JP6246580B2 - Fabric-reinforced resin molded body manufacturing method and fabric-reinforced resin molded body - Google Patents

Fabric-reinforced resin molded body manufacturing method and fabric-reinforced resin molded body Download PDF

Info

Publication number
JP6246580B2
JP6246580B2 JP2013255956A JP2013255956A JP6246580B2 JP 6246580 B2 JP6246580 B2 JP 6246580B2 JP 2013255956 A JP2013255956 A JP 2013255956A JP 2013255956 A JP2013255956 A JP 2013255956A JP 6246580 B2 JP6246580 B2 JP 6246580B2
Authority
JP
Japan
Prior art keywords
fabric
resin
molded body
sheet
fibrous reinforcing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013255956A
Other languages
Japanese (ja)
Other versions
JP2015112785A (en
Inventor
喜弘 浅野
喜弘 浅野
祐樹 目黒
祐樹 目黒
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Exsymo Co Ltd
Original Assignee
Ube Exsymo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Exsymo Co Ltd filed Critical Ube Exsymo Co Ltd
Priority to JP2013255956A priority Critical patent/JP6246580B2/en
Publication of JP2015112785A publication Critical patent/JP2015112785A/en
Application granted granted Critical
Publication of JP6246580B2 publication Critical patent/JP6246580B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Multicomponent Fibers (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)
  • Blow-Moulding Or Thermoforming Of Plastics Or The Like (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Description

本発明は、ファブリック強化樹脂成形体の製造方法及びファブリック強化樹脂成形体に関する。より詳しくは、補強材として織物、編み物及び不織布などのファブリックを用いた樹脂成形体を製造する方法及びこの方法で製造された樹脂成形体に関する。   The present invention relates to a method for producing a fabric-reinforced resin molded body and a fabric-reinforced resin molded body. More specifically, the present invention relates to a method of manufacturing a resin molded body using a fabric such as a woven fabric, a knitted fabric, and a nonwoven fabric as a reinforcing material, and a resin molded body manufactured by this method.

近年、旅行用スーツケースには、軽量などの理由から、樹脂成形品が多用されている。一方、樹脂製のスーツケースは、飛行機に搭乗する際に手荷物として預けると、貨物として扱われるため、輸送途中で傷つき、割れ、破損及び穴あきなどが起こることがある。このような高い強度が要求される樹脂成形体には、従来、繊維強化プラスチック(Fiber Reinforced Plastics:FRP)が用いられている。   In recent years, resin molded products are frequently used for travel suitcases for reasons such as light weight. On the other hand, resin suitcases are handled as cargo when checked in as baggage when boarding an airplane, and may be damaged, cracked, broken, or perforated during transportation. Conventionally, fiber reinforced plastics (FRP) are used for such resin molded bodies that require high strength.

また、補強材として織物を用いた織物強化樹脂成形体も提案されている(特許文献1,2参照)。例えば、特許文献1,2には、炭素繊維やアラミド繊維を平織した織物シートに、熱硬化性エポキシ樹脂を含浸させて圧縮成形した樹脂成形体が開示されている。   In addition, a fabric reinforced resin molded body using a fabric as a reinforcing material has been proposed (see Patent Documents 1 and 2). For example, Patent Documents 1 and 2 disclose resin molded bodies obtained by compression molding by impregnating a woven sheet obtained by plain weaving of carbon fiber or aramid fiber with a thermosetting epoxy resin.

特開平5−208471号公報Japanese Patent Laid-Open No. 5-208471 特開2009−184239号公報JP 2009-184239 A

しかしながら、繊維強化プラスチックを用いた樹脂成形体は、加熱成形後に成形体に反りが生じやすく、保形性に問題がある。この成形後の「反り」の問題は、深絞り成形した場合に特に顕著である。また、特許文献1,2に記載されているような織物シートを用いたファブリック強化樹脂成形体は、前述した保形性に加えて、補強材が高価であるため製造コストが増加するという問題もある。   However, a resin molded body using fiber reinforced plastic is liable to be warped after heat molding and has a problem in shape retention. The problem of “warping” after molding is particularly remarkable when deep drawing is performed. In addition to the above-described shape retention, the fabric reinforced resin molded article using the woven fabric sheet described in Patent Documents 1 and 2 has a problem that the manufacturing cost increases because the reinforcing material is expensive. is there.

そこで、本発明は、成形後に反りが発生しにくいファブリック強化樹脂成形体の製造方法及びファブリック強化樹脂成形体を提供することを主目的とする。   Accordingly, the main object of the present invention is to provide a method for producing a fabric-reinforced resin molded body and a fabric-reinforced resin molded body in which warpage hardly occurs after molding.

繊維強化プラスチックは、加熱成形時に補強材である繊維が部分的に延伸されるが、この補強繊維に加えられた部分的な延伸ひずみが成形後に緩和することにより、成形体に反りが生じるものと考えられる。そこで、本発明者は、補強材及び成形方法について鋭意実験検討を行い、繊維状強化材の周囲に熱可塑性樹脂からなる被覆層が設けられた複合繊維を、2本以上融合して一体化した線状複合材を用いて形成したファブリックを、特定の方法で成形することにより、反りの発生しないファブリック強化樹脂成形体が得られることを見出し、本発明に至った。   In fiber reinforced plastics, the fiber that is the reinforcing material is partially stretched during thermoforming, but the partial stretching strain applied to the reinforcing fiber is relaxed after molding, and the molded body warps. Conceivable. Therefore, the present inventor conducted earnest experiments on the reinforcing material and the molding method, and united two or more composite fibers each provided with a coating layer made of a thermoplastic resin around the fibrous reinforcing material. The present inventors have found that a fabric formed using a linear composite material can be molded by a specific method to obtain a fabric-reinforced resin molded body free from warpage.

即ち、本発明に係るファブリック強化樹脂成形体の製造方法は、加熱延伸により2本以上の複合繊維を一体化して得た線状複合材で形成されたファブリック又は前記ファブリックを用いたシート材を加熱する工程と、加熱したファブリック又はシート材を、金型を用いて、冷間にて、圧縮成形又は真空成形する工程と、を有し、前記複合繊維は、繊維状強化材と前記繊維状強化材の周囲に設けられた熱可塑性樹脂からなる被覆層とで構成されており、前記線状複合材には、各複合繊維の被覆層が融合一体化して前記被覆層を構成する熱可塑性樹脂からなるマトリックス樹脂中に前記繊維状強化材が存在しているものを用いる。
前記繊維状強化材は、例えば示差走査熱量計を使用し、昇温速度を30℃/分として、融解熱量法により測定した結晶化度が60%以上のものを用いることができる。
また、前記マトリックス樹脂には融点が130℃以下のポリオレフィン系樹脂を用いることができ、前記繊維状強化材には前記ポリオレフィン系樹脂よりも融点が20℃以上高い結晶性熱可塑性樹脂を用いることができる。
前記線状複合材は、2種以上の繊維状強化材を含んでいてもよい。
前記線状複合材には、120℃における引張りヤング率が7cN/dtex以上のものを使用することができる。
一方、前記加熱する工程では、前記ファブリック又はシート材を、前記マトリックス樹脂の融点以上かつ前記繊維状強化材の融点未満の温度にすればよい。
前記シート材には、前記ファブリックを複数枚積層して前記マトリックス樹脂が溶融する温度で熱圧着したもの、或いは、1又は2枚以上の前記ファブリックと、前記マトリックス樹脂と同種の樹脂からなる樹脂シートとを積層し、前記マトリックス樹脂が溶融する温度で熱圧着したものを用いることができる。
また、前記ファブリックは、例えば平織織布である。
That is, the method for producing a fabric-reinforced resin molded body according to the present invention heats a fabric formed of a linear composite material obtained by integrating two or more composite fibers by heat stretching or a sheet material using the fabric. And a step of compressing or vacuum forming a heated fabric or sheet material using a mold in a cold state, wherein the composite fiber is a fibrous reinforcement and the fibrous reinforcement A coating layer made of a thermoplastic resin provided around the material, and the linear composite material is made of a thermoplastic resin in which the coating layers of each composite fiber are fused and integrated to form the coating layer. A matrix resin in which the fibrous reinforcing material is present is used.
As the fibrous reinforcing material, for example, a differential scanning calorimeter can be used, and the crystallinity measured by the melting calorimetry method can be 60% or more at a temperature rising rate of 30 ° C./min.
In addition, a polyolefin resin having a melting point of 130 ° C. or lower can be used for the matrix resin, and a crystalline thermoplastic resin having a melting point of 20 ° C. higher than that of the polyolefin resin can be used for the fibrous reinforcing material. it can.
The linear composite material may include two or more kinds of fibrous reinforcing materials.
As the linear composite material, one having a tensile Young's modulus at 120 ° C. of 7 cN / dtex or more can be used.
On the other hand, what is necessary is just to make the said fabric or sheet material into the temperature more than melting | fusing point of the said matrix resin, and less than melting | fusing point of the said fibrous reinforcement in the said heating process.
The sheet material includes a plurality of the fabrics laminated and thermocompression bonded at a temperature at which the matrix resin melts, or a resin sheet made of one or more fabrics and the same type of resin as the matrix resin. And thermocompression-bonded at a temperature at which the matrix resin melts.
The fabric is, for example, a plain woven fabric.

本発明に係るファブリック強化樹脂成形体は、2本以上の複合繊維を加熱延伸により一体化して得た線状複合材で形成されたファブリック又は前記ファブリックを用いたシート材を加熱した後、金型を用いて、冷間にて、圧縮成形又は真空成形して得られ前記複合繊維は、繊維状強化材と前記繊維状強化材の周囲に設けられた熱可塑性樹脂からなる被覆層とで構成され、前記線状複合材は、各複合繊維の被覆層が融合一体化して前記被覆層を構成する熱可塑性樹脂からなるマトリックス樹脂中に前記繊維状強化材が存在しているものである。   The fabric-reinforced resin molded body according to the present invention is a mold formed by heating a fabric formed of a linear composite material obtained by integrating two or more composite fibers by heat stretching or a sheet material using the fabric. The composite fiber obtained by compression molding or vacuum molding using cold is composed of a fibrous reinforcing material and a coating layer made of a thermoplastic resin provided around the fibrous reinforcing material. In the linear composite material, the fibrous reinforcing material is present in a matrix resin made of a thermoplastic resin that forms a coating layer by fusing and integrating the coating layers of the composite fibers.

ここでいう「ファブリック」には、織物、編み物及び不織布などの線状複合材を用いて形成された布類全般を含み、「ファブリック強化樹脂成形体」は、これらの布類によって強化された樹脂成形体を指す。   The term “fabric” as used herein includes all fabrics formed using linear composite materials such as woven fabrics, knitted fabrics and nonwoven fabrics, and “fabric reinforced resin moldings” are resins reinforced by these fabrics. Refers to a molded body.

本発明によれば、繊維状強化材の周囲に熱可塑性樹脂からなる被覆層が設けられた複合繊維を、2本以上融合して一体化した線状複合材を用いて形成したファブリックを用いているため、成形後に反りが発生しにくいファブリック強化樹脂成形体を製造することができる。   According to the present invention, using a fabric formed using a linear composite material in which two or more composite fibers provided with a coating layer made of a thermoplastic resin are provided around a fibrous reinforcing material. Therefore, it is possible to manufacture a fabric-reinforced resin molded body that hardly warps after molding.

