
JP6247461B2
JP6247461B2 JP2013126833A JP2013126833A JP6247461B2 JP 6247461 B2 JP6247461 B2 JP 6247461B2 JP 2013126833 A JP2013126833 A JP 2013126833A JP 2013126833 A JP2013126833 A JP 2013126833A JP 6247461 B2 JP6247461 B2 JP 6247461B2
Authority
JP
Japan
Prior art keywords
rubber member
deformation
support base
amount
rubber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013126833A
Other languages
Japanese (ja)
Other versions
JP2015001475A (en
Inventor
真一 上野
真一 上野
豪俊 津▲崎▼
豪俊 津▲崎▼
宏志 川端
宏志 川端
健一 笠間
健一 笠間
智昌 工藤
智昌 工藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Rubber Industries Ltd
Original Assignee
Sumitomo Rubber Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Rubber Industries Ltd filed Critical Sumitomo Rubber Industries Ltd
Priority to JP2013126833A priority Critical patent/JP6247461B2/en
Publication of JP2015001475A publication Critical patent/JP2015001475A/en
Application granted granted Critical
Publication of JP6247461B2 publication Critical patent/JP6247461B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Rolls And Other Rotary Bodies (AREA)

Description

本発明は、経時変形特性を具えた部材の変形量を迅速かつ正確に測定しうる測定方法に関する。   The present invention relates to a measurement method that can quickly and accurately measure the amount of deformation of a member having temporal deformation characteristics.

例えば、ゴム製品を作る場合、未加硫のゴム部材が準備される。ゴム部材は、圧延、プレス又は押し出し等により、予め定められた寸法に形成されている。ゴム部材は、そのまま又は目的とする形状等に二次加工された後、加硫される。これにより、目的とするゴム製品が製造される。   For example, when making a rubber product, an unvulcanized rubber member is prepared. The rubber member is formed in a predetermined dimension by rolling, pressing, or extruding. The rubber member is vulcanized as it is or after being secondarily processed into a desired shape or the like. Thereby, the target rubber product is manufactured.

ところで、上述の未加硫のゴム部材等は、時間の経過とともに形状が少しずつ変形するという経時変形特性を有している。例えば、一般的な未加硫のゴム部材は、時間の経過ととともに縮む傾向がある。従って、上述のような経時変形特性を有する部材は、寸法が安定しないので、それを用いた最終製品の仕上がり寸法や性能等にもばらつきが生じるという問題がある。   By the way, the above-mentioned unvulcanized rubber member or the like has a time-deformation characteristic that its shape is gradually deformed over time. For example, a general unvulcanized rubber member tends to shrink over time. Therefore, since the dimension of the member having the time-deformation characteristics as described above is not stable, there is a problem that the finished dimension and performance of the final product using the same vary.

上記問題を解決するために、部材の経時変形量を測定し、その変形量が小さくなるように、部材を製造する装置が調整乃至改善されていた。   In order to solve the above problems, an apparatus for manufacturing a member has been adjusted or improved so that the amount of deformation with time of the member is measured and the amount of deformation becomes small.

特開2010−173223号公報JP 2010-173223 A

前記部材の経時変形量を測定する際には、部材が支持台の上に置かれ、ある時間経過後、その寸法が測定されている。しかしながら、部材と支持台との接触面には、部材の変形時に摩擦が生じ、ひいては本来の経時変形が妨げられやすい。このため、従来の測定方法では、部材の経時変形量を迅速かつ正確に測定できないという問題があった。   When measuring the amount of deformation of the member over time, the member is placed on a support base, and its dimension is measured after a certain period of time. However, friction occurs on the contact surface between the member and the support base when the member is deformed, and the original temporal deformation is likely to be hindered. For this reason, the conventional measuring method has a problem that the amount of deformation with time of the member cannot be measured quickly and accurately.

本発明は、以上のような実状に鑑み案出されたもので、部材と、部材が置かれる支持台との間に、部材と支持台との間の摩擦係数を低下させる摩擦低下手段を配置することを基本として、経時的に変形する部材の変形量を迅速かつ正確に測定しうる測定方法を提供することを主たる目的としている。   The present invention has been devised in view of the actual situation as described above, and friction reducing means for reducing the coefficient of friction between the member and the support base is disposed between the member and the support base on which the member is placed. The main object of the present invention is to provide a measurement method that can quickly and accurately measure the amount of deformation of a member that deforms over time.

本発明に係る部材の変形量の測定方法は、経時変形特性を具えた部材の変形量を測定する方法であって、前記部材と、この部材が置かれる支持台との間に、前記部材と前記支持台との間の摩擦係数を低下させる摩擦低下手段を配置して経時変形させる工程と、経時変形した部材の変形量を測定する工程とを含み、前記摩擦低下手段は、前記部材が置かれる前記支持台の面に設けられ、シリコーン樹脂又はフッ素樹脂によって形成された表面加工層であることを特徴とする。
また、本発明に係る部材の変形量の測定方法は、経時変形特性を具えた部材の変形量を測定する方法であって、前記部材と、この部材が置かれる支持台との間に、前記部材と前記支持台との間の摩擦係数を低下させる摩擦低下手段を配置して経時変形させる工程と、経時変形した部材の変形量を測定する工程とを含み、前記摩擦低下手段は、前記部材の前記変形とともに回転するローラ又は球体であることを特徴とする。
The method for measuring the amount of deformation of a member according to the present invention is a method for measuring the amount of deformation of a member having temporal deformation characteristics, wherein the member and the support table on which the member is placed, a step of temporal deformation by placing a friction reducing means for reducing the coefficient of friction between the support table, look including a step of measuring the amount of deformation of members with time variation, the friction reducing means, the member It is a surface processing layer provided on the surface of the support table to be placed and formed of silicone resin or fluororesin .
Further, the method for measuring the amount of deformation of a member according to the present invention is a method for measuring the amount of deformation of a member having a time-dependent deformation characteristic, wherein the member and the support table on which the member is placed, Including a step of disposing a friction reducing means for reducing a friction coefficient between a member and the support base and deforming with time, and a step of measuring a deformation amount of the member deformed with time, wherein the friction reducing means includes the member It is a roller or a sphere that rotates with the deformation.

本発明に係る前記部材の変形量の測定方法は、前記部材は、粘着性を有するのが望ましい。   In the method for measuring a deformation amount of the member according to the present invention, the member preferably has adhesiveness.

本発明に係る前記部材の変形量の測定方法は、前記部材は、未加硫のゴム部材であるのが望ましい。   In the method for measuring a deformation amount of the member according to the present invention, the member is preferably an unvulcanized rubber member.

本発明に係る前記部材の変形量の測定方法は、前記部材は、シート状であるのが望ましい。   In the method for measuring a deformation amount of the member according to the present invention, the member is preferably in a sheet form.

本発明の部材の変形量の測定方法は、経時的に変形する部材と、部材が置かれる支持台との間に、部材と支持台との間の摩擦係数を低下させる摩擦低下手段を配置する工程を含んでいる。このような摩擦低下手段は、部材の変形が妨げられるのを抑制できるため、部材の変形量を迅速かつ正確に測定することができる。   In the method for measuring a deformation amount of a member according to the present invention, a friction reducing means for reducing a friction coefficient between the member and the support base is disposed between the member that is deformed with time and the support base on which the member is placed. It includes a process. Such a friction reducing means can suppress the deformation of the member from being hindered, so that the deformation amount of the member can be measured quickly and accurately.

圧延装置の概念図である。It is a conceptual diagram of a rolling device. ゴム部材及び支持台を示す斜視図である。It is a perspective view which shows a rubber member and a support stand. 本実施形態の測定方法の処理手順の一例を示すフローチャートである。It is a flowchart which shows an example of the process sequence of the measuring method of this embodiment. 図3に示したゴム部材と支持台との部分断面図である。It is a fragmentary sectional view of the rubber member and support stand shown in FIG. ゴム部材、支持台及び流体の部分断面図である。It is a fragmentary sectional view of a rubber member, a support stand, and fluid. ゴム部材、支持台及び表面加工層の部分断面図である。It is a fragmentary sectional view of a rubber member, a support stand, and a surface processing layer. ローラが設けられた支持台の斜視図である。It is a perspective view of the support stand provided with the roller. 図7の部分断面図である。It is a fragmentary sectional view of FIG. ゴム部材の変形量と測定時間との関係を示すグラフである。It is a graph which shows the relationship between the deformation amount of a rubber member, and measurement time.

以下、本発明の実施の一形態が図面に基づき説明される。
本発明の部材の変形量の測定方法(以下、単に「測定方法」ということがある)は、経時変形特性を具えた部材の変形量を測定するための方法である。経時変形特性とは、時間の経過とともに形状が少しずつ変形する性質をいう。本実施形態では、経時変形特性を有する部材として、ゴム製品を作る際に準備される未加硫のゴム部材が例示される。この未加硫のゴム部材は、粘着性を有している。
Hereinafter, an embodiment of the present invention will be described with reference to the drawings.
The method for measuring the amount of deformation of a member of the present invention (hereinafter sometimes simply referred to as “measurement method”) is a method for measuring the amount of deformation of a member having a temporal deformation characteristic. The time-dependent deformation characteristic means a property that the shape is gradually changed over time. In this embodiment, an unvulcanized rubber member prepared when making a rubber product is exemplified as the member having the temporal deformation characteristics. This unvulcanized rubber member has adhesiveness.

図1には、未加硫のゴム部材1Gを製造する装置(圧延装置)2が示される。本実施形態の圧延装置2は、カレンダー部3、クーリング部4及びワインダ部5を含んで構成されている。   FIG. 1 shows an apparatus (rolling apparatus) 2 for producing an unvulcanized rubber member 1G. The rolling device 2 according to this embodiment includes a calendar unit 3, a cooling unit 4, and a winder unit 5.

カレンダー部3は、例えば、上下方向で向き合って配置された一対のカレンダーロール3r、3rを含んで構成されている。一対のカレンダーロール3r、3rの隙間には、ゴム部材1Gが通過されることにより、該ゴム部材1Gをシート状に圧延することができる。   The calendar unit 3 includes, for example, a pair of calendar rolls 3r and 3r arranged so as to face each other in the vertical direction. By passing the rubber member 1G through the gap between the pair of calender rolls 3r and 3r, the rubber member 1G can be rolled into a sheet shape.

クーリング部4は、上下に配列された複数のドラム4a、4bから構成されている。このようなクーリング部4は、シート状のゴム部材1Gを、上下のドラム4a、4b間をジグザグに移動させることにより、該ゴム部材1Gを効果的に冷却することができる。   The cooling unit 4 is composed of a plurality of drums 4a and 4b arranged vertically. Such a cooling part 4 can cool the rubber member 1G effectively by moving the sheet-like rubber member 1G in a zigzag manner between the upper and lower drums 4a, 4b.