本発明の実施形態のファブリック強化樹脂成形体の製造方法を示すフローチャート図である。It is a flowchart figure which shows the manufacturing method of the fabric reinforcement | strengthening resin molding of embodiment of this invention. A〜Cは図1に示すファブリック強化樹脂成形体の製造方法をその工程順に示す模式図である。AC is a schematic diagram which shows the manufacturing method of the fabric reinforced resin molding shown in FIG. 1 in order of the process. 複合繊維の構造を模式的に示す断面図である。It is sectional drawing which shows the structure of a composite fiber typically. A〜Cは図3に示す複合繊維3を加熱延伸して得た線状複合材の構造例を模式的に示す断面図である。FIGS. 4A to 4C are cross-sectional views schematically showing a structural example of a linear composite material obtained by heating and stretching the composite fiber 3 shown in FIG. 3. A〜Cは図3に示す複合繊維3を加熱延伸して得た線状複合材の他の構造例を模式的に示す断面図である。FIGS. 4A to 4C are cross-sectional views schematically showing other structural examples of a linear composite material obtained by heating and stretching the composite fiber 3 shown in FIG. 3. A〜Cは図3に示す複合繊維3を加熱延伸して得た線状複合材の他の構造例を模式的に示す断面図である。FIGS. 4A to 4C are cross-sectional views schematically showing other structural examples of a linear composite material obtained by heating and stretching the composite fiber 3 shown in FIG. 3. 図4〜6に示す線状複合材を用いたファブリック(平織織布)を模式的に示す斜視図である。It is a perspective view which shows typically the fabric (plain woven fabric) using the linear composite material shown to FIGS. 本発明の実施形態のファブリック強化樹脂成形体の構成例を示す斜視図である。It is a perspective view which shows the structural example of the fabric reinforcement | strengthening resin molding of embodiment of this invention. A及びBは反りの評価方法を示す模式図である。A and B are schematic views showing a method for evaluating warpage.

以下、本発明を実施するための形態について、添付の図面を参照して、詳細に説明する。なお、本発明は、以下に説明する実施形態に限定されるものではない。   DESCRIPTION OF EMBODIMENTS Hereinafter, embodiments for carrying out the present invention will be described in detail with reference to the accompanying drawings. Note that the present invention is not limited to the embodiments described below.

図1は本発明の実施形態に係るファブリック強化樹脂成形体の製造方法を示すフローチャート図であり、図2A〜Cは図1に示すファブリック強化樹脂成形体の製造方法をその工程順に示す模式図である。図1及び図2に示すように、本実施形態のファブリック強化樹脂成形体(以下、単に樹脂成形体ともいう。)の製造方法では、2本以上の複合繊維を加熱延伸して得た線状複合材により形成したファブリック11又はシート材12を加熱する工程(加熱工程S1)と、加熱したファブリック11又はシート材12を成形する工程(成形工程S2)とを行う。   FIG. 1 is a flowchart showing a method for manufacturing a fabric reinforced resin molded body according to an embodiment of the present invention, and FIGS. 2A to 2C are schematic views showing the method for manufacturing the fabric reinforced resin molded body shown in FIG. is there. As shown in FIG.1 and FIG.2, in the manufacturing method of the fabric reinforcement | strengthening resin molding (henceforth a resin molding) of this embodiment, the linear form obtained by heat-drawing two or more composite fibers A process of heating the fabric 11 or the sheet material 12 formed by the composite material (heating process S1) and a process of molding the heated fabric 11 or the sheet material 12 (molding process S2) are performed.

[複合繊維]
図3は複合繊維の構造を模式的に示す断面図である。本実施形態の樹脂成形体の製造方法で用いる線状複合材の原糸は、図3に示す繊維状強化材1の周囲に熱可塑性樹脂からなる被覆層2が設けられた複合繊維3である。この複合繊維3は、例えば溶融紡糸などにより形成することができる。
[Composite fiber]
FIG. 3 is a cross-sectional view schematically showing the structure of the composite fiber. The raw yarn of the linear composite material used in the method for producing a resin molded body of this embodiment is a composite fiber 3 in which a coating layer 2 made of a thermoplastic resin is provided around the fibrous reinforcing material 1 shown in FIG. . The composite fiber 3 can be formed by, for example, melt spinning.

複合繊維3の被覆層2には、比較的低温で成形でき、熱効率において経済的な点から、示差走査熱量計を使用し昇温速度10℃/分として測定した融点が130℃以下のポリオレフィン系樹脂を用いることが好ましい。具体的には、低密度ポリエチレン、直鎖状低密度ポリエチレン、高密度ポリエチレン及びエチレン酢酸ビニルなどのエチレン系樹脂、エチレン及びブテンなどのαオレフィンとプロピレンとの2元系又は3元系共重合体であるランダム又はブロック共重合ポリプロピレンなどを用いることができる。これらのポリオレフィン系樹脂の中でも、融点が明確で温度に対してシャープな溶融挙動を示す点から、低密度ポリエチレン、直鎖状低密度ポリエチレン及び高密度ポリエチレンが好適である。   The coating layer 2 of the composite fiber 3 can be molded at a relatively low temperature and has a melting point of 130 ° C. or less measured at a heating rate of 10 ° C./min using a differential scanning calorimeter from the economical viewpoint. It is preferable to use a resin. Specifically, low density polyethylene, linear low density polyethylene, high density polyethylene, ethylene-based resins such as ethylene vinyl acetate, and binary or ternary copolymers of α-olefins such as ethylene and butene and propylene Random or block copolymerized polypropylene, etc. can be used. Among these polyolefin-based resins, low-density polyethylene, linear low-density polyethylene, and high-density polyethylene are preferable because they have a clear melting point and show a sharp melting behavior with respect to temperature.

一方、繊維状強化材1としては、例えばポリエステル繊維などの合成繊維の他、木綿などの天然繊維、スチール繊維などの金属繊維、ガラス繊維、炭素繊維、石墨繊維、セラミック繊維などを用いることができ、その材質は特に限定されるものではない。各種繊維状強化材の中でも、製造上の観点から合成繊維が好ましく、特に、結晶性の樹脂を用いたものが好ましい。   On the other hand, as the fibrous reinforcement 1, for example, synthetic fibers such as polyester fibers, natural fibers such as cotton, metal fibers such as steel fibers, glass fibers, carbon fibers, graphite fibers, ceramic fibers, and the like can be used. The material is not particularly limited. Among various fibrous reinforcing materials, synthetic fibers are preferable from the viewpoint of production, and those using crystalline resins are particularly preferable.

繊維状強化材1は、繊維製造時から成形体の状態においても溶融しないことが必要である。そこで、繊維状強化材1に合成繊維を用いる場合は、融点が被覆層2を構成する熱可塑性樹脂よりも20℃以上高い結晶性熱可塑性樹脂で形成されているものを使用することが好ましい。例えば、被覆層2が前述した融点が130℃以下のポリオレフィン系樹脂で形成されている場合、繊維状強化材1に用いられる結晶性熱可塑性樹脂としては、アイソタクチックポリプロピレン(i−PP)、ポリエチレンテレフタレート(PET)及びナイロンなどが挙げられる。   It is necessary that the fibrous reinforcing material 1 does not melt even in the state of a molded body from the time of fiber production. Therefore, when synthetic fibers are used for the fibrous reinforcing material 1, it is preferable to use those made of a crystalline thermoplastic resin whose melting point is 20 ° C. or higher than that of the thermoplastic resin constituting the coating layer 2. For example, when the coating layer 2 is formed of a polyolefin resin having a melting point of 130 ° C. or lower as described above, the crystalline thermoplastic resin used for the fibrous reinforcement 1 may be isotactic polypropylene (i-PP), Examples thereof include polyethylene terephthalate (PET) and nylon.

[線状複合材]
本実施形態の樹脂成形体の製造方法で用いる線状複合材は、前述した複合繊維3を、複数本束ねて加熱延伸することにより得られる。図4〜6は図3に示す複合繊維3を加熱延伸して得た線状複合材の構造例を模式的に示す断面図である。2本以上の複合繊維3を加熱延伸すると、各複合繊維3の被覆層2が融合一体化して、長手方向における断面において、マトリックス樹脂5(被覆層2を構成する熱可塑性樹脂)中に繊維強化材1が存在する構造の線状複合材が得られる。
[Linear composite]
The linear composite material used in the method for producing a resin molded body of the present embodiment is obtained by bundling a plurality of the composite fibers 3 described above and heating and stretching them. 4-6 is sectional drawing which shows typically the structural example of the linear composite material obtained by heat-stretching the composite fiber 3 shown in FIG. When two or more composite fibers 3 are heated and stretched, the coating layers 2 of the respective composite fibers 3 are fused and integrated, and the fibers are reinforced in the matrix resin 5 (the thermoplastic resin constituting the coating layer 2) in the cross section in the longitudinal direction. A linear composite material having a structure in which the material 1 exists is obtained.

繊維状強化材1の存在状態は特に限定されるものではなく、図4Aに示すように、長手方向における断面において、マトリックス樹脂5にランダムに分散していてもよく、図4Bに示すように繊維状強化材1の一部が接触して存在していてもよい。また、図4Cに示すように、マトリックス樹脂5中に、材質や太さが異なる2種以上の繊維状強化材1a,1bが存在していてもよい。   The presence state of the fibrous reinforcing material 1 is not particularly limited, and may be randomly dispersed in the matrix resin 5 in the cross section in the longitudinal direction as shown in FIG. 4A, and the fiber as shown in FIG. 4B. Part of the reinforcing material 1 may be present in contact. Moreover, as shown to FIG. 4C, in the matrix resin 5, the 2 or more types of fibrous reinforcement 1a, 1b from which a material and thickness differ may exist.

更に、繊維状強化材1の太さや形状も特に限定されるものではなく、図5Aに示すような直径が太いものや、図5Bに示す断面楕円状のものが、長手方向における断面において、規則的に又は不規則的に配置されていてもよい。図5Cに示すように、形状が異なる2種類の繊維状強化材1c,1dが互いに交差するように配置されていてもよい。なお、図6A〜Cに示すように、マトリックス樹脂5や繊維状強化材1に空隙4が存在していてもよい。   Further, the thickness and shape of the fibrous reinforcement 1 are not particularly limited, and those having a large diameter as shown in FIG. 5A and those having an elliptical cross section as shown in FIG. May be arranged regularly or irregularly. As shown in FIG. 5C, two types of fibrous reinforcing materials 1c and 1d having different shapes may be arranged so as to intersect each other. In addition, as shown to FIG. 6A-C, the space | gap 4 may exist in the matrix resin 5 or the fibrous reinforcement 1.

ここで、複合繊維3の延伸条件は、特に限定されるものではないが、繊維物性向上の観点から、延伸温度は145℃以上とすることが好ましい。一方、繊維状強化材1が合成繊維である場合、繊維状強化材1の結晶化度を高める観点から、延伸倍率は高い方が好ましい。しかしながら、延伸倍率が高すぎると、結晶配向が乱れて結晶化度が低下するため、繊維状強化材1が合成繊維である複合繊維3については、1段よりも多段で延伸することが望ましい。1段で延伸すると、一気に大きな延伸倍率がかかるため、加熱槽に被延伸物が侵入する前に延伸が開始され、特にネック(くびれ)延伸が極端に開始され、結果として配向結晶が生じにくくなるためである。   Here, the drawing conditions of the composite fiber 3 are not particularly limited, but the drawing temperature is preferably set to 145 ° C. or more from the viewpoint of improving the fiber properties. On the other hand, when the fibrous reinforcing material 1 is a synthetic fiber, it is preferable that the draw ratio is higher from the viewpoint of increasing the crystallinity of the fibrous reinforcing material 1. However, if the draw ratio is too high, the crystal orientation is disturbed and the degree of crystallinity is lowered. Therefore, the composite fiber 3 in which the fibrous reinforcing material 1 is a synthetic fiber is preferably drawn in multiple stages rather than one stage. When stretched in one step, a large stretch ratio is applied at a stretch. Therefore, stretching is started before the material to be stretched enters the heating tank, and particularly neck (necking) stretching is started extremely, and as a result, oriented crystals are hardly formed. Because.

例えば、2段延伸により線状複合材を形成する場合は、1段目を温水で行い、2段目を高飽和水蒸気中で行うことが好ましい。また、その場合、繊維状強化材1の結晶化度向上の観点から、2段目の延伸倍率を1.5〜2.5倍に設定することが好ましい。2段目の延伸倍率が1.5倍未満の場合、1段目に形成した配向結晶が乱れて、結晶化度が低下することがある。また、2段目の延伸倍率が2.5倍を超えると、糸切れが発生したり、配向結晶が壊れて、結晶化度が低下したりすることがある。   For example, when a linear composite material is formed by two-stage stretching, it is preferable to perform the first stage with warm water and the second stage in highly saturated steam. In that case, from the viewpoint of improving the crystallinity of the fibrous reinforcing material 1, it is preferable to set the draw ratio of the second stage to 1.5 to 2.5 times. When the draw ratio of the second stage is less than 1.5 times, the oriented crystal formed in the first stage may be disturbed and the crystallinity may be lowered. On the other hand, when the draw ratio at the second stage exceeds 2.5, thread breakage may occur or the oriented crystal may be broken and the crystallinity may be lowered.