ワインダ部5は、冷却されたシート状のゴム部材1Gを搬送するコンベア5aと、予め定められた寸法に切断されたゴム部材1Gをロール状に巻き取る巻取手段5bとが設けられている。   The winder unit 5 is provided with a conveyer 5a that conveys the cooled sheet-like rubber member 1G, and winding means 5b that winds the rubber member 1G cut into a predetermined size into a roll shape.

このような圧延装置2により、シート状のゴム部材1Gを形成することができる。また、ゴム部材1Gは、巻取手段5bから再び引き出されて、そのまま又は目的とする形状等に二次加工された後に加硫される。これにより、目的とするゴム製品が製造される。   With such a rolling device 2, a sheet-like rubber member 1G can be formed. Further, the rubber member 1G is pulled out again from the winding means 5b, and is vulcanized after being processed as it is or into a desired shape or the like. Thereby, the target rubber product is manufactured.

ところで、未加硫のゴム部材1Gは、時間の経過ととともに縮む傾向がある。このため、ゴム部材1Gは、巻取手段5bによってロール状に巻き取られた後も、時間の経過ととともに縮みやすい。このような収縮は、ゴム部材1Gの寸法を不安定にし、ゴム製品の仕上がり寸法や性能等にばらつきを生じさせやすい。このような問題を解決するために、ゴム部材1Gの製造においては、ゴム部材1Gの経時変形量を測定し、その変形量が小さくなるように、圧延装置2を予め調整乃至改善することが重要である。   By the way, the unvulcanized rubber member 1G tends to shrink with time. For this reason, the rubber member 1G tends to shrink with the passage of time even after being wound into a roll by the winding means 5b. Such shrinkage makes the size of the rubber member 1G unstable and tends to cause variations in the finished size and performance of the rubber product. In order to solve such a problem, in the production of the rubber member 1G, it is important to measure the amount of deformation of the rubber member 1G with time and adjust or improve the rolling device 2 in advance so that the amount of deformation becomes small. It is.

図2には、ゴム部材1Gの経時変形量の測定に用いられる支持台7が示されている。支持台7は、平面視略矩形に形成された板状体7Aを含んで構成されている。この板状体7Aは、例えば、金属や木材等から形成される。また、板状体7Aには、ゴム部材1Gが置かれる平滑な面7sが形成されている。   FIG. 2 shows a support base 7 used for measuring the amount of deformation with time of the rubber member 1G. The support base 7 includes a plate-like body 7A formed in a substantially rectangular shape in plan view. The plate-like body 7A is made of, for example, metal or wood. In addition, a smooth surface 7s on which the rubber member 1G is placed is formed on the plate-like body 7A.

図3には、本実施形態の測定方法の処理手順の一例を示すフローチャートである。
本実施形態の測定方法では、先ず、図1に示した圧延装置2を用いて、シート状のゴム部材1Gが製造される(工程S1)。
FIG. 3 is a flowchart illustrating an example of a processing procedure of the measurement method of the present embodiment.
In the measurement method of this embodiment, first, a sheet-like rubber member 1G is manufactured using the rolling device 2 shown in FIG. 1 (step S1).

次に、図2に示されるように、ゴム部材1Gが抽出される(工程S2)。本実施形態の工程S2では、巻取手段5b(図1に示す)で巻き取られる直前のゴム部材1Gの少なくとも一部が抽出される。ゴム部材1Gは、例えば、平面視略矩形のシート状に形成される。ゴム部材1Gは、例えば、長手方向の長さL1が100〜1500mm程度、短手方向の長さL2が100〜500mm程度、厚さW1が0.1〜10mm程度に設定されている。   Next, as shown in FIG. 2, the rubber member 1G is extracted (step S2). In step S2 of the present embodiment, at least a part of the rubber member 1G just before being wound by the winding means 5b (shown in FIG. 1) is extracted. The rubber member 1G is formed in, for example, a substantially rectangular sheet shape in plan view. For example, the length L1 in the longitudinal direction is set to about 100 to 1500 mm, the length L2 in the short direction is set to about 100 to 500 mm, and the thickness W1 is set to about 0.1 to 10 mm.

次に、ゴム部材1Gと、支持台7との間に、ゴム部材1Gと支持台7との間の摩擦係数を低下させる摩擦低下手段8を配置して、ゴム部材1Gを経時変形させる(工程S3)。工程S3では、先ず、支持台7の面7sに、摩擦低下手段8が配置される。次に、ゴム部材1Gが、摩擦低下手段8を介して、支持台7の上に置かれる。そして、ゴム部材1Gが変形しなくなるまで放置される。ゴム部材1Gが変形しなくなったか否かの判断は、例えば、ゴム部材1Gの長手方向の長さL1、又は短手方向の長さL2を一定時間(例えば、5〜20分)毎に測定して判断される。   Next, friction reducing means 8 for reducing the friction coefficient between the rubber member 1G and the support base 7 is disposed between the rubber member 1G and the support base 7, and the rubber member 1G is deformed with time (step). S3). In step S3, first, the friction reducing means 8 is disposed on the surface 7s of the support base 7. Next, the rubber member 1 </ b> G is placed on the support base 7 through the friction reducing means 8. Then, the rubber member 1G is left until it is not deformed. The determination as to whether or not the rubber member 1G is no longer deformed is made, for example, by measuring the length L1 in the longitudinal direction or the length L2 in the short direction of the rubber member 1G at regular intervals (for example, 5 to 20 minutes). Is judged.

図4には、図3に示したゴム部材1Gと支持台7との部分断面図が示される。本実施形態の摩擦低下手段8は、粉体11である。粉体11は、ゴム部材1Gと支持台7との接触を抑制する。このため、粉体11は、ゴム部材1Gと支持台7との摩擦(ゴム部材1Gの粘着)により、ゴム部材1Gの変形が妨げられるのを防ぐことができる。従って、工程S3では、摩擦低下手段8(粉体11)が配置されなかった従来に比べて、ゴム部材1Gを早期に変形させることができる。   4 shows a partial cross-sectional view of the rubber member 1G and the support base 7 shown in FIG. The friction reducing means 8 of this embodiment is a powder 11. The powder 11 suppresses contact between the rubber member 1 </ b> G and the support base 7. Therefore, the powder 11 can prevent the deformation of the rubber member 1G from being hindered by friction between the rubber member 1G and the support 7 (adhesion of the rubber member 1G). Therefore, in the step S3, the rubber member 1G can be deformed at an early stage as compared with the conventional case where the friction reducing means 8 (powder 11) is not disposed.

粉体11としては、適宜選択することができるが、例えば、化学的に安定し、かつ高い潤滑性を有するタルク、シリカ、炭酸カルシウム、ステアリン酸亜鉛、又は、ポリテトラフルオロエチレン等が望ましい。   The powder 11 can be appropriately selected. For example, talc, silica, calcium carbonate, zinc stearate, polytetrafluoroethylene, or the like that is chemically stable and has high lubricity is desirable.

また、散布される粉体11の質量Ms(g)は、下記式(1)で定義されるのが望ましい。
Ms≧m×S/(πr2)…(1)
ここで、
m:粉体の一粒子の質量(g)
S:部材と支持台との接触面積(mm2
r:粉体の平均粒子半径(mm)
The mass Ms (g) of the powder 11 to be dispersed is preferably defined by the following formula (1).
Ms ≧ m × S / (πr 2 ) (1)
here,
m: mass of one particle of powder (g)
S: Contact area between member and support base (mm 2 )
r: Average particle radius of powder (mm)

上記式(1)において、πr2は、平面視において、粉体11の一粒子がゴム部材1Gの接触面12を専有する面積である。このため、ゴム部材1Gと支持台7との接触面積Sが、粉体11の一粒子が専有する面積πr2で除されることにより、ゴム部材1Gの接触面12に、粉体11を隙間なく配置させるのに必要な粒子数を求めることができる。 In the above formula (1), πr 2 is an area where one particle of the powder 11 occupies the contact surface 12 of the rubber member 1G in plan view. For this reason, the contact area S between the rubber member 1G and the support base 7 is divided by the area πr 2 occupied by one particle of the powder 11 so that the powder 11 is spaced from the contact surface 12 of the rubber member 1G. It is possible to determine the number of particles necessary to arrange them completely.

そして、粉体11の粒子数S/πr2に、粉体11の一粒子の質量mが乗じられることにより、粉体11の質量Msを求めることができる。従って、工程S3では、質量Ms(g)以上の粉体11が用いられることにより、粉体11を接触面12に隙間なく配置することができ、ゴム部材1Gと支持台7との間の摩擦係数を確実に低下させることができる。 Then, the mass Ms of the powder 11 can be obtained by multiplying the number of particles S / πr 2 of the powder 11 by the mass m of one particle of the powder 11. Therefore, in step S3, the powder 11 having a mass Ms (g) or more is used, so that the powder 11 can be disposed on the contact surface 12 without any gap, and the friction between the rubber member 1G and the support base 7 can be achieved. The coefficient can be reliably reduced.

本実施形態では、摩擦低下手段8として、粉体11であるものが例示されたが、これに限定されるわけではない。例えば、摩擦低下手段8としては、流体であってもよい。図5には、ゴム部材1G、支持台7及び流体13の部分断面図が示される。このような流体13も、ゴム部材1Gと支持台7との接触を抑制して、摩擦係数を低下させることができる。   In the present embodiment, the friction reducing means 8 is exemplified by the powder 11, but is not limited thereto. For example, the friction reducing means 8 may be a fluid. FIG. 5 shows a partial cross-sectional view of the rubber member 1G, the support base 7, and the fluid 13. Such a fluid 13 can also suppress a contact with the rubber member 1G and the support stand 7, and can reduce a friction coefficient.

流体13としては、適宜選択できるが、ゴム部材1G及び支持台7に対する接触角が90度以下の液体13rが望ましい。このような液体13rは、ゴム部材1Gと支持台7との間で親水性を発揮でき、ゴム部材1Gと支持台7との接触を効果的に防ぐことができる。   The fluid 13 can be selected as appropriate, but a liquid 13r having a contact angle with respect to the rubber member 1G and the support base 7 of 90 degrees or less is desirable. Such a liquid 13r can exhibit hydrophilicity between the rubber member 1G and the support base 7, and can effectively prevent contact between the rubber member 1G and the support base 7.

なお、液体13rの接触角が90度を超えると、ゴム部材1Gと支持台7との間で親水性を十分に発揮できないおそれがある。このため、接触角は、より好ましくは60度以下が望ましく、さらに好ましくは、30度以下が望ましい。   If the contact angle of the liquid 13r exceeds 90 degrees, there is a possibility that hydrophilicity cannot be sufficiently exhibited between the rubber member 1G and the support base 7. For this reason, the contact angle is more preferably 60 degrees or less, and still more preferably 30 degrees or less.

液体13rとしては、上記接触角を発揮しうるものであれば、適宜選択することができる。例えば、ゴム部材1G及び支持台7の劣化を防ぎつつ、親水性に優れる水、又は、パラフィン系化合物を含んだ工業用潤滑油等が望ましい。   The liquid 13r can be appropriately selected as long as it can exhibit the contact angle. For example, water excellent in hydrophilicity while preventing deterioration of the rubber member 1G and the support base 7 or industrial lubricating oil containing a paraffinic compound is desirable.