なお、2段延伸により線状複合材を形成する場合における1段目の延伸倍率は、特に限定されるものではないが、例えば4.0〜10.0倍とすることができる。また、原糸3の延伸は2段に限定されるものではなく、3段以上で行ってもよい。   In addition, when the linear composite material is formed by two-stage stretching, the first-stage stretching ratio is not particularly limited, but can be set to 4.0 to 10.0 times, for example. Further, the drawing of the raw yarn 3 is not limited to two stages, and may be performed in three or more stages.

そして、本実施形態の樹脂成形体の製造方法で用いる線状複合材の繊維状強化材1は、示差走査熱量計を使用し、昇温速度を30℃/分として、融解熱量法により測定した結晶化度が60%以上であることが好ましい。繊維状強化材1の結晶化度が60%未満の場合、成形時に歪みが発生して、成形体に反りが生じる。一方繊維状強化材1の結晶化度を60%以上にすることにより、成形時発生する歪みを小さくし、反りのない樹脂成形体を製造することができる。   And the fibrous reinforcement 1 of the linear composite material used with the manufacturing method of the resin molding of this embodiment was measured by the calorific value method using a differential scanning calorimeter at a heating rate of 30 ° C./min. The crystallinity is preferably 60% or more. When the degree of crystallinity of the fibrous reinforcing material 1 is less than 60%, distortion occurs during molding, and the molded body warps. On the other hand, by setting the degree of crystallinity of the fibrous reinforcing material 1 to 60% or more, it is possible to reduce distortion generated during molding and to produce a resin molded body without warping.

ここで規定する線状複合材の繊維状強化材1の結晶化度は、示差走査熱量計(DSC)を用いて測定した繊維状強化材1の融解熱量から算出した値である。結晶化度の算出にあたっては、繊維状強化材1を構成する樹脂の完全結晶における融解熱量文献値(209J/g、昇温速度10℃/分)を結晶化度100%とした。また、繊維状強化材1の測定量は約10mgとし、室温から繊維状強化材1の融点よりも30〜40℃高い温度まで、昇温速度30℃/分で、昇温走査した。   The degree of crystallinity of the fibrous reinforcement 1 of the linear composite material defined here is a value calculated from the heat of fusion of the fibrous reinforcement 1 measured using a differential scanning calorimeter (DSC). In calculating the degree of crystallinity, the reference value of heat of fusion (209 J / g, temperature increase rate 10 ° C./min) in the complete crystal of the resin constituting the fibrous reinforcing material 1 was set to 100% crystallinity. The measured amount of the fibrous reinforcing material 1 was about 10 mg, and the temperature was scanned from room temperature to a temperature 30 to 40 ° C. higher than the melting point of the fibrous reinforcing material 1 at a heating rate of 30 ° C./min.

DSCを用いて樹脂の融点を測定する場合は、一般に、昇温速度は10℃/分に設定されるが、延伸物のような配向結晶化が生じているものの融解熱量を測定し、繊維に内在している結晶化度の差異を求める場合、昇温速度が遅いと、昇温中に結晶化が進行し、測定前と異なる状態の融解熱量を測定することになる。そこで、本実施形態においては、繊維状強化材1の結晶化度は、昇温速度を30℃/分として測定した値で規定した。   When the melting point of a resin is measured using DSC, the rate of temperature increase is generally set to 10 ° C./min. However, the amount of heat of fusion of oriented crystallization such as a stretched product is measured, and the fiber is measured. When obtaining the difference in the degree of crystallinity, if the rate of temperature rise is slow, crystallization proceeds during temperature rise, and the amount of heat of fusion in a state different from that before measurement is measured. Therefore, in the present embodiment, the degree of crystallinity of the fibrous reinforcing material 1 is defined by a value measured at a temperature increase rate of 30 ° C./min.

更に、本実施形態の樹脂成形体の製造方法で用いる線状複合材は、120℃における引張りヤング率が7cN/dtex以上であることが好ましい。これにより、成形時に発生する歪みを小さくすることができる。   Furthermore, it is preferable that the linear composite material used in the method for producing a resin molded body of this embodiment has a tensile Young's modulus at 120 ° C. of 7 cN / dtex or more. Thereby, the distortion which generate | occur | produces at the time of shaping | molding can be made small.

[ファブリッ11・シート材12]
本実施形態の樹脂成形体の製造方法で用いるファブリックは、前述した線状複合材を用いて製造されたものであり、例えば、織物、編み物又は不織布である。また、本実施形態で用いるファブリックは、前述した線状複合材を用いていればよく、異種繊維種が混繊されていてもよい。図7はファブリックの一例である平織織布を模式的に示す斜視図である。ファブリック11の組織は、特に限定されるものではなく、図7に示す平織の他、斜文織、朱子織、これらの原組織の変形組織など用途に応じて適宜選択することができる。また、ファブリックの製造方法も、特に限定されるものではなく、公知の方法を適用することができる。
[Fabric 11 sheet material 12]
The fabric used in the method for producing a resin molded body of the present embodiment is produced using the above-described linear composite material, and is, for example, a woven fabric, a knitted fabric, or a nonwoven fabric. In addition, the fabric used in the present embodiment only needs to use the above-described linear composite material, and different fiber types may be mixed. FIG. 7 is a perspective view schematically showing a plain woven fabric which is an example of the fabric. The structure of the fabric 11 is not particularly limited, and can be appropriately selected according to applications such as a plain weave, a satin weave, a deformed structure of these original structures, in addition to the plain weave shown in FIG. Moreover, the manufacturing method of a fabric is not specifically limited, either, A well-known method can be applied.

更に、本実施形態の樹脂成形体の製造方法では、前述したファブリックを単体で使用することもできるが、複数枚のファブリックを積層し、マトリックス樹脂5が溶融する温度で熱圧着したシート材、1又は2枚以上のファブリックと、マトリックス樹脂5と同種の樹脂からなる樹脂シートとを積層し、マトリックス樹脂5が溶融する温度で熱圧着したシート材を使用することが好ましい。   Furthermore, in the method for producing a resin molded body of the present embodiment, the above-described fabric can be used alone, but a sheet material obtained by laminating a plurality of fabrics and thermocompression bonding at a temperature at which the matrix resin 5 melts, Alternatively, it is preferable to use a sheet material obtained by laminating two or more fabrics and a resin sheet made of the same kind of resin as the matrix resin 5 and thermocompression bonding at a temperature at which the matrix resin 5 melts.

このようにファブリックを熱圧着してシート化することにより、繊維状強化材1の結晶化度を高めることができると共に、加熱工程S1及び成形工程S2における操作性を向上させることができる。また、ファブリックに樹脂シートを積層したシート材は、ファブリックの特徴である透湿性や通気性を低下させることができるため、家電などの透水を嫌う用途への適用が可能となると共に、真空成形法の適用も可能となる。   Thus, by thermocompression-bonding the fabric into a sheet, the degree of crystallinity of the fibrous reinforcing material 1 can be increased, and the operability in the heating step S1 and the molding step S2 can be improved. In addition, the sheet material in which the resin sheet is laminated on the fabric can reduce the moisture permeability and air permeability that are the characteristics of the fabric, so that it can be applied to applications that dislike water permeability such as home appliances, and vacuum forming methods. Can also be applied.

なお、本実施形態の樹脂成形体の製造方法では、前述したファブリック又はシート材の片面又は両面に、ポリオレフィン、ポリエステル又はABS(アクリロニトリル−ブタジエン−スチレン共重合体)樹脂からなるフィルムを貼り合わせてもよい。これにより、樹脂成形体の表面を着色したり、模様などの意匠性を付与したりすることが可能となる。   In addition, in the manufacturing method of the resin molding of this embodiment, even if the film which consists of polyolefin, polyester, or ABS (acrylonitrile butadiene styrene copolymer) resin is bonded together on the single side | surface or both surfaces of the fabric or sheet material mentioned above. Good. Thereby, it becomes possible to color the surface of a resin molding or to give design properties, such as a pattern.

[加熱工程S1]
図2A及び図2Bに示すように、加熱工程S1では、ファブリック11又はこのファブリックを用いたシート材12を、必要に応じて裁断や積層した後、加熱する。その際、加熱方法は、特に限定されるものではなく、オーブンやホットプレートなど公知の加熱装置を使用することができる。また、必要に応じて、金属板などで挟持した状態で、ファブリック11又はシート材12を加熱してもよい。これにより、熱収縮を防止することができる。ファブリック11又はシート材12の加熱温度は、マトリックス樹脂5の融点以上かつ繊維状強化材1の融点未満の温度とすることが好ましい。これにより、形状保持性(保形性)が良好なファブリック強化樹脂成形体を得ることができる。
[Heating step S1]
As shown in FIGS. 2A and 2B, in the heating step S <b> 1, the fabric 11 or the sheet material 12 using the fabric is heated after being cut or laminated as necessary. At that time, the heating method is not particularly limited, and a known heating device such as an oven or a hot plate can be used. Moreover, you may heat the fabric 11 or the sheet | seat material 12 in the state clamped with the metal plate etc. as needed. Thereby, thermal contraction can be prevented. The heating temperature of the fabric 11 or the sheet material 12 is preferably set to a temperature equal to or higher than the melting point of the matrix resin 5 and lower than the melting point of the fibrous reinforcing material 1. Thereby, a fabric reinforced resin molded article having good shape retention (shape retention) can be obtained.

[成形工程S2]
図8は本実施形態の方法で製造されるファブリック強化樹脂成形体の構成例を示す斜視図である。図2Cに示すように、前述した加熱工程S1で加熱したファブリック11又はシート材12を、金型13a,13bを用いて、冷間にて、圧縮成形又は真空成形する。これにより、例えば図8に示される深絞り成形体20などの略箱状体をはじめとし、各種形状のファブリック強化樹脂成形体を製造することができる。
[Molding step S2]
FIG. 8 is a perspective view showing a configuration example of a fabric reinforced resin molded body manufactured by the method of the present embodiment. As shown in FIG. 2C, the fabric 11 or the sheet material 12 heated in the heating step S1 described above is compression-molded or vacuum-molded using the molds 13a and 13b while being cold. Thereby, for example, substantially box-shaped bodies such as the deep-drawn molded body 20 shown in FIG. 8 can be manufactured, and fabric-reinforced resin molded bodies having various shapes can be manufactured.

圧縮成形及び真空成形する際の条件は、特に限定されるものではないが、例えば、圧力を1〜5MPa、ファブリック11又はシート材12の温度を120〜150℃、冷却時間を30〜60秒とする。なお、本実施形態の樹脂成形体の製造方法では、冷間にて成形を行っているが、これは形状保持性(保形性)が良好なファブリック強化樹脂成形体を、効率よく製造するためである。   The conditions at the time of compression molding and vacuum molding are not particularly limited. For example, the pressure is 1 to 5 MPa, the temperature of the fabric 11 or the sheet material 12 is 120 to 150 ° C., and the cooling time is 30 to 60 seconds. To do. In addition, in the manufacturing method of the resin molding of this embodiment, although it shape | molds in cold, this is in order to manufacture efficiently the fabric reinforcement | strengthening resin molding with favorable shape retainability (shape retention). It is.

以上詳述したように、本実施形態の樹脂成形体の製造方法では、繊維状強化材の周囲に被覆層を設けた複合繊維を2本以上束ねて加熱延伸し、各繊維の被覆層を融合一体化して得た線状複合材により形成したファブリックを用いているため、強化材とマトリックス樹脂とが一体化された樹脂成形体が得られる。これにより、成形体の強度を高めることができる。   As described above in detail, in the method for producing a resin molded body according to the present embodiment, two or more composite fibers each provided with a coating layer around a fibrous reinforcing material are bundled and heated to stretch, and the coating layers of the fibers are fused. Since the fabric formed by the linear composite material obtained by integration is used, a resin molded body in which the reinforcing material and the matrix resin are integrated is obtained. Thereby, the intensity | strength of a molded object can be raised.

また、本実施形態の樹脂成形体の製造方法では、繊維状強化材の融点よりも低い温度で予備加熱を行った後、冷間成形を行っているため、ファブリックを構成する各繊維に歪みが生じることを防止できる。その結果、成形体の保形性を向上させることができる。本実施形態の樹脂成形体の製造方法は、織物、編み物及び不織布を用いた樹脂成形体の製造に好適であるが、強化材として伸縮性に劣る織物を用いた場合に特に効果が大きい。   Further, in the method for producing a resin molded body according to the present embodiment, since pre-heating is performed at a temperature lower than the melting point of the fibrous reinforcing material and then cold forming is performed, each fiber constituting the fabric is distorted. It can be prevented from occurring. As a result, the shape retention of the molded body can be improved. The method for producing a resin molded body according to the present embodiment is suitable for producing a resin molded body using a woven fabric, a knitted fabric, and a nonwoven fabric, but is particularly effective when a woven fabric having poor stretchability is used as a reinforcing material.

以下、本発明の実施例及び比較例を挙げて、本発明の効果について具体的に説明する。本実施例においては、以下に示す方法及び条件で作製した線状複合材により形成した平織織布を用いて樹脂成形体を製造し、その性能を評価した。   Hereinafter, the effects of the present invention will be specifically described with reference to Examples and Comparative Examples of the present invention. In this example, a resin molded body was produced using a plain woven fabric formed from a linear composite material produced by the following method and conditions, and the performance was evaluated.

<線状複合材A>
先ず、アイソタクチックポリプロピレン(i−PP)[メルトフローレイト(MFR)=18g/10分(230℃、21.18N)、融点=165℃]からなる繊維状強化材の周囲に、直鎖状低密度ポリエチレン(LLDPE)[メルトフローレイト(MFR)=8g/10分(190℃、21.18N)、融点=117℃]からなる被覆層を設けた複合繊維を作製した。具体的には、これらの材料を、ホール数が240ホールの細孔を有する鞘芯複合紡糸ノズルを用いて、紡糸温度270℃にて、紡糸ノズルヘッド部に備え付けの溶融樹脂ギヤポンプで所定量の吐出樹脂量に計量しつつ紡糸速度60m/分で紡糸し、鞘と芯の断面積比(鞘/芯比)が35/65で、繊度が24,163dtexの複合繊維を作製した。
<Linear composite material A>
First, a linear reinforcement is formed around a fibrous reinforcement made of isotactic polypropylene (i-PP) [melt flow rate (MFR) = 18 g / 10 min (230 ° C., 21.18 N), melting point = 165 ° C.]. A composite fiber provided with a coating layer made of low density polyethylene (LLDPE) [melt flow rate (MFR) = 8 g / 10 min (190 ° C., 21.18 N), melting point = 117 ° C.] was produced. Specifically, a predetermined amount of these materials are mixed with a molten resin gear pump attached to the spinning nozzle head at a spinning temperature of 270 ° C. using a sheath-core composite spinning nozzle having pores with 240 holes. Spinning at a spinning speed of 60 m / min while measuring the amount of discharged resin, composite fibers having a sheath / core cross-sectional area ratio (sheath / core ratio) of 35/65 and a fineness of 24,163 dtex were produced.

引き続き、得られた複合繊維(240本)をスピンドロー方式(紡糸延伸直結法)にて、第1延伸ローラー(G1)=60m/分、第1延槽伸温度=95℃(温水)、第2延伸ローラー(G2)速度=405m/分、第2延伸槽温度=153℃(高圧飽和水蒸気)、第3延伸ローラー(G3)速度=805m/分で、第1延伸倍率(G2/G1速度比)=6.75倍、第2延伸倍率(G3/G2速度比)=1.99倍、全延伸倍率(G3/G1速度比)=13.42倍の条件で2段延伸した。この延伸工程により、マトリックス樹脂であるLLDPEが溶融し、繊維状強化材(i−PP)を包埋して一体化した延伸線状複合材Aを得た。   Subsequently, the obtained composite fiber (240 fibers) was subjected to a first draw roller (G1) = 60 m / min, a first drawing tank drawing temperature = 95 ° C. (warm water), a first drawing by a spin draw method (spinning drawing direct connection method). 2 stretching roller (G2) speed = 405 m / min, 2nd stretching tank temperature = 153 ° C. (high pressure saturated steam), 3rd stretching roller (G3) speed = 805 m / min, 1st stretching ratio (G2 / G1 speed ratio) ) = 6.75 times, second draw ratio (G3 / G2 speed ratio) = 1.99 times, and total draw ratio (G3 / G1 speed ratio) = 13.42 times. Through this stretching process, LLDPE, which is a matrix resin, was melted, and a stretched linear composite material A in which a fibrous reinforcing material (i-PP) was embedded and integrated was obtained.

この延伸線状複合材Aの物性は、繊度=1828dtex、引張りヤング率=93cN/dtex(室温引張り試験)、13.2cN/dtex(120℃熱間引張り試験)であった。また、得られた延伸線状複合材Aについて、示差走査熱量計(DSC)にて、昇温速度30℃/分の条件で、繊維状強化材(i−PP)の融解熱量を測定し、i−PP樹脂の完全結晶体の融解熱量との対比から結晶化度を算出した。その結果、繊維状強化材(i−PP)の結晶化度は72%であった。   The physical properties of the drawn linear composite material A were fineness = 1828 dtex, tensile Young's modulus = 93 cN / dtex (room temperature tensile test), and 13.2 cN / dtex (120 ° C. hot tensile test). Further, for the obtained stretched linear composite material A, the heat of fusion of the fibrous reinforcing material (i-PP) is measured with a differential scanning calorimeter (DSC) under the condition of a temperature rising rate of 30 ° C./min. The degree of crystallinity was calculated from the comparison with the heat of fusion of the complete crystal of i-PP resin. As a result, the crystallinity of the fibrous reinforcing material (i-PP) was 72%.

<線状複合材B>
ギヤポンプの吐出樹脂量を調整し、紡糸速度を40m/分とし、紡糸繊度を17,809dtexとした以外は、前述した線状複合材Aと同様の方法及び条件で、複合繊維を作製した。その後、第1延伸ローラー(G1)を40m/分、第1延槽伸温度を145℃ (高圧飽和水蒸気)、第2延伸ローラー(G2)速度を400m/分とし、全延伸倍率(G2/G1速度比)=10.00倍の条件で1段延伸した以外は、前述した複合繊維Aと同様の方法及び条件で延伸線状複合材Bを得た。
<Linear composite material B>
A composite fiber was produced by the same method and conditions as the linear composite material A described above except that the amount of resin discharged from the gear pump was adjusted, the spinning speed was 40 m / min, and the spinning fineness was 17,809 dtex. Thereafter, the first stretching roller (G1) is 40 m / min, the first stretching tank stretching temperature is 145 ° C. (high-pressure saturated steam), the second stretching roller (G2) speed is 400 m / min, and the total stretching ratio (G2 / G1). The stretched linear composite material B was obtained by the same method and conditions as the composite fiber A described above except that the film was stretched one step under the condition of (speed ratio) = 10.00 times.

この延伸線状複合材Bの物性は、繊度=1808dtex、引張りヤング率=59cN/dtex(室温引張り試験)、7.1cN/dtex(120℃熱間引張り試験)であった。また、線状複合材Aと同様の方法で測定し、算出した繊維状強化材(i−PP)の結晶化度は60%であった。   The physical properties of the drawn linear composite material B were fineness = 1808 dtex, tensile Young's modulus = 59 cN / dtex (room temperature tensile test), and 7.1 cN / dtex (120 ° C. hot tensile test). Moreover, it measured by the method similar to the linear composite material A, and the crystallinity degree of the fibrous reinforcement (i-PP) computed was 60%.

<線状複合材C>
ギヤポンプの吐出樹脂量を調整し、紡糸繊度を12,544dtexとした以外は、前述した線状複合材Aと同様の方法及び条件で、複合繊維を作製した。その後、第2延伸ローラー(G2)速度を300m/分 、第2延伸槽温度を145℃(高圧飽和水蒸気)、第3延伸ローラー(G3)速度を420m/分とし、第1延伸倍率(G2/G1速度比)を5.00倍、第2延伸倍率(G3/G2速度比)を1.40倍、全延伸倍率(G3/G1速度比)を7.00倍とした以外は、前述した線状複合材Aと同様の方法及び条件で2段延伸し、延伸線状複合材Cを得た。
<Linear composite material C>
A composite fiber was produced by the same method and conditions as the linear composite material A described above, except that the amount of resin discharged from the gear pump was adjusted and the spinning fineness was set to 12,544 dtex. Thereafter, the second stretching roller (G2) speed was 300 m / min, the second stretching tank temperature was 145 ° C. (high-pressure saturated steam), the third stretching roller (G3) speed was 420 m / min, and the first stretching ratio (G2 / G1 speed ratio) is 5.00 times, the second draw ratio (G3 / G2 speed ratio) is 1.40 times, and the total draw ratio (G3 / G1 speed ratio) is 7.00 times. A stretched linear composite material C was obtained by two-stage stretching under the same method and conditions as the linear composite material A.

この延伸線状複合材Cの物性は、繊度=1814dtex、引張りヤング率=36cN/dtex(室温引張り試験)、4.9cN/dtex(120℃熱間引張り試験)であった。また、線状複合材Aと同様の方法で測定し、算出した繊維状強化材(i−PP)の結晶化度は52%であった。この線状複合材Cは、熱間引張り試験でのヤング率及び結晶化度において、前述した線状複合材A及び線状複合材Bよりも極めて低い物性を示し、耐熱物性が劣ることが推測された。これは、延伸倍率が実施例の繊維より低いことが原因しているものと推測される。   The physical properties of the drawn linear composite material C were fineness = 1814 dtex, tensile Young's modulus = 36 cN / dtex (room temperature tensile test), and 4.9 cN / dtex (120 ° C. hot tensile test). Moreover, it measured by the method similar to the linear composite material A, and the crystallinity degree of the fibrous reinforcement (i-PP) computed was 52%. The linear composite material C exhibits extremely lower physical properties than the above-described linear composite material A and linear composite material B in Young's modulus and crystallinity in the hot tensile test, and is assumed to have poor heat resistance. It was done. This is presumed to be caused by the fact that the draw ratio is lower than that of the fiber of the example.

<線状複合材D>
ギヤポンプの吐出樹脂量を調整し、紡糸繊度を25,045dtexとした以外は、前述した線状複合材Aと同様の方法及び条件で、複合繊維を作製した。その後、第2延伸ローラー(G2)速度を600m/分、第3延伸ローラー(G3)速度を838m/分とし、第1延伸倍率(G2/G1速度比)を10.00倍、第2延伸倍率(G3/G2速度比)を1.40倍、全延伸倍率(G3/G1速度比)を13.97倍とした以外は、前述した線状複合材Aと同様の方法及び条件で2段延伸し、延伸線状複合材Dを得た。
<Linear composite material D>
A composite fiber was produced by the same method and conditions as the linear composite material A described above except that the amount of resin discharged from the gear pump was adjusted and the spinning fineness was 25,045 dtex. Thereafter, the second stretching roller (G2) speed is 600 m / min, the third stretching roller (G3) speed is 838 m / min, the first stretching ratio (G2 / G1 speed ratio) is 10.00 times, and the second stretching ratio. Two-stage stretching under the same method and conditions as the linear composite A described above except that (G3 / G2 speed ratio) is 1.40 times and the total draw ratio (G3 / G1 speed ratio) is 13.97 times. Thus, a stretched linear composite material D was obtained.

この延伸線状複合材Dの物性は、繊度=1820dtex、引張りヤング率=82cN/dtex(室温引張り試験)、6.8cN/dtex(120℃熱間引張り試験)であった。また、線状複合材Aと同様の方法で測定し、算出した繊維状強化材(i−PP)の結晶化度は58%であった。この線状複合材Dは、熱間引張り試験でのヤング率及び結晶化度において、前述した線状複合材A及び線状複合材Bよりも低い物性を示し、耐熱物性に劣ることが推測された。このことから、高倍率延伸すれば耐熱性向上を実現できるとは限らず、1段目より高温延伸である2段目の延伸倍率が低いため、1段目の延伸で形成した配向結晶を成長させるのではなく、むしろ破壊していることが推測される。   The physical properties of the drawn linear composite material D were fineness = 1820 dtex, tensile Young's modulus = 82 cN / dtex (room temperature tensile test), and 6.8 cN / dtex (120 ° C. hot tensile test). Moreover, it measured by the method similar to the linear composite material A, and the crystallinity degree of the fibrous reinforcement (i-PP) computed was 58%. This linear composite material D is considered to exhibit lower physical properties than the above-described linear composite material A and linear composite material B in Young's modulus and crystallinity in the hot tensile test, and to be inferior in heat resistant physical properties. It was. From this, it is not always possible to achieve improved heat resistance by stretching at a high magnification, and the oriented crystal formed by the first-stage stretching grows because the second-stage stretching ratio, which is higher-temperature stretching than the first stage, is lower. Rather than letting go, it is presumed that it is rather destroyed.