また、摩擦低下手段8としては、支持台7の面7sに設けられた表面加工層であってもよい。図6には、ゴム部材1G、支持台7及び表面加工層14の部分断面図が示されている。表面加工層14としては、部材1が変形したときに、部材1に滑りを生じさせるものが選択される。このような表面加工層14は、ゴム部材1Gと支持台7との間の摩擦係数を低下させることができる。   Further, the friction reducing means 8 may be a surface processed layer provided on the surface 7 s of the support base 7. FIG. 6 shows a partial cross-sectional view of the rubber member 1G, the support base 7, and the surface processing layer 14. As the surface processed layer 14, a material that causes the member 1 to slip when the member 1 is deformed is selected. Such a surface processed layer 14 can reduce the coefficient of friction between the rubber member 1G and the support base 7.

表面加工層14としては、適宜選択することができるが、例えば、シリコーン樹脂、又は、フッ素樹脂等によって形成されるのが望ましい。また、表面加工層14の厚さW2は、1〜10mm程度が望ましい。   Although it can select suitably as the surface treatment layer 14, it is desirable to form with a silicone resin or a fluororesin etc., for example. Further, the thickness W2 of the surface processed layer 14 is desirably about 1 to 10 mm.

また、摩擦低下手段8は、部材1の変形とともに回転するローラであってもよい。図7及び図8には、摩擦低下手段8としてローラ15が設けられた支持台7が示されている。本実施形態のローラ15は、支持台7に設けられた孔部7Hに、複数本配置される。ローラ15は、円柱状に形成され、その中心軸15cがゴム部材1Gの短手方向にのびている。このようなローラ15は、ゴム部材1Gの長手方向の変形に対して、回転可能に枢支される。   Further, the friction reducing means 8 may be a roller that rotates with the deformation of the member 1. 7 and 8 show a support base 7 provided with a roller 15 as the friction reducing means 8. A plurality of rollers 15 according to this embodiment are arranged in a hole 7 </ b> H provided in the support base 7. The roller 15 is formed in a columnar shape, and its central axis 15c extends in the short direction of the rubber member 1G. Such a roller 15 is rotatably supported with respect to the deformation of the rubber member 1G in the longitudinal direction.

ローラ15の長さL3は、ゴム部材1Gの短手方向の長さL2(図2に示す)よりも大に設定される。さらに、ローラ15は、ゴム部材1Gの長手方向の長さL1(図2に示す)よりも大きい領域T1に複数個配置される。また、ローラ15は、支持台7の面7sよりも、上方に突出(例えば、1〜20mm)している。   The length L3 of the roller 15 is set to be longer than the length L2 (shown in FIG. 2) in the short direction of the rubber member 1G. Further, a plurality of rollers 15 are arranged in a region T1 larger than the length L1 (shown in FIG. 2) of the rubber member 1G in the longitudinal direction. Further, the roller 15 protrudes upward (for example, 1 to 20 mm) from the surface 7 s of the support base 7.

このようなローラ15は、ゴム部材1Gと支持台7の面7sとの間に摩擦を発生させることなく、ゴム部材1Gを支持することができる。さらに、ローラ15は、ゴム部材1Gの長手方向の変形とともに回転できるため、ゴム部材1Gの変形を妨げることもない。従って、ローラ15は、摩擦低下手段8が配置されなかった従来に比べて、ゴム部材1Gを早期に変形させることができる。   Such a roller 15 can support the rubber member 1G without generating friction between the rubber member 1G and the surface 7s of the support base 7. Furthermore, since the roller 15 can rotate with the deformation of the rubber member 1G in the longitudinal direction, the deformation of the rubber member 1G is not hindered. Therefore, the roller 15 can deform the rubber member 1G at an early stage as compared with the conventional case where the friction reducing means 8 is not disposed.

なお、ローラ15の直径D1が大きいと、ゴム部材1Gとローラ15との接触面積が大きくなり、ゴム部材1Gの変形が妨げられるおそれがある。このような観点より、直径D1は、好ましくは50mm以下、さらに好ましくは20mm以下である。   In addition, when the diameter D1 of the roller 15 is large, the contact area between the rubber member 1G and the roller 15 may be large, and deformation of the rubber member 1G may be hindered. From such a viewpoint, the diameter D1 is preferably 50 mm or less, more preferably 20 mm or less.

さらに、ローラ15の表面には、ゴム部材1Gに滑りを生じさせる表面加工層(図示省略)が設けられてもよい。このような表面加工層は、ゴム部材1Gとローラ15との間の摩擦係数を低下させることができ、ゴム部材1Gを効果的に変形させることができる。   Furthermore, a surface processed layer (not shown) that causes the rubber member 1G to slip may be provided on the surface of the roller 15. Such a surface processed layer can reduce the coefficient of friction between the rubber member 1G and the roller 15, and can effectively deform the rubber member 1G.

また、摩擦低下手段8は、ローラ15に代えて、任意の方向に回転可能な球体(図示省略)であってもよい。この場合、球体は、ゴム部材1Gの長手方向、及び短手方向の双方に、複数個配置されるのが望ましい。これにより、球体は、ゴム部材1Gの変形に追従して回転できるため、ゴム部材1Gの変形が妨げられるのを、効果的に防ぐことができる。   Further, the friction reducing means 8 may be a sphere (not shown) that can rotate in any direction instead of the roller 15. In this case, it is desirable that a plurality of spheres are arranged in both the longitudinal direction and the short direction of the rubber member 1G. Thereby, since the sphere can be rotated following the deformation of the rubber member 1G, the deformation of the rubber member 1G can be effectively prevented from being hindered.

また、未加硫のゴム部材1Gは、室内の温度を高くするほど、その変形が促進される傾向がある。このため、工程S3では、ゴム部材1Gを経時変形させる際に、室内の温度が常温(20〜30℃)よりも高いのが望ましい。なお、室内の温度は、例えば、40〜70℃に設定されるのが望ましい。   In addition, the unvulcanized rubber member 1G tends to be more easily deformed as the indoor temperature increases. For this reason, in step S3, when the rubber member 1G is deformed with time, it is desirable that the room temperature is higher than room temperature (20 to 30 ° C.). The indoor temperature is preferably set to 40 to 70 ° C., for example.

次に、変形したゴム部材1Gの変形量が測定される(工程S4)。本実施形態では、工程S3において、ゴム部材1Gを従来に比べて早期に変形させることができるため、ゴム部材1Gの変形量の測定を、迅速に開始することができる。また、ゴム部材1Gは、ゴム部材1Gの変形が妨げられないため、ゴム部材1Gの変形量を正確に測定することができる。   Next, the deformation amount of the deformed rubber member 1G is measured (step S4). In this embodiment, in step S3, the rubber member 1G can be deformed earlier than in the prior art, so that the measurement of the deformation amount of the rubber member 1G can be started quickly. Further, since the rubber member 1G does not hinder the deformation of the rubber member 1G, the deformation amount of the rubber member 1G can be accurately measured.

ゴム部材1Gの変形量は、例えば、図2に示されるように、ゴム部材1Gが矩形状(長方形状)に形成される場合、短手方向に比べて変形量(長さ)が大きい長手方向において、測定されるのが望ましい。また、ゴム部材1Gの変形量は、工程S3で変形させる前に、ゴム部材1Gの表面に予め記入された一対の平行線17、17(図2に示す)に基づいて測定されるのが望ましい。これにより、ゴム部材1Gが変形して、各平行線17、17に歪が生じてしまう場合でも、例えば、平行線17、17間の最短距離を測定することにより、ゴム部材1Gの変形量を定量的に測定することができる。   The deformation amount of the rubber member 1G is, for example, as shown in FIG. 2, when the rubber member 1G is formed in a rectangular shape (rectangular shape), the longitudinal direction has a large deformation amount (length) compared to the short direction. It is desirable to be measured in The deformation amount of the rubber member 1G is preferably measured based on a pair of parallel lines 17 and 17 (shown in FIG. 2) preliminarily written on the surface of the rubber member 1G before being deformed in step S3. . As a result, even when the rubber member 1G is deformed and the parallel lines 17 and 17 are distorted, for example, by measuring the shortest distance between the parallel lines 17 and 17, the deformation amount of the rubber member 1G can be reduced. It can be measured quantitatively.

次に、ゴム部材1Gの変形量が許容範囲内か否かが判断される(工程S5)。この工程S5では、ゴム部材1Gの変形量が許容範囲内と判断された場合、現在の圧延装置2の設定のまま、ゴム部材1Gが継続して製造される。一方、ゴム部材1Gの変形量が許容範囲外と判断された場合は、ゴム部材1Gの変形量が小さくなるように、圧延装置2の調整乃至改善が行われ(工程S6)、工程S1〜S5が再度実施される。これにより、本実施形態では、ゴム部材1Gの変形量を許容範囲内に維持することができる。なお、圧延装置2の調整乃至改善は、例えば、従来の方法に従って、クーリング部4及びワインダ部5でのゴム部材1Gの移動速度を調整すること等によって実施される。   Next, it is determined whether or not the deformation amount of the rubber member 1G is within an allowable range (step S5). In this step S5, when it is determined that the deformation amount of the rubber member 1G is within the allowable range, the rubber member 1G is continuously manufactured with the current setting of the rolling device 2. On the other hand, when it is determined that the deformation amount of the rubber member 1G is outside the allowable range, the rolling device 2 is adjusted or improved so that the deformation amount of the rubber member 1G becomes small (step S6), and steps S1 to S5. Will be implemented again. Thereby, in this embodiment, the deformation amount of the rubber member 1G can be maintained within an allowable range. The adjustment or improvement of the rolling device 2 is performed, for example, by adjusting the moving speed of the rubber member 1G in the cooling unit 4 and the winder unit 5 according to a conventional method.

本実施形態では、測定対象の部材1として、シート状に形成された未加硫のゴム部材1Gが例示されたが、例えば、ブロック状に形成されるものでもよい。さらに、部材1としては、粘着性を有する未加硫のゴム部材1Gに限定されるわけではなく、例えば、ゲル又は樹脂でもよい。本発明の測定方法では、上記のような部材1と支持台7との間に、摩擦係数を低下させる摩擦低下手段8が配置されるため、部材1の変形量を迅速かつ正確に測定することができる。   In the present embodiment, the unvulcanized rubber member 1G formed in a sheet shape is exemplified as the member 1 to be measured, but may be formed in a block shape, for example. Furthermore, the member 1 is not limited to the unvulcanized rubber member 1G having adhesiveness, and may be, for example, a gel or a resin. In the measuring method of the present invention, the friction reducing means 8 for reducing the friction coefficient is disposed between the member 1 and the support base 7 as described above, so that the deformation amount of the member 1 can be measured quickly and accurately. Can do.