<線状複合材E>
ギヤポンプの吐出樹脂量を調整し、紡糸繊度を24,959dtexとした以外は、前述した線状複合材Bと同様の方法及び条件で、複合繊維を作製した。その後、第2延伸ローラー(G2)速度を560m/分とし 、全延伸倍率(G2/G1速度比)=14.00倍の条件で延伸した以外は、前述した線状複合材Bと同様の方法及び条件で1段延伸し、延伸線状複合材Eを得た。
<Linear composite E>
A composite fiber was produced by the same method and conditions as those of the linear composite material B described above, except that the amount of resin discharged from the gear pump was adjusted and the spinning fineness was 24,959 dtex. Thereafter, the second stretching roller (G2) speed was set to 560 m / min, and the same method as that for the linear composite material B described above, except that the stretching was performed under the condition of the total stretching ratio (G2 / G1 speed ratio) = 14.0 times. And it extended | stretched 1 step on condition, and the extending | stretching linear composite material E was obtained.

この延伸線状複合材Eの物性は、繊度=1810dtex、引張りヤング率=71cN/dtex(室温引張り試験)、6.5cN/dtex(120℃熱間引張り試験)であった。また、線状複合材Aと同様の方法で測定し、算出した繊維状強化材(i−PP)の結晶化度は57%であった。この線状複合材Eは、熱間引張り試験でのヤング率及び結晶化度において、前述した線状複合材A及び線状複合材Bよりも低い物性を示し、耐熱物性に劣ることが推測された。このことから、前述した線状複合材Dと同様に、高倍率延伸すれば配向の促進及び結晶化度の増大の促進ができる訳ではなく、1段で大きな倍率の延伸を行うと、繊維状強化材(i−PP)のネック(くびれ)変形を伴う延伸が増大し、配向結晶化が抑制されることが推測される。   The physical properties of the drawn linear composite material E were fineness = 1810 dtex, tensile Young's modulus = 71 cN / dtex (room temperature tensile test), and 6.5 cN / dtex (120 ° C. hot tensile test). Moreover, it measured by the method similar to the linear composite material A, and the crystallinity degree of the fibrous reinforcement (i-PP) calculated was 57%. This linear composite material E is assumed to exhibit lower physical properties than the above-mentioned linear composite material A and linear composite material B in Young's modulus and crystallinity in the hot tensile test, and to be inferior in heat resistance physical properties. It was. From this, as with the linear composite material D described above, it is not possible to promote the orientation and increase the crystallinity by stretching at a high magnification. It is presumed that stretching accompanied by neck (necking) deformation of the reinforcing material (i-PP) increases and orientation crystallization is suppressed.

<線状複合材F>
被覆層をエチレン―プロピレンランダム共重合体(co−PP)[メルトフローレイト(MFR)=5g/10分(190℃、21.18N)、融点=125℃]で形成したこと、及びギヤポンプの吐出樹脂量を調整して紡糸繊度を24,100dtexとしたこと以外は、前述した線状複合材Aと同様の方法及び条件で、複合繊維を作製した。その後、前述した線状複合材Aと同様の方法及び条件で2段延伸し、延伸線状複合材Fを得た。
<Linear composite material F>
The coating layer was formed of ethylene-propylene random copolymer (co-PP) [melt flow rate (MFR) = 5 g / 10 min (190 ° C., 21.18 N), melting point = 125 ° C.], and discharge of gear pump A composite fiber was produced by the same method and conditions as the linear composite material A described above except that the amount of resin was adjusted and the spinning fineness was 24,100 dtex. Thereafter, two-stage stretching was performed under the same method and conditions as the linear composite material A described above to obtain a stretched linear composite material F.

この延伸線状複合材Fの物性は、繊度=1820dtex、引張りヤング率=95cN/dtex(室温引張り試験)、95cN/dtex(120℃熱間引張り試験)であった。また、線状複合材Aと同様の方法で測定し、算出した繊維状強化材(i−PP)の結晶化度は71%であった。   The physical properties of the drawn linear composite material F were fineness = 1820 dtex, tensile Young's modulus = 95 cN / dtex (room temperature tensile test), and 95 cN / dtex (120 ° C. hot tensile test). Moreover, it measured by the method similar to the linear composite material A, and the crystallinity degree of the fibrous reinforcement (i-PP) computed was 71%.

これら線状複合材A〜Fについて、上記以外の製造条件及び繊維物性を下記表1にまとめて示す。   The production conditions and fiber properties other than those described above are summarized in Table 1 below for these linear composite materials A to F.

Figure 0006246580
Figure 0006246580

なお、上記表1に示す「引張り強度」は、以下に示す方法にて測定した値である。
(1)室温
JIS L1013で規定される方法に準じて、試料長100mm、引張り速度100mm/分の条件で、株式会社島津製作所社製 オートグラフAG−100kN ISを用いて、1試料当たり5回の測定を行った。そして、その平均値から、強度(cN/dtex)、伸度(%)、ヤング率(cN/dtex)を求めた。
The “tensile strength” shown in Table 1 is a value measured by the following method.
(1) Room temperature According to the method defined in JIS L1013, using Autograph AG-100kN IS manufactured by Shimadzu Corporation under the conditions of a sample length of 100 mm and a tensile speed of 100 mm / min, 5 times per sample Measurements were made. And the intensity | strength (cN / dtex), elongation (%), and Young's modulus (cN / dtex) were calculated | required from the average value.

(2)120℃
加熱炉を使用して120℃雰囲気下で1時間調整した後、試料をセットして、3分後(試料の温度が約2分後に120℃に達する)に、JIS L1013で規定される方法に準じて、試料長100mm、引張り速度100mm/分の条件で、株式会社島津製作所社製 オートグラフAG−100kN ISを用いて、1試料当たり5回の測定を行った。そして、その平均値から、強度(cN/dtex)、伸度(%)、ヤング率(cN/dtex)を求めた。
(2) 120 ° C
After adjusting for 1 hour in a 120 ° C atmosphere using a heating furnace, set the sample, and after 3 minutes (the temperature of the sample reaches 120 ° C after about 2 minutes), follow the method specified in JIS L1013. Accordingly, measurement was performed 5 times per sample using Autograph AG-100kN IS manufactured by Shimadzu Corporation under the conditions of a sample length of 100 mm and a pulling speed of 100 mm / min. And the intensity | strength (cN / dtex), elongation (%), and Young's modulus (cN / dtex) were calculated | required from the average value.

(実施例1)
(1)ファブリックの作製
線状複合材Aを2本合糸して3656dtexとし、織機にて、縦横方向の原糸打ち密度をそれぞれ8.33本/25mmとして平織織布を作製した。得られた織布の面密度は244g/mであった。
Example 1
(1) Fabrication Fabrication A plain woven fabric was fabricated by combining two linear composite materials A to 3656 dtex, and using a loom to set the original yarn punching density in the longitudinal and lateral directions to 8.33 yarns / 25 mm, respectively. The surface density of the obtained woven fabric was 244 g / m 2 .

(2)シート材の作製
得られた平織織布を、縦横長さ1.5mの大きさに裁断し、これを3枚積層して、加熱平板(縦2m×横2m)ホットプレス機にて熱圧着ファブリックシートを作製した。シート作製の前準備として、縦横長さ1.8m、厚さ1.5mmのアルミニウム板を予めホットプレス機で所定の温度に予熱した。そして、このアルミニウム板に前述した平織織布を載せて、所定条件で熱圧着した。プレス圧解除後にアルミニウム板ごと取り出し、別途準備しておいた冷却用のアルミニウム板をこれに載せてシートを急冷した後、シートのみを取り外すことによって熱圧着ファブリックシートを作製した。その際、ホットプレス条件は、平板温度120℃、加圧1.6MPa、加圧保持時間45秒とした。また、得られた熱圧着ファブリックシートは、厚さ1.1mm、面密度681g/mであった。
(2) Production of sheet material The obtained plain woven fabric was cut into a size of 1.5 m in length and width, and three of these were laminated and heated using a hot plate (2 m in length x 2 m in width) with a hot press machine. A thermocompression fabric sheet was prepared. As a preparation for preparing a sheet, an aluminum plate having a length and width of 1.8 m and a thickness of 1.5 mm was preheated to a predetermined temperature with a hot press machine in advance. Then, the above-described plain woven fabric was placed on the aluminum plate and thermocompression bonded under predetermined conditions. After releasing the press pressure, the entire aluminum plate was taken out, and a separately prepared aluminum plate for cooling was placed on the plate to quench the sheet, and then only the sheet was removed to prepare a thermocompression fabric sheet. At that time, the hot press conditions were a flat plate temperature of 120 ° C., a pressure of 1.6 MPa, and a pressure holding time of 45 seconds. The obtained thermocompression bonded fabric sheet had a thickness of 1.1 mm and an area density of 681 g / m 2 .

(3)圧縮成形試験
圧縮成形試験では、雄金型には、縦500mm、横700mm、高さ120mm、上部端部曲率R80mm、底部端部曲率R10mmの凸形状を有する金型を使用した。一方、雌金型には、雄金型に対応する凹形状を有する金型を使用し、雄雌金型をプレス機に装着して圧縮成形試験に使用した。なお各金型は、型内通水冷却管に冷水又は温水を通水することにより、金型温度を30℃〜70℃の範囲に維持できる状態で使用した。
(3) Compression molding test In the compression molding test, a male mold having a convex shape having a vertical length of 500 mm, a horizontal length of 700 mm, a height of 120 mm, a top end curvature R80 mm, and a bottom end curvature R10 mm was used. On the other hand, as the female mold, a mold having a concave shape corresponding to the male mold was used, and the male and female molds were mounted on a press machine and used for the compression molding test. Each mold was used in such a state that the mold temperature could be maintained in the range of 30 ° C. to 70 ° C. by passing cold water or hot water through the in-mold water cooling tube.

前述したファブリックシートの上下面を、遠赤外線(IR)ヒーターにより、表面温度が120℃〜130℃になるまで予め加熱した。所定温度に到達後、ファブリックシートを素早く圧縮試験金型に挿入し、雄雌金型のクリアランスが1mmの状態で4秒間圧縮成形した後、60秒間冷間成形を維持した。冷間成形が終了した後、脱型し、箱状成形体を得た。   The upper and lower surfaces of the fabric sheet described above were preheated with a far infrared (IR) heater until the surface temperature reached 120 ° C to 130 ° C. After reaching the predetermined temperature, the fabric sheet was quickly inserted into the compression test mold, compression molding was performed for 4 seconds with the clearance between the male and female molds being 1 mm, and then cold molding was maintained for 60 seconds. After the cold forming was completed, the mold was removed to obtain a box-shaped formed body.

次に、この箱状成形体を、室温で24時間放置後、反り及び変形などの形状を目視観察すると共に、底面に対する側壁面の反りの程度を反り角度α(°)として測定した。図9A及び図9Bは反りの評価方法を示す模式図である。反り角度α(°)は、図9Aに示すように箱状成形体の底部と側壁部とがなす角度θが90°のときをα=0°とし、図9Bに示すように側壁部が内側に反っている場合を+θ°、底側に反っている場合を−θ°として求めた。その結果、得られた箱状成形体には、反り及び変形は認められず、反り角度αは0°であり、良好な成形性であった。   Next, the box-shaped molded body was allowed to stand at room temperature for 24 hours and then visually observed for shapes such as warpage and deformation, and the degree of warpage of the side wall surface with respect to the bottom surface was measured as a warpage angle α (°). 9A and 9B are schematic views showing a method for evaluating warpage. As shown in FIG. 9A, the warp angle α (°) is α = 0 ° when the angle θ formed by the bottom portion and the side wall portion of the box-shaped molded body is 90 °, and the side wall portion is inward as shown in FIG. 9B. The case of warping was determined as + θ °, and the case of warping to the bottom side was determined as −θ °. As a result, warpage and deformation were not recognized in the obtained box-shaped molded article, and the warp angle α was 0 °, which was good moldability.

(実施例2)
織布に加えて、面密度200g/mのLLDPE樹脂製[メルトフローレイト(MFR)=8g/10分(190℃、21.18N)、融点=117℃]シートを片面に積層した以外は、前述した実施例1と同様の方法及び条件で、熱圧着ファブリックシート作製した。得られた熱圧着ファブリックシートは、厚さ1.3mm、面密度865g/mであった。
(Example 2)
In addition to the woven fabric, a sheet made of LLDPE resin having a surface density of 200 g / m 2 [melt flow rate (MFR) = 8 g / 10 minutes (190 ° C., 21.18 N), melting point = 117 ° C.] was laminated on one side A thermocompression bonded fabric sheet was produced by the same method and conditions as in Example 1 described above. The obtained thermocompression bonded fabric sheet had a thickness of 1.3 mm and an area density of 865 g / m 2 .

次に、前述した方法で作製した熱圧着ファブリックシートを、織布側の面が金型の雄側に接するように設置し、実施例1と同様の方法及び条件で圧縮成形試験を行った。その結果、室温で24時間放置後の目視観察において、箱状成形体に反りや変形は認められず、反り角度αは0°であり、良好な成形性であった。   Next, the thermocompression bonded fabric sheet produced by the above-described method was placed so that the surface on the woven fabric side was in contact with the male side of the mold, and a compression molding test was conducted under the same method and conditions as in Example 1. As a result, in the visual observation after standing at room temperature for 24 hours, no warpage or deformation was observed in the box-shaped molded body, and the warp angle α was 0 °, indicating good moldability.

(実施例3)
織布に加えて、面密度200g/mのLLDPE樹脂製[メルトフローレイト(MFR)=8g/10分(190℃、21.18N)、融点=117℃]シートを介してPET樹脂製シートを片面に積層した以外は、前述した実施例1と同様の方法及び条件で、熱圧着ファブリックシートを作製した。得られた熱圧着ファブリックシートは、厚さ1.3mm、面密度865g/mであった。
(Example 3)
In addition to woven fabric, sheet made of LLDPE resin having a surface density of 200 g / m 2 [melt flow rate (MFR) = 8 g / 10 min (190 ° C., 21.18 N), melting point = 117 ° C.] sheet through PET resin sheet A thermocompression bonded fabric sheet was produced by the same method and conditions as in Example 1 except that was laminated on one side. The obtained thermocompression bonded fabric sheet had a thickness of 1.3 mm and an area density of 865 g / m 2 .

次に、前述した方法で作製した熱圧着ファブリックシートを、織布側の面が金型の雄側に接するように設置し、実施例1と同様の方法及び条件で圧縮成形試験を行った。その結果、室温で24時間放置後の目視観察において、箱状成形体に反りや変形は認められず、反り角度αは0°であり、良好な成形性であった。   Next, the thermocompression bonded fabric sheet produced by the above-described method was placed so that the surface on the woven fabric side was in contact with the male side of the mold, and a compression molding test was conducted under the same method and conditions as in Example 1. As a result, in the visual observation after standing at room temperature for 24 hours, no warpage or deformation was observed in the box-shaped molded body, and the warp angle α was 0 °, indicating good moldability.

(実施例4)
実施例1と同様の方法で作製した織布を、加熱平板ホットプレスは行わずに3枚積層して、732g/m相当の面密度とし、実施例1と同様の方法及び条件で圧縮成形試験を行った。その結果、室温で24時間放置後の目視観察において、箱状成形体に反りや変形は認められず、反り角度αは0°であり、良好な成形性であった。
Example 4
Three sheets of woven fabric produced by the same method as in Example 1 were laminated without performing hot plate hot pressing to obtain a surface density equivalent to 732 g / m 2 , and compression molded under the same method and conditions as in Example 1. A test was conducted. As a result, in the visual observation after standing at room temperature for 24 hours, no warpage or deformation was observed in the box-shaped molded body, and the warp angle α was 0 °, indicating good moldability.

(実施例5)
線状複合材Bを2本合糸して3616dtexとした以外は、前述した実施例1と同様の方法及び条件で、平織織布を作製した。得られた織布の面密度は241g/mであった。この織布を用いて、前述した実施例1と同様の方法及び条件で、熱圧着ファブリックシートを作製した。得られた熱圧着ファブリックシートは、厚さ1.1mm、面密度670g/mであった。
(Example 5)
A plain woven fabric was produced by the same method and conditions as in Example 1 except that two linear composite materials B were combined to give 3616 dtex. The surface density of the obtained woven fabric was 241 g / m 2 . Using this woven fabric, a thermocompression bonded fabric sheet was produced by the same method and conditions as in Example 1 described above. The obtained thermocompression bonded fabric sheet had a thickness of 1.1 mm and an area density of 670 g / m 2 .

次に、前述した方法で作製した熱圧着ファブリックシートを用いて、実施例1と同様の方法及び条件で圧縮成形試験を行った。その結果、室温で24時間放置後の目視観察において、箱状成形体に反りや変形は認められず、反り角度αは0°であり、良好な成形性であった。   Next, a compression molding test was performed under the same method and conditions as in Example 1 using the thermocompression bonded fabric sheet produced by the method described above. As a result, in the visual observation after standing at room temperature for 24 hours, no warpage or deformation was observed in the box-shaped molded body, and the warp angle α was 0 °, indicating good moldability.

(実施例6)
実施例5で作製した平織織布を使用し、実施例2と同様の方法及び条件で、熱圧着ファブリックシートを作製した。得られた熱圧着ファブリックシートは、厚さ1.3mm、面密度853g/mであった。次に、前述した方法で作製した熱圧着ファブリックシートを、織布側の面が金型の雄側に接するように設置し、実施例1と同様の方法及び条件で圧縮成形試験を行った。その結果、室温で24時間放置後の目視観察において、箱状成形体に反りや変形は認められず、反り角度αは0°であり、良好な成形性であった。
(Example 6)
Using the plain woven fabric produced in Example 5, a thermocompression bonded fabric sheet was produced by the same method and conditions as in Example 2. The obtained thermocompression bonded fabric sheet had a thickness of 1.3 mm and an areal density of 853 g / m 2 . Next, the thermocompression bonded fabric sheet produced by the above-described method was placed so that the surface on the woven fabric side was in contact with the male side of the mold, and a compression molding test was conducted under the same method and conditions as in Example 1. As a result, in the visual observation after standing at room temperature for 24 hours, no warpage or deformation was observed in the box-shaped molded body, and the warp angle α was 0 °, indicating good moldability.

(実施例7)
実施例5と同様の方法で作製した織布を、加熱平板ホットプレスは行わずに3枚積層して、723g/m相当の面密度とし、実施例1と同様の方法及び条件で圧縮成形試験を行った。その結果、室温で24時間放置後の目視観察において、箱状成形体に反りや変形は認められず、反り角度αは0°であり、良好な成形性であった。
(Example 7)
Three sheets of woven fabric produced by the same method as in Example 5 were laminated without performing hot plate hot pressing to obtain a surface density equivalent to 723 g / m 2 , and compression molded under the same method and conditions as in Example 1. A test was conducted. As a result, in the visual observation after standing at room temperature for 24 hours, no warpage or deformation was observed in the box-shaped molded body, and the warp angle α was 0 °, indicating good moldability.

(実施例8)
線状複合材Fを2本合糸して3640dtexとした以外は、前述した実施例1と同様の方法及び条件で、平織織布を作製した。得られた織布の面密度は242g/mであった。この織布を用いて、前述した実施例1と同様の方法及び条件で、熱圧着ファブリックシートを作製した。得られた熱圧着ファブリックシートは、厚さ1.1mm、面密度681g/mであった。
(Example 8)
A plain woven fabric was produced by the same method and conditions as in Example 1 except that two linear composite materials F were combined to give 3640 dtex. The surface density of the obtained woven fabric was 242 g / m 2 . Using this woven fabric, a thermocompression bonded fabric sheet was produced by the same method and conditions as in Example 1 described above. The obtained thermocompression bonded fabric sheet had a thickness of 1.1 mm and an areal density of 681 g / m 2 .

次に、前述した方法で作製した熱圧着ファブリックシートを用いて、実施例1と同様の方法及び条件で圧縮成形試験を行った。その結果、室温で24時間放置後の目視観察において、箱状成形体に反りや変形は認められず、反り角度αは0°であり、良好な成形性であった。   Next, a compression molding test was performed under the same method and conditions as in Example 1 using the thermocompression bonded fabric sheet produced by the method described above. As a result, in the visual observation after standing at room temperature for 24 hours, no warpage or deformation was observed in the box-shaped molded body, and the warp angle α was 0 °, indicating good moldability.

(実施例9)
実施例8で作製した平織織布を使用し、実施例2と同様の方法及び条件で、熱圧着ファブリックシートを作製した。得られた熱圧着ファブリックシートは、厚さ1.3mm、面密度865g/mであった。次に、前述した方法で作製した熱圧着ファブリックシートを、織布側の面が金型の雄側に接するように設置し、実施例1と同様の方法及び条件で圧縮成形試験を行った。その結果、室温で24時間放置後の目視観察において、箱状成形体に反りや変形は認められず、反り角度αは0°であり、良好な成形性であった。
Example 9
Using the plain woven fabric produced in Example 8, a thermocompression bonded fabric sheet was produced by the same method and conditions as in Example 2. The obtained thermocompression bonded fabric sheet had a thickness of 1.3 mm and an area density of 865 g / m 2 . Next, the thermocompression bonded fabric sheet produced by the above-described method was placed so that the surface on the woven fabric side was in contact with the male side of the mold, and a compression molding test was conducted under the same method and conditions as in Example 1. As a result, in the visual observation after standing at room temperature for 24 hours, no warpage or deformation was observed in the box-shaped molded body, and the warp angle α was 0 °, indicating good moldability.

(実施例10)
実施例8で作製した平織織布を使用し、実施例3と同様の方法及び条件で、熱圧着ファブリックシートを作製した。得られた熱圧着ファブリックシートは、厚さ1.4mm、面密度916g/mであった。次に、前述した方法で作製した熱圧着ファブリックシートを、織布側の面が金型の雄側に接するように設置し、実施例1と同様の方法及び条件で圧縮成形試験を行った。その結果、室温で24時間放置後の目視観察において、箱状成形体に反りや変形は認められず、反り角度αは0°であり、良好な成形性であった。
(Example 10)
Using the plain woven fabric produced in Example 8, a thermocompression bonded fabric sheet was produced by the same method and conditions as in Example 3. The obtained thermocompression bonded fabric sheet had a thickness of 1.4 mm and an areal density of 916 g / m 2 . Next, the thermocompression bonded fabric sheet produced by the above-described method was placed so that the surface on the woven fabric side was in contact with the male side of the mold, and a compression molding test was conducted under the same method and conditions as in Example 1. As a result, in the visual observation after standing at room temperature for 24 hours, no warpage or deformation was observed in the box-shaped molded body, and the warp angle α was 0 °, indicating good moldability.

(実施例11)
実施例8と同様の方法で作製した織布を、加熱平板ホットプレスは行わずに3枚積層して、732g/m相当の面密度とし、実施例1と同様の方法及び条件で圧縮成形試験を行った。その結果、室温で24時間放置後の目視観察において、箱状成形体に反りや変形は認められず、反り角度αは0°であり、良好な成形性であった。
(Example 11)
Three sheets of woven fabric produced by the same method as in Example 8 were laminated without performing hot plate hot pressing to obtain a surface density equivalent to 732 g / m 2 , and compression molded under the same method and conditions as in Example 1. A test was conducted. As a result, in the visual observation after standing at room temperature for 24 hours, no warpage or deformation was observed in the box-shaped molded body, and the warp angle α was 0 °, indicating good moldability.

(比較例1)
線状複合材Cを2本合糸し、3628dtexとした以外は、実施例1と同様の方法及び条件で平織織布を作製した。得られた織布の面密度は、242g/mであった。次に、この織布を使用して実施例1と同様の方法及び条件で、熱圧着ファブリックシートを作製した。得られた熱圧着ファブリックシートは、厚さ1.1mm、面密度670g/mであった。
(Comparative Example 1)
A plain woven fabric was produced in the same manner and under the same conditions as in Example 1 except that two linear composite materials C were combined to obtain 3628 dtex. The surface density of the obtained woven fabric was 242 g / m 2 . Next, using this woven fabric, a thermocompression bonded fabric sheet was produced under the same method and conditions as in Example 1. The obtained thermocompression bonded fabric sheet had a thickness of 1.1 mm and an area density of 670 g / m 2 .