以上、本発明の特に好ましい実施形態について詳述したが、本発明は図示の実施形態に限定されることなく、種々の態様に変形して実施しうる。   As mentioned above, although especially preferable embodiment of this invention was explained in full detail, this invention is not limited to embodiment of illustration, It can deform | transform and implement in a various aspect.

図3に示した処理手順に従って、未加硫のゴム部材と、このゴム部材が置かれる支持台との間に、摩擦係数を低下させる摩擦低下手段(粉体)を配置して、ゴム部材を経時変形させた。そして、変形開始から120分経過するまでの間、ゴム部材の変形量が、複数回測定された(実施例)。変形量は、ゴム部材の長手方向の長さを基準として測定されている。   According to the processing procedure shown in FIG. 3, friction reducing means (powder) for reducing the friction coefficient is disposed between the unvulcanized rubber member and the support base on which the rubber member is placed, and the rubber member is Deformed over time. And until 120 minutes passed from the start of deformation, the deformation amount of the rubber member was measured a plurality of times (Example). The amount of deformation is measured based on the length of the rubber member in the longitudinal direction.

また、比較のために、摩擦低下手段(粉体)を配置せずに、ゴム部材を経時変形させた。そして、変形開始から120分経過するまでの間、ゴム部材の変形量が、複数回測定された(比較例)。そして、実施例及び比較例において、ゴム部材の変形量が比較された。なお、共通仕様は、次のとおりである。
ゴム部材:
天然ゴム(NR):RSS#3(60質量部)
スチレンブタジエンゴム(SBR):住友化学(株)製のSBR1502(40質量部)
カーボンブラック:昭和キャボット社製のカーボンブラックN326(50質量部)
プロセスオイル:出光興産(株)製のダイアナプロセスPS32(4質量部)
老化防止剤6C:住友化学工業(株)製のアンチゲン6C(N−(1,3−ジメチルブチル)−N’−フェニル−p−フェニレンジアミン)(2質量部)
ステアリン酸:日本油脂(株)製の椿(2.5質量部)
亜鉛華:三井金属鉱業(株)製の酸化亜鉛2種(3.5質量部)
硫黄:軽井沢硫黄(株)製の粉末硫黄(2質量部)
加硫促進剤:大内新興化学工業(株)製のノクセラーNS(N−tert−ブチル−2−ベンゾチアゾリルスルフェンアミド)(2質量部)
長手方向の長さL1:1000mm
短手方向の長さL2:400mm
厚さW1:5mm程度
部材と支持台との接触面積S:400000mm2
摩擦低下手段(粉体):白石カルシウム(株)社製のソフトン2200
平均粒子半径r:0.0005mm
一粒子の質量m:1×10−9
散布された粉体の質量:700g( ≧ m×S/(πr2):509g)
室内の温度:30℃
For comparison, the rubber member was deformed over time without the friction reducing means (powder). And until 120 minutes passed from the start of deformation, the deformation amount of the rubber member was measured a plurality of times (comparative example). And in the Example and the comparative example, the deformation amount of the rubber member was compared. The common specifications are as follows.
Rubber material:
Natural rubber (NR): RSS # 3 (60 parts by mass)
Styrene butadiene rubber (SBR): SBR1502 (40 parts by mass) manufactured by Sumitomo Chemical Co., Ltd.
Carbon black: Carbon black N326 (50 parts by mass) manufactured by Showa Cabot Corporation
Process oil: Diana process PS32 (4 parts by mass) manufactured by Idemitsu Kosan Co., Ltd.
Anti-aging agent 6C: Antigen 6C (N- (1,3-dimethylbutyl) -N′-phenyl-p-phenylenediamine) (2 parts by mass) manufactured by Sumitomo Chemical Co., Ltd.
Stearic acid: Koji (2.5 parts by mass) manufactured by NOF Corporation
Zinc flower: 2 types of zinc oxide (3.5 parts by mass) manufactured by Mitsui Mining & Smelting Co., Ltd.
Sulfur: Powdered sulfur (2 parts by mass) manufactured by Karuizawa Sulfur Co., Ltd.
Vulcanization accelerator: Noxeller NS (N-tert-butyl-2-benzothiazolylsulfenamide) (2 parts by mass) manufactured by Ouchi Shinsei Chemical Co., Ltd.
Longitudinal length L1: 1000 mm
Length L2 in the short direction: 400mm
Thickness W1: about 5 mm Contact area S between the member and the support base S: 400000 mm 2
Friction reducing means (powder): Softon 2200 manufactured by Shiroishi Calcium Co., Ltd.
Average particle radius r: 0.0005 mm
Mass of one particle m: 1 × 10 −9 g
Mass of dispersed powder: 700 g (≧ m × S / (πr 2 ): 509 g)
Indoor temperature: 30 ° C

図9には、実施例及び比較例の変形量と、測定時間との関係を示すグラフが示される。テストの結果、比較例では、変形量が3%に達するのに要した時間が120分であった。一方、実施例では、変形量が3%に達するのに要した時間が15分程度であった。従って、実施例は、比較例よりも、ゴム部材を早期に変形させることができ、ゴム部材の変形量を迅速かつ正確に測定できることを確認できた。   FIG. 9 shows a graph showing the relationship between the deformation amount of the example and the comparative example and the measurement time. As a result of the test, in the comparative example, the time required for the deformation amount to reach 3% was 120 minutes. On the other hand, in the example, the time required for the deformation amount to reach 3% was about 15 minutes. Therefore, the Example was able to confirm that the rubber member could be deformed earlier than the comparative example, and the amount of deformation of the rubber member could be measured quickly and accurately.