次に、前述した方法で作製した熱圧着ファブリックシートについて、実施例1と同様の方法及び条件で圧縮成形試験を行った。その結果、得られた箱状成形体は、室温で24時間放置後の目視観察において、側壁面の内側への反りが認められ、反り角度αは+10°であった。また、比較例1の箱状成形体は、底部がコーナー部を中心に内側へ変形しており、実施例に比べて成形性が劣っていた。この底部の変形は、線状複合材Cは、繊維状強化材の結晶化度が52%と本発明の範囲よりも低かったため、成形時に更に延伸され、その際発生した歪が室温での放置に伴い徐々に緩和されて、特に雄側の金型に接していた繊維シートの収縮により、発生したものと推測される。   Next, a compression molding test was performed on the thermocompression bonded fabric sheet produced by the method described above under the same method and conditions as in Example 1. As a result, the obtained box-shaped molded product was warped inward of the side wall surface by visual observation after being allowed to stand at room temperature for 24 hours, and the warp angle α was + 10 °. Moreover, the box-shaped molded object of the comparative example 1 had the bottom part deform | transformed inside centering on the corner part, and its moldability was inferior compared with the Example. The deformation of the bottom part is that the linear composite material C was further stretched at the time of molding because the crystallinity of the fibrous reinforcing material was 52%, which was lower than the range of the present invention, and the strain generated at that time was left at room temperature. It is presumed that this occurred gradually due to the shrinkage of the fiber sheet that was in contact with the male mold, in particular.

(比較例2)
織布に加えて、面密度200g/mのLLDPE樹脂製[メルトフローレイト(MFR)=8g/10分(190℃、21.18N)、融点=117℃]シートを片面に積層した以外は、前述した比較例1と同様の方法及び条件で、熱圧着ファブリックシートを作製した。得られた熱圧着ファブリックシートは、厚さ1.3mm、面密度856g/mであった。
(Comparative Example 2)
In addition to the woven fabric, a sheet made of LLDPE resin having a surface density of 200 g / m 2 [melt flow rate (MFR) = 8 g / 10 minutes (190 ° C., 21.18 N), melting point = 117 ° C.] was laminated on one side A thermocompression bonded fabric sheet was produced by the same method and conditions as in Comparative Example 1 described above. The obtained thermocompression bonded fabric sheet had a thickness of 1.3 mm and an areal density of 856 g / m 2 .

次に、前述した方法で作製した熱圧着ファブリックシートを、織布側の面が金型の雄側に接するように設置し、実施例1と同様の方法及び条件で圧縮成形試験を行った。その結果、得られた箱状成形体は、室温で24時間放置後の目視観察において、側壁面に内側への非常に大きな反りが認められた。その反り角度αは+19°であり、比較例1の箱状成形体よりも更に反りが大きくなっていた。これは、線状複合材Cは、繊維状強化材の結晶化度が52%と本発明の範囲よりも低く、更に、樹脂製シートの融点近傍で成形を行ったため、無配向状態の樹脂製シートと、織布中の繊維状強化材(i−PP)との間に収縮差が発生し、この差により反りが大きくなったものと推察される。加えて、比較例2の箱状成形体は、実施例に比べて成形性が明らかに劣っていた。   Next, the thermocompression bonded fabric sheet produced by the above-described method was placed so that the surface on the woven fabric side was in contact with the male side of the mold, and a compression molding test was conducted under the same method and conditions as in Example 1. As a result, in the obtained box-shaped molded body, a very large warpage inward was recognized on the side wall surface in visual observation after standing at room temperature for 24 hours. The warp angle α was + 19 °, and the warp was larger than that of the box-shaped molded body of Comparative Example 1. This is because the linear composite material C has a fiber reinforcing material having a crystallinity of 52%, which is lower than the range of the present invention, and is molded in the vicinity of the melting point of the resin sheet. It is presumed that a shrinkage difference occurred between the sheet and the fibrous reinforcing material (i-PP) in the woven fabric, and the warp increased due to this difference. In addition, the box-shaped molded body of Comparative Example 2 was clearly inferior in moldability as compared with the Examples.

(比較例3)
線状複合材Dを2本合糸して3640dtexとした以外は、実施例1と同様の方法及び条件で、平織織布を作製した。得られた織布の面密度は243g/mであった。次に、この織布を使用して実施例1と同様の方法及び条件で、熱圧着ファブリックシートを作製した。得られた熱圧着ファブリックシートは、厚さ1.1mm、面密度670g/mであった。
(Comparative Example 3)
A plain woven fabric was produced by the same method and conditions as in Example 1 except that two linear composite materials D were combined to obtain 3640 dtex. The surface density of the obtained woven fabric was 243 g / m 2 . Next, using this woven fabric, a thermocompression bonded fabric sheet was produced under the same method and conditions as in Example 1. The obtained thermocompression bonded fabric sheet had a thickness of 1.1 mm and an area density of 670 g / m 2 .

次に、前述した方法で作製した熱圧着ファブリックシートについて、実施例1と同様の方法及び条件で圧縮成形試験を行った。その結果、得られた箱状成形体は、室温で24時間放置後の目視観察において、少量であるが側壁面の内側への反りが認められ、その反り角度αは+2°であった。また、比較例3の箱状成形体は、底部がコーナー部を中心に内側に反っており、実施例に比べて成形性が劣っていた。この底部の変形の原因としては、線状複合材Dの繊維状強化材の結晶化度が58%と本発明の範囲よりも低かったためであると思われる。   Next, a compression molding test was performed on the thermocompression bonded fabric sheet produced by the method described above under the same method and conditions as in Example 1. As a result, the resulting box-shaped molded article was found to be slightly warped inward on the side wall surface by visual observation after being left at room temperature for 24 hours, and the warp angle α was + 2 °. Moreover, the box-shaped molded body of Comparative Example 3 had a bottom portion warped inward with the corner portion as the center, and was inferior in moldability as compared with the Examples. The cause of the deformation of the bottom part seems to be that the degree of crystallinity of the fibrous reinforcing material of the linear composite material D is 58%, which is lower than the range of the present invention.

(比較例4)
織布に加えて、面密度200g/mのLLDPE樹脂製[メルトフローレイト(MFR)=8g/10分(190℃、21.18N)、融点=117℃]シートを片面に積層した以外は、前述した比較例3と同様の方法及び条件で、熱圧着ファブリックシートを作製した。得られた熱圧着ファブリックシートは、厚さ1.3mm、面密度855g/mであった。
(Comparative Example 4)
In addition to the woven fabric, a sheet made of LLDPE resin having a surface density of 200 g / m 2 [melt flow rate (MFR) = 8 g / 10 minutes (190 ° C., 21.18 N), melting point = 117 ° C.] was laminated on one side A thermocompression bonded fabric sheet was produced under the same method and conditions as in Comparative Example 3 described above. The obtained thermocompression bonded fabric sheet had a thickness of 1.3 mm and an areal density of 855 g / m 2 .

次に、前述した方法で作製した熱圧着ファブリックシートを、織布側の面が金型の雄側に接するように設置し、実施例1と同様の方法及び条件で圧縮成形試験を行った。その結果、得られた箱状成形体は、室温で24時間放置後の目視観察において、側壁面に内側への大きな反りが認められた。その反り角度αは+8°であり、比較例3の箱状成形体よりも更に反りが大きくなっていた。また、比較例4の箱状成形体は、実施例に比べて成形性が明らかに劣るものであった。   Next, the thermocompression bonded fabric sheet produced by the above-described method was placed so that the surface on the woven fabric side was in contact with the male side of the mold, and a compression molding test was conducted under the same method and conditions as in Example 1. As a result, the obtained box-shaped molded article was found to have a large warpage inward on the side wall surface in visual observation after being left at room temperature for 24 hours. The warp angle α was + 8 °, and the warp was larger than that of the box-shaped molded body of Comparative Example 3. Moreover, the box-shaped molded body of Comparative Example 4 was clearly inferior in moldability as compared with the Examples.

(比較例5)
線状複合材Eを2本合糸して3620dtexとした以外は、実施例1と同様の方法及び条件で平織織布を作製した。得られた織布の面密度は241g/mであった。次に、この織布を使用して実施例1と同様の方法及び条件で、熱圧着ファブリックシートを作製した。得られた熱圧着ファブリックシートは、厚さ1.1mm、面密度669g/mであった。
(Comparative Example 5)
A plain woven fabric was produced by the same method and conditions as in Example 1 except that two linear composite materials E were combined to give 3620 dtex. The surface density of the obtained woven fabric was 241 g / m 2 . Next, using this woven fabric, a thermocompression bonded fabric sheet was produced under the same method and conditions as in Example 1. The obtained thermocompression bonded fabric sheet had a thickness of 1.1 mm and an areal density of 669 g / m 2 .

次に、前述した方法で作製した熱圧着ファブリックシートについて、実施例1と同様の方法及び条件で圧縮成形試験を行った。その結果、得られた箱状成形体は、室温で24時間放置後の目視観察において、少量であるが側壁面に内側への反りが認められ、その反り角度αは+4°であった。また、比較例5の箱状成形体は、底部がコーナー部を中心に内側に反っており、実施例に比べて成形性が劣っていた。   Next, a compression molding test was performed on the thermocompression bonded fabric sheet produced by the method described above under the same method and conditions as in Example 1. As a result, the resulting box-shaped molded product was warped inward on the side wall surface in a small amount in visual observation after standing at room temperature for 24 hours, and the warp angle α was + 4 °. Further, the box-shaped molded body of Comparative Example 5 had a bottom portion warped inward with the corner portion as the center, and the moldability was inferior to that of the example.

(比較例6)
織布に加えて、面密度200g/mのLLDPE樹脂製[メルトフローレイト(MFR)=8g/10分(190℃、21.18N)、融点=117℃]シートを片面に積層した以外は、前述した比較例5と同様の方法及び条件で、熱圧着ファブリックシートを作製した。得られた熱圧着ファブリックシートは、厚さ1.3mm、面密度853g/mであった。
(Comparative Example 6)
In addition to the woven fabric, a sheet made of LLDPE resin having a surface density of 200 g / m 2 [melt flow rate (MFR) = 8 g / 10 minutes (190 ° C., 21.18 N), melting point = 117 ° C.] was laminated on one side A thermocompression bonded fabric sheet was produced by the same method and conditions as in Comparative Example 5 described above. The obtained thermocompression bonded fabric sheet had a thickness of 1.3 mm and an areal density of 853 g / m 2 .

次に、前述した方法で作製した熱圧着ファブリックシートを、織布側の面が金型の雄側に接するように設置し、実施例1と同様の方法及び条件で圧縮成形試験を行った。その結果、得られた箱状成形体は、室温で24時間放置後の目視観察において、側壁面に内側への大きな反りが認められた。その反り角度αは+9°であり、比較例5の場合より更に反りが大きくなっていた。また比較例6の箱状成形体は、実施例に比べて成形性が明らかに劣るものであった。   Next, the thermocompression bonded fabric sheet produced by the above-described method was placed so that the surface on the woven fabric side was in contact with the male side of the mold, and a compression molding test was conducted under the same method and conditions as in Example 1. As a result, the obtained box-shaped molded article was found to have a large warpage inward on the side wall surface in visual observation after being left at room temperature for 24 hours. The warp angle α was + 9 °, and the warp was larger than that in Comparative Example 5. Moreover, the box-shaped molded body of Comparative Example 6 was clearly inferior in moldability as compared with the Examples.

以上の結果を、下記表2及び表3にまとめて示す。   The above results are summarized in Table 2 and Table 3 below.

Figure 0006246580
Figure 0006246580

Figure 0006246580
Figure 0006246580

上記表2に示す実施例1〜11の熱圧着ファブリックシートを用いた箱状成形体は、上記表3に示す比較例1〜6の熱圧着ファブリックシートを用いた箱状成形体に比べて、反りの発生がなく、成形性にも優れていた。この結果から、本発明によれば、成形後に反りが発生しにくいファブリック強化樹脂成形体を製造できることが確認された。   The box-shaped molded body using the thermocompression-bonded fabric sheets of Examples 1 to 11 shown in Table 2 is compared with the box-shaped molded body using the thermocompression-bonded fabric sheets of Comparative Examples 1 to 6 shown in Table 3 above. There was no warpage and the moldability was excellent. From this result, according to the present invention, it was confirmed that a fabric-reinforced resin molded body that hardly warps after molding can be produced.

1、1a〜1d 繊維状強化材
2 被覆層
3 複合繊維
4 空隙
5 マトリックス樹脂
10 線状複合材
11 ファブリック
12 シート材
13a,13b 金型
20 樹脂成形体
DESCRIPTION OF SYMBOLS 1, 1a-1d Fibrous reinforcement 2 Coating layer 3 Composite fiber 4 Space | gap 5 Matrix resin 10 Linear composite material 11 Fabric 12 Sheet material 13a, 13b Mold 20 Resin molding

Claims (10)

加熱延伸により2本以上の複合繊維を一体化して得た線状複合材で形成されたファブリック又は前記ファブリックを用いたシート材を加熱する工程と、
加熱したファブリック又はシート材を、金型を用いて、冷間にて、圧縮成形又は真空成形する工程と、を有し、
前記複合繊維は、繊維状強化材と前記繊維状強化材の周囲に設けられた熱可塑性樹脂からなる被覆層とで構成され、
前記線状複合材は、各複合繊維の被覆層が融合一体化して前記被覆層を構成する熱可塑性樹脂からなるマトリックス樹脂中に前記繊維状強化材が存在し
前記線状複合材は、120℃における引張りヤング率が7cN/dtex以上である、ファブリック強化樹脂成形体の製造方法。
Heating a fabric formed of a linear composite material obtained by integrating two or more composite fibers by heat stretching, or a sheet material using the fabric;
A step of compressing or vacuum-forming the heated fabric or sheet material using a mold in a cold state, and
The composite fiber is composed of a fibrous reinforcing material and a coating layer made of a thermoplastic resin provided around the fibrous reinforcing material,
In the linear composite material, the fibrous reinforcing material is present in a matrix resin composed of a thermoplastic resin in which the coating layers of the composite fibers are fused and integrated to form the coating layer ,
The said linear composite material is a manufacturing method of the fabric reinforcement | strengthening resin molding whose tensile Young's modulus in 120 degreeC is 7 cN / dtex or more .
前記繊維状強化材は、示差走査熱量計を使用し、昇温速度を30℃/分として、融解熱量法により測定した結晶化度が60%以上である、請求項1に記載のファブリック強化樹脂成形体の製造方法。   The fabric reinforcing resin according to claim 1, wherein the fibrous reinforcing material has a crystallinity of 60% or more measured by a calorimetric method using a differential scanning calorimeter at a heating rate of 30 ° C / min. Manufacturing method of a molded object. 前記マトリックス樹脂は融点が130℃以下のポリオレフィン系樹脂であり、前記繊維状強化材は前記ポリオレフィン系樹脂よりも融点が20℃以上高い結晶性熱可塑性樹脂で形成されている、請求項1又は2に記載のファブリック強化樹脂成形体の製造方法。   The matrix resin is a polyolefin resin having a melting point of 130 ° C or lower, and the fibrous reinforcing material is formed of a crystalline thermoplastic resin having a melting point of 20 ° C or higher than that of the polyolefin resin. The manufacturing method of the fabric reinforcement | strengthening resin molding of description. 前記線状複合材は、2種以上の繊維状強化材を含む、請求項1〜3のいずれか1項に記載のファブリック強化樹脂成形体の製造方法。   The said linear composite material is a manufacturing method of the fabric reinforcement | strengthening resin molding of any one of Claims 1-3 containing 2 or more types of fibrous reinforcements. 前記加熱する工程では、前記ファブリック又はシート材を、前記マトリックス樹脂の融点以上かつ前記繊維状強化材の融点未満の温度にする、請求項1〜4のいずれか1項に記載のファブリック強化樹脂成形体の製造方法。 The fabric reinforced resin molding according to any one of claims 1 to 4 , wherein, in the heating step, the fabric or the sheet material is set to a temperature equal to or higher than a melting point of the matrix resin and lower than a melting point of the fibrous reinforcing material. Body manufacturing method. 前記シート材は、前記ファブリックを複数枚積層して前記マトリックス樹脂が溶融する温度で熱圧着したものである、請求項1〜5のいずれか1項に記載のファブリック強化樹脂成形体の製造方法。 The said sheet | seat material is a manufacturing method of the fabric reinforcement | strengthening resin molding of any one of Claims 1-5 which laminates | stacks the said multiple fabrics and thermocompression-bonded at the temperature which the said matrix resin melts. 前記シート材は、1又は2枚以上の前記ファブリックと、前記マトリックス樹脂と同種の樹脂からなる樹脂シートとを積層し、前記マトリックス樹脂が溶融する温度で熱圧着したものである、請求項1〜5のいずれか1項に記載のファブリック強化樹脂成形体の製造方法。 The sheet material is obtained by laminating one or two or more fabrics and a resin sheet made of the same kind of resin as the matrix resin, and thermocompression bonding at a temperature at which the matrix resin melts . 6. The method for producing a fabric reinforced resin molded article according to any one of 5 above. 前記ファブリックは、平織織布である請求項1〜7のいずれか1項に記載のファブリック強化樹脂成形体の製造方法。 The method for producing a fabric-reinforced resin molded body according to any one of claims 1 to 7 , wherein the fabric is a plain woven fabric. 加熱延伸された2本以上の複合繊維一体化された線状複合材により形成されたファブリック又は前記ファブリックを用いたシート材を用いてなり
前記複合繊維は、繊維状強化材と前記繊維状強化材の周囲に設けられた熱可塑性樹脂からなる被覆層とで構成され、
前記線状複合材は、各複合繊維の被覆層が融合一体化して前記被覆層を構成する熱可塑性樹脂からなるマトリックス樹脂中に前記繊維状強化材が存在し
前記線状複合材は、120℃における引張りヤング率が7cN/dtex以上である、ファブリック強化樹脂成形体。
Using the sheet material using the fabric or the fabric formed by heat-stretched two or more composite fibers integrated linear composite,
The composite fiber is composed of a fibrous reinforcing material and a coating layer made of a thermoplastic resin provided around the fibrous reinforcing material,
In the linear composite material, the fibrous reinforcing material is present in a matrix resin composed of a thermoplastic resin in which the coating layers of the composite fibers are fused and integrated to form the coating layer ,
The linear composite material is a fabric-reinforced resin molded body having a tensile Young's modulus at 120 ° C of 7 cN / dtex or more .
前記繊維状強化材は、示差走査熱量計を使用し、昇温速度を30℃/分として、融解熱量法により測定した結晶化度が60%以上である、請求項9に記載のファブリック強化樹脂成形体。The fabric reinforcing resin according to claim 9, wherein the fibrous reinforcing material has a crystallinity of 60% or more measured by a calorimetric method using a differential scanning calorimeter at a heating rate of 30 ° C / min. Molded body.

JP2013255956A 2013-12-11 2013-12-11 Fabric-reinforced resin molded body manufacturing method and fabric-reinforced resin molded body Active JP6246580B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013255956A JP6246580B2 (en) 2013-12-11 2013-12-11 Fabric-reinforced resin molded body manufacturing method and fabric-reinforced resin molded body

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013255956A JP6246580B2 (en) 2013-12-11 2013-12-11 Fabric-reinforced resin molded body manufacturing method and fabric-reinforced resin molded body

Publications (2)

Publication Number Publication Date
JP2015112785A JP2015112785A (en) 2015-06-22
JP6246580B2 true JP6246580B2 (en) 2017-12-13

Family

ID=53527043

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013255956A Active JP6246580B2 (en) 2013-12-11 2013-12-11 Fabric-reinforced resin molded body manufacturing method and fabric-reinforced resin molded body

Country Status (1)

Country Link
JP (1) JP6246580B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6368228B2 (en) * 2014-11-28 2018-08-01 宇部エクシモ株式会社 Fabric-reinforced resin molded body manufacturing method and fabric-reinforced resin molded body

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS645822A (en) * 1987-06-27 1989-01-10 Daido Steel Co Ltd Manufacture of fiber reinforced formed material
JPH06287029A (en) * 1993-03-31 1994-10-11 Ikeda Bussan Co Ltd Glass fiber, glass fiber sheet and interior material
JP2003278027A (en) * 2002-03-18 2003-10-02 Mitsubishi Rayon Co Ltd Polypropylene fiber and method for producing the same
JP4365249B2 (en) * 2004-03-31 2009-11-18 宇部日東化成株式会社 Woven fabric and its woven fabric processed products
US20120302118A1 (en) * 2010-02-15 2012-11-29 Kurashiki Boseki Kabushiki Kaisha Sheet for fiber-reinforced resin and fiber-reinforced resin molded article using the same
BR112014002538A2 (en) * 2011-08-03 2017-03-14 Teijin Ltd method for producing low pressure molded product
JP5909062B2 (en) * 2011-08-29 2016-04-26 三光合成株式会社 Forming method
EP3466656B1 (en) * 2012-07-03 2022-03-09 The Boeing Company Device for controlling stress in joints
JP6261574B2 (en) * 2012-07-03 2018-01-17 ザ・ボーイング・カンパニーThe Boeing Company COMPOSITE TANK WITH JOINT WITH SOFTENIZED STRIP AND METHOD FOR PRODUCING THE TANK

Also Published As

Publication number Publication date
JP2015112785A (en) 2015-06-22

Similar Documents

Publication Publication Date Title
JP6246579B2 (en) Fabric-reinforced resin molded body manufacturing method and fabric-reinforced resin molded body
US11241809B2 (en) Molding die and compression molding Method
JP5926947B2 (en) Fiber-reinforced resin molded body and vehicle interior material using the same
JP6267468B2 (en) Polyolefin-based laminated sheet and method for producing the same
KR101834052B1 (en) Method for producing a semi-finished product and semi-finished product for production of a composite molded part, in particular a composite fiber molded part and composite molded part, in particular a composite fiber molded part
US20120220179A1 (en) Spun yarn and intermediate for fiber-reinforced resin, and molded article of fiber-reinforced resin using the same
JP4867259B2 (en) Preform and method for manufacturing preform
JP3675380B2 (en) Glass fiber composite mat for glass fiber reinforced stampable sheet and method for producing the same, glass fiber reinforced stampable sheet, method for producing the same and molded product
JP6464063B2 (en) Polyolefin fiber reinforced resin laminated sheet and method for producing the same
JP6246580B2 (en) Fabric-reinforced resin molded body manufacturing method and fabric-reinforced resin molded body
JP6305714B2 (en) Thermoplastic laminated sheet and method for producing the same
JP4456938B2 (en) Polypropylene resin structure board
JP6368228B2 (en) Fabric-reinforced resin molded body manufacturing method and fabric-reinforced resin molded body
JP2014156066A (en) Interior molding and production method thereof
JP7082966B2 (en) Fiber-reinforced foamed particle molded product and its manufacturing method
JP6433869B2 (en) Polyolefin fiber reinforced resin laminated sheet and method for producing the same
JP6464062B2 (en) Polyolefin fiber reinforced resin laminated sheet and method for producing the same
US20160075115A1 (en) Polyolefin-based fiber-reinforced resin multilayered sheet and method for manufacturing the same
JP2017104987A (en) Polyolefin-based fiber-reinforced resin laminated sheet
JP6783883B2 (en) Base plate for obtaining fiber reinforced plastic molded body
TWI746584B (en) Reinforced fiber for protective equipment
JP6685647B2 (en) Method for producing plate for obtaining fiber-reinforced resin molding
US20210276281A1 (en) Cloth Prepreg, Method for Manufacturing Cloth Prepreg, Fiber Reinforced Resin Molded Article, and Method for Manufacturing Fiber Reinforced Resin Molded Article
JP6783882B2 (en) Manufacturing method of fiber reinforced resin molded body
US20190104790A1 (en) Reinforcement fiber for protection products

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20161013

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170627

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170824

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20171107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20171115

R150 Certificate of patent or registration of utility model

Ref document number: 6246580

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250