1 部材
7 支持台
8 摩擦低下手段
1 member 7 support base 8 friction reducing means

Claims (4)

経時変形特性を具えた部材の変形量を測定する方法であって、
前記部材と、この部材が置かれる支持台との間に、前記部材と前記支持台との間の摩擦係数を低下させる摩擦低下手段を配置して経時変形させる工程と
経時変形した部材の変形量を測定する工程とを含み、
前記摩擦低下手段は、前記部材の前記変形とともに回転する球体である
ことを特徴とする部材の変形量の測定方法。
A method for measuring the amount of deformation of a member having temporal deformation characteristics,
Arranging a friction reducing means for reducing a friction coefficient between the member and the support base between the member and the support base on which the member is placed, and deforming with time ;
Measuring the amount of deformation of the member deformed over time,
The friction reducing means is a sphere that rotates with the deformation of the member.
A method for measuring a deformation amount of a member .
前記部材は、粘着性を有する請求項1に記載の部材の変形量の測定方法。The method according to claim 1, wherein the member has adhesiveness. 前記部材は、未加硫のゴム部材である請求項1又は2に記載の部材の変形量の測定方法。The method according to claim 1 or 2, wherein the member is an unvulcanized rubber member. 前記部材は、シート状である請求項1乃至3のいずれかに記載の部材の変形量の測定方法。The method for measuring a deformation amount of a member according to any one of claims 1 to 3, wherein the member has a sheet shape.
JP2013126833A 2013-06-17 2013-06-17 Measuring method of deformation of member Expired - Fee Related JP6247461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013126833A JP6247461B2 (en) 2013-06-17 2013-06-17 Measuring method of deformation of member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013126833A JP6247461B2 (en) 2013-06-17 2013-06-17 Measuring method of deformation of member

Publications (2)

Publication Number Publication Date
JP2015001475A JP2015001475A (en) 2015-01-05
JP6247461B2 true JP6247461B2 (en) 2017-12-13

Family

ID=52296077

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013126833A Expired - Fee Related JP6247461B2 (en) 2013-06-17 2013-06-17 Measuring method of deformation of member

Country Status (1)

Country Link
JP (1) JP6247461B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01180748U (en) * 1988-06-03 1989-12-26
JPH06201563A (en) * 1992-12-28 1994-07-19 Bridgestone Corp Method for measuring viscoelasticity characteristic of extruded member
JP4016491B2 (en) * 1998-07-29 2007-12-05 凸版印刷株式会社 Squeegee and squeegee mechanism and screen printing method using the same
US6664067B1 (en) * 2000-05-26 2003-12-16 Symyx Technologies, Inc. Instrument for high throughput measurement of material physical properties and method of using same
JP3965066B2 (en) * 2002-03-26 2007-08-22 株式会社オーシーシー Shipping method for optical submarine cables and submarine repeaters, shipping lines and shipping carts
JP5006767B2 (en) * 2007-11-14 2012-08-22 住友ゴム工業株式会社 Method and apparatus for conveying and winding a rubbery sheet
JP5241542B2 (en) * 2009-01-30 2013-07-17 住友ゴム工業株式会社 Unvulcanized rubber sheet manufacturing apparatus and unvulcanized rubber sheet manufacturing method

Also Published As

Publication number Publication date
JP2015001475A (en) 2015-01-05

Similar Documents

Publication Publication Date Title
EP2777839A1 (en) Methods and apparatus to monitor strip material conditioning machines
JP6347210B2 (en) Biaxially stretched microporous film
EP3147643A1 (en) Method and computer program product
JP6247461B2 (en) Measuring method of deformation of member
JP6366137B2 (en) Method for evaluating tire rolling resistance
BR112019016863A2 (en) method for intensifying the collapse resistance of a hollow metallic tubular product, and, hollow metallic tubular product performed and radially compressed.
CN110814052B (en) Online sensing method for plate temperature of large-strain hot rolling deformation area of magnesium alloy plate
BR112020018565A2 (en) PRODUCTION METHOD FOR MANUFACTURING GRAIN ORIENTED ELECTRIC STEEL SHEET AND ORIENTED GRAIN ELECTRIC STEEL SHEET
JP6627009B2 (en) Extruded polyethylene resin foam sheet
JP2017096759A (en) Method for evaluating the on-ice brake performance of tire
JP2004298938A (en) Aluminum sheet and aluminum foil and method for manufacturing them
JP2017129495A (en) Method for evaluating rubber performance
KR101493944B1 (en) Method for measuring recrystallization rate by electron backscatter diffraction
JP2015219049A (en) Evaluation method for cross-linked rubber
EP2949408B1 (en) Method and device for plastic stretching of a metal wire
BRPI0700350B1 (en) coil telescopicity correction station in hot strip mills
JP2016041831A (en) Method for producing aluminum alloy foil
TW201302333A (en) Magnesium alloy rolled material, magnesium alloy member and method for producing magnesium alloy rolled material
KR101482460B1 (en) System and method of controlling flatness of plate using database
CN108526223B (en) Method for determining roller surface curve and roller
TWI711496B (en) Method for improving setting of temperature control rolling process
JP6729181B2 (en) Shape correction method and shape correction device for steel sheet
KR101585804B1 (en) Apparatus and method of controlling shape of cold rolled steel plate
JP2003201534A (en) Rolled aluminum-alloy sheet for can end, and noncircular blank for can-end working
EP4339237A1 (en) Rubber kneading method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170613

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170731

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171117

R150 Certificate of patent or registration of utility model

Ref document number: 6247461

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